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It is well established that mixed precision algorithms that factorize a matrix at a precision lower than the
working precision can reduce the execution time and the energy consumption of parallel solvers for dense
linear systems. Much less is known about the efficiency of mixed precision parallel algorithms for sparse
linear systems, and existing work focuses on single core experiments. We evaluate the benefits of using single
precision arithmetic in solving a double precision sparse linear systems using multiple cores, focusing on
the key components of LU factorization and matrix–vector products. We find that single precision sparse LU
factorization is prone to a severe loss of performance due to the intrusion of subnormal numbers. We identify a
mechanism that allows cascading fill-ins to generate subnormal numbers and show that automatically flushing
subnormals to zero avoids the performance penalties. Our results show that the anticipated speedup of 2 over a
double precision LU factorization is obtained only for the very largest of our test problems. For iterative solvers,
we find that for the majority of the matrices computing or applying incomplete factorization preconditioners
in single precision does not present sufficient performance benefits to justify the loss of accuracy compared
with the use of double precision. We also find that using single precision for the matrix–vector product kernels
provides an average speedup of 1.5 over double precision kernels, but new mixed precision algorithms are
needed to exploit this benefit without losing the performance gain in the process of refining the solution to
double precision accuracy.
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1 INTRODUCTION
Ever since early versions of Fortran offered real and double precision data types, we have been able
to choose between single and double precision floating-point arithmetics. Although single precision
was no faster than double precision on most processors up to the early 2000s, on modern processors
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it executes twice as fast as double precision and has the additional benefit of halving the data
movement. As a result, single precision (as well as half precision) is starting to be used in applications
such as weather and climate modelling [Dawson et al. 2018], [Váňa et al. 2017] and seismic
modeling [Fabien-Ouellet 2020], where traditionally double precision was used. Mixed precision
algorithms, which use some combination of half, single, double, and perhaps even quadruple
precisions, are increasingly being developed and used in high performance computing [Abdelfattah
et al. 2020].
In 2006, Buttari et al. [Buttari et al. 2007], [Langou et al. 2006] drew the attention of the HPC

community to the potential of mixed precision iterative refinement algorithms for solving dense
linear systems with unprecedented efficiency. The underlying principle is to carry out the most
expensive part of the computation, the LU factorization or Cholesky factorization, in single precision
instead of double precision (the working precision) and then refine the initial computed solution
using residuals computed in double precision. This contrasts with traditional iterative refinement,
in which only a precision higher than the working precision is used. The resulting algorithms are
now implemented in LAPACK [Anderson et al. 1999] (as DSGETRS, and DSPOTRS for general and
symmetric positive definite problems, respectively), and are generally twice as fast as a full double
precision solve for sufficiently well conditioned matrices.

A decade after the two-precision iterative refinement work by Buttari et al., Carson and Higham
introduced a GMRES-based iterative refinement algorithm that uses up to three precisions for the
solution of linear systems [Carson and Higham 2017], [Carson and Higham 2018]. This algorithm
enabled Haidar et al. [Haidar et al. 2018a], [Haidar et al. 2020], [Haidar et al. 2018b] to successfully
exploit the half-precision floating-point arithmetic units of NVIDIA tensor cores in the solution of
linear systems. Compared with linear solvers using exclusively double precision, their implementa-
tion shows up to a 4x–5x speedup while still delivering double precision accuracy [Haidar et al.
2020], [Haidar et al. 2018b]. This algorithm is now implemented in the MAGMA library [Agullo
et al. 2009], [Magma [n.d.]] (routine magma_dhgesv_iteref_gpu) and in cuSOLVER, the NVIDIA
library that provides LAPACK-like routines (routine cusolverDnDHgesv).
Mixed precision iterative refinement algorithms can be straightforwardly applied to parallel

sparse direct solvers. But the variability of sparse matrix patterns and the complexity of sparse
direct solvers make the estimation of the performance speedup difficult to predict. The primary
aim of this work is to design a performance benchmark that will provide insight into the speedup
of mixed precision parallel solvers of sparse linear systems.
The rest of this paper is structured as follows. We discuss existing work and the need for new

studies in Section 2. Section 3 presents experimental settings, including details of the sparse matrices
and hardware selected. Section 4 introduces the issue of appearance of subnormal numbers in
single precision sparse LU factorization, explains how the subnormal numbers can be generated
and proposes different mitigation strategies. In Section 5, we discuss our approach for assessing the
performance gain of using reduced precision in parallel sparse direct solvers and give experimental
results. Section 6 is dedicated to a similar study for iterative methods. In Section 7, we provide an
advanced performance profiling to explain why mixed precision iterative refinement algorithms
show lesser performance gains for sparse matrices than for dense matrices. Concluding remarks
are given in Section 8.

