
A Multiprecision Derivative-Free Schur–Parlett
Algorithm for Computing Matrix Functions

Higham, Nicholas J. and Liu, Xiaobo

2020

MIMS EPrint: 2020.19

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


A MULTIPRECISION DERIVATIVE-FREE SCHUR–PARLETT
ALGORITHM FOR COMPUTING MATRIX FUNCTIONS∗

NICHOLAS J. HIGHAM† AND XIAOBO LIU†

Abstract. The Schur–Parlett algorithm, implemented in MATLAB as funm, computes a function
f(A) of an n × n matrix A by using the Schur decomposition and a block recurrence of Parlett.
The algorithm requires the ability to compute f and its derivatives, and it requires that f has a
Taylor series expansion with a suitably large radius of convergence. We develop a version of the
Schur–Parlett algorithm that requires only function values and uses higher precision arithmetic to
evaluate f on the diagonal blocks of order greater than 2 (if there are any) of the reordered and
blocked Schur form. The key idea is to compute by diagonalization the function of a small random
diagonal perturbation of each triangular block, where the perturbation ensures that diagonalization
will succeed. This multiprecision Schur–Parlett algorithm is applicable to arbitrary functions f and,
like the original Schur–Parlett algorithm, it generally behaves in a numerically stable fashion. Our
algorithm is inspired by Davies’s randomized approximate diagonalization method, but we explain
why that is not a reliable numerical method for computing matrix functions. We apply our algorithm
to the matrix Mittag–Leffler function and show that it yields results of accuracy similar to, and in
some cases much greater than, the state of the art algorithm for this function. The algorithm will
be useful for evaluating any matrix function for which the derivatives of the underlying function are
not readily available or accurately computable.

Key words. multiprecision algorithm, multiprecision arithmetic, matrix function, Schur de-
composition, Schur–Parlett algorithm, Parlett recurrence, randomized approximate diagonalization,
matrix Mittag–Leffler function
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1. Introduction. The need to compute matrix functions arises in many appli-
cations in science and engineering. Specialized methods exist for evaluating particular
matrix functions, including the scaling and squaring algorithm for the matrix expo-
nential [1], [28] Newton’s method for matrix sign function [23, Chap. 5], [33], and
the inverse scaling and squaring method for the matrix logarithm [2], [27]. See [25]
for links to software for these and other methods. For some functions a special-
ized method is not available, in which case a general purpose algorithm is needed.
The Schur–Parlett algorithm [8] computes a general function f of a matrix, with the
function dependence restricted to the evaluation of f on the diagonal blocks of the
re-ordered and blocked Schur form. It evaluates f on the nontrivial diagonal blocks
via a Taylor series, so it requires the derivatives of f and it also requires the Taylor
series to have a sufficiently large radius of convergence. However, the derivatives are
not always available or accurately computable.

We develop a new version of the Schur–Parlett algorithm that requires only the
ability to evaluate f itself and can be used whatever the distribution of the eigen-
values. Our algorithm handles close or repeated eigenvalues by an idea inspired by
Davies’s idea of randomized approximate diagonalization [7] together with higher pre-
cision arithmetic. We therefore assume that as well as the arithmetic of the working
precision, with unit roundoff u, we can compute at a higher precision with unit round-
off uh < u, where uh can be arbitrarily chosen. Higher precisions will necessarily be
done in software, and so will be expensive, but we aim to use them as little as possible.
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We note that multiprecision algorithms have already been developed for the ma-
trix exponential [12] and the matrix logarithm [11]. Those algorithms are tightly
coupled to the functions in question, whereas here we place no restrictions on the
function. Indeed the new algorithm greatly expands the range of functions f for
which we can reliably compute f(A). A numerically stable algorithm for evaluating
the Lambert W function of a matrix was only recently developed [13]. Our algorithm
can readily compute this function, as well as other special functions and multivalued
functions for which the Schur–Parlett algorithm is not readily applicable.

In section 2 we review the Schur–Parlett algorithm. In section 3 we describe
Davies’s randomized approximate diagonalization and explain why it cannot be the
basis of a reliable numerical algorithm. In section 4 we describe our new algorithm for
evaluating a function of a triangular matrix using only function values. In section 5 we
use this algorithm to build a new Schur–Parlett algorithm that requires only function
values and we illustrate its performance on a variety of test problems. We apply the
algorithm to the matrix Mittag–Leffler function in section 6 and compare it with a
special purpose algorithm for this function. Conclusions are given in section 7.

We will write “normal (0,1) matrix” to mean a random matrix with elements inde-
pendently drawn from the normal distribution with mean 0 and variance 1. We will use
the Frobenius norm, ‖A‖F = (

∑
i,j |aij |2)1/2, and the p-norms ‖A‖p = max{ ‖Ax‖p :

‖x‖p = 1 }, where ‖x‖p = (
∑
i |xi|p)1/p.

2. Schur–Parlett algorithm. The Schur–Parlett algorithm [8] for computing
a general matrix function f(A) is based on the Schur decomposition A = QTQ∗ ∈
Cn×n, with Q ∈ Cn×n unitary and T ∈ Cn×n upper triangular. Since f(A) =
Qf(T )Q∗, computing f(A) reduces to computing f(T ), the same function evaluated
at a triangular matrix. If the function of the square diagonal blocks Fii = f(Tii) can
be computed, the off-diagonal blocks Fij of f(T ) can be obtained using the block form
of Parlett’s recurrence [31],

(2.1) TiiFij − FijTjj = FiiTij − TijFjj +

j−1∑
k=i+1

(FikTkj − TikFkj), i < j,

from which Fij can be computed either a block superdiagonal at a time or a block row
or block column at a time. To address the potential problems caused by close or equal
eigenvalues in two diagonal blocks of T , Davies and Higham [8] devised a scheme with
a blocking parameter δ > 0 to reorder T into a partitioned upper triangular matrix
T̃ = U∗TU = (T̃ij) by a unitary similarity transformation such that

• eigenvalues λ and µ from any two distinct diagonal blocks T̃ii and T̃jj satisfy
min |λ− µ| > δ, and

• the eigenvalues of every block T̃ii of size larger than 1 are well clustered in the
sense that either all the eigenvalues of T̃ii are equal or for every eigenvalue λ1
of T̃ii there is an eigenvalue λ2 of T̃ii with λ1 6= λ2 such that |λ1 − λ2| ≤ δ.

To evaluate f(T̃ii), the Schur–Parlett algorithm expands f in a Taylor series about

σ = trace(T̃ii)/mi, the mean of the eigenvalues of T̃ii ∈ Cmi×mi ,

(2.2) f(T̃ii) =

∞∑
k=0

f (k)(σ)

k!
(T̃ii − σI)k,

truncating the series after an appropriate number of terms. All the derivatives of f up
to a certain order are required in (2.2), where that order depends on how quickly the
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powers of T̃ii−σI decay. Moreover, for the series (2.2) to converge we need λ−σ to lie

in the radius of convergence of the series for every eigenvalue λ of T̃ii. Obviously, this
procedure for evaluating f(T̃ ) may not be appropriate if it is difficult or expensive to
accurately evaluate the derivatives of f or if the Taylor series has a finite radius of
convergence.

