
Exploiting Lower Precision Arithmetic in Solving
Symmetric Positive Definite Linear Systems and

Least Squares Problems

Higham, Nicholas and Pranesh, Srikara

2019

MIMS EPrint: 2019.20

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

EXPLOITING LOWER PRECISION ARITHMETIC IN SOLVING
SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS AND

LEAST SQUARES PROBLEMS∗

NICHOLAS J. HIGHAM† AND SRIKARA PRANESH†

Abstract. What is the fastest way to solve a linear system Ax = b in arithmetic of a given
precision when A is symmetric positive definite and otherwise unstructured? The usual answer is
by Cholesky factorization, assuming that A can be factorized. We develop an algorithm that can be
faster, given an arithmetic of precision lower than the working precision as well as (optionally) one of
higher precision. The arithmetics might, for example, be of precisions half, single, and double; half
and double, possibly with quadruple; or single and double, possibly with quadruple. We compute a
Cholesky factorization at the lower precision and use the factors as preconditioners in GMRES-based
iterative refinement. To avoid breakdown of the factorization we shift the matrix by a small multiple
of its diagonal. We explain why this is preferable to the common approach of shifting by a multiple of
the identity matrix. We also incorporate scaling in order to avoid overflow and reduce the chance of
underflow when working in IEEE half precision arithmetic. We extend the algorithm to solve a linear
least squares problem with a well conditioned coefficient matrix by forming and solving the normal
equations. In both algorithms most of the work is done at low precision provided that iterative
refinement and the inner iterative solver converge quickly. We explain why replacing GMRES by the
conjugate gradient method causes convergence guarantees to be lost, but show that this change has
little effect on convergence in practice. Our numerical experiments confirm the potential of the new
algorithms to provide faster solutions in environments that support multiple precisions of arithmetic.

Key words. symmetric positive definite matrix, Cholesky factorization, diagonal scaling, half
precision arithmetic, mixed precision, bfloat16, fp16, overflow, underflow, iterative refinement, linear
system, least squares problem, normal equations, GMRES, conjugate gradient method, precondi-
tioning

AMS subject classifications. 65F05, 65F08, 65F35, 65F10

1. Introduction. The standard way to solve a linear system Ax = b whose
coefficient matrix is symmetric positive definite but otherwise not specially struc-
tured is via a Cholesky factorization, assuming that one can be computed and stored.
Normally, all computations are carried out at the working precision, which is typi-
cally double precision (64 bits). If multiple precisions of floating-point arithmetic are
available can we solve the problem more quickly? This question is timely because of
the increasing availability of half precision (16-bit) arithmetic, to add to the single
precision (32-bit) arithmetic that has been available for many years.

The 2008 revision of the IEEE-754 standard for floating-point arithmetic [27]
proposed a half precision format, which we denote by fp16. As shown in Table 1.1,
it has an 11-bit significand and a 5-bit exponent. Fp16 arithmetic is increasingly
supported by accelerators, including the NVIDIA P100 (2016), V100 (2017), and A100
(2020) GPUs and the AMD Radeon Instinct family of accelerators.1 On these devices
half precision is up to twice as fast as single precision, or up to 8 and 16 times faster
than single precision on the NVIDIA V100 and A100, respectively, when their tensor
cores are exploited. Of the 500 machines on the June 2020 TOP500 list, 150 systems

∗Version of July 8, 2020. Funding: This work was supported by MathWorks, Engineering and
Physical Sciences Research Council grant EP/P020720/1, and the Royal Society. The opinions and
views expressed in this publication are those of the authors, and not necessarily those of the funding
bodies.
†School of Mathematics, University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, srikara.pranesh@manchester.ac.uk).
1https://www.amd.com/en/graphics/servers-radeon-instinct-mi

1

https://www.amd.com/en/graphics/servers-radeon-instinct-mi

2 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

Table 1.1
Parameters for four floating-point arithmetics, given to three significant figures: number of bits

in significand (including implicit most significant bit) and exponent (signif., exp.), unit roundoff u,
smallest positive (subnormal) number xsmin, smallest normalized positive number xmin, and largest
finite number xmax.