2 DISCUSSION OF EXISTING STUDIES
The performance benefits of mixed precision iterative refinement have beenwidely demonstrated for
dense linear systems. The few such performance studies for sparse linear systems are summarized
below, with an emphasis on the performance metrics reported.
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2.1 Mixed Precision Iterative Refinement for Sparse Direct Solvers
In 2008, Buttari et al. [2008] studied the performance of mixed precision iterative refinement
algorithms for sparse linear systems. They used Algorithm 1, in which the precision that each line
should be executed in is shown at the end of the line, with FP32 denoting single precision and FP64
double precision. To implement Algorithm 1 they selected two existing sparse direct solvers: a
multifrontal sparse direct solver MUMPS, by Amestoy et al. [Amestoy et al. 2000] and a supernodal
sparse direct solver SuperLU, by Li and Demmel [2003]. Multifrontal and supernodal methods are
the two main variants of sparse direct methods; for a full description and a performance comparison
see [Amestoy et al. 2001].

Algorithm 1 Mixed-precision iterative refinement. Given a sparse matrix 𝐴 ∈ R𝑛×𝑛 , and a vector
𝑏 ∈ R𝑛 , this algorithm solves 𝐴𝑥 = 𝑏 using a single precision sparse LU factorization of 𝐴 then
refines 𝑥 to double precision accuracy.
1: Carry out the reordering and analysis for 𝐴.
2: 𝐿𝑈 ← sparse_lu(A) ⊲ (FP32)
3: Solve 𝐴𝑥 = 𝑏 using the LU factors. ⊲ (FP32)
4: while not converged do
5: 𝑟 ← 𝑏 −𝐴𝑥 ⊲ (FP64)
6: Solve 𝐴𝑑 = 𝑟 using the LU factors. ⊲ (FP32)
7: 𝑥 ← 𝑥 + 𝑑 ⊲ (FP64)
8: end while

Buttari et al. showed that the version of SuperLU used in their study does not benefit from using
low-precision arithmetic. Put differently, the time spent in matrix factorization, which is the most
time-consuming part of the algorithm, is hardly reduced when single precision arithmetic is used
in place of double precision. They concluded that a mixed precision iterative refinement based on
SuperLU would be no faster than the standard double precision algorithm.

For MUMPS, their experimental results showed that the mixed precision version can be up to two
times faster than the standard double precision MUMPS. While this result is consistent with the
performance observed for dense linear systems, there is an important difference to point out here:
all the experimental results in [Buttari et al. 2008] were obtained using a single core.
In 2010, Hogg and Scott [2010] designed a mixed precision iterative solver for the solution of

sparse symmetric linear systems. The algorithm is similar to Algorithm 1, except they perform
𝐿𝐷𝐿𝑇 factorization instead of LU factorization and they also considered flexible GMRES [Saad
1993] for the refinement process. Their experimental results show that the advantage of mixed
precision is limited to very large problems, where the computation time can be reduced up to a
factor of two. But the results of this study are again based on single core benchmarks and also
involve out-of-core techniques.

As these existing works are limited to a single core, further study is required to evaluate how the
performance will be affected in fully-featured parallel sparse direct solvers using many cores. The
main objective of using single precision arithmetic in sparse direct solvers is to reduce the time to
solution. A safe way to improve performance without risking accuracy loss or inducing numerical
stability is by exploiting the thread-level parallelism available in modern multicore processors. It is
then sensible to first take advantage of core parallelism before using mixed precision algorithms
for further performance enhancement. We aim to provide new insights into how far the mixed
precision algorithms can advance the performance of parallel sparse solvers.
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2.2 Mixed Precision Methods for Iterative Solvers
Here we summarize studies that use mixed precision arithmetic to improve the performance of
iterative solvers. The existing works can be classified in three categories.
The first approach consists of using a single precision preconditioner or a few steps of a single

precision iterative scheme as a preconditioner in a double precision iterative method. Buttari et al.
[2008] have demonstrated the performance potential of this method using a collection of five sparse
matrices, with a speedup ranging from 1.5x to 2.x. But the experiment has been performed on a single
core using a diagonal preconditioner with an unvectorized sparse matrix–vector multiplication
(SpMV) kernel.