3. Approximate diagonalization. If A ∈ Cn×n is diagonalizable then A =
V DV −1, whereD = diag(di) is diagonal and V is nonsingular, so f(A) = V f(D)V −1 =
V diag(f(di))V

−1 is trivially obtained. For normal matrices, V can be chosen to be
unitary and this approach is an excellent way to compute f(A). However, for nonnor-
mal A the eigenvector matrix V can be ill-conditioned, in which case an inaccurate
computed f(A) can be expected in floating-point arithmetic [23, sect. 4.5].

A way to handle a nonnormal matrix is to perturb it before diagonalizing it.
Davies [7] suggested perturbing A to Ã = A + E, computing the diagonalization

Ã = V DV −1, and approximating f(A) by f(Ã) = V f(D)V −1. This approach relies
on the fact that even if A is defective, A + E is likely to be diagonalizable because
the diagonalizable matrices are dense in Cn×n. Davies measured the quality of the
approximate diagonalization by the quantity

(3.1) σ(A, V,E, ε) = κ2(V )ε+ ‖E‖2,

where the condition number κ2(V ) = ‖V ‖2‖V −1‖2 and ε can be thought of as the
unit roundoff. Minimizing over E and V (since V is not unique) gives

σ(A, ε) = inf
E,V

σ(A, V,E, ε),

which is a measure of the best approximate diagonalization that this approach can
achieve. Davies conjectured that

(3.2) σ(A, ε) ≤ cnε1/2

for some constant cn, where ‖A‖2 ≤ 1 is assumed, and he proved the conjecture for Jor-
dan blocks and triangular Toeplitz matrices (both with cn = 2) and for arbitrary 3×3
matrices (with c3 = 4). Davies’s conjecture was recently proved by Banks, Kulkarni,
Mukherjee, and Srivastava [4, Thm. 1.1] with cn = 4n3/2 + 4n3/4 ≤ 8n3/2. Building
on the solution of Davies’ conjecture a randomized algorithm with low computational
complexity is developed in [5] for approximately computing the eigensystem. Note
that (3.2) suggests it is sufficient to choose E such that ‖E‖2 ≈ ε1/2 in order to obtain
an error of order ε1/2.

As we have stated it, the conjecture is over Cn×n. Davies’s proofs of the conjecture
for Jordan blocks and triangular Toeplitz matrices have E real when A is real, which
is desirable. In the proof in [4], E is not necessarily real when A is real. However, Jain,
Sah, and Sawhney [26] have proved the conjecture for real A and real perturbations E.

The matrix E can be thought of as a regularizing perturbation for the diagonaliza-
tion. For computing matrix functions, Davies suggests taking E as a random matrix
and gives empirical evidence that normal (0,1) matrices E scaled so that ‖E‖2 ≈ u1/2
are effective at delivering a computed result with error of order u1/2 when ‖A‖2 ≤ 1.
One of us published a short MATLAB code to implement this idea [24],1 as a way
of computing f(A) with error of order u1/2. However, this approach does not give

1https://gist.github.com/higham/6c00f62e48c1b0116f2e9a8f43f2e02a

https://gist.github.com/higham/6c00f62e48c1b0116f2e9a8f43f2e02a
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Table 3.1
Relative errors ‖f(Ã)− f(A)‖F /‖f(A)‖F for approximation from randomized approximate di-

agonalization with ‖E‖F = u1/2‖A‖F to the square root of the Jordan block J(λ) ∈ Rn×n.

λ n = 10 n = 20 n = 30

1.0 7.46× 10−9 7.22× 10−9 9.45× 10−9

0.5 1.22× 10−7 3.42× 10−4 1.44
0.1 1.14 1.00 1.00

Table 3.2
Values of ‖Lf (A)‖F corresponding to the results in Table 3.1.

λ n = 10 n = 20 n = 30

1.0 1.41 2.01 2.46
0.5 2.62× 103 8.55× 108 4.75× 1014

0.1 1.13× 1016 4.99× 1030 3.24× 1054

a reliable numerical method for approximating matrix functions. The reason is that
(3.1) does not correctly measure the effect on f(A) of perturbing A by E. For small
E, for any matrix norm we have

(3.3) ‖f(A+ E)− f(A)‖ . ‖Lf (A,E)‖ ≤ ‖Lf (A)‖‖E‖,

where Lf (A,E) is the Fréchet derivative of f at A in the direction E and ‖Lf (A)‖ =
max{ ‖Lf (A,E)‖ : ‖E‖ = 1 } [23, sect. 3.1]. Hence while σ in (3.1) includes ‖E‖2,
the change in f induced by E is as much as ‖Lf (A)‖2‖E‖2, and the factor ‖Lf (A)‖2
can greatly exceed 1.

A simple experiment with ε = u illustrates the point. All the experiments in
this paper are carried out in MATLAB R2020a with a working precision of double
(u ≈ 1.1 × 10−16). We take A to be an n× n Jordan block with eigenvalue λ and
f(A) = A1/2 (the principal matrix square root), for which ‖Lf (A)‖F = ‖(I ⊗A1/2 +

(A1/2)T ⊗ I)−1‖2 [21]. The diagonalization and evaluation of f(Ã) is done at the

working precision. In Table 3.1 we show the relative errors ‖f(A)−f(Ã)‖F /‖f(A)‖F ,
where E is a (full) normal (0,1) matrix scaled so that ‖E‖F = u1/2‖A‖F and the
reference solution f(A) is computed in 100 digit precision using the function sqrtm

from the Multiprecision Computing Toolbox [30]. For λ = 1 we obtain an error of
order u1/2, but the errors grow as λ decreases and we achieve no correct digits for
λ = 0.1. The reason is clear from Table 3.2, which shows the values of the term that
multiplies ‖E‖F in (3.3), which are very large for small λ. We stress that increasing

the precision at which f(Ã) is evaluated does not reduce the errors; the damage done
by the perturbation E cannot be recovered.

In this work we adapt the idea of diagonalizing after a regularizing perturbation,
but we take a new approach that does not depend on Davies’s theory.

4. Evaluating a function of a triangular matrix. Our new algorithm uses
the same blocked and re-ordered Schur form as the Schur–Parlett algorithm. The key
difference from that algorithm is how it evaluates a function of a triangular block.
Given an upper triangular block T ∈ Cm×m of the reordered Schur form and an
arbitrary function f we apply a regularizing perturbation with norm of order u and
evaluate f(T ) at precision uh < u. We expect m generally to be small, in which
case the overhead of using higher precision arithmetic is small. In the worst case this
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approach should be competitive with the worst case for the Schur–Parlett algorithm
[8, Alg. 2.6], since (2.2) requires up to O(m4) (working precision) flops.

We will consider two different approaches.