(signif., exp.) u xsmin xmin xmax

bfloat16 (8, 8) 3.91× 10−3 9.18× 10−41a 1.18× 10−38 3.39× 1038

fp16 (11, 5) 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 (24, 8) 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 (53, 11) 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

aExisting implementations of bfloat16 do not support subnormal numbers.

employ accelerators, among which around 80 percent support fp16.2 Furthermore,
the Fugaku machine that heads the June 2020 Top 500 list3 is based on the A64FX
Arm processor, which supports fp16 [12], and the Frontier exascale machine at Oak
Ridge National Laboratory will use custom-built AMD Radeon Instinct GPUs with
mixed precision capabilities [35].

Another half precision format is bfloat16, originally proposed by Google and for-
malized by Intel [28]. Bfloat16 has an 8-bit significand, and an 8-bit exponent. The
exponent width is the same as that of single precision and hence bfloat16 has a range
similar to single precision. Bfloat is supported by the Google Tensor Processing Unit4
(TPU), the NVIDIA A100 GPU, the Intel Cooper Lake processor, and the Armv8-A
architecture [3].

It has already been demonstrated that the fp16 arithmetic and the tensor cores of
an NVIDIA V100 can be exploited to solve a general dense linear system Ax = b up
to four times faster than by an optimized double precision solver, with a reduction in
energy consumption of up to 80 percent [18], [20]. The key idea, proposed in [7], [8], is
to factorize A in half precision arithmetic and use GMRES-based iterative refinement
(GMRES-IR), with the computed LU factors as preconditioners, to compute a numer-
ically stable solution at the working precision of single or double. Furthermore, the
same GMRES-IR algorithm has demonstrated a performance up to 3.7 times higher
than that of an optimized double precision solver at scale on the Summit machine
that headed the November 2019 TOP500 list [6], [19]. Similar improvements are also
shown for a combination of complex single and half precision arithmetic in [1].

In principle, adapting GMRES-IR to exploit positive definite matrices might seem
straightforward: replace LU factorization by Cholesky factorization and GMRES by
the conjugate gradient (CG) method. However, Cholesky factorization can fail be-
cause the matrix can lose definiteness when it is rounded to lower precision. Further-
more, when CG is used existing error analysis can only guarantee iterative refinement
to converge for very well conditioned matrices.

In this work we develop a scaling and shifting algorithm to perform lower precision
Cholesky factorization of a matrix given in a higher precision. We use the computed
Cholesky factorization to develop a GMRES-IR algorithm for symmetric positive def-
inite systems. We then extend the algorithm to solve a linear least squares problem
minx ‖b−Ax‖2 via the normal equations, where A is assumed to be well conditioned.

2https://www.top500.org/statistics/list/
3https://www.top500.org/lists/top500/2020/06/
4https://cloud.google.com/tpu/

https://www.top500.org/statistics/list/
https://www.top500.org/lists/top500/2020/06/
https://cloud.google.com/tpu/

EXPLOITING LOWER PRECISION ARITHMETIC 3

To ensure that Cholesky factorization succeeds in lower precision we need to
increase the diagonal, either before or after rounding to the lower precision. A natural
way to do so is with the shift A ← A + µI, for some µ > 0. We will show that it
is better to transform A ← A + µ′D2, where D = diag(a

1/2
ii). Perturbing A by a

multiple of D2 produces a smaller perturbation than perturbing by a multiple of I
and it results in better performance of GMRES-IR.

In fact, we will work with the unit diagonal matrix H = D−1AD−1 and will
round a shifted and scaled version of this matrix. The scalings are necessary for fp16,
to allow a wider dynamic range of data to be supported, but they will usually not be
required for bfloat16 or single precision.

Our algorithms contain three precisions: the working precision, with unit roundoff
u; a lower precision, with unit roundoff u` > u, at which matrix factorization is done;
and a potentially higher precision, with unit roundoff ur ≤ u, which we will use in
iterative refinement. We define

γn =
nu

1− nu
, nu < 1, γ(`)n =

nu`
1− nu`

, nu` < 1.

While we are particularly interested in the case where u` represents half precision,
our algorithms and analysis are quite general.

In the next section we explore how to perturb a positive definite matrix to en-
sure that Cholesky factorization succeeds in floating-point arithmetic. In section 3
we develop a scaling and shifting algorithm to perform low precision Cholesky factor-
ization. In section 4 we use the low precision Cholesky factors as preconditioners in
GMRES-IR and explain why the underlying convergence analysis does not apply when
CG is used in place of GMRES. In section 5 we develop a normal equations-based
solver built on GMRES-IR for well-conditioned least squares problems. In section 6
we perform numerical experiments with real-life matrices to investigate the numerical
behavior of GMRES-IR and the GMRES-IR-based least squares solver. Conclusions
are given in Section 7.

