
Matrices with Tunable Infinity-Norm Condition
Number and No Need for Pivoting in LU

Factorization

Fasi, Massimiliano and Higham, Nicholas J.

2020

MIMS EPrint: 2020.17

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

MATRICES WITH TUNABLE INFINITY-NORM CONDITION
NUMBER AND NO NEED FOR PIVOTING IN LU FACTORIZATION∗

MASSIMILIANO FASI
†

AND NICHOLAS J. HIGHAM
‡

Abstract. We propose a two-parameter family of nonsymmetric dense n × n matrices A(α, β)
for which LU factorization without pivoting is numerically stable, and we show how to choose α
and β to achieve any value of the ∞-norm condition number. The matrix A(α, β) can be formed

from a simple formula in O(n
2
) flops. The matrix is suitable for use in the HPL-AI Mixed-Precision

Benchmark, which requires an extreme scale test matrix (dimension n > 10
7
) that has a controlled

condition number and can be safely used in LU factorization without pivoting. It is also of interest
as a general-purpose test matrix.

Key words. test matrix, ∞-norm condition number, HPL-AI Mixed-Precision Benchmark,
low-precision arithmetic, LU factorization

AMS subject classifications. 65F35, 65Y05

1. Introduction. A wide variety of test matrices has been developed and made
available in software since the early days of digital computing, for example in [5], [11],
[16], [37]. A matrix property of particular interest is the condition number. Ideally,
we would like the condition number to be a parameter that can be freely chosen,
along with the matrix dimension, but this is rarely the case. An exception is the
“randsvd” matrix, constructed as the product UΣV T , where U ∈ Rn×n and V ∈ Rn×n

are random orthogonal matrices from the Haar distribution and Σ = diag(σi) with
σ1 ≥ · · · ≥ σn > 0. These matrices have 2-norm condition number κ2(A) = σ1/σn
and can be generated, for example, using the LAPACK test matrix generation suite [7]
or the MATLAB gallery('randsvd',...) function. However, they require O(n3)
floating-point operations (flops) to generate, which can be prohibitively expensive if
n is large. By making alternative choices of U and V and possibly restricting the
choice of σ2, . . . , σn−1, however, the cost of this technique can be reduced to O(n2)
flops [12].

In this work we propose a new class of n× n test matrices that satisfy the following
three requirements.

R1. They can be constructed in O(n2) flops.
R2. Their ∞-norm condition number is a parameter.
R3. Their growth factor for LU factorization without pivoting is of order 1, that

is, Gaussian elimination without pivoting is numerically stable for them.
The third requirement, which is not satisfied by the matrices of [12], is motivated by
the HPL-AI benchmark, as we explain in section 2. Matrices that meet these three
conditions are worth studying in their own right, as not many classes of dense matrices
that satisfy R2 or R3 are known. In particular, families of dense matrices are known
for which pivoting is not required, the main ones being symmetric positive definite
matrices, totally nonnegative matrices, and matrices diagonally dominant by rows or

∗
Version of July 31, 2020.
Funding: This work was supported Engineering and Physical Sciences Research Council grant

EP/P020720/1 and the Royal Society.
†
Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(massimiliano.fasi@manchester.ac.uk).
‡
Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk).

1

2 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

columns [17, Chap. 9].
In this work we propose a two-parameter family of matrices A(α, β) for which LU

factorization without pivoting is numerically stable and for which the parameters α
and β that yield a matrix with specified ∞-norm condition number κ∞(A(α, β)) can
be easily computed.

In section 2 we describe the HPL-AI benchmark and why it motivates our work.
In section 2.1, in particular, we focus on the test matrices that have been proposed
for the benchmark, and consider whether diagonally dominant matrices can satisfy
our requirements. In section 3 we define the family A(α, β), explain how the entries
of A(α, β) can be cheaply and accurately computed, and show that LU factorization
without pivoting is stable for these matrices. In section 4 we derive explicit formu-
lae for the entries of A(α, β)−1. In section 5 we derive an explicit expression for
κ∞(A(α, β)) that can be evaluated in a constant number of flops, and we explain how
to determine α and β to achieve a given value of κ∞(A(α, β)). In section 6 we discuss
the practicalities of constructing the matrices A(α, β) and confirm experimentally the
numerical stability of LU factorization without pivoting when applied to them. In
section 7 we explain how A(α, β) can be modified to avoid the possibility of a user of
the HPL-AI benchmark gaining an unfair advantage. Concluding remarks are given
in section 8.

2. The HPL-AI Mixed-Precision Benchmark. The supercomputers in the
TOP500 list1 are ranked according to their performance on HPL [10], [31], a por-
table implementation of the High-Performance Computing Linpack Benchmark for
distributed-memory computers. The software measures the rate of execution, ex-
pressed in flops per second (Flop/s), that a computer achieves when solving a large
dense linear system with random coefficients in IEEE binary64 arithmetic [22].

The workload of HPL is compute-bound [27], in the sense that the time needed
to run the benchmark is mostly determined by the clock speed of the CPU. As the
gap between the clock speeds of CPUs and RAM widens, this metric is becoming less
relevant, as memory accesses now dominate the performance of HPC applications.
In order to take this aspect into account and obtain a more complete view of the
capabilities of a large computational facility, several benchmarking suites that provide
an alternative to HPL have been proposed in recent years

The first solution to be introduced was the HPCChallenge (HPCC) Benchmark, a
collection of six problems meant to complement HPL with tests exhibiting more chal-
lenging memory access patterns [26]. HPCC was succeeded by the High Performance
Conjugate Gradients (HPCG) Benchmark [8], [9], a software package developed to
test computational and data access models that are common in more recent scalable
applications.

The HPL, HPCC, and HPCG benchmarks are all typically run in binary64 arith-
metic, which is the precision level required by most mathematical codes underlying
scientific simulations in traditional HPC applications. This is not representative, how-
ever, of typical computations in the emerging field of artificial intelligence, where 32
or fewer bits of precision are typically considered adequate. The HPL-AI Mixed-
Precision Benchmark2 is an attempt to consider both workloads at once, and can be
regarded as the first step towards a benchmark suite that takes into account the avail-
ability of hardware accelerators for low-precision computation, such as the NVIDIA

1
http://www.top500.org

2
https://icl.bitbucket.io/hpl-ai/

http://www.top500.org
https://icl.bitbucket.io/hpl-ai/

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 3

Algorithm 2.1: Reference implementation of the HPL-AI benchmark.

1 Generate [A, b] ∈ Rn×(n+1) in binary64.
2 Compute A ≈ LU by LU factorization without pivoting in binary32.

3 Compute x0 = U−1(L−1b) in binary32.
4 Convert L, U , and x0 to binary64.
5 Solve Ax = b in binary64 using preconditioned GMRES without restart with

x0 as starting guess and L and U as preconditioners.