The second approach, proposed by Anzt et al. [2019], uses low precision data storage whenever
possible to accelerate data movement while performing all the computation in high precision. This
concept is appealing, but hard to implement in practice as it requires an optimized data conversion
routine and knowledge of key numerical properties of the matrices, such as the condition number.
To illustrate this idea the authors of [Anzt et al. 2019] designed a mixed precision block-Jacobi
preconditioning method where the explicit inversion of the block diagonals is required.

The third category consists of studies that focus on designing a mixed precision SpMV kernel for
iterative solvers. This approach has been implemented by Ahmad et al. [2019] by proposing a new
sparse matrix format that stores selected entries of the input matrix in single precision and the
remainder in double precision. Their algorithm accelerates data movement and computation with a
small accuracy loss compared with double precision SpMV. Their implementation demonstrates
up to 2x speedup in the best case, but hardly achieves any speedup on most of the matrices due
to data format conversion overhead. A similar approach has been implemented by Grigoraş et al.
[2016] with a better speedup for FPGA architectures.
Our contribution is to assess the benefit of using mixed precision in iterative solvers from a

practical point of view by evaluating optimized vendor kernels used in applications.

3 EXPERIMENTAL SETUP
We consider three different processors for the benchmarks: the AMD dual-socket EPYC Naples
system with 64 cores, the Intel dual-socket Haswell with 20 cores, and the Intel dual-socket Skylake
with 40 cores. The hardware also include two NVIDIA GPUs, the V100 and the P100. However in
this paper, we report only the results from the Intel Skylake and the NVIDIA V100 GPUs because
the results from others architectures are similar.
The selected sparse matrices for the benchmark are from various scientific and engineering

applications and are summarized in Table 1. The Intel Skylake node has 50 gigabytes of main
memory, and consequently sparse matrices whose factors require more than 50 gigabytes storage
are not included. The matrices are divided in two groups. The first 21 matrices are from the medium
size group with 700, 000 to 5, 000, 000 nonzero elements. It takes few seconds on average to factorize
these matrices. The second group contains larger matrices with 7,000,000 to 64,000,000 nonzeros and
it takes on average a fewminutes to factorize most of the matrices in this group. For each matrix, the
largest absolute value max𝑖, 𝑗 |𝑎𝑖 𝑗 | and the smallest nonzero absolute value min𝑖, 𝑗 { |𝑎𝑖 𝑗 | : 𝑎𝑖 𝑗 ≠ 0 } of
the elements are reported. For medium size matrices, an estimate for the 1-norm condition number,
𝜅1 (𝐴) = ∥𝐴−1∥1∥𝐴∥1, computed using the MATLAB condest routine, is also provided.

4 APPEARANCE OF SUBNORMAL NUMBERS IN SINGLE PRECISION SPARSE LU
AND MITIGATION TECHNIQUES

From Table 1, one can observe that the entries of the matrices fit in the range of single precision
arithmetic, which from Table 2 we see comprises numbers of modulus roughly between 10−45 and
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Table 1. Selected matrices from the SuiteSparse Matrix Collection [Davis [n.d.]], [Davis and Hu 2011]. The
first 21 matrices are of medium size and each can be factorized in a few seconds. Matrices 22 to 36 are larger
and require more time and memory to solve.