2. Shifting for Cholesky factorization. A key task in this work is to round
a positive definite matrix stored in single precision or double precision to a lower
precision and then compute a Cholesky factorization. The difficulty is that Cholesky
factorization may fail because the rounded matrix is indefinite or not sufficiently
positive definite. Our solution is to increase the diagonal before factorizing, but what
type of perturbation should we apply and how large should it be? In this section we
address this question in a general form, working with just one precision u; we consider
the effect of rounding to a lower precision before factorizing in the next section.

We take A to be a symmetric positive definite matrix whose smallest eigenvalue
λmin(A) is possibly as small as uλmax(A), where λmax(A) is the largest eigenvalue of
A. Thus for floating-point computation, A is on the border between being positive
definite and indefinite. In fact, our algorithms can also be applied when λmin(A) < 0
with λmin(A) = O(uλmax(A)), since backward error considerations show that the
algorithms cannot distinguish this case from the positive definite case. In either
case, we wish to increase the diagonal so that Cholesky factorization is guaranteed to
succeed.

One approach is based on Wilkinson’s result that Cholesky factorization of a pos-
itive definite matrix A ∈ Rn×n succeeds if dnκ2(A)u ≤ 1, where dn = 20n3/2 [38] and
κ2(A) = λmax(A)/λmin(A). Let A(ε) = A + εI, where ε > 0. Applying Wilkin-
son’s result to A(ε), we have that Cholesky factorization on A(ε) will succeed if

4 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

dn(λmax(A) + ε)u ≤ λmin(A) + ε, that is,

(2.1) ε ≥ dnλmax(A)u− λmin(A)

1− dnu
≈ dnλmax(A)u− λmin(A).

We note that this is consistent with the analysis in [16], [42, Thm. 1].
Now write

(2.2) H = D−1AD−1, D = diag
(
a
1/2
ii

)
.

This is the natural equilibration for a positive definite matrix, since hii ≡ 1 and
|hij | ≤ 1 for i 6= j. Also, κ2(H) is within a factor n of the minimal 2-norm condition
number over all symmetric two-sided nonsingular diagonal scalings of A [21, Cor. 7.6],
[36]. Demmel obtained the following result [11], [21, Thms. 10.5, 10.7].

Theorem 2.1. Let A = DHD ∈ Rn×n be symmetric positive definite, where
D = diag

(
a
1/2
ii

)
. If

(2.3) λmin(H) > nγn+1/(1− γn+1)

then Cholesky factorization applied to A succeeds (barring underflow and overflow).
If Cholesky factorization succeeds it produces a nonsingular R̂ satisfying

R̂TR̂ = A+∆A, |∆A| ≤ (1− γn+1)
−1γn+1dd

T ,

where di = a
1/2
ii .

This result shows that to guarantee the success of the factorization we can shift
H to satisfy (2.3) instead of shifting A subject to (2.1). The matrix H(ε) = H + εI
has constant diagonal 1 + ε, so H(ε) = D1WD1, where D1 = (1 + ε)1/2I and W =
(1 + ε)−1H(ε) has unit diagonal.

Hence by Theorem 2.1, Cholesky factorization on H(ε) will succeed if λmin(W) >
nγn+1/(1− γn+1), that is, if

(2.4) (1 + ε)−1(λmin(H) + ε) > nγn+1/(1− γn+1).

Solving for ε gives

ε >
nγn+1/(1− γn+1)− λmin(H)

1− nγn+1/(1− γn+1)
≈ n(n+ 1)u− λmin(H).(2.5)

Now DH(ε)D = DHD+ εD2 = A+ εD2, and D2 = diag(aii). Dropping the λmin

terms in (2.1) and (2.5), we have two different perturbations to A that allow Cholesky
factorization to succeed:

A← A+∆A1, ∆A1 = dnλmax(A)uI,(2.6)
A← A+∆A2, ∆A2 = n(n+ 1)udiag(aii).(2.7)

How do these perturbations compare? Ignoring the constants dn and n(n + 1), we
have

1 ≤ ‖∆A1‖2
‖∆A2‖2

=
λmax(A)

maxi aii
≤ n,

where the lower bound is attained for A = I and the upper bound can be approached
arbitrarily closely, since it is an equality for the matrix of ones (which is positive

EXPLOITING LOWER PRECISION ARITHMETIC 5

semidefinite). Hence, modulo the constants, ∆A2 generally has the smaller norm.
However, we will not know λmax(A) in practice so will have to estimate it; we will
replace it by the lower bound maxi aii.