6 if ‖Ax̂− b‖∞ < µnu(‖A‖∞‖x̂‖∞ + ‖b‖∞) then
7 return success
8 else
9 return failure

V100, T4, and A100 GPUs with their tensor cores.
The main computational steps in the reference implementation of the HPL-AI

benchmark3 are summarized in Algorithm 2.1. A n × n test matrix A and a right-
hand side vector b are generated in binary64 arithmetic. The LU factorization without
pivoting of A is computed in binary32 arithmetic and the linear system Ax = b is
solved in binary32 arithmetic using forward and back substitution. This binary32
approximation to the solution is then converted to binary64 and refined using the
generalized minimal residual method (GMRES) without restart. The solver is precon-
ditioned with the binary32 LU factors of A (converted to binary64). The benchmark
is declared successfully completed if the relative backward error satisfies

(2.1)
‖Ax̂− b‖∞

‖A‖∞‖x̂‖∞ + ‖b‖∞
< µnu,

where µ is a threshold parameter, which for the reference implementation of HPL-AI is
set to 16, and u is the unit roundoff for binary64. Although for portability reasons the
reference implementation uses binary32 arithmetic as the lower-precision arithmetic,
binary16 or bfloat16 [23] are expected to be used in practice.

The matrix A must satisfy several requirements. First, it must be cheap to form
and one for which LU factorization without pivoting is numerically stable. Second,
for the algorithm to work at all the condition number κ∞(A) must not be too large.
No bounds on how large κ∞(A) can be are known for the reference implementation,
but for the related GMRES-IR algorithm κ∞(A) must be substantially less than u−1

when it is used with two precisions [4], [18]. These requirements will hold if properties
R1–R3 hold and a suitable value of κ∞(A) is chosen.

A further requirement is that GMRES does not converge quickly when applied to
A, because if it does then it does not need the LU factors as preconditioners and the
factorization on line 2 of Algorithm 2.1 can be omitted altogether.

In the June 2020 TOP500 rankings of the world’s fastest supercomputers the
Fugaku computer obtained first place in the HPL-AI benchmark, having achieved a
rate of 1.421 (mixed precision) EFlop/s in solving a system of order 13,516,800 [21],
[24]. Clearly, then, any matrix used for the benchmark must be capable of being
generated for a dimension exceeding 107.

3
https://bitbucket.org/icl/hpl-ai/

https://bitbucket.org/icl/hpl-ai/

4 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

2.1. Matrices proposed for the benchmark. Two classes of matrices have
been proposed as test problems for the HPL-AI benchmark.

In order to satisfy requirements R1–R3 it is natural to consider diagonally domi-
nant matrices. The matrix A ∈ Rn×n is diagonally dominant by rows if

(2.2) ωi := |aii| −
∑
j 6=i

|aij | ≥ 0, i = 1: n,

and diagonally dominant by columns if AT is diagonally dominant by rows. The
growth factor for LU factorization without pivoting on matrices diagonally dominant
by rows or columns is bounded by 2 [17, Thm. 9.9], [36]. The reference implementation
of version 0.1 of the HPL-AI benchmark uses a row diagonally dominant matrix A
constructed as

(2.3) aij ∼ unif(−0.5, 0.5), i 6= j, aii =
∑
j 6=i

|aij |,

where unif(x, y) denotes the uniform distribution over the open real interval (x, y).
Gaussian elimination without pivoting will be numerically stable for this matrix.

As regards the size of κ∞(A), it is known [1], [17, Prob. 8.7], [35] that (2.2) implies

‖A−1‖∞ ≤
1

mini ωi
.

The matrix in (2.3) used by the reference implementation has ωi ≡ 0, so this bound
does not provide any information. In fact, numerical experiments show the matrix to
be extremely well conditioned, with κ∞(A) ≈ 4 for large n.

Moler [28] suggests using the nonsymmetric matrix A(µ) whose (i, j) element is
(i−µj+1/2)−1, studies experimentally its conditioning, and investigates the numerical
stability of its LU factorization without pivoting. Whether this matrix can satisfy
requirements R2 and R3 is unclear.

3. A two-parameter family of matrices. Let us consider the parametric
upper triangular matrix T (θ) ∈ Rn×n defined by

(3.1) (T (θ))ij =

0, i > j,

1, i = j,

−θ, i < j,

where θ ≥ 0 throughout this paper. This is a scalar multiple of a matrix proposed by
Ostrowski [30]. The inverse of the matrix in (3.1) is known explicitly:

(3.2)
(
T (θ)−1

)
ij

=

0, i > j,

1, i = j,

θ(1 + θ)j−i−1, i < j.

We define the matrix

A(α, β) = LU ∈ Rn×n, L = L(α) = T (α)T , U = U(β) = T (β),(3.3a)

0 ≤ α ≤ 1, β ≥ 0.(3.3b)

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 5

For n = 4, for example,

(3.4) A(α, β) =

1 −β −β −β
−α 1 + αβ −β + αβ −β + αβ
−α −α+ αβ 1 + 2αβ −β + 2αβ
−α −α+ αβ −α+ 2αβ 1 + 3αβ

 .
Since the subdiagonal elements of L are of modulus at most 1, LU factorization

with partial pivoting does not require interchanges when applied to A = A(α, β) in
exact arithmetic. Note that A is not, however, diagonally dominant in general. For
α = β it is symmetric positive definite, but our main interest is in the nonsymmetric
case.

Generating the matrix A by means of the matrix multiplication in (3.3) would
require 2n3/3 flops, which is too costly for an extreme-scale setting. However, as (3.4)
suggests should be possible, we can give an explicit expression for the elements of A
by exploiting the structure of the two factors in (3.3a). As L and U are lower and
upper triangular, respectively, we have that

aij =

min(i,j)∑
k=1

`ikukj .

For the elements along the diagonal of A, this gives

aii =

i∑
k=1

`ikukj =

i−1∑
k=1

αβ + 1 · 1 = 1 + (i− 1)αβ,

for those above the diagonal we have

aij =

i∑
k=1

`ikukj =

i−1∑
k=1

αβ − 1 · β = −β + (i− 1)αβ,

and for those in the strictly lower triangular part we obtain

aij =

j∑
k=1

`ikukj =

j−1∑
k=1

αβ − α · 1 = −α+ (j − 1)αβ.

Therefore

(3.5) aij =

−α+ (j − 1)αβ, i > j,

1 + (i− 1)αβ, i = j,

−β + (i− 1)αβ, i < j.

For later use, we note several relations. Recalling that ‖A‖∞ = maxi
∑
j |aij | and

‖A‖1 = ‖AT ‖∞, we have

‖L‖∞ = 1 + (n− 1)α, ‖U‖∞ = 1 + (n− 1)β ≤ ‖A‖∞,(3.6)

max
i,j
|aij | ≥ max

(
β, 1 + (n− 1)αβ

)
,(3.7)

‖A‖1 ≥ 1 + (n− 1)α.(3.8)

6 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

We make two observations. Recall that α, β ≥ 0. First, we note that from (3.3)
and the structure of T , we have

κ∞(A) ≤ κ∞
(
T (α)T

)
κ∞
(
T (β)

)
= κ∞

(
T (α)

)
κ∞
(
T (β)

)
.

From (3.2), the row of T (θ)−1 with the largest sum is the first, so

‖T (θ)−1‖∞ = 1 +

n−2∑
i=0

θ(1 + θ)i = (1 + θ)n−1.