Matrix Size nnz 𝜅1 (𝐴) max𝑖, 𝑗 |𝑎𝑖 𝑗 | min𝑖, 𝑗 { |𝑎𝑖 𝑗 | : 𝑎𝑖 𝑗 ≠ 0 }
1 2cubes_sphere 101,492 1,647,264 2.93e+09 2.52e+10 6.68e-15
2 ASIC_320ks 321,67 1,316,085 5.06e+22 1.00e+06 1.26e-39
3 Baumann 112,211 748,331 1.368+09 1.29e+04 5.00e-02
4 cfd2 123,440 3,085,406 3.66e+06 1.00e+00 6.66e-09
5 crashbasis 160,000 1,750,416 1.78e+03 4.08e+02 6.42e-11
6 ct20stif 52,329 2,600,295 2.22e+14 8.86e+11 3.02e-34
7 dc1 116,835 861,071 1.01e+10 5.67e+4 3.00e-12
8 Dubcova3 146,689 3,636,643 1.14e+04 2.66e+00 8.47e-22
9 ecology2 999,999 4,995,991 6.66e+07 4.00e+01 1.00e+01
10 FEM_3D_thermal2 147,900 3,489,300 1.66e+03 2.92e-01 1.16e-05
11 G2_circuit 150,102 726,674 1.97e+07 2.22e+04 3.27e-01
12 Goodwin_095 100,037 3,226,066 3.43e+07 1.00e+00 1.41e-21
13 matrix-new_3 125,329 893,984 3.47e+22 1.00e+00 1.27e-21
14 offshore 259,789 4,242,673 2.32e+13 7.47e+14 7.19e-21
15 para-10 155,924 2,094,873 8.13e+18 6.44e+11 2.26e-20
16 parabolic_fem 525,825 3,674,625 2.11e+05 4.00e-01 3.18e-07
17 ss1 205,282 845,089 1.29e+01 1.00e+00 1.06e-11
18 stomach 213,360 3,021,648 8.01e+1 1.38e+00 1.47e-09
19 thermomech_TK 102,158 711,558 1.62e+20 1.96e+02 4.83e-03
20 tmt_unsym 917,825 4,584,801 2.26e+09 4.00e+00 1.00e+00
21 xenon2 157,464 3,866,688 1.76e+05 3.17e+28 5.43e+23

22 af_shell10 1,508,065 52,259,885 5.72e+05 1.00e-06
23 af_shell2 504,855 17,588,875 1.51e+06 4.55e-13
24 atmosmodd 1,270,432 8,814,880 2.22e+04 3.19e+03
25 atmosmodl 1,489,752 10,319,760 7.80e+04 3.96e+04
26 cage13 445,315 7,479,343 9.31e-01 1.15e-02
27 CurlCurl_2 806,529 8,921,789 4.42e+10 8.84e+06
28 dielFilterV2real 1,157,456 48,538,952 6.14e+01 3.25e-13
29 Geo_1438 1,437,960 60,236,322 6.69e+12 4.75e-07
20 Hook_1498 1,498,023 59,374,451 1.58e+05 5.17e-26
31 ML_Laplace 377,002 27,689,972 1.22e+07 1.24e-09
32 nlpkkt80 1,062,400 28,192,672 2.00e+02 4.08e-01
33 Serena 1,391,349 64,131,971 5.51e+13 2.19e-01
34 Si87H76 240,369 10,661,631 1.83e+01 2.57e-13
35 StocF-1465 1,465,137 21,005,389 3.10e+11 9.57e-09
36 Transport 1,602,111 23,487,281 1.00e+00 1.62e-12

1038. There is no risk of underflow or overflow in converting these matrices to single precision
format. However, the smallest absolute value of matrix ASIC_320ks, 1.26 × 10−39, is a subnormal
number in single precision. A subnormal floating-point number is a nonzero numberwithmagnitude
less than the absolute value of the smallest normalized number [Higham 2002, Chap. 2], [Muller
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6 M. Zounon, N. J. Higham, C. Lucas, and F. Tisseur

Table 2. Parameters for IEEE single and double precision point arithmetic. 𝑥min,𝑠 is the smallest nonzero
subnormal number and 𝑥min and 𝑥max are the smallest and largest normalized floating-point numbers.

𝑥min,𝑠 𝑥min 𝑥max Unit roundoff

FP32 1.4 × 10−45 1.2 × 10−38 3.4 × 1038 6.0 × 10−8
FP64 4.9 × 10−324 2.2 × 10−308 1.8 × 10308 1.1 × 10−16

et al. 2018, Chap. 2]. Floating-point operations on subnormals can be very slow because they are
usually processed at the software level, which induces a high overhead.
The risk of underflow, overflow or generating subnormal numbers during the conversion from

higher precision to lower precision can be reduced using scaling techniques proposed by Higham
et al. [2019]. However, even if matrices have been safely converted from double to normalized
single precision numbers, subnormal numbers may still be generated during the computation. We
first suspected this behavior in our benchmark when some single precision computations took
significantly more time than the corresponding double precision computations. For example, the
sparse direct solver MUMPS computed the double precision 𝐿𝑈 decomposition of the matrix Baumann
(#3 in Table 1) in 1.6251 seconds, while the single precision factorization took 3.586 seconds. Instead
of being two times faster than the double precision computation, the single precision computation
is two times slower. A further analysis reveals that the smallest magnitude entries of the single
precision factors 𝐿 and𝑈 are of the order of 10−88, which is a subnormal number in single precision
but a normalized number in double precision. The appearance of subnormal numbers in the single
precision factors may be surprising since the absolute values of the entries of this matrix range
from 5 × 10−2 to 1.29 × 104, which appears to be innocuous for single precision.
This phenomenon of LU factorization generating subnormal numbers does not appear to have

been observed before. How can it happen? The elements at the (𝑘+1)st stage of Gaussian elimination
are generated from the formula