We now have two perturbations, ∆A1 = (cn maxi aii)I and ∆A2 = c′n diag(aii),
where cn and c′n are suitable constants. We note that while ∆A2 makes the same
relative perturbation to each diagonal element aii, ∆A1 makes a large relative pertur-
bation to any aii with aii � maxi aii. This is important because Theorem 2.1 shows
that the backward error matrix for Cholesky factorization is bounded relative to the
diagonal. Consider the example [14]

A =

 1040 × ×
× 1020 ×
× × 1

 ,
where the elements marked × can have any values that yield a positive definite matrix.
For double precision (dropping the constant cn), ∆A1 ≈ 1040uI ≈ 1024I and the (3, 3)
element of A +∆A1 is f l(1 + 1024) = 1024, meaning that a33 has been lost. This is
a serious loss of information, because ∆A1 subjects a33 to a relative perturbation
of order 1 yet by Theorem 2.1 the backward error matrix for Cholesky factorization
causes only a relative perturbation of order nu in a33.

Our conclusion is that in a situation where one wishes to increase the diagonal of
a positive definite matrix A in order that Cholesky factorization succeeds, adding a
multiple of diag(aii) is better than addding a multiple of I if one wishes to make the
smallest relative change to the elements and to minimize the loss of information. In
all previous work that we are aware of where a diagonal perturbation is made before
beginning Cholesky factorization, a multiple of I has been added—for example [16],
[42, Thm. 1].

3. Low precision Cholesky factorization. We now assume that we are given
a symmetric positive definite matrix A ∈ Rn×n in floating-point arithmetic of precision
u and wish to compute a Cholesky factorization in floating-point arithmetic with pre-
cision u` > u. The most practically important cases are where (u`, u) = (half, single),
(half, double), or (single, double). Naively, we might first form A(`) = fl`(A), where
f l` denotes the operation of rounding to precision u`, and then compute the Cholesky
factorization of A(`) in precision u`. For half precision this procedure can fail for two
reasons. First, if fp16 is used then the limited range might cause overflow during the
rounding. Second, for both bfloat16 and fp16, A(`) might not be (sufficiently) positive
definite, because a matrix whose smallest eigenvalue is safely bounded away from zero
with respect to single precision or double precision may become numerically indefinite
under the perturbation induced by rounding to half precision. The second issue can
also be encountered when a double precision matrix is rounded to single precision. To
overcome these problems we will use scaling and shifting.

3.1. Scaling. The first step is to scale the matrix A to H = D−1AD−1, D =
diag(a

1/2
ii), as in (2.2). The matrix D will be kept at precision u. The aim is to reduce

the dynamic range in order to avoid overflow and reduce the chance of underflow
in conversion to the lower precision. This is needed for fp16, but it is usually not
necessary for bfloat16 and single precision. For the rest of the presentation we will
always scale, for simplicity of notation. We note that we could choose D to have
diagonal elements that are powers of 2, to avoid rounding errors, but in our experience
doing so brings no practical benefits.

6 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

Two-sided diagonal scaling before rounding to low precision was used in [25] in the
context of LU factorization. The scaling used there equilibrates rows and columns;
our scaling with D is the natural analogue of that for symmetric positive definite
matrices. For Cholesky factorization we need an extra ingredient to ensure a successful
factorization, which we consider next.

3.2. Shifting. We now convert H to the lower precision u`, incorporating a shift
to ensure that the lower precision matrix is sufficiently positive definite for Cholesky
factorization to succeed, as discussed in section 2. We will shift H by cnu`I, where
cn is a positive integer constant, to obtain G = H + cnu`I. Since the diagonal of H
is I, this shift incurs no rounding error and it produces the same result whether we
shift in precision u then round or round then shift in precision u`.

For fp16, in view of the narrow range we will also multiply the shifted matrix by
a scalar to bring it close to the overflow level xmax, in order to minimize the chance
of underflow and of subnormal numbers being produced. So our final precision-u`
matrix is constructed as

G = H + cnu`I,

β = 1 + cnu`, µ = θxmax/β,(3.1)

A(`) = fl`(µG),

where θ ∈ (0, 1) is a parameter. Note that β = maxij |gij |, so the largest absolute
value of any element of A(`) is θxmax. Note also that since the growth factor for
Cholesky factorization is 1 (see, e.g., [21, Prob. 10.4]), there is no danger of overflow
during Cholesky factorization of A(`).