Hence

(3.9) κ∞(A) ≤ (1 + (n− 1)α)(α+ 1)n−1(1 + (n− 1)β)(β + 1)n−1.

Next, we note that the matrix A−1 = U−1L−1 is nonnegative with (1, n) element
(A−1)1n = β(1 + β)n−2, by (3.2). Hence, using (3.7),

(3.10) κ∞(A) >
(
1 + (n− 1)αβ

)
β(1 + β)n−2.

It is clear, then, that for large n we will need β � 1 in order for κ∞(A) to be
reasonably bounded. In section 5 we derive an exact expression for κ∞(A).

3.1. The effect of rounding errors. Now we consider the effects of rounding
errors in forming and LU factorizing A(α, β) in floating-point arithmetic.

First, consider the formation of A from (3.5). Using the standard model of
floating-point arithmetic in [17, sect. 2.2] we obtain

|âij − aij | ≤

γ3(α+ (j − 1)αβ) i > j,

γ3aij i = j,

γ3(β + (i− 1)αβ) i < j,

where γk = ku/(1− ku). Hence, by (3.7), |âij − aij | ≤ 2γ3 maxij |aij |, so we certainly
have

(3.11) ‖A− Â‖∞ ≤ 2γ3n‖A‖∞,

where the factor n is pessimistic. In fact, we also have |A − Â| ≤ cγ3|A| as long as
|−α+(j−1)αβ| and |−β+(i−1)αβ| do not exceed α+(j−1)αβ and β+(i−1)αβ,
respectively, by more than a factor c, for all i 6= j. This latter condition holds with
a modest constant c as long as neither α nor β is too close to a member of the set
{ 1/k : k = 1, 2, . . . , n− 1 }. We conclude that A is formed as accurately as we could
expect.

We also need to show that LU factorization without pivoting is numerically stable
for A. By considering the application of Gaussian elimination to the product LU , and
noting that all the multipliers are α, it is easy to see that at the start of the kth stage
of the elimination we have the matrix[

Ik−1 0

0 Tn−k(α)T

] [
Tk(β) U12(β)

0 Tn−k(β)

]
,

where U12(β) ∈ Rk×(n−k) and the subscript on T (β) denotes the dimension. It follows

that the intermediate elements { a(k)ij : k ≤ i, j ≤ n } are elements of Tn−k(α)TTn−k(β)

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 7

and hence elements of A(α, β) because of the structure of T . Therefore the growth
factor is

(3.12) ρn(A) =
maxi,j,k|a

(k)
ij |

maxi,j |aij |
= 1,

which is ideal.
The strongest overall backward error bound can be obtained by applying the

backward error analysis for LU factorization [17, Thm. 9.3], which tells us that the

computed LU factors L̂ and Û satisfy

(3.13) L̂Û = A+∆A, |∆A| ≤ γn|L̂||Û |.

Now, since ̂̀ij = `ij +O(u) and ûij = uij +O(u), |L̂||Û | = |L||U |+O(u), and we have

|L||U | = (−L+ 2I)(−U + 2I) = LU − 2(L+ U) + 4I = A+G,

In section 5 we will take α ≤ β, so we make this assumption now. Then, using (3.6)
and (3.8), we obtain

‖G‖∞ ≤ 2(‖L‖∞ + ‖U‖∞) + 4 ≤ 2(‖A‖∞ + ‖A‖∞) + 4‖A‖∞ = 8‖A‖∞ (α ≤ β).

Hence

(3.14) ‖∆A‖∞ ≤ 9γn‖A‖∞ +O(u) = 9nu‖A‖∞ +O(u) (α ≤ β).

We conclude that the factorization is numerically stable.
The bound (3.14) is a worst-case bound and we note that in practice a more

realistic bound is obtained by replacing the constant 9n by its square root, and even
this is likely to be pessimistic [19]. This point is important because we are interested
in extremely large n for the HPL-AI benchmark.

4. The inverse matrix. We now compute the elements of B = A(α, β)−1. Note

that inverting (3.3a) yields B = Ũ L̃, where Ũ = U−1 and L̃ = L−1, and we have

bij =

n∑
k=max(i,j)

ũik ˜̀kj .
As above, this gives three distinct formulae, one for the elements along the diagonal,

bii =

n∑
k=i

ũik ˜̀kj = 1 · 1 +

n∑
k=i+1

β(1 + β)k−i−1α(1 + α)k−i−1

= 1 + αβ

n−i−1∑
k=0

(1 + α)k(1 + β)k,(4.1)

one for those in the upper triangular part,

bij =

n∑
k=j

ũik ˜̀kj = β(1 + β)j−i−1 · 1 +

n∑
k=j+1

β(1 + β)k−i−1α(1 + α)k−j−1

= β(1 + β)j−i−1 + αβ

n−j−1∑
k=0

(1 + β)k−i+j(1 + α)k,(4.2)

8 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

and one for those below the diagonal,

bij =

n∑
k=i

ũik ˜̀kj = 1 · α(1 + α)i−j−1 +

n∑
k=i+1

β(1 + β)k−i−1α(1 + α)k−j−1

= α(1 + α)i−j−1 + αβ

n−i−1∑
k=0

(1 + β)k(1 + α)k+i−j .(4.3)

By noting that (4.1), (4.2), and (4.3) contain truncated geometric series of common
ratio

r = (1 + α)(1 + β)

we obtain the more computationally convenient formula

(4.4) bij =

α(1 + α)i−j−1 +
αβ(1 + α)i−j(1− rn−i)

1− r
, i > j,

1 + αβ
1− rn−i

1− r
, i = j,

β(1 + β)i−j−1 +
αβ(1 + β)j−i(1− rn−j)

1− r
, i < j.

5. Computing the condition number. In order to compute the∞-norm con-
dition number of A := A(α, β), we need an inexpensive technique to evaluate ‖A‖∞
and ‖A−1‖∞. The sum of the absolute values of the ith row of A is, using (3.5),

λi =

n∑
j=1

|aij |

=

(
i−1∑
j=1

|−α+ (j − 1)αβ|

)
+ 1 + (i− 1)αβ +

n∑
j=i+1

|−β + (i− 1)αβ|

= α

(
i−1∑
j=1

|1− (j − 1)β|

)
+ 1 + (i− 1)αβ + (n− i)β|1− (i− 1)α|.(5.1)

We now explain how to compute the ∞-norm of A for

0 < α ≤ β.

In order to find the largest value of λi, we will look at the quantity

(5.2) Λi := λi+1 − λi, i = 1, . . . , n− 1,

which is the difference between the sum of the absolute values of two consecutive rows.
By subtracting the formula for λi from that for λi+1, we obtain

(5.3) Λi = α|1− (i− 1)β|+ αβ + (n− i− 1)β|1− iα| − (n− i)β|1− (i− 1)α|.

The value of Λi depends on the sign of the argument of the three absolute value
operators in (5.3). In general this would give rise to eight possible combinations, but
if 1− (i− 1)α ≤ 0 then 1 − iα < 0, and α ≤ β implies that also 1 − (i − 1)β ≤ 0.
Therefore, only the five cases in Figure 5.1a are possible, as we now show. The

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 9

1− (i− 1)α 1− iα 1− (i− 1)β

a > 0 > 0 > 0
b > 0 > 0 ≤ 0
c > 0 ≤ 0 ≤ 0
d > 0 ≤ 0 > 0
e ≤ 0 < 0 ≤ 0

(a) States.