4.1. Approximate diagonalization with full perturbation. Our first ap-
proach is a direct application of approximate diagonalization, with ε = u2. Here, E
is a multiple of a (full) normal (0,1) matrix with norm of order ε1/2 = u. Whereas
Davies considered only matrices A of 2-norm 1, we wish to allow any norm, and the
norm of E should scale with that of A. We will scale E so that

(4.1) ‖E‖F = umax
i,j
|tij |.

We evaluate f(T+E) by diagonalization at precision uh = u2 and hope to obtain a
computed result with relative error of order u. Diagonalization requires us to compute
the Schur decomposition of a full matrix T + E, and it costs about 28 2

3m
3 flops in

precision uh.
Although we do not expect this approach to provide a numerical method that

works well for all problems, in view of the discussion and example in section 3, it is a
useful basis for comparison with the new method in the next section.

4.2. Approximate diagonalization with triangular perturbation. Instead
of regularizing by a full perturbation, we now take the perturbation E to be an upper
triangular normal (0,1) matrix, normalized by (4.1). An obvious advantage of taking

E triangular is that T̃ = T + E is triangular and we can compute the eigenvectors
(needed for diagonalization) by substitution, which is substantially more efficient than
computing the complete eigensystem of a full matrix. Note that the diagonal entries
of T̃ are distinct with probability 1, albeit perhaps differing by as little as order ‖E‖F .

This approach can be thought of as indirectly approximating the derivatives by
finite differences. Indeed for m = 2 we have

(4.2) f(T ) =

[
f(t11) t12f [t11, t22]

0 f(t22)

]
, f [t11, t22] =


f(t22)− f(t11)

t22 − t11
, t11 6= t22,

f ′(t11), t11 = t22,

so when t11 = t22, perturbing to t̃11 6= t̃22 results in a first order finite difference
approximation to f ′(t11). For m > 2, these approximations are intertwined with the
evaluation of f(T ).

In order to find the eigenvector matrix V of the perturbed triangular matrix
T̃ = T + E we need to compute a set of m linearly independent eigenvectors vi,
i = 1 : m. This can be done by solving at precision uh the m triangular systems

(4.3) (T̃ − t̃iiI)vi = 0, i = 1 : m,

where we set vi to be 1 in its ith component, zero in components i+ 1: m, and solve
for the first i−1 components by substitution. Thus the matrix V is upper triangular.
Careful scaling is required to avoid overflow [35].

To summarize, we compute in precision uh the diagonalization

(4.4) T̃ = V DV −1, D = diag(λi),

where in practice the λi will be distinct. We then form f(T̃ ) = V f(D)V −1 in pre-
cision uh, which involves solving a multiple right-hand side triangular system with a
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triangular right-hand side. The cost of the computation is
∑m
k=1 k

2 +m3/3 = 2m3/3
flops in precision uh.

We expect the error in the computed approximation F̂ to F = f(T̃ ) to be bounded
approximately by (cf. [23, p. 82])

‖F − F̂‖1
‖F‖1

. κ1(V )
‖f(D)‖1
‖f(T̃ )‖1

uh.

(The choice of norm is not crucial; the 1-norm is convenient here.) We will use this
bound to determine uh. Note that

1

κ1(V )
≤ ‖f(D)‖1
‖f(T̃ )‖1

≤ κ1(V ).

Since we do not know ‖f(T̃ )‖1 a priori we will approximate ‖f(D)‖1/‖f(T̃ )‖1 by 1
(the geometric mean of its bounds), and hence we will use

(4.5)
‖F − F̂‖1
‖F‖1

. κ1(V )uh.

Since we need to know how to choose uh before we compute V , we need an estimate
of κ(V ) based only on T̃ . Since we are using a triangular perturbation its regularizing
effect will be less than that of a full perturbation, so we expect that we may need a
precision higher than double the working precision.

Demmel [3, sect. 5.3], [9] showed that κ2(V ) is within a factor m of maxi ‖Pi‖2,
where Pi is the spectral projector corresponding to the eigenvalue λi. Writing

T̃ =

[
t̃11 t̃∗12
0 T̃22

]
,

the spectral projector for the eigenvalue λ1 = t̃11 is, with the same partitioning,

(4.6) P1 =

[
1 p∗

0 0

]
, p∗ = t̃∗12(t̃11I − T̃22)−1.

From (4.6) we have

‖P1‖1 = max(1, ‖p‖∞) ≤ max
(
1, ‖t̃12‖∞‖(t̃11I − T̃22)−1‖1

)
.

Now for any m×m upper triangular matrix U we have the bound [22, Thm. 8.12,
Prob. 8.5]

(4.7) ‖U−1‖1 ≤
1

α

(
β

α
+ 1

)m−1
, α = min

i
|uii|, β = max

i<j
|uij |.

This bound will be very pessimistic if we apply it to t̃11I− T̃22, because for the bound
to be a good approximation it is necessary that many diagonal elements of U are of
order α, yet t̃11I − T̃22 will typically have only a few (if any) small elements. Let us
group the t̃ii according to the Schur–Parlett blocking criteria described in section 2,
with blocking parameter δ = δ1. Suppose the largest block has size k ≥ 2 and suppose,
without loss of generality, that it comprises the first k diagonal elements of T̃ . Then
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we will approximate ‖(t̃11I − T̃22)−1‖1 by ‖(t̃11I − T̃22(1 : k − 1, 1: k − 1))−1‖1, and
bound it by (4.7), leading to the approximation

max
i
‖Pi‖1 ≈ max

i<j
|t̃ij |

(maxi<j |t̃ij |
cmu

+ 1
)k−2

cmu
,

where the parameter cm is such that cmu ≈ mini |wii|, where the wii are the diagonal

elements of t̃11I − T̃22(1 : k − 1, 1: k − 1), and hence this is an estimate of κ1(V ) by
Demmel’s result.

We are aiming for an error of order u, so from (4.5) we need κ1(V )uh . u, which
gives the requirement

(4.8) uh .
cmu

2

maxi<j |t̃ij |
(maxi<j |t̃ij |

cmu
+ 1
)k−2 , k ≥ 2.

In the case k = 2, the bound (4.8) is uh . cmu
2/maxi<j |t̃ij | = O(u2). If the

largest block size is k = 1, we use uh = u2 (corresponding to Davies’s conjecture
(3.2)) since we do not expect κ(V ) to be so large that a precision higher than double
the working precision is required.

We summarize this algorithm, based on a triangular perturbation, in Algorithm 4.1,
where we have

(4.9) uh =

{
u2, k = 1,

min
(
u2, right-hand side of (4.8)

)
, k ≥ 2.

Importantly, for 2 × 2 diagonal blocks of T with distinct eigenvalues we are able to
use (4.2) at the working precision.