3.3. Analysis. We now give some analysis to guide the choice of cn. For sim-
plicity we will ignore the rounding errors in forming H at precision u.

We consider Cholesky factorization of the matrix A(`) = Ĥ+εI, where Ĥ = fl`(H)
and ε = cnu` (since, as noted above, it does not matter whether we shift or round
first, as the shift causes no rounding errors). We ignore the scale factor µ in (3.2),
which has negligible effect on the success of the factorization.

We apply the analysis of section 2 to A(`). From (2.5) with u replaced by u`, we
know that Cholesky factorization on A(`) in precision u` will succeed if

(3.2) cnu` = ε > n(n+ 1)u` − λmin(Ĥ).

How should we choose the constant cn? Since λmin(Ĥ) & −u` can be expected, we will
take ε = cnu` with a suitable integer constant cn. The inequality (3.2) suggests the
choice cn = n(n+ 1), but this choice is not practical, as then cnu` > 1 for fp16 when
n ≥ 45, so we would be making a perturbation of order 1 to a matrix with elements
bounded by 1, and we could not expect to obtain a useful factorization. Clearly, the
rounding error analysis that leads to the sufficient condition (2.3) for the success of
Cholesky factorization is pessimistic, and based on the arguments in [23, Thm. 3.8]
we can reasonably expect cn = n to be a more realistic constant. However, even
this value is uncomfortably large for half precision. We therefore take the pragmatic
approach of taking cn to be a small constant c. If Cholesky factorization fails we will
increase c and try again. We will determine experimentally how large c should be for
a range of problems of interest.

We note that since A(`) has elements bounded by 1+O(u`) and its smallest eigen-
value will be of ordermax(λmin(H), u`) we expect κ2(A(`)) . n/max(λmin(H), u`). In

EXPLOITING LOWER PRECISION ARITHMETIC 7

practice, we have found this upper bound to be often within two orders of magnitude
of κ2(A(`)).

Based on these arguments we propose Algorithm 3.1. For bfloat16 and single pre-
cision we do not need to scale by the matrix D and so we can simplify Algorithm 3.1:
lines 1–4 can be deleted and line 5 can be replaced by A(`) = fl`(A+ cu` diag(aii)).

Algorithm 3.1 (Cholesky factorization in precision u`). Given a symmetric positive
definite A ∈ Rn×n in precision u this algorithm computes an approximate Cholesky
factorization RTR ≈ µD−1AD−1 at precision u`, where D = diag(a

1/2
ii). The scalar

θ ∈ (0, 1] and the positive integer c are parameters.

1: D = diag(a
1/2
ii), H = D−1AD−1 % Set hii ≡ 1 instead of computing it.

2: G = H + cu`I
3: β = 1 + cu`
4: µ = θxmax/β
5: A(`) = fl`(µG)
6: Attempt Cholesky factorization A(`) = RTR in precision u`.
7: if Cholesky factorization failed then
8: c← 2c, goto line 2
9: end if

3.4. Modified Cholesky factorization. An alternative to Algorithm 3.1 is
(ignoring scaling) to compute a modified Cholesky factorization of A(`), or to do so if
the initial Cholesky factorization fails. Given a symmetric and possibly indefinite A,
modified Cholesky factorizations compute a Cholesky or block LDLT factorization
of A + E for a perturbation E whose size is related to how close A is to being
positive definite [15]. We will not pursue modified Cholesky factorization for three
reasons. First, our specific situation allows a detailed analysis of how to shift and
does not require the general machinery of modified Cholesky factorization. Second,
Cholesky factorization is faster, because modified Cholesky factorization algorithms
either require pivoting (for block LDLT factorization) or are inherently level-1 BLAS-
based and so will suffer a performance penalty. Third, modified Cholesky factorization
is much less widely available in program libraries than Cholesky factorization, and is
not, to our knowledge, available in libraries for accelerators, such as the MAGMA
library5 [13], [34].