A C

B

D

E

(b) Transitions.

Fig. 5.1. Left: sign of the argument of the absolute values in (5.3). Right: possible transitions
among the states in the table on the left.

automaton in Figure 5.1b shows the possible transitions, as i varies, from one state
to the other. We remark that a and d are the only possible initial states (i = 1)
since α ≤ 1 implies that 1− α is nonnegative.

Our strategy is to keep track of the quantity

ηi := max
1≤k≤i

λi

as we travel between states, and then use the fact that ‖A‖∞ = ηn. As long as we
are in state a we have that

Λi = α(1− (i− 1)β) + αβ + (n− i− 1)β(1− iα)− (n− i)β(1− (i− 1)α)

= α− β + (2 + i− n)αβ.

If i < n − 1 then 2 + i − n ≤ 0 and Λi ≤ 0, and thus λi+1 ≤ λi ≤ · · · ≤ λ1 = ηi.
The quantity Λn−1 may be nonnegative, thus if a is the final state we have that
ηn = max(λ1, λn).

Now we discuss the states that can be reached from a . If we are in state b , we
have that

Λi = α((i− 1)β − 1) + αβ + (n− i− 1)β(1− iα)− (n− i)β(1− (i− 1)α)

= −α− β + (3i− n)αβ.

It is easy to see that in this state one has that ηi = max(λ1, λi+1). If Λi ≤ 0,
then one comes from either a , for which Λi−1 ≤ 0, or from b itself, in which case
Λi−1 < Λi ≤ 0, and thus ηi = λ1 = max(λ1, λi+1). If, on the other hand, Λi > 0,
then ηi = max(λ1, λi+1).

For c , we have two distinct cases depending on the state we are coming from.
When coming from a , we have that ηi = ηi−1 = λ1 if Λi ≤ 0 and ηi = max(ηi−1, λi+1)
if Λi > 0. When coming from b , we have that ηi = max(λ1, λi′ , λi+1), where
i′ = min

(
b1/αc, n

)
is the largest row index for which one is in state b . For state d

one can argue as for state c that ηi = max(λ1, λi+1).

10 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

Finally, for state e we have that

Λi = α((i− 1)β − 1) + αβ + (n− i− 1)β(iα− 1)− (n− i)β((i− 1)α− 1)

= −α+ β + (n− i)αβ > 0,

since n − i > 0 for i between 1 and n − 1. Therefore, if one is in state e for row i,
then for all subsequent rows k for k between i+ 1 and n one remains in state e and
has that ηk = max(ηk−1, λk+1).

Combining the latter observation with the value of ηi from the states from which e
can be reached, we can conclude that

(5.4) ‖A‖∞ = max(λ1, λi′ , λn), i′ = min
(
b1/αc, n

)
.

Using (5.1), we find that

(5.5) λ1 = 1 + (n− 1)β,

that

λi′ = α

i
′−2∑
j=0

|1− jβ|+ 1 + (i′ − 1)αβ + (n− i′)β(1− (i′ − 1)α)

= α

(
k−1∑
j=0

(1− jβ) +

i
′−2∑
j=k

(jβ − 1)

)
+ 1 + (n− i′)β + (1− n+ i′)(i′ − 1)αβ

= 1 + (2k − i′ + 1)α+ (n− i′)β +

(
−k2 + k + 3

i′(i′ − 1)

2
− ni′ + n

)
αβ,(5.6)

where k = min(b(1 + β)/βc, n− 1), and similarly that

λn = α

n−2∑
j=0

|1− jβ|+ 1 + (n− 1)αβ

= α

(
k−1∑
j=0

(1− jβ) +

n−k−2∑
j=0

((j + k)β − 1)

)
+ 1 + (n− 1)αβ

= 1 + (2k − n+ 1)α+

(
−k2 + k +

n(n− 1)

2

)
αβ.(5.7)

Hence computing ‖A‖∞ requires only a constant number of flops.
In order to compute ‖A−1‖∞, first we derive an expression for the sum of the

absolute values of the elements in the ith row of the matrix B = A−1 in (4.4), which
we denote by δi. A tedious computation given in Appendix A yields

(5.8) δi = (1 + α)i
(

(1 + α)−1 +
β
(
1− rn−i

)
1− r

)
,

where r = (1 + α)(1 + β). The ∞-norm of A−1 is the largest value of δi for i
between 1 and n. We now explain how to compute it efficiently. We will argue that
for ∆i = δi+1 − δi, with i between 1 and n− 1, one has that

(a) if ∆i ≤ 0, then ∆k ≤ 0 for 1 ≤ k < i;

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 11

(b) if ∆i ≥ 0, then ∆k ≥ 0 for i < k < n.
We have

∆i = (1 + α)i+1

(
1

1 + α
+
β
(
1− r−i+n−1

)
1− r

)
− (1 + α)i

(
1

α+ 1
+
β
(
1− rn−i

)
1− r

)
=

(1 + α)i−1
(
α(1− r) + (1 + α)2β

(
1− r−i+n−1

)
− (1 + α)β

(
1− rn−i

))
1− r

=
(1 + α)i−1

(
α(1− r) + (1 + α)αβ + (1 + α)βrn−i−1

(
r − 1− α

))
1− r

=
(1 + α)i−1r−i−1

(
−α2ri+1 + (1 + α)2β2rn

)
1− r

=
(1 + α)−2(1 + β)−i−1

(
α2ri+1 − (1 + α)2β2rn

)
r − 1

.

Therefore, the quantities ∆i and ζi := α2ri+1− (1+α)2β2rn have the same sign since
the other factors are necessarily positive as long as α and β are. Similarly, the signs
of ∆i−1 and ∆i+1 depend on those of

ζi−1 = α2ri − (1 + α)2β2rn

and

ζi+1 = α2ri+2 − (1 + α)2β2rn,

respectively. Since r > 1, ∆i ≤ 0 implies ∆i−1 < 0 and∆i ≥ 0 implies ∆i+1 > 0. The

result follows by induction, and we can conclude that ‖A−1‖∞ = max(δ1, δn).
We summarize our findings in a theorem.

Theorem 5.1. Let A = A(α, β) = T (α)TT (β) ∈ Rn×n, where T is defined
in (3.1). For 0 < α ≤ 1 and β ≥ α we have

(5.9) ‖A‖∞ = max(λ1, λi′ , λn), ‖A−1‖∞ = max(δ1, δn),

where i′ = min
(
b1/αc, n

)
, and λi and δi are defined in (5.5)–(5.7) and (5.8), respec-

tively.

Computing the condition number of A(α, β) therefore requires only a constant
number of flops. What effect do rounding errors have on the condition number of
the computed matrix? We know from (3.11) that the computed Â has a small norm-
wise relative error. We also know that the condition number of the condition num-
ber is the condition number [6], [15]. It follows that

∣∣κ∞(Â) − κ∞(A)
∣∣/κ∞(A) .