In summary, we make an upper triangular perturbation E of norm O(u‖T‖1) to
T and evaluate f(T+E). We choose the precision of the evaluation in order to be sure
of obtaining an accurate evaluation of f(T +E). Our approach differs fundamentally
from Davies’s randomized approximate diagonalization. Our triangular E has a lesser
regularizing effect than a full one, so it results in a potentially larger κ(V ), but our
choice of uh takes this into account. On the other hand, since our perturbation E is
upper triangular and of order u‖T‖1, it corresponds to a backward error of order u
and so is harmless. A full perturbation E cannot be interpreted as a backward error
for the f(T ) evaluation as it perturbs the zeros in the lower triangle of T .

The analysis above is unchanged if E is diagonal, so we allow E to be chosen
as diagonal or upper triangular in Algorithm 4.1 and will compare the two choices
experimentally in the next section.

We now discuss the choice of δ1 and cm.
The parameter cm is such that cmu ≈ mini |wii|, where the wii are the diagonal

elements of t̃11I − T̃22(1 : k − 1, 1: k − 1). We will determine cm by considering the
extreme case when mini |wii| is extremely small, which is when all t̃ii in the largest
block of size k ≤ m differ only by the perturbation we added (in which case the tii are

exactly repeated) and thus t̃11I − T̃22(1 : k − 1, 1: k − 1) is extremely ill-conditioned.
This choice of cm makes the chosen higher precision uh < u2 pessimistic when some of
the t̃ii are close in the sense they are partitioned in the same block by δ = δ1 but not
all of them are exactly repeated, but it helps to ensure the accuracy of the algorithm
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Algorithm 4.1 Multiprecision algorithm for function of a triangular matrix.

Given a triangular matrix T ∈ Cm×m and a function f , this algorithm computes
F = f(T ). It uses arithmetics of unit roundoff u (the working precision), u2, and
possibly a higher precision uh ≤ u2. Lines 9–11 are to be executed at precision u2

and lines 12–16 are to be executed at precision uh.
1 if m = 1, f11 = f(t11), quit, end
2 if m = 2 and t11 6= t22
3 f11 = f(t11), f22 = f(t22)
4 f12 = t12(f22 − f11)/(t22 − t11)
5 quit
6 end
7 Form an m×m diagonal or upper triangular normal (0,1) matrix N .
8 E = u(maxi,j |tij |/‖N‖F )N

9 T̃ = T + E

10 D = diag(T̃ )
11 Evaluate uh by (4.9).

12 if uh < u2, convert T̃ and D to precision uh, end
13 for i = 1:m
14 Set (vi)i = 1 and (vi)k = 0 for k > i and solve the triangular system

(T̃ − t̃iiI)vi = 0 for the first i− 1 components of vi.
15 end
16 Form F = V f(D)V −1, where V = [v1, . . . , vm].
17 Round F to precision u.
18 fii = f(tii), i = 1 : m.

in all cases. However, since the algorithm is to be employed in the next section for
computing a function of T ∈ Cm×m where generally m (and hence k) is expected to
be small, we do not expect this approach to seriously affect the efficiency of the overall
algorithm. In the case we are considering we have |wii| = |t̃11 − t̃ii| = |e11 − eii|. The

matrix E on line 8 of Algorithm 4.1 has entries u(maxi,j |tij |)|ñij |, where ‖Ñ‖F = 1,
and we expect |ñij | ≈ 1/m. This suggests taking cm = θmaxi,j |tij |/m for some
constant θ. In our experiments with different choices of θ we found θ = 0.5 to be a
good choice.

The blocking parameter δ = δ1 is important in determining the largest group
size k in (4.8). A smaller δ can potentially group fewer eigenvalues and decrease k,
causing a larger uh to be used. Yet too large a δ can result in a uh that is much smaller
than necessary to achieve the desired accuracy. We have found experimentally that
δ1 = 5× 10−3 is a good choice.

4.3. Numerical experiments. In this section we describe a numerical experi-
ment with the methods of sections 4.1 and 4.2 for computing a function of a triangular
matrix. Precisions higher than double precision are implemented with the Multipreci-
sion Computing Toolbox [30].

We set the function f to be the exponential, the square root, the sign function,
the logarithm, the cosine, and the sine. The algorithms for computing f(T ) to be
tested are

• Alg full: approximate diagonalization with a full perturbation and uh = u2,
as described in section 4.1,
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• Alg diag: Algorithm 4.1 with diagonal E, cm = 0.5 maxi,j |tij |/m, and δ1 =
5× 10−3.

We use the following matrices, generated from built-in MATLAB functions.
• T1 = gallery(’kahan’,m): upper triangular with distinct diagonal elements

on the interval (0, 1].
• T2 = schur(gallery(’smoke’,m),’complex’): Schur factor of the complex

matrix whose eigenvalues are the mth roots of unity times 21/m.
• T3 = schur(randn(m),’complex’).
• T4 = schur(rand(m),’complex’).
• T5 = triu(randn(m)).
• T6 = triu(rand(m)).
• T7 = gallery(’jordbloc’,m,0.5): a Jordan block with eigenvalue 0.5.

Since we are computing the principal matrix square root and the principal loga-
rithm we multiply matrices T3, T4, and T5 by 1 + i for these functions to avoid their
eigenvalues being on the negative real axis.

We report the equivalent number of decimal digits for the higher precision uh
used by Algorithm 4.1 for each test matrix in the computation in Table 4.1. Since the
outputs of Alg full and Alg diag depend on the random perturbation E, we compute
the function of each matrix 10 times and report in Table 4.2 the maximum relative
error ‖F −F̂‖/‖F‖F , where F is a reference solution computed by the functions expm,
sqrtm, logm, cosm, and sinm provided by the Multiprecision Computing Toolbox
running at 200 digit precision, and rounded back to double precision. We use a
diagonal perturbation E in Algorithm 4.1. For the reference solution of the matrix
sign function, we run signm from the Matrix Function Toolbox [20] at 200 digit
precision, and round back to double precision. The same procedure is followed in the
experiments in the following sections.

We show in Table 4.2 the quantity κf (A)u, where κf (A) is the 1-norm condition
number [23, Chap. 3] of f at A, which we estimate using the funm condest1 function
provided by [20]. A numerically stable algorithm will produce forward errors bounded
by a modest multiple of κf (A)u.

The results show that Algorithm 4.1 behaves in a numerically stable fashion in
every case, typically requiring a higher precision with unit roundoff uh equal to or
not much smaller than u2. We see that for the same class of matrices the number
of digits of precision used is nondecreasing with the matrix size m, which is to be
expected since we expect a larger maximum block size (equal to k in (4.8)) for a
larger matrix. On the other hand, as expected in view of the discussion in section 3,
the randomized approximate diagonalization method Alg full is less reliable and
sometimes not accurate at all when f is the matrix square root, the matrix sign
function, or the matrix logarithm.

Note that our test matrices here are more general than will arise in the algorithm
of the next section, for which the triangular blocks will have clustered eigenvalues.

We repeated this experiment with an upper triangular E in Algorithm 4.1. The
errors were of the same order of magnitude as for diagonal E. Since a diagonal E
requires slightly less computation, we will take E diagonal in the rest of this paper.