Instead of shiftingA by a multiple of its diagonal we could shift individual diagonal
elements during the Cholesky factorization, as necessary, to avoid taking the square
roots of nonpositive quantities. However, this approach can lead to much larger
perturbations, because insufficient perturbations early in the factorization can require
larger ones later. To determine appropriate sizes for these selective perturbations one
would essentially need to develop a modification of a modified Cholesky factorization
algorithm. See [32, sect. 3] for further details.

4. GMRES-based iterative refinement for Ax = b. We now use the lower
precision Cholesky factorization computed by Algorithm 3.1 to solve a symmetric
positive definite linear system Ax = b by iterative refinement. Algorithm 4.1 is an
adaptation of GMRES-IR [7], [8] from general linear systems to symmetric positive
definite systems, using the approximate Cholesky factors from Algorithm 3.1 as a

5https://icl.cs.utk.edu/magma/

https://icl.cs.utk.edu/magma/

8 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

preconditioner. This algorithm makes use of a third precision ur ≤ u, which in
practice will be either ur = u or ur = u2. For bfloat16 or single precision, with the
simplifications to Algorithm 3.1 mentioned above, we can remove the D−1 factors in
Algorithm 4.1 and set µ = 1.

The convergence properties of Algorithm 4.1 are essentially the same as those of
standard GMRES-IR, as analyzed in [7], [8]. The perturbation on line 2 of Algo-
rithm 3.1 is no larger than the backward error for Cholesky factorization at precision
u`, so it does not affect the analysis. Table 4.1 gives the largest values of κ∞(A) for
which the limiting backward errors and forward errors stated in the table are guar-
anteed to be achieved, for several different combinations of precisions; the lines with
ur < u follow from [7], [8] while the lines with ur = u are from [22] and, for the
backward error column, are pessimistic.

We note that we are using GMRES-IR instead of standard iterative refinement,
for which the update equation is solved by substitution with the Cholesky factors,
because it can solve a much wider range of problems. In the table for standard
iterative refinement corresponding to Table 4.1 (see [8, Table 7.1]), κ∞(A) is limited
to 1/u`, which is a severe restriction.

If the refinement process converges quickly and GMRES converges quickly within
each refinement step then for large n the dominant cost in Algorithm 4.1 is the cost of
computing the Cholesky factors at precision u`: this is the only O(n3) flops part of the
algorithm. Hence we can expect significant speedups over a solution with Cholesky
factorization computed at precision u.

Algorithm 4.1 (Cholesky-based GMRES-IR for a positive definite system) Let a
symmetric positive definite A ∈ Rn×n and b ∈ Rn be given in precision u. This
algorithm solves Ax = b by GMRES-based iterative refinement, using the approximate
Cholesky factorization computed by Algorithm 3.1. The scalar θ ∈ (0, 1] and the
positive integer c are parameters.
1: Run Algorithm 3.1, obtaining the Cholesky factorization A(`) = RTR in precision
u`.

2: b(`) = fl`(D
−1b)

3: Solve A(`)y0 = b(`) in precision u` using the Cholesky factors and form x0 =
µD−1y0 at precision u.

4: for i = 0: imax − 1 do
5: Compute ri = b−Axi at precision ur and round ri to precision u.
6: SolveMAdi =Mri by GMRES at precision u, whereM = µD−1R−1R−TD−1

and matrix–vector products with MA are computed at precision ur, and store
di at precision u.

7: xi+1 = xi + di at precision u.
8: if converged then
9: return xi+1, quit

10: end if
11: end for

We now analyze the spectrum of the preconditioner in Algorithm 4.1, under the
simplifying assumption that there are no rounding errors, so that the only source of
error is the perturbation cu`I in forming G = H + cu`I in Algorithm 3.1. Then we

EXPLOITING LOWER PRECISION ARITHMETIC 9

Table 4.1
Bounds on κ∞(A) such that Algorithm 4.1 using IEEE arithmetic precisions given in the first

three columns is guaranteed to converge with the indicated limiting backward or forward errors, where
“half”, “single”, and “double” denote quantities of the order of the unit roundoffs for ha;f precision,
single precision, and double precision, respectively. Here, cond(A, x) = ‖ |A−1||A||x| ‖∞/‖x‖∞. In
the u` column, half can be replaced by bfloat16, in which case the bound on κ∞(A) must be reduced
by a factor 8.