𝑎
(𝑘+1)
𝑖 𝑗

= 𝑎
(𝑘)
𝑖 𝑗
−𝑚𝑖𝑘𝑎

(𝑘)
𝑘 𝑗

, 𝑚𝑖𝑘 =
𝑎
(𝑘)
𝑖𝑘

𝑎
(𝑘)
𝑘𝑘

,

where𝑚𝑖𝑘 is a multiplier. If 𝐴 is a dense matrix of normalized floating-point numbers with norm of
order 1, it is extremely unlikely that any of the 𝑎 (𝑘)

𝑖 𝑗
will become subnormal. However, for sparse

matrices we can identify a mechanismwhereby fill-in cascades down a column and small multipliers
combine multiplicatively. Consider the upper Hessenberg matrix

𝐴 =



𝑑1 0 . . . . . . 0 1
−𝑎1 𝑑2 0 . . . 0 0

−𝑎2 𝑑3 0 . . .
...

−𝑎3 𝑑4
. . .

...
. . .

. . . 0
−𝑎𝑛−1 𝑑𝑛


.
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LU factorization without row or column permutations produces the LU factorization

𝐿𝑈 ≡



1
−𝑎1
𝑑1

1

−𝑎2
𝑑2

. . .

. . . 1
−𝑎𝑛−1
𝑑𝑛−1

1





𝑑1 0 . . . . . . 0 1
𝑑2 0 . . . 0 𝑎1

𝑑1

𝑑3 0 . . .
𝑎1𝑎2
𝑑1𝑑2

𝑑4
. . .

...
. . . 𝑎1𝑎2 ...𝑎𝑛−2

𝑑1𝑑2 ...𝑑𝑛−2

𝑑𝑛 + 𝑎1𝑎2 ...𝑎𝑛−1
𝑑1𝑑2 ...𝑑𝑛−2


.

The elements −𝑎𝑖/𝑑𝑖 on the subdiagonal of 𝐿 are multipliers. The problem is in the last column
of 𝑈 . If |𝑎𝑖/𝑑𝑖 | < 1 for all 𝑖 then |𝑢𝑖𝑛 | will decrease monotonically with 𝑖 , and if |𝑎𝑖/𝑑𝑖 | ≪ 1 for
many 𝑖 then |𝑢𝑖𝑛 | will eventually become subnormal as 𝑖 increases. This can happen because of
large 𝑑𝑖 or small 𝑎𝑖 . As illustrated in this example, subnormal numbers are mainly generated in
the fill-in process, with zero entries gradually replaced with subnormal numbers. Consequently,
sparse matrix reordering algorithms for fill-in reduction can naturally help decrease the appearance
of subnormal numbers, but unless fill-in is fully eliminated, different mitigation techniques are
required to prevent performance drop.
The performance loss caused by arithmetic on subnormal numbers is often mitigated by two

options: Flush to Zero (FTZ) and Denormals1 Are Zero (DAZ). With the FTZ option, when an
operation results in a subnormal output, zero is returned instead, while with the DAZ option any
subnormal input is replaced with zero. For the sake of simplicity we will refer to both options as FTZ
in the rest of this paper. It may be possible to enable the FTZ option using compiler flags. For example
this is automatically activated by Intel’s C and Fortran compilers whenever the optimization level is
set higher than -O0. However, we have used the GNU Compiler Collection (GCC) in this study, and
the only option to flush subnormals to zero is via the -fast-math option. But the -fast-math flag
is dangerous as it also disables checking for NaNs and +-Infs and does not maintain IEEE arithmetic
compatibility, so it can result in incorrect output for programs that depend on an IEEE-compliant
implementation2. As a safe alternative to the -fast-math flag, we use the x86 assembly code listed
below. Calling SetFTZ() before the factorization routines guarantees flushing subnormals to zero
without compromising the numerical robustness of the software. Once the SetFTZ() routine is
called at the beginning of a program, it is effective during the whole execution, unless it is explicitly
deactivated by calling another x86 assembly code not listed in this paper.