5. Overall algorithm for computing f(A). Our algorithm for computing
f(A) follows the framework of the Schur–Parlett algorithm [8]. First the Schur de-
composition A = QTQ∗ is computed. Then the triangular matrix T is reordered to a
partitioned upper triangular matrix T̃ by a unitary similarity transformation, which
is achieved by Algorithms 4.1 and 4.2 in [8, sect. 4]. The diagonal blocks T̃ii are
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Table 4.1
Equivalent number of decimal digits for the higher precision uh used by Algorithm 4.1 in the

computation. 32 digits corresponds to uh = u2.

m = 40 m = 80

T1 = gallery(’kahan’,m) 34 743
T2 = schur(gallery(’smoke’,m),’complex’) 32 32
T3 = schur(randn(m),’complex’) 32 32
T4 = schur(rand(m),’complex’) 32 32
T5 = triu(randn(m)) 34 53
T6 = triu(rand(m)) 34 89
T7 = gallery(’jordbloc’,m,0.5) 713 1451

computed by Algorithm 4.1 instead of by a Taylor expansion as in the Schur–Parlett
algorithm, and the precision uh used in Algorithm 4.1 is potentially different for each
diagonal block. The off-diagonal blocks of f(T̃ ) are computed using the block form of
the Parlett recurrence. Finally, we undo the unitary similarity transformations from
the Schur decomposition and the reordering. This gives Algorithm 5.1.

In Algorithm 5.1 we distinguish a special case: if A is normal, the Schur decom-
position becomes A = QDQ∗ with D diagonal, and the algorithm simply computes
f(A) = Qf(D)Q∗. We note that the algorithm preserves the advantages of the
Schur–Parlett algorithm that if one wants to compute f(A) =

∑
i fi(A) then it is not

necessary to compute each fi(A) separately because the Schur decomposition and its
reordering can be reused.

Algorithm 5.1 Multiprecision Schur–Parlett algorithm for function of a full matrix.

Given A ∈ Cn×n and a function f this algorithm computes F = f(A). It uses arith-
metics of unit roundoff u (the working precision), u2, and possibly higher precisions
uh ≤ u2 (chosen in Algorithm 4.1). It requires only function values, not derivatives.

1 Compute the Schur decomposition of A = QTQ∗.
2 if T is diagonal, F = Qf(T )Q∗, quit, end
3 Use Algorithms 4.1 and 4.2 in [8, sect. 4] with δ > 0 to reorder T into

a block m×m upper triangular matrix T̃ = U∗TU .
4 for i = 1:m

5 Use Algorithm 4.1 (with a diagonal E) to evaluate Fii = f(T̃ii).
6 for j = i− 1:−1: 1
7 Solve the Sylvester equation (2.1) for Fij .
8 end
9 end

10 F = QUFU∗Q∗

In the reordering and blocking of the Schur–Parlett framework the blocking pa-
rameter δ > 0, described in section 2, needs to be specified. A large δ leads to greater
separation of the eigenvalues of the diagonal blocks, which improves the accuracy of
the solutions to the Sylvester equations. In this respect, there is a significant dif-
ference between Algorithm 5.1 and the standard Schur–Parlett algorithm: the latter
algorithm cannot tolerate too large a δ because it slows down convergence of the
Taylor series expansion, meaning that more terms may be needed (or the series may
simply not converge). Since Algorithm 4.1 performs well irrespective of the eigenvalue
distribution we can choose δ without consideration of the accuracy of the evaluation
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Table 4.2
Maximal normwise relative errors for Algorithm 4.1 with a diagonal E (Alg diag) and the

method of approximate diagonalization with full perturbation (Alg full).

f = exp f = sqrt

Alg diag Alg full κf (A)u Alg diag Alg full κf (A)u
T1,m = 40 7.4e-17 3.2e-17 7.2e-15 2.0e-16 2.3e-12 3.1e-10
T1,m = 80 5.5e-17 2.8e-17 1.3e-14 4.8e-15 6.7e-6 1.6e-11
T2,m = 40 6.3e-17 3.0e-17 2.2e-15 3.8e-16 2.2e-12 1.7e-9
T2,m = 80 4.2e-17 2.8e-17 4.5e-15 6.6e-16 7.4e-7 1.9e-12
T3,m = 40 1.4e-16 9.2e-17 8.2e-15 7.0e-17 7.5e-17 2.9e-14
T3,m = 80 1.5e-16 7.6e-17 5.7e-14 1.1e-16 7.6e-17 5.7e-14
T4,m = 40 5.8e-16 1.5e-16 3.6e-15 4.9e-16 5.7e-16 2.5e-14
T4,m = 80 1.3e-15 1.6e-16 8.1e-13 2.7e-15 4.4e-15 2.9e-13
T5,m = 40 7.8e-17 7.8e-17 2.0e-14 3.3e-15 7.5e-6 1.1e-11
T5,m = 80 6.4e-17 6.2e-17 4.9e-14 7.3e-15 1.0 2.0e-18
T6,m = 40 8.0e-15 4.4e-17 4.7e-14 1.3e-14 1.7e-13 5.6e-11
T6,m = 80 3.2e-17 5.9e-17 2.8e-13 5.1e-15 5.2e-2 3.0e-13
T7,m = 40 1.4e-17 2.1e-16 6.5e-15 3.0e-16 2.6e-6 7.6e-13
T7,m = 80 1.4e-24 1.6e-15 1.3e-14 5.1e-16 1.0 1.2e-18

f = sign f = log

Alg diag Alg full κf (A)u Alg diag Alg full κf (A)u
T1,m = 40 0 3.9e-26 9.8e-22 3.7e-16 2.1e-12 2.6e-10
T1,m = 80 0 1.4e-19 3.4e1 4.7e-15 8.1e-6 1.4e-12
T2,m = 40 3.9e-16 1.9e-12 1.6e-9 3.8e-16 1.5e-12 9.5e-10
T2,m = 80 7.5e-16 5.4e-7 2.2e-12 6.9e-16 4.9e-7 1.1e-12
T3,m = 40 1.1e-16 1.1e-16 2.8e-14 8.4e-17 8.8e-17 2.5e-14
T3,m = 80 4.1e-16 3.3e-16 2.2e-13 1.1e-16 1.3e-16 5.3e-14
T4,m = 40 7.7e-16 1.0e-15 3.4e-14 9.9e-16 1.3e-15 3.5e-14
T4,m = 80 2.0e-15 2.8e-15 1.5e-13 3.5e-15 5.8e-15 2.9e-13
T5,m = 40 2.4e-15 1.8e-6 3.2e-12 3.2e-15 7.8e-6 2.7e-12
T5,m = 80 4.8e-15 1.0 4.0e-19 4.2e-15 1.0 4.2e-19
T6,m = 40 0 4.5e-16 5.4e-21 3.2e-15 2.3e-13 1.1e-10
T6,m = 80 0 2.3e-16 2.2e3 5.1e-15 8.8e-2 3.4e-14
T7,m = 40 0 2.7e-16 3.5e1 4.1e-16 2.8e-6 1.4e-13
T7,m = 80 0 1.0 1.6e2 5.6e-16 1.0 1.8e-19