6nuκ∞(A). Therefore if we choose the parameters α and β to achieve a condition

number κ∞(A)� u−1 then κ∞(Â) will be of the same order of magnitude as κ∞(A),
which is entirely satisfactory.

5.1. Choosing the parameters. In order to generate a test matrix with a
given condition number κ, it is necessary to determine values of α and β such that
κ∞
(
A(α, β)

)
= κ. From (5.9), we obtain that this is equivalent to finding a zero of

the bivariate function

f(α, β;n, κ) = ‖A(α, β)‖∞‖A(α, β)−1‖∞ − κ
= max(λ1, λi′ , λn) max(δ1, δn)− κ,(5.10)

12 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

for α ∈ (0, 1] and β ≥ α. There is not a unique solution for a given κ.
The function f is continuous but not differentiable, and roots can be found by

converting f(α, β;n, κ) = 0 to a one-parameter equation by defining one of α and β
as a fixed multiple of the other. For instance we can use a one-dimensional zero finder
on the function

(5.11) fρ(β;n, κ) = f(ρβ, β;n, κ), ρ ∈ (0, 1],

Note that it is necessary to ensure that for a solution β∗ we have α = ρβ∗ < 1; if the
latter inequality is not satisfied then a different value of ρ will have to be used.

6. Experimental evaluation. Now we discuss the practicalities of constructing
A(α, β) and confirm the numerical stability of LU factorization without pivoting. Our
codes are written in C and rely on the Intel Math Kernel Library (version 18.0.3)
implementation of BLACS, PBLAS, and ScaLAPACK. For parallelization we use the
Open MPI library (version 3.1.4), a widely-used implementation of the MPI standard
(version 3.1) [13]. The codes we developed can be retrieved on GitHub,4 and a
MATLAB function for constructing the matrix is available.5

The experiments were run on the High Performance Computing Pool (HPC Pool),
a component of the third generation of the Computational Shared Facility (CSF3) of
the University of Manchester. Each compute node in the HPC Pool is equipped with
two 16-core Intel Xeon Gold 6130 CPUs and 187GiB of RAM, and runs CentOS
GNU/Linux release 7.4.1708 (Core).

The zeros of fρ in (5.11) were approximated numerically in double precision on
a single node using the GNU Scientific Library (version 1.15) [14] implementation of
the Brent–Dekker solver [2], [3], a fast and robust zero finding method that combines
an interpolation strategy with the bisection algorithm. This bracketing technique re-

quires two initial values x(0) and x(0) such that fρ(x
(0);n, κ) < 0 and fρ(x

(0);n, κ) > 0.

In order to choose x(0), we note that as β tends to 0, the matrix A tends to the iden-

tity matrix and κ∞(A) tends to 1, thus we set x(0) to the unit roundoff u. As for

x(0), from (3.10) we know that if β = ρ−1 ≥ 1 (recalling (5.11)), which ensures that
α = ρβ = 1, then κ∞(A) is bounded below by(

1 + (n− 1)ρ−1
)
ρ−1(1 + ρ−1)n−2 ≥

(
1 + (n− 1)

)
2n−2,

which for n = 100 is approximately 3 × 1031 and guarantees that if x(0) = ρ−1

then fρ(x
(0);n, κ) is positive for all values of n and κ of interest. In fact, this

value typically overflows if fρ is evaluated in binary64 arithmetic. Therefore, in

our code we initially set x(0) = ρ−1 and keep dividing it by 2 until we find a

value such that fρ
(
x(0);n, κ

)
is positive and representable in binary64 format. At

each step, the Brent–Dekker iteration returns an approximate solution x̂(i) such that

fρ(x̂
(i);n, κ) ≈ 0 and updates the bracketing interval producing x(i) and x(i) such

that x̂(i) ∈
[
x(i), x(i)

]
⊂
[
x(i−1), x(i−1)

]
. In our code, we keep iterating until

|x(i) − x(i)| < 2ux(i),

where u is the unit roundoff of binary64 precision.

4
https://github.com/mfasi/hpl-ai-matrix

5
https://github.com/higham/hpl-ai-matrix

https://github.com/mfasi/hpl-ai-matrix
https://github.com/higham/hpl-ai-matrix

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 13

Table 6.1. Values of β yielding n× n A(β/2, β) with ∞-norm condition number κ.

κ = 10
2

κ = 10
4

κ = 10
6

κ = 10
8

κ = 10
10

n = 10
2

2.54× 10
−2

5.35× 10
−2

8.07× 10
−2

1.09× 10
−1

1.40× 10
−1

n = 10
3

2.50× 10
−3

5.21× 10
−3

7.81× 10
−3

1.05× 10
−2

1.33× 10
−2

n = 10
4

2.50× 10
−4

5.20× 10
−4

7.79× 10
−4

1.04× 10
−3

1.32× 10
−3

n = 10
5

2.50× 10
−5

5.19× 10
−5

7.78× 10
−5

1.04× 10
−4

1.32× 10
−4

n = 10
6

2.50× 10
−6

5.19× 10
−6

7.78× 10
−6

1.04× 10
−5

1.32× 10
−5

n = 10
7

2.50× 10
−7

5.19× 10
−7

7.78× 10
−7

1.04× 10
−6

1.32× 10
−6

n = 10
8

2.50× 10
−8

5.19× 10
−8

7.78× 10
−8

1.04× 10
−7

1.32× 10
−7

n = 10
9

2.50× 10
−9

5.19× 10
−9

7.78× 10
−9

1.04× 10
−8

1.32× 10
−8

n = 10
10

2.50× 10
−10

5.19× 10
−10

7.78× 10
−10

1.04× 10
−9

1.32× 10
−9

Table 6.2. Values of mini,j |A(β/2, β))ij | for the values of β in Table 6.1.

κ = 10
2

κ = 10
4

κ = 10
6

κ = 10
8

κ = 10
10

n = 10
2

1.05× 10
−4

4.21× 10
−4

6.67× 10
−4

8.13× 10
−4

1.48× 10
−3

n = 10
3

8.31× 10
−7

5.68× 10
−7

6.81× 10
−7

1.64× 10
−5

2.09× 10
−5

n = 10
4

7.98× 10
−9

5.94× 10
−9

9.82× 10
−8

1.09× 10
−8

2.01× 10
−7

n = 10
5

4.32× 10
−11

2.21× 10
−10

9.24× 10
−10

9.98× 10
−10

2.70× 10
−9

n = 10
6

1.07× 10
−13

2.31× 10
−12

4.92× 10
−12

1.03× 10
−11

3.10× 10
−12

n = 10
7

7.41× 10
−15

2.68× 10
−14

2.45× 10
−14

5.19× 10
−14

1.24× 10
−13

n = 10
8

7.69× 10
−18

7.41× 10
−17

9.09× 10
−16

4.16× 10
−16

1.87× 10
−15

n = 10
9

4.48× 10
−19

4.53× 10
−19

8.70× 10
−18

7.97× 10
−18

1.07× 10
−17

n = 10
10

7.54× 10
−21

5.46× 10
−21

2.71× 10
−20

1.66× 10
−20

2.47× 10
−19

6.1. Values of α and β. To give a feeling for the typical values of α and β, we
compute them for a range of matrix sizes and target condition numbers. Table 6.1
shows the values of β when α = ρβ for ρ = 1/2. There is little variation of β with κ,
but a large variation with n on this very large range. The corresponding tables for
ρ = 1/10 (see Table 6.3) and ρ = 3/4 have elements of the same orders of magnitude.