Backward error Forward error

u` u ur κ∞(A) Limit κ∞(A) Limit

half single single 103 single 104 cond(A, x)× single
half single double 107 single 107 single
half double double 106 double 107 cond(A, x)× double
half double quad 1016 double 1011 double
single double double 107 double 1010 cond(A, x)× double
single double quadruple 1016 double 1015 double

have

MA = µD−1R−1R−TD−1A

= µD−1
(
µ(H + cu`I)

)−1
D−1A

= D−1
(
H + cu`I

)−1
HD

= D−1FD,

where F has eigenvalues λi/(λi+ cu`) and the λi are the eigenvalues of H. Hence the
eigenvalues of MA satisfy

λi(MA)− 1 =
λi

λi + cu`
− 1 =

−cu`
λi + cu`

.(4.1)

From our assumption that |λmin(A)| & uλmax(A), it can be shown that |λmin(H)| &
u and so for u` ≥ u we are assured that |λi(MA) − 1| . 1 and moreover that
|λi(MA)−1| ≈ cu` for λi of order 1. However, sinceMA is nonnormal no conclusions
can be drawn about the speed of convergence of GMRES.

GMRES is a method for general linear systems, so the refinement phase of Algo-
rithm 4.1 does not exploit the symmetry or definiteness of A. The CG method is a
natural alternative to GMRES. However, the convergence theory in [7] exploits the
backward stability of GMRES. Preconditioned CG is not guaranteed to be backward
stable unless the matrix or the preconditioner is well conditioned [17, Eq. (34)], so
the analysis no longer applies if we use CG in place of GMRES. The same is true
for preconditioned MINRES, since the analysis of [17] is applicable to any iterative
method that is based on three-term recurrence relations for the solution and residual.
The essential problem is that preconditioning must be two-sided if it is to preserve
symmetry and this does not allow a favorable error analysis, whereas in GMRES-IR
a left preconditioner is used. Nevertheless, in section 6 we will investigate empirically
the behavior of Algorithm 4.1 with GMRES replaced by the CG method on line 6.

5. Cholesky-based GMRES-IR for the least squares problem. The ideas
of the previous sections can be adapted to the linear least squares problem minx ‖Ax−
b‖2, where A ∈ Rm×n with m ≥ n has full rank. The normal equations method solves
the normal equations

ATAx = AT b

10 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

using Cholesky factorization of ATA. In general, this method is deprecated by numer-
ical analysts because it has a backward error bound of order κ2(A)u [21, sect. 20.4]
and the Cholesky factorization can break down for κ2(A) > u−1/2, but it is used
by statisticians with some justification [26]. Here, we assume that A is (sufficiently)
well conditioned. We propose the GMRES-IR-based least squares solver given in Al-
gorithm 5.1. Another GMRES-IR-based least squares solver that is applicable to a
wider range of A and is based on QR factorization is developed by Carson, Higham,
and Pranesh [9].

Algorithm 5.1 (Cholesky-based GMRES-IR for the least squares problem) Let a full
rank A ∈ Rm×n, where m ≥ n, and b ∈ Rm be given in precision u. This algorithm
solves the least squares problem minx ‖b − Ax‖2 using Cholesky-based GMRES-IR.
The scalar θ ∈ (0, 1] and the positive integer c are parameters.
1: Compute B = AS, where S = diag(1/‖aj‖2), with aj the jth column of A.
2: µ = θxmax

3: B(`) = fl`(µ
1/2B)

4: Compute C = B(`)TB(`) in precision u`.
5: Compute the Cholesky factorization C + cu` diag(cii) = RTR in precision u`.
6: if Cholesky factorization failed then
7: c← 2c, goto line 5
8: end if
9: Form b(`) = fl`(SA

T b).
10: Solve RTRy0 = b(`) in precision u` and form x0 = µSy0 at precision u.
11: for i = 0: imax − 1 do
12: Compute ri = AT (b−Axi) at precision ur and round ri to precision u.
13: Solve MATAdi = Mri by GMRES at precision u, where M = µSR−1R−TS

and matrix–vector products with ATA are computed at precision ur, and store
di at precision u.

14: xi+1 = xi + di at precision u.
15: if converged then
16: return xi+1, quit
17: end if
18: end for

We make some comments on the algorithm. Line 1 produces a matrix B with
columns of unit 2-norm. The computation C = B(`)TB(`) on line 4 produces a sym-
metric positive definite matrix with constant diagonal elements µ = θxmax, so overflow
cannot occur for θ < 1. The shift on line 5 is analogous to that in Algorithm 3.1, but
here the matrix C is already well scaled and in precision u` so there is no need to
scale C to have unit diagonal.