f = cos f = sin

Alg diag Alg full κf (A)u Alg diag Alg full κf (A)u
T1,m = 40 3.3e-17 3.4e-17 8.6e-15 4.5e-17 4.5e-17 1.1e-14
T1,m = 80 2.4e-17 2.3e-17 1.9e-14 3.9e-17 4.4e-17 4.1e-14
T2,m = 40 4.4e-17 2.4e-17 3.9e-15 5.0e-17 3.4e-17 4.7e-15
T2,m = 80 4.0e-17 2.5e-17 7.8e-15 4.0e-17 2.6e-17 8.3e-15
T3,m = 40 1.3e-16 8.4e-17 1.6e-14 1.4e-16 7.3e-17 1.7e-14
T3,m = 80 1.6e-16 7.5e-17 8.6e-14 1.3e-16 7.4e-17 8.2e-14
T4,m = 40 3.6e-16 2.6e-16 1.0e-14 3.6e-16 2.5e-16 8.2e-15
T4,m = 80 4.5e-16 3.1e-16 2.2e-14 4.4e-16 3.1e-16 2.2e-14
T5,m = 40 6.3e-17 6.3e-17 2.2e-14 6.9e-17 6.5e-17 2.3e-14
T5,m = 80 4.8e-17 5.5e-17 2.5e-8 5.5e-17 8.1e-17 2.1e-8
T6,m = 40 3.9e-14 3.0e-17 1.3e-14 6.2e-14 1.4e-16 6.8e-14
T6,m = 80 2.6e-17 4.8e-17 7.6e-14 2.5e-17 3.3e-17 8.3e-14
T7,m = 40 3.2e-17 1.8e-16 3.5e-15 3.1e-17 7.9e-16 3.3e-15
T7,m = 80 2.1e-17 5.1e-16 6.9e-15 1.5e-17 1.2e-15 6.9e-15

of f on the diagonal blocks and larger δ will in general do no harm to accuracy. In the
extreme case where δ is so large that one block is employed, Algorithm 5.1 does not
solve Sylvester equations and thus avoids the potential error incurred in the process,
and in general this is when our algorithm attains its optimal accuracy, but the price
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to pay is that it becomes very expensive because higher precision arithmetic is being
used on an n× n matrix. We investigate the choice of δ experimentally in the next
subsection.

5.1. Numerical experiments. In the Schur–Parlett algorithm [8] the blocking
parameter δ = 0.1 is chosen, which is shown there to perform well most of the time. In
order to investigate a suitable value for δ in Algorithm 5.1, we compare the following
four algorithms, where “nd” stands for “no derivative”.

• funm nd 0.1, Algorithm 5.1 with δ = 0.1;
• funm nd 0.2, Algorithm 5.1 with δ = 0.2;
• funm nd norm, Algorithm 5.1 with δ = 0.1 maxi |tii|; and
• funm nd ∞, Algorithm 5.1 with δ = ∞ (no blocking, so the whole Schur

factor T is computed by Algorithm 4.1).
The 35 tested matrices are nonnormal taken from

• the MATLAB gallery;
• the Matrix Computation Toolbox [19];
• other MATLAB matrices: magic, rand, and randn.

We set their size to be 32 × 32, and we also test the above matrices multiplied by
10±2 to examine the robustness of the algorithms under scaling. We set the function
f to be the matrix sine; similar results were obtained with the other functions.

Figure 5.1, in which the solid line is κf (A)u, shows that Algorithm 5.1 with a
constant δ is fairly stable under scaling while using a δ that scales with the matrix A
(funm nd norm) can produce large errors when ‖A‖ is small. This is not unexpected
since a smaller δ results in a smaller separation of the blocks and more ill-conditioned
Sylvester equations.

In most cases there is no difference in accuracy between the algorithms. The
results show no significant benefit of δ = 0.2 over δ = 0.1, and the former produces
larger blocks in general so increases the cost.

In general, the choice δ in Algorithm 5.1 must be a balance between speed and
accuracy, and the optimal choice of δ will be problem-dependent. We suggest taking
δ = 0.1 as the default blocking parameter in Algorithm 5.1.

Next we set the function f to the sine, the cosine, the hyperbolic sine, and the hy-
perbolic cosine and use the same set of 35 test matrices as in the previous experiment.
We compare the following three algorithms:

• funm, the built-in MATLAB function implementing the standard Schur–
Parlett algorithm [8] with δ = 0.1;

• funm nd, Algorithm 5.1 with δ = 0.1.
• funm nd ∞, Algorithm 5.1 with δ = ∞ (no blocking, so the whole Schur

factor T is computed by Algorithm 4.1).
Note that since we are comparing with the Schur–Parlett algorithm funm we are
restricted to functions f having a Taylor expansion with an infinite radius of conver-
gence and for which derivatives of all orders can be computed. Also, we exclude the
exponential, square root, and logarithm because for these functions the specialized
codes expm, sqrtm, and logm are preferred to funm.

From Figure 5.2 we observe that, overall, there is no significant difference between
funm nd and funm in accuracy, and funm nd ∞ is superior to the other algorithms in
accuracy, as expected.

We list the computational cost of the three algorithms in flops in Table 5.1. We
note that the cost of reordering and blocking, and solving the Sylvester equations
that are executed in precision u, is usually negligible compared with the overall cost.
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Fig. 5.1. Normwise relative errors for funm nd 0.1, funm nd 0.2, funm nd norm and funm nd ∞
on the test set, for the matrix sine. The solid line is κsin(A)u.

For more details of the reordering and partitioning processes of T and evaluating the
upper triangular part of f(A) via the block Parlett recurrence see [8]. In most cases
the blocks are expected to be of much smaller dimension than A, especially when n
is large. Obviously, funm nd is not more expensive than funm nd ∞ and it can be
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Fig. 5.2. Normwise relative errors for funm, funm nd ∞ and funm nd. The solid line is κf (A)u.

substantially cheaper; indeed funm nd requires no higher than the working precision
to compute 1× 1 and 2× 2 diagonal blocks in the Schur form.

Table 5.2 compares in a working precision of double the mean execution times in
seconds and the maximal forward errors of funm, funm nd, and funm nd ∞ over ten
runs, and reports the maximal block size in the reordered and blocked Schur form for
each matrix and the maximal number of equivalent decimal digits used by funm nd.
We choose f = sin and f = cosh and consider the following matrices, generated from
built-in MATLAB functions and scaled to different degrees to have non-trivial blocks
of the reordered and blocked Schur form in the Schur–Parlett algorithms.