Table 6.2 reports the absolute value of the smallest element of A(β/2, β). The
absolute value of the largest element is between 1 and 1.32 for all the matrices we
considered. We will discuss the implications of the wide dynamic range of elements
for low precision in section 7.1.

6.2. Pivots and growth factor. The second and fourth columns of Table 6.3
report, for values of n between 1,000 and 200,000 and ρ = 1/10, values of β yielding
κ = 103 and κ = 106, respectively. We used these values to generate the matrix
A(ρβ, β) in (3.5). We computed the LU factorization A ≈ L̂Û in binary32 arithmetic
with the ScaLAPACK function psgetrf, which uses partial pivoting, and confirmed
that no row interchanges were performed during the reduction to row-echelon form.

In order to gauge the stability of Gaussian elimination for these test matrices, we
looked at the relative error in the computed multipliers (the elements of L), that is,

(6.1) ϑ =
1

α
max

1≤j<i≤n
|α− ̂̀ij |.

This quantity is reported in the third and fifth columns of Table 6.3. The small values
of ϑ confirm that for the matrices our new algorithm generates roundoff errors do not

14 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

Table 6.3. Values of β yielding n× n A(β/10, β) with ∞-norm condition number κ and values of
ϑ in (6.1).

κ = 10
3

κ = 10
6

β ϑ β ϑ

n = 1× 10
3

4.79× 10
−3

4.44× 10
−7

1.05× 10
−2

2.85× 10
−4

n = 2× 10
3

2.39× 10
−3

3.86× 10
−7

5.23× 10
−3

2.26× 10
−5

n = 5× 10
3

9.55× 10
−4

4.06× 10
−7

2.09× 10
−3

9.92× 10
−5

n = 1× 10
4

4.77× 10
−4

2.63× 10
−7

1.04× 10
−3

3.90× 10
−5

n = 2× 10
4

2.39× 10
−4

1.19× 10
−8

5.22× 10
−4

1.77× 10
−4

n = 5× 10
4

9.55× 10
−5

2.14× 10
−7

2.09× 10
−4

6.66× 10
−5

n = 1× 10
5

4.77× 10
−5

7.35× 10
−8

1.04× 10
−4

2.67× 10
−5

n = 2× 10
5

2.39× 10
−5

1.75× 10
−7

5.22× 10
−5

2.63× 10
−4

accumulate in a harmful way. In particular, the fact that ϑ does not appear to be
growing with n suggests that the accuracy of the pivots does not depend on the order
of the matrix being generated, but only on the required ∞-norm condition number.

7. Adaptations for HPL-AI Mixed-Precision Benchmark. We now ex-
amine the suitability of A(α, β) as a test matrix for the HPL-AI Mixed-Precision
Benchmark.

7.1. Scaling for low precision. The reference implementation of the HPL-AI
benchmark factorizes A in binary32, but in practice binary16 or bfloat16 might be
used instead. We therefore consider whether A(α, β) can be suitably represented in
these precisions. We know that maxi,j |aij | will be of order 1, so overflow will not
occur during the factorization, since the growth factor ρn = 1 (see (3.12)).

All the elements in Table 6.2 exceed the smallest normal number 1.18× 10−38 for
binary32, and likewise for bfloat16, which has essentially the same range as binary32.
In binary16, however, the smallest positive subnormal and normal numbers are ap-
proximately 6.0× 10−8 and 6.1× 10−5, respectively, thus underflow or the occurrence
of subnormal numbers are inevitable for larger values of n and κ when the matrix
is converted to this low-precision floating-point format. This is not a problem as re-
gards numerical stability, but subnormal numbers can incur a performance penalty,
especially if handled in software [25], [29, sect. 8.1.2], [32]. The number of entries
underflowing or becoming subnormal can be reduced by working with the matrix
ψA(α, β) for ψ > 1, as suggested in [20]. One can safely take ψ = fmax/2, say, where
fmax = 65,504 is the largest finite binary16 floating-point number.

A key requirement is that throughout the factorization all row operations must
be necessary at each stage, so that no amount of computation can be skipped. In
other words, we need to ensure that at each stage of elimination all the elements

below the diagonal are nonzero. By construction, the vector [a
(k)
kk , a

(k)
k+1,k, . . . a

(k)
nk] is

[1,−α, . . . ,−α] at every stage, and scaling A to ψA changes it to [ψ,−ψα, . . . ,−ψα].
If we consider n = 108 and κ = 104, for example, then using the β value from Table 6.1
with ψ = fmax/2 gives ψα ≈ 8.5 × 10−4, which is safely above the smallest normal
number.

Our conclusion is that multiplying A(α, β) by an appropriate scale factor makes
the matrix suitable for LU factorization in binary16 in the HPL-AI benchmark.

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 15

7.2. Forcing computation of the LU factorization. A possible drawback
is that the LU factorization of A(α, β) is explicitly known. An unscrupulous bench-
marker could form the exact LU factors from (3.3) at trivial cost without carrying
out an LU factorization. An obvious way to avoid this problem is to add a small
random perturbation to A in order to change the LU factors. Since the multipliers
are continuous functions of the matrix entries and are all equal to α < 1, a sufficiently
small perturbation of A(α, β) will retain multipliers less than 1 and growth factor of
order 1.

Consider a rank-1 perturbation ∆A = εeie
T
j , where ei is the ith unit vector and

ε ∈ R. For small enough ε, the LU factorization A+∆A = (L+∆L)(U +∆U) exists.
Since the perturbation matrices ∆L and ∆U are strictly lower triangular and upper
triangular, respectively, it is easy to show that, to first order,

∆L = L tril(L−1∆AU−1) = εL tril
(
L−1eie

T
j U
−1),

where tril denotes the strictly lower triangular part [33], [34]. Hence we certainly have

|∆L| ≤ |ε||L||L−1|eie
T
j |U

−1|.

It is easy to show using (3.2) that the elements in the ith column of |L||L−1| are, from
the ith position onwards, 1, 2α, 2α(1 + α), . . . , 2α(1 + α)n−i−1, which implies that

(|∆L|)rs ≤ |ε|2α(1 + α)n−s−1β(1 + β)n−r−1 ≤ |ε|2αβ(1 + α)n−2(1 + β)n−2.

In order for the multipliers to remain bounded by 1, we wish this bound to be less
than 1− α, which can be achieved by choosing ε such that

(7.1) |ε|2αβ(1 + α)n−2(1 + β)n−2 < 1− α.

In Table 6.1 the values of |ε| satisfying this inequality as an equality range from
1.22× 10−6 for n = 102, κ∞(A) = 1010 to 1.51× 1027 for n = 1010, κ∞(A) = 102.