void SetFTZ(void) {

asm("stmxcsr -0x4(%rsp)\n\t" /* store CSR register on stack */

"orl $0x8040 ,-0x4(%rsp)\n\t" /* set bits 15(FTZ) and 7(DAZ) */

"ldmxcsr -0x4(%rsp)"); /* load CSR register from stack */

}

5 PERFORMANCE OF MIXED PRECISION SPARSE DIRECT SOLVERS
The main performance gain of mixed precision iterative refinement algorithms comes from using
low precision arithmetic to factorize the coefficient matrix associated with the linear system. The
factorization stage dominates the cost of the algorithm, assuming that the refinement converges
quickly. We therefore focus on the speedup achieved during the matrix factorization step to evaluate
the potential of low-precision arithmetic for solving sparse linear systems. For each problem from
Table 1, we report the speedup achieved during the factorization, and we use a threshold of 1.5x

1Subnormal numbers are also referred to as denormal numbers.
2https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
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Fig. 1. Single precision speedup over double precision for sparse LU factorization using PARDISO on a single
Intel Skylake core.

to decide whether low precision is beneficial. Note that in the case of dense linear systems, the
factorization step speedup is usually close to 2x.

In addition to SuperLU and MUMPS, we have added PARDISO [Schenk et al. 2001], which is available
in the Intel Math Kernel Library (MKL), to the set of sparse direct solvers for the benchmarks.
PARDISO combines left- and right-looking level 3 BLAS supernodal algorithms for better parallelism.
The solvers also include the multithreaded version of SuperLU, called SuperLU_MT [Li 2005]. We
will refer to both packages as SuperLU unless there is ambiguity. We also considered adding
UMFPACK [Davis 2004], but this package does not have support for single precision.

For each sparse direct solver, we report the factorization speedup for both sequential and parallel
runs. Even though the Intel Skylake has 40 cores, we report parallel results with 10 cores as for
most of the experiments the performance stagnates and sometimes declines beyond 10 cores. To
stress the performance penalty induced by subnormals in the single precision computations, the
results with and without FTZ are reported.
The experimental results with serial PARDISO are summarized in Figure 1. For each matrix two

bars are shown, which give the speedup for LU factorization with and without FTZ. Without FTZ,
up to 12 matrices out of 36 show a speedup below 1. In other words, single precision decreases the
performance for 30% of the problems compared with double precision. This anomaly is corrected by
flushing subnormals to zero. By comparing the results with FTZ with results without FTZ, we see
that more than half of the problems generated subnormals during the single precision computation.
As for the performance benefit of using single precision for the matrix factorization, half of the
matrices show a speedup above the 1.5x threshold. The matrices that did not exceed 1.5x speedup
are predominately of medium size. The parallel results in Figure 2 show that with 10 cores the
proportion of problems that reach 1.5x speedup drops from 50% to 30%. The problems that still
reach 1.5x speedup with 10 cores are exclusively from the large matrices and represent 65% of them.
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Fig. 2. Single precision speedup over double precision for sparse LU factorization using PARDISO on 10 Intel
Skylake cores.
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Fig. 3. Single precision speedup over double precision for sparse LU factorization using MUMPS on a single
Intel Skylake core.
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Fig. 4. Single precision speedup over double precision for sparse LU factorization using MUMPS on 10 Intel
Skylake cores.

The results for serial MUMPS are summarized in Figure 3. The matrices that suffered performance
degradation due to subnormals in the PARDISO experiments exhibit similar behavior with MUMPS.
Similarly, half of the matrices did not reach the threshold of 1.5x, and the matrices beyond 1.5x
are mainly the large ones. The parallel results in Figure 4 are less attractive as only five matrices
deliver a speedup beyond 1.5x. These matrices are from the large size group.

Unlike PARDISO and MUMPS, the multithreaded SuperLU ran out of memory for 15 problems out
of the 36, predominantly the large size ones. Results are reported for only the 21 remaining matrices.
The serial results in Figure 5 show that only 33% of the 21 problems, successfully solved exceed
1.5x speedup, against 24% for the parallel results in Figure 6.

These results show that mixed precision iterative refinement may only be beneficial for large
sparse matrices. However, a large matrix size and higher density are not enough to predict the
speedup, as matrix dielFilterV2real is much larger and denser than cage13 but its speedup
is lower than cage13’s speedup in all the experiments. We note the contrast with dense linear
systems, where a 2x speedup is often achieved even for matrices of size as small as 200 × 200.