• A1 = rand(n)/5.
• A2 = randn(n)/10.
• A3 = gallery(’triw’,n,-5): upper triangular with 1s on the diagonal and

-5s off the diagonal.
We see from Table 5.2 that funm, funm nd, and funm nd ∞ provide the same level of
accuracy except for one case: f = sin and A3. In this case funm requires about n
Taylor series terms and produces an error several orders of magnitude larger than that
of other algorithms. For the matrix A3 with repeated eigenvalues, funm nd is much
slower than funm due to the use of higher precision arithmetic in a large block, and
in this case there is no noticeable difference in execution time between funm nd and
funm nd ∞, which confirms that the cost of the reordering and blocking in funm nd
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Table 5.1
Asymptotic cost in flops of funm, funm nd, and funm nd ∞. Here, n =

∑s
i=1mi is the size of

the original matrix A, s is the number of the diagonal blocks in the Schur form after reordering and
blocking, and mi is the size of the ith block.

funm funm nd funm nd ∞

Precision u u uh u uh

Flops 28n3 to n4/3 28n3 2/3
∑s
i=1m

3
i 28n3 2n3/3

Table 5.2
Mean execution times (in seconds) and the maximal normwise relative errors over ten runs for

funm, funm nd, and funm nd ∞, and the maximal block size and the maximal number of equivalent
decimal digits used by funm nd.

Maximal relative error Mean execution time (secs)

f = sin funm funm nd funm nd ∞ funm funm nd funm nd ∞ size digits

A1, n = 40 4.2e-15 4.2e-15 4.3e-15 3.7e-2 1.4e-1 1.9e-1 11 32
A2, n = 40 4.5e-15 4.5e-15 4.4e-15 4.2e-2 6.4e-2 1.9e-1 4 32
A3, n = 40 1.5e-14 9.4e-17 9.1e-17 3.8e-3 6.8e-2 6.7e-2 40 713
A1, n = 100 6.3e-15 6.3e-15 6.3e-15 1.2e-1 3.3e-1 1.2 15 32
A2, n = 100 6.6e-15 6.6e-15 6.6e-15 2.5e-1 2.6e-1 1.2 3 32
A3, n = 100 1.0e-12 4.0e-17 4.5e-17 3.2e-2 1.0 1.0 100 1824

f = cosh funm funm nd funm nd ∞ funm funm nd funm nd ∞ size digits

A1, n = 40 1.8e-15 1.8e-15 1.9e-15 3.4e-2 1.2e-1 1.9e-1 11 32
A2, n = 40 3.0e-15 3.1e-15 3.0e-15 3.5e-2 5.7e-2 1.9e-1 4 32
A3, n = 40 7.9e-16 1.2e-16 1.4e-16 2.3e-3 6.0e-2 5.8e-2 40 713
A1, n = 100 2.2e-15 2.2e-15 2.5e-15 1.2e-1 3.4e-1 1.2 15 32
A2, n = 100 5.6e-15 5.6e-15 5.6e-15 2.5e-1 2.8e-1 1.2 3 32
A3, n = 100 8.1e-16 1.9e-17 2.7e-17 3.4e-2 1.1 1.1 100 1824

is negligible. For the randomly generated matrices (A1 and A2) funm can be up to
3.8 times faster than funm nd, but in some cases when the block size is small funm nd

is competitive with funm in speed. For these matrices, funm nd is much faster than
funm nd ∞.

Finally, we note that Algorithm 5.1 is not restricted only to a working precision
of double since its framework is precision independent. For other working precisions
suitable values for the parameters cm, δ1 and δ may be different, but they can be
determined in an approach similar to the one used in this work.

The reason for developing Algorithm 5.1 is that it requires only accurate function
values and not derivative values. In the next section we consider a function for which
accurate derivative values are not easy to compute.

6. An application to the matrix Mittag-Leffler function. The matrix
Mittag–Leffler function is the two-parameter function defined by the convergent series

Eα,β(A) =

∞∑
k=0

Ak

Γ(αk + β)
,

where A ∈ Cn×n, α, β ∈ C, and Reα > 0. Analogously to the matrix exponential
in the solution of systems of linear differential equations, the Mittag–Leffler function
plays an important role in the solution of linear systems of fractional differential
equations [17], [34], including time-fractional Schrödinger equations [15], [16] and
multiterm fractional differential equations [32]. Despite the importance of the matrix
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Mittag–Leffler function, little work has been devoted to its numerical computation. In
[29], the computation of the action of matrix Mittag–Leffler functions based on Krylov
methods is analysed. In [10], the Jordan canonical form and minimal polynomial
or characteristic polynomial are considered for computing the matrix Mittag–Leffler
function, but this approach is unstable in floating-point arithmetic.

The recent paper by Garrappa and Popolizio [18] employs the Schur–Parlett al-
gorithm to compute the matrix Mittag–Leffler function. The derivatives of the scalar
Mittag–Leffler function are given by

E
(k)
α,β(z) =

∞∑
j=k

(j)k
Γ(αj + β)

zj−k, k ∈ N, (j)k := j(j − 1) · · · (j − k + 1)

and are difficult to compute accurately. Garrappa and Popolizio use three approaches,
based on series expansion, numerical inversion of the Laplace transform, and summa-
tion formulas to compute the derivatives. They exploit certain identities [18, Props. 3–
4] to express high-order derivatives in terms of lower order ones, since they observe
that all three methods tend to have reduced accuracy for high order derivatives. In
fact, almost all of [18] is devoted to the computation of the derivatives. By combin-
ing derivative balancing techniques with algorithms for computing the derivatives the

authors show in their experiments that the computed Ê
(k)
α,β(z) have errors

|E(k)
α,β(z)− Ê(k)

α,β(z)|

1 + |E(k)
α,β(z)|

that lie “in a range 10−13 ∼ 10−15” [18, p. 146]. Now if

(6.1)
|E(k)
α,β(z)− Ê(k)

α,β(z)|

1 + |E(k)
α,β(z)|

= ε,

then the relative error

φ =
|E(k)
α,β(z)− Ê(k)

α,β(z)|

|E(k)
α,β(z)|

=
ε

|E(k)
α,β(z)|

+ ε,

so ε approximates the relative error for large function values |E(k)
α,β(z)| and the absolute

error when |E(k)
α,β(z)| is small. However, in floating-point arithmetic it is preferred to

use the relative error φ to quantify the quality of an approximation. Because they
only satisfy (6.1), there can be large relative errors in the derivatives computed by the

methods of [18] when |E(k)
α,β(z)| � 1. It is hard to identify the range of z, α, β, and k for

which |E(k)
α,β(z)| < 1, but intuitively we expect that the kth order derivatives |E(k)

α,β(z)|
will generally decrease with decreasing |z| or increasing β. Since the algorithm of
[18] is so far the most practical algorithm for computing the matrix Mittag–Leffler
function, we use it as a comparison in testing Algorithm 5.1.

In order to compute a matrix function by Algorithm 5.1 it is necessary to be
able to accurately evaluate its corresponding scalar function. For the Mittag–Leffler
function, the state-of-the-art algorithm ml opc [14] for computing the scalar function
aims to achieve

|Eα,β(z)− Êα,β(z)|
1 + |Eα,β(z)|

≤ 10−15.
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Fig. 6.1. Normwise relative errors in the computed Eα,β(−R) for the Redheffer matrix and
different α and β. The solid lines are κML(A)u.