In practice, a full rank perturbation is preferable. We suggest using the matrix

(7.2) A(α, β, ξ) = A(α, β) + ξ diag(1,−1, 1,−1, . . .),

where ξ is the smaller of cu1/2 and the largest positive ε satisfying (7.1), where c is a
some positive constant bounded by 1

7.3. Forcing preconditioning. It is necessary to precondition GMRES when
we solve A(α, β)x = b? For the matrix (7.2), our experiments indicate that unprecon-
ditioned GMRES converges in a few tens of iterations and the number of iterations
does not vary much with n. In order to make it necessary to precondition, we can
carry out a two-sided diagonal scaling

(7.3) Ã(α, β, ξ) = D1A(α, β, ξ)D2 = D1LUD2 = D1LD
−1
1 ·D1UD2 ≡ L̃Ũ ,

where D1 and D2 are diagonal matrices with positive diagonal elements. As long as
the diagonal elements of D1 are nonincreasing, L̃ has subdiagonal elements bounded
by 1 and LU factorization without pivoting remains numerically stable for Ã(α, β, ξ).
We have

κ∞(Ã(α, β, ξ))

κ∞(D1)κ∞(D2)
≤ κ∞(A(α, β, ξ)) ≤ κ∞(D1)κ∞(D2)κ∞(Ã(α, β, ξ)),

16 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

Table 7.1. Number of GMRES iterations to solve Ã(α, β, ξ)x = b for the matrix (7.3) with κ∞(Ã) =

10
6

and ρ = 0.25, for different dimensions n and restart parameters m.

m

n/3 n/2 2n/3 3n/4 n

n = 1.0× 10
4

999 1,000 667 677 677

n = 2.5× 10
4

2,499 1,610 1,284 1,284 1,284

n = 5.0× 10
4

2,665 1,952 1,952 1,952 1,952

n = 7.5× 10
4

2,402 2,402 2,402 2,402 2,402

n = 1.0× 10
5

2,718 2,718 2,718 2,718 2,718

so we lose the ability to precisely determine the condition number.
Our experiments indicate that a mild diagonal scaling is enough to slow down

the convergence of unpreconditioned GMRES. We describe an experiment in which
we chose β and α = 0.25β so that κ∞(A(α, β, ξ)) = 106 and used the matrix Ã in
(7.3) with ξ chosen as above, with D1 and D2 having logarithmically equally spaced
entries between 1 and 10−3 for D1 and 1 and 10−2 for D2. The ∞-norm condition
number of the scaled matrix Ã was of order 106 in every case. Table 7.1 gives the
number of restarted GMRES iterations needed to solve Ãx = b in double precision
arithmetic, where b has random elements from the (0,1) distribution, with backward
error satisfying (2.1) with µ = 16. Here we are using the MATLAB gmres function.
Several values of n and the restart parameter m are used.

We can see that a significant number of iterations is required, which means that
preconditioning is necessary so solve a linear system with coefficient matrix involv-
ing Ã.

8. Conclusions. Constructing in O(n2) operations an n× n matrix having a
specified ∞-norm condition number and such that LU factorization without pivoting
is numerically stable is not a trivial task, especially when the matrix must be suitable
for extreme-scale dimensions n > 107 and for use with low-precision floating-point
arithmetic. We have shown that the two-parameter family of matrices A(α, β) in (3.3)
satisfies these requirements, with α and β determined by solving a scalar nonlinear
equation. These matrices, with the modifications described in section 7 if necessary,
are therefore suitable for use in HPL-AI Mixed-Precision Benchmark. They are also
useful as general purpose dense nonsymmetric test matrices.

Acknowledgements. We acknowledge the assistance given by Research IT at
the University of Manchester, and the use of the HPC Pool funded by the Research
Lifecycle Programme at the University of Manchester. We also thank Sven Hammar-
ling for comments on a draft manuscript and Jack Dongarra and Piotr Luszczek for
discussions about the HPL-AI benchmark.

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 17

Appendix A. Proof of (5.8).

The elements of B = A(α, β)−1 = U−1L−1 = T (β)−1T (α)−T are all nonnegative,
by (3.2). Hence

δi =

n∑
j=1

|bij | =
n∑
j=1

bij

=

i−1∑
j=1

(
α(1 + α)i−j−1 +

αβ(1 + α)i−j
(
1− rn−i

)
1− r

)
+ 1 +

αβ
(
1− rn−i

)
1− r

+

n∑
j=i+1

(
β(1 + β)−i+j−1 +

αβ(1 + β)j−i
(
1− rn−j

)
1− r

)

= α(1 + α)i−1
(

(1 + α)−1 +
β
(
1− rn−i

)
1− r

) i−2∑
j=0

(1 + α)−j + 1 +
αβ
(
1− rn−i

)
1− r

+ β

n−i−1∑
j=0

(1 + β)j
(

1 +
α(1 + β)

(
1− rn−i−j−1

)
1− r

)

=

(
(1 + α)−1 +

β
(
1− rn−i

)
1− r

)
(1 + α)

(
(1 + α)i−1 − 1

)
+ 1 +

αβ
(
1− rn−i

)
1− r

−
(
1− (1 + β)n−i

)(
1 +

α(1 + β)

1− r

)
−
β
(
rn−i − (1 + β)n−i

)
1− r

=

(
(1 + α)−1 +

β
(
1− rn−i

)
1− r

)
(1 + α)

(
(1 + α)i−1 − 1

)
+ 1 +

αβ
(
1− rn−i

)
1− r

+
β
(
1− rn−i

)
1− r

= (1 + α)i
(

(1 + α)−1 +
β
(
1− rn−i

)
1− r

)
.

18 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

REFERENCES

[1] J. H. Ahlberg and E. N. Nilson. Convergence properties of the spline fit. J. Soc. Indust. Appl.
Math., 11(1):95–104, 1963.

[2] R. P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. Comput.
J., 14(4):422–425, 1971.

[3] J. C. P. Bus and T. J. Dekker. Two efficient algorithms with guaranteed convergence for finding
a zero of a function. ACM Trans. Math. Software, 1(4):330–345, 1975.

[4] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

[5] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1):1:1–1:25, 2011.

[6] James W. Demmel. On condition numbers and the distance to the nearest ill-posed problem.
Numer. Math., 51:251–289, 1987.

[7] James W. Demmel and A. McKenney. A test matrix generation suite. Preprint MCS-P69-0389,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL,
USA, March 1989. 16 pp. LAPACK Working Note 9.

[8] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance computing systems. Int. J. High
Performance Computing Applications, 30(1):3–10, 2016.

[9] Jack Dongarra, Michael A. Heroux, and Piotr Luszczek. A new metric for ranking high-
performance computing systems. National Science Review, 3(1):30–35, 2016.

[10] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK benchmark: Past,
present and future. Concurrency Computat.: Pract. Exper., 15:803–820, 2003.

[11] Iain S. Duff, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems. ACM Trans.
Math. Software, 15(1):1–14, 1989.

[12] Massimiliano Fasi and Nicholas J. Higham. Generating extreme-scale matrices with speci-
fied singular values or condition numbers. MIMS EPrint 2020.8, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, March 2020. 21 pp.