6 PERFORMANCE OF MIXED PRECISION SPARSE ITERATIVE SOLVERS
The performance of an iterative solver depends not only on the algorithm implemented but also on
the eigenvalue distribution and condition number of the matrix, the choice of preconditioner, and
the accuracy targeted. It is therefore hard to make general statements about how mixed precision
techniques will affect the performance of an iterative solver. Therefore in this section we focus
instead on analyzing the impact of low precision in sparse matrix–vector multiplication kernels
and preconditioners, as they are the main building blocks of iterative solvers.
The two classes of preconditioning techniques commonly used to accelerate iterative solvers

are incomplete factorizations and iterative schemes such as algebraic multigrid preconditioners.
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Fig. 5. Single precision speedup over double precision of sparse LU factorization using SuperLU on a single
Intel Skylake core. SuperLU ran out of memory for 15 problems.
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Fig. 6. Single precision speedup over double precision for sparse LU factorization using SuperLU on a 10 Intel
Skylake cores. SuperLU ran out of memory for 15 problems.
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Fig. 7. Speedup of single precision versus double precision for sparse incomplete LU factorization (ILU0)
using cuSPARSE on NVIDIA V100 GPU.

Iterative preconditioners are dominated by SpMV kernels, so in this section we focus on the impact
of low precision arithmetic on the performance of incomplete factorization and SpMV kernels.

The results in Figure 7 illustrate the speedup from using single precision incomplete LU factoriza-
tion (ILU0) from the cuSPARSE3 library on an NVIDIA V100 GPU. The cuSPARSE library provides
an optimized implementation of a set of sparse linear algebra routines for NVIDIA GPUs. For the
sake of readability, the matrices are sorted in a decreasing order of the solve step speedup.
The most critical part of the preconditioner application is the forward and backward solve,

because it is executed at each iteration and can easily become the most time consuming part of
iterative solvers. The dark green bars in Figure 7 represent the speedup of the single precision
ILU0 preconditioner application. The performance shows that lowering the precision in the pre-
conditioner application did not enhance the performance. The same is true for the incomplete
factorization itself, so there is no benefit to using single precision in place of double precision. The
results from SuperLU ILU in Figure 8 show a better speedup for the solve step compared with the
results from cuSPARSE ILU0. However, the speedup is still under the threshold of 1.5x speedup,
except for one matrix (Transport). For the incomplete LU factorization step itself, the performance
gain from using single precision is insignificant. As the factorization step is more time consuming
than the solve steps, the overall speedup of the preconditioner computation and application remains
very small and does not seem to present enough potential to accelerate parallel iterative solvers.
Note that from the three libraries evaluated in this work only SuperLU provides incomplete LU
factorization for preconditioning.

To evaluate how low precision can accelerate SpMV kernels, we have considered the compressed
row storage (CSR) format, as it is widely used in applications. In the CSR format, a double precision
sparse matrix with 𝑛𝑛𝑧 nonzero elements requires approximately 12𝑛𝑛𝑧 bytes for the storage

3https://docs.nvidia.com/cuda/cusparse
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Fig. 8. Speedup of single precision versus double precision for sparse Incomplete LU factorization (ILU)
using SuperLU Intel Skylake. The SuperLU ILU implementation is serial but it has been compiled against a
multithreaded MKL BLAS and run with 10 cores.
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Fig. 9. Speedup of single precision versus double precision for SpMV using cuSPARSE on NVIDIA V100 GPU.
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Fig. 10. Speedup of single precision versus double precision for SpMV using MKL on 10 Intel Skylake cores.

(each nonzero element requires 8 bytes for its value and 4 bytes for its column index). In single
precision the matrix will occupy approximately 8𝑛𝑛𝑧 bytes of memory. As SpMV kernels are
memory bandwidth bound, the use of single precision will only provide a 1.5x (12𝑛𝑛𝑧 divided by
8𝑛𝑛𝑧) speedup in theory. Note that, for simplicity we have ignored the 4𝑛 bytes for row indices,
where 𝑛 is the number of rows, and the extra memory for left- and right-hand side vectors. The
results in Figure 9 for the optimized cuSPARSE SpMV on the NVIDIA V100 GPU show that the
speedup is oscillating around 1.5x. Similarly, the benchmark of the MKL SpMV in Figure 10 shows
that the single precision kernel has approximately 1.5x speedup over the double precision kernel.
While more experiments and analysis may be necessary to fully understand the benefit of low

precision for incomplete factorization, this study shows that applying the preconditioner in low
precision does not offer enough performance advantage to take the risk of lowering the computation
accuracy. A mixed precision iterative preconditioner may be accelerated by taking advantage of
efficient single precision SpMV kernels, but the overall speedup might be far less than 1.5x if a
double precision solution accuracy is expected, because of the need to refine the solution.