Hence ml opc can produce large relative errors when |Eα,β(z)| � 1. By the power
series definition we intuitively expect that the function value |Eα,β(z)| will generally
decrease with decreasing |z| or increasing β. Hence we do not expect ml opc to provide
small relative errors for all arguments.

6.1. Numerical experiments. In this section we present numerical tests of
Algorithm 5.1 (funm nd). In funm nd the ability to accurately evaluate the scalar
Mittag–Leffler function in precisions beyond the working precision is required. We
evaluate the scalar Mittag–Leffler function by truncating the series definition and we
use a precision a few digits more than the highest precision required by the algorithms
for the evaluation of the triangular blocks.

In the literature particular attention has been paid to the Mittag–Leffler functions
with 0 < α < 1 and β > 0 as this is the case that occurs most frequently in applications
[16], [29]. In addition to the Mittag–Leffler functions with β ≈ 1 that are often
tested in the literature, we will also investigate the cases when β takes other positive
values that appear in actual applications. For example, in linear multiterm fractional
differential equations the source term can often be approximated by polynomials, and
then the exact solution involves evaluating the matrix Mittag–Leffler function with
β = α+ `, ` = 1, 2, . . . [18].

We compare the accuracy of our algorithm funm nd with that of mlm, the numer-
ical scheme proposed by Garrappa and Popolizio [18]. The normwise relative forward

error ‖X̂ − Eα,β(A)‖F /‖Eα,β(A)‖F of the computed X̂ is reported, where the ref-
erence solution Eα,β(A) is computed by randomized approximate diagonalization at
200 digit precision. In the plots we also show κML(A)u, where κML(A) is an estimate
of the 1-norm condition number of the matrix Mittag–Leffler function.

Example 1: the Redheffer matrix. We first use the Redheffer matrix, which is
gallery(’redheff’) in MATLAB and has been used for test purposes in [18]. It
is a square matrix R with rij = 1 if i divides j or if j = 1 and otherwise rij = 0.
The Redheffer matrix has n− blog2 nc − 1 eigenvalues equal to 1 [6], which makes it
necessary to evaluate high order derivatives in computing Eα,β(−R) by means of the
standard Schur–Parlett algorithm. The dimension of the matrix is set to n = 20.

In this case the Schur–Parlett algorithm funm nd chooses five blocks: one 16×16
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Table 6.1
Eigenvalues (with multiplicities/numbers) for the matrices in Example 2. Here, [`, r](k) means

that we take k eigenvalues from the uniform distribution on the interval [`, r].

Matrix Eigenvalues (multiplicities/numbers) Size

A21 0(3), ± 1.0(6), ± 5(6), − 10(3) 30× 30
A22 ±[0.9, 1.0](5), ± [1.2, 1.3](4), ± [1.4, 1.5](3), ± [0.9, 1.0]± 1i(4) 40× 40
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Fig. 6.2. Forward errors in the computed Eα,β(A) for α = 0.8 and different β for the matrices
in Table 6.1. The solid lines are κML(A)u.

block and four 1×1 blocks to compute the matrix Mittag–Leffler functions. Figure 6.1
shows that the errors for funm nd are all O(10−14) and are below κML(A)u for all
tested α and β, showing the forward stability of funm nd. On the other hand, for
β ≥ 6, mlm produces errors that grow with β and become much larger than κML(A)u,
so it is behaving numerically unstably. It is not surprising to see that mlm becomes
numerically unstable when β = 8.0, as it aims to achieve (6.1) and |Eα,β(z)| decays
to 0 when β increases; for example, |E0.5,10(1)| ≈ 4.0e-6.

Example 2: matrices with clustered eigenvalues. In the second experiment we test
two matrices A1 and A2 of size 30 × 30 and 40 × 40 with both fixed and randomly
generated eigenvalues that are clustered to different degrees, as explained in Table 6.1.

The test matrices were designed to have nontrivial diagonal blocks in the reordered
and blocked Schur form. We assigned the specified values to the diagonal matrices
and performed similarity transformations with random matrices having a condition
number of order the matrix size to obtain the full matrice A21 and A22 with the
desired spectrum.

In this example, funm nd chooses six blocks for A21 and ten blocks for A22. Fig-
ure 6.2 shows that for these matrices funm nd performs in a numerically stable fashion,
whereas mlm does not for β ≥ 6.

Example 3: matrices from the MATLAB gallery. Now we take 10× 10 matrices
from the MATLAB gallery and test the algorithm using the matrix Mittag–Leffler
functions with α = 0.8 and β = 1.2 or β = 8.0. The forward errors are shown in
Figure 6.3. We see that mlm is mostly numerically unstable for β = 8 while funm nd

remains largely numerically stable.
One conclusion from these experiments is that by exploiting higher precision
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Fig. 6.3. Forward errors in the computed Eα,β(A) for matrices A of size 10 × 10 from the
MATLAB gallery. The solid lines are κML(A)u.

arithmetic it is possible to evaluate the Mittag–Leffler function with small relative
error even when the function has small norm.

7. Conclusions. We have built an algorithm for evaluating arbitrary matrix
functions f(A) that requires only function values and not derivatives. The inspira-
tion for our algorithm is Davies’s randomized approximate diagonalization. We have
shown that the measure of error that underlies randomized approximate diagonal-
ization makes it unsuitable for computing matrix functions. Nevertheless, we have
exploited the approximate diagonalization idea within the Schur–Parlett algorithm
by making random diagonal perturbations to the nontrivial blocks of order greater
than 2 in the reordered and blocked triangular Schur factor and then diagonalizing
the perturbed blocks in higher precision. Our new multiprecision algorithm, Algo-
rithm 5.1, is applicable to any sufficiently smooth function and requires only function
values. By contrast, the standard Schur–Parlett algorithm, implemented as funm in
MATLAB, requires derivatives and is applicable only to functions that have a Taylor
series with a sufficiently large radius of convergence.

Numerical experiments show similar accuracy of our algorithm to funm. We found
that when applied to the Mittag–Leffler function Eα,β our algorithm provides results
of accuracy at least as good as, and systematically for β ≥ 6 much greater than, the
special-purpose algorithm mlm of [18].

Our multiprecision Schur–Parlett algorithm requires at most 2n3/3 flops to be
carried out in higher precisions in addition to the approximately 28n3 flops at the
working precision, and the amount of higher precision arithmetic needed depends on
the eigenvalue distribution of the matrix. When there are only 1×1 and 2×2 blocks on
the diagonal of the reordered and blocked triangular Schur factor no higher precision
arithmetic is required.

Our new algorithm is a useful companion to funm that greatly expands the class
of readily computable matrix functions. Our MATLAB code funm_nd is available
from https://github.com/Xiaobo-Liu/mp-spalg.

https://github.com/Xiaobo-Liu/mp-spalg
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