[13] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Version 3.1.
High Performance Computing Center Stuttgart (HLRS), 2015. xxxii+836 pp.

[14] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken,
Michael Booth, and Fabrice Rossi. GNU Scientific Library Reference Manual. 3rd edition,
Network Theory, 2009.

[15] Desmond J. Higham. Condition numbers and their condition numbers. Linear Algebra Appl.,
214:193–213, 1995.

[16] Nicholas J. Higham. Algorithm 694: A collection of test matrices in MATLAB. ACM Trans.
Math. Software, 17(3):289–305, 1991.

[17] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[18] Nicholas J. Higham. Error analysis for standard and GMRES-based iterative refinement in
two and three-precisions. MIMS EPrint 2019.19, Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, November 2019. 8 pp.

[19] Nicholas J. Higham and Theo Mary. A new approach to probabilistic rounding error analysis.
SIAM J. Sci. Comput., 41(5):A2815–A2835, 2019.

[20] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a matrix into half
precision, with an application to solving linear systems. SIAM J. Sci. Comput., 41(4):
A2536–A2551, 2019.

[21] HPC-Wire. Fujitsu and RIKEN take first place worldwide in TOP500, HPCG, and HPL-
AI with supercomputer Fugaku. https://www.hpcwire.com/off-the-wire/fujitsu-and-riken-
take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-supercomputer-fugaku/, June
2020. Accessed July 15, 2020.

[22] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revision of IEEE 754-
2008). The Institute of Electrical and Electronics Engineers, New York, USA, 2019. 82 pp.
ISBN 978-1-5044-5924-2.

[23] Intel Corporation. BFLOAT16—hardware numerics definition, November 2018. White paper.
Document number 338302-001US.

[24] Shuhei Kudo, Keigo Nitadori, and Toshiyuki Imamura. Implementation notes for a 1EHFlop/s
matrix computation. Technical report, RIKEN Center for Computational Science, Kobe,
Hyogo, Japan, May 2020. 18 pp. Manuscript.

[25] Orion Lawlor, Hari Govind, Isaac Dooley, Michael Breitenfeld, and Laxmikant Kale. Perfor-

https://doi.org/10.1137/0111007
http://dx.doi.org/10.1093/comjnl/14.4.422
http://dx.doi.org/10.1145/355656.355659
http://dx.doi.org/10.1145/355656.355659
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/BF01400115
https://doi.org/10.2172/7284674
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1177/1094342015593158
https://doi.org/10.1093/nsr/nwv084
https://doi.org/10.1093/nsr/nwv084
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1145/62038.62043
http://eprints.maths.manchester.ac.uk/2755/
http://eprints.maths.manchester.ac.uk/2755/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1016/0024-3795(93)00066-9
https://doi.org/10.1145/114697.116805
http://dx.doi.org/10.1137/1.9780898718027
http://eprints.maths.manchester.ac.uk/2735/
http://eprints.maths.manchester.ac.uk/2735/
https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
https://www.hpcwire.com/off-the-wire/fujitsu-and-riken-take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-supercomputer-fugaku/
https://www.hpcwire.com/off-the-wire/fujitsu-and-riken-take-first-place-worldwide-in-top500-hpcg-and-hpl-ai-with-supercomputer-fugaku/
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://charm.cs.illinois.edu/newPapers/05-12/paper.pdf
https://charm.cs.illinois.edu/newPapers/05-12/paper.pdf

PIVOTED MATRICES WITH TUNABLE CONDITION NUMBER 19

mance degradation in the presence of subnormal floating-point values. In Proceedings of
the International Workshop on Operating System Interference in High Performance Ap-
plications, 2005.

[26] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas, Jeremy Kep-
ner, John McCalpin, David Bailey, and Daisuke Takahashi. Introduction to the HPC
Challenge benchmark suite. Technical Report ICL-UT-05-01, Innovative Computing Lab-
oratory, The University of Tennessee, Knoxville, TN, 2005. 12 pp.

[27] Vladimir Marjanović, José Gracia, and Colin W. Glass. Performance modeling of the HPCG
benchmark. High Performance Computing Systems. Performance Modeling, Benchmark-
ing, and Simulation, pages 172–192, 2015.

[28] Cleve B. Moler. A matrix for the new HPL-AI benchmark. https://blogs.mathworks.com/
cleve/2019/12/04/a-matrix-for-the-new-hpl-ai-benchmark/, December 2019.

[29] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara
Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, and Serge Torres. Handbook
of Floating-Point Arithmetic. 2nd edition, Birkhäuser, 2018. ISBN 978-3-319-76525-9.

[30] A. M. Ostrowski. On the spectrum of a one-parametric family of matrices. J. Reine Angew.
Math., 193(3/4):143–160, 1954.

[31] Antoine Petitet, R. Clint Whaley, Jack Dongarra, and A. Cleary. HPL: A portable implemen-
tation of the High-Performance Linpack benchmark for distributed-memory computers,
Version 2.3, 2018.

[32] Eric M. Schwarz, Martin Schmookler, and Son Dao Trong. FPU implementations with denor-
malized numbers. IEEE Trans. Comput., 54(7):825–836, 2005.

[33] G. W. Stewart. On the perturbation of LU and Cholesky factors. IMA J. Numer. Anal., 17
(1):1–6, 1997.

[34] Ji-Guang Sun. Componentwise perturbation bounds for some matrix decompositions. BIT, 32
(4):702–714, 1992.

[35] J. M. Varah. A lower bound for the smallest singular value of a matrix. Linear Algebra Appl.,
11:3–5, 1975.

[36] James H. Wilkinson. Error analysis of direct methods of matrix inversion. J. Assoc. Comput.
Mach., 8(3):281–330, 1961.

[37] Weijian Zhang and Nicholas J. Higham. Matrix Depot: An extensible test matrix collection
for Julia. PeerJ Comput. Sci., 2:e58, 2016.

https://charm.cs.illinois.edu/newPapers/05-12/paper.pdf
https://charm.cs.illinois.edu/newPapers/05-12/paper.pdf
https://www.icl.utk.edu/files/publications/2005/icl-utk-223-2005.pdf
https://www.icl.utk.edu/files/publications/2005/icl-utk-223-2005.pdf
https://doi.org/10.1007/978-3-319-17248-4_9
https://doi.org/10.1007/978-3-319-17248-4_9
https://blogs.mathworks.com/cleve/2019/12/04/a-matrix-for-the-new-hpl-ai-benchmark/
https://blogs.mathworks.com/cleve/2019/12/04/a-matrix-for-the-new-hpl-ai-benchmark/
http://dx.doi.org/10.1007/978-3-319-76526-6
http://dx.doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1515/crll.1954.193.143
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://doi.org/10.1109/tc.2005.118
https://doi.org/10.1109/tc.2005.118
https://doi.org/10.1093/imanum/17.1.1
https://doi.org/10.1007/BF01994852
https://doi.org/10.1016/0024-3795(75)90112-3
https://doi.org/10.1145/321075.321076
https://doi.org/10.7717/peerj-cs.58
https://doi.org/10.7717/peerj-cs.58