7 FURTHER PERFORMANCE ANALYSIS
Apart from the unforeseen high occurrence of subnormal numbers in single precision sparse LU
factorization, two other unexpected observations require further explanation. These are the poor
speedup of the matrices from the medium size group, and the fact that many matrices show better
speedup in single core experiments than with parallel execution. This section aims to address these
questions.

Sparse direct solvers employ more elaborate algorithms than dense solvers. Given a sparse linear
system to solve, the rows and the columns of the sparse matrix are first reordered to reduce the
number of nonzero elements in the factors, or such that the matrix has dense clusters to take
advantage of BLAS 3 kernels. This pre-processing step is called reordering, and it is critical for
the overall performance and the memory consumption. After the ordering, the resulting matrix
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Fig. 11. Time spent by double precision sequential PARDISO LU in each step on a single Intel Skylake core.

is analyzed to determine the nonzero structures of the factors and allocate the required memory
accordingly. This step is called symbolic factorization. It is followed by the numerical factorization
step that computes the LU factors, and finally the solve step.
The reordering and the analysis steps do not involve floating-point arithmetic. Therefore, they

do not benefit from lowering the arithmetic precision. If the reordering and the analysis represent
50% of the overall factorization time, for example, then using single precision instead of double
will only reduce the overall time by a quarter in the best case. This explains the poor speedup on
average size matrices compared with the large size group. This is illustrated in Figure 11 where one
can observe that the majority of average size matrices spend more than 25% of the overall time in
the reordering and analysis steps. Here, the bars are sorted by decreasing time associated with the
reordering and analysis step. The matrices for which the reordering and analysis time is negligible
are the ones that reach up to 2x speedup with single precision.
The second issue, the decrease of speedup in parallel experiments compared with single core

executions, is due to the lack of parallelism in the reordering and analysis steps. For example in
this work, all the sparse solvers except PARDISO use sequential reordering and analysis algorithms
on shared memory multicore architectures. PARDISO provides the parallel version of the nested
dissection algorithm for reordering, but compared with the sequential version, it reduces the
reordering time only by a factor of twowhile the numerical factorization time decreases significantly,
up to a factor of 8 using 10 cores. Consequently, by increasing the number of cores, the proportion
of time spent in reordering and analysis steps increases as illustrated in Figure 12, with the time
spent in reordering and analysis step in decreasing order. One can observe that in the parallel
experiment, half of the matrices spent more than 50% of the overall factorization time in reordering
and analysis, which explains the limited acceleration from lowering the precision.
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Fig. 12. Time spent by double precision parallel PARDISO LU in each step on 10 Intel Skylake cores.

8 CONCLUSION
The benefits of using mixed precision algorithms for solving dense linear systems are well docu-
mented in the HPC community. Much less is known about the efficiency of mixed precision parallel
algorithms for sparse linear systems, and existing work focuses on single core experiments. In this
work, we have assessed the benefit of using single precision arithmetic in solving double precision
sparse linear systems on multicore architectures. We have evaluated two classes of algorithms:
iterative refinement based on single precision LU factorization and iterative methods using single
precision for the matrix–vector product kernels or preconditioning.
Our first finding is that a limiting factor in the performance of single precision sparse LU

factorization is the generation of subnormal numbers, which occurs for the majority of our test
matrices. We have identified a mechanism whereby fill-in can cascade down a column, creating
and then propagating subnormal numbers with it. We have demonstrated the severe performance
drop that can result and have shown how flushing subnormals to zero can mitigate it.

Our second finding is that the anticipated speedup of 2 from mixed precision iterative refinement
is obtained only for the very largest of our test problems, where the analysis and reordering time is
negligible compared with numerical factorization time.

Our last finding concerns iterative solvers. Our results show that the performance gain in comput-
ing or applying incomplete factorization preconditioners in single precision is not appealing enough
to justify the accuracy sacrifice, but we have observed a speedup of 1.5 from matrix–vector product
kernels by using single precision. In future work, we will explore new approaches to integrate
efficiently single precision matrix–vector product kernels and single precision preconditioners in
double precision iterative solvers without accuracy loss.
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