There are two reasons why explicitly forming C = B(`)TB(`) in Algorithm 5.1
is reasonable from the numerical stability point of view. First, C is used to form a
preconditioner, so the usual problems with forming a cross product matrix (loss of
significance and condition squaring) are less of a concern. Second, if we are working in
fp16 on an NVIDIA GPU with tensor cores we can accumulate block fused multiply-
add operations in single precision when forming C; this leads to a more accurate C,
as shown by the error analysis of Blanchard et al. [5].

EXPLOITING LOWER PRECISION ARITHMETIC 11

For the computed R̂ we have

R̂T R̂ ≈ B(`)TB(`) ≈ µSATAS,

or
(ATA)−1 ≈ µSR̂−1R̂−TS,

so we are preconditioning with an approximation to the inverse of ATA. We apply
the preconditioned operator MATA to vectors at precision ur. Computing y = ATAx
costs 4mn flops and SR−1R−TSy costs another 2n2+2n flops, making 4mn+2n2+2n
flops in total. For m� n and large n, computing y = ATAx costs a factor n/4 fewer
flops than the mn2 flops needed to form ATA, while for m ≈ n the difference is a
factor n/6. For large n, even allowing for the fact that the flops we are comparing are
at different precisions, as long as GMRES converges quickly the cost of the refinement
stage should be negligible compared with the cost of forming ATA and computing the
Cholesky factorization.

What can be said about the convergence of Algorithm 5.1? It differs from Al-
gorithm 4.1 mainly in that it works with ATA rather than A, so at worst we can
expect convergence for κ∞(A) bounded by the square root of the condition number
bounds given in Table 4.1 and with limiting backward error and forward errors a fac-
tor κ∞(A) larger than those in the table, since in translating a backward error from
ATAx = AT b to Ax − b we gain a factor as much as κ∞(A) [26]. However, this is
a pessimistic viewpoint because it is known that iterative refinement for the normal
equations (and the closely related seminormal equations) works better than a simple
condition squaring viewpoint suggests [4, sects. 2.9.3, 6.6.5]. Moreover, if ur < u we
expect to benefit from applying the operator MATA in precision ur. Since we are
in any case targetting well conditioned matrices we will not attempt a detailed error
analysis.

Related to our work is the Cholesky–QR algorithm for computing a QR factor-
ization A = QR. It forms the cross-product matrix ATA, computes the Cholesky
factorization ATA = RTR, then obtains the orthogonal factor Q as Q = AR−1, and
this process can be iterated for better numerical stability; see, for example, [16], [39],
[40], [41]. Our work differs in that we do not compute Q, we carry out the Cholesky
factorization in lower precision than the working precision, and we solve a least squares
problem using preconditioned iterative refinement.

Finally, we note that unless A is extremely badly scaled, for bfloat16 or single
precision arithmetic we can set S = I and µ = 1 in Algorithm 4.1, since there will
usually be no danger of underflow or overflow.

6. Numerical experiments. In this section we perform numerical experiments
to investigate how to choose c in Algorithms 3.1 and 5.1, to study the behavior of
Algorithms 4.1 and Algorithm 5.1, and to test variants of the algorithms that use the
CG method in place of GMRES.

The chop function6 of Higham and Pranesh [24] is used to simulate low pre-
cision computation and the AdvanPix Multiprecision Computing Toolbox [30] with
mp.Digits(34) is used for quadruple precision computation. For half precision we
consider only fp16 in our experiments. All the experiments are performed in MAT-
LAB 2019a on a Lenovo ThinkStation with Intel Xeon W-2123 CPU and 32 Gb RAM.
The test codes are available at https://github.com/SrikaraPranesh/fp16_Cholesky.

6https://github.com/higham/chop.

https://github.com/SrikaraPranesh/fp16_Cholesky
https://github.com/higham/chop

12 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

Table 6.1
Symmetric positive definite test matrices chosen from the SuiteSparse Matrix Collection.

Index Matrix n κ2(A) maxi,j |aij | mini,j{ |aij | : aij 6= 0 }

1 Trefethen_300 300 1.77e+03 1.99e+03 1.00e+00
2 mesh2e1 306 2.90e+02 2.46e+02 7.22e-07
3 mesh2em5 306 2.47e+02 1.47e+02 1.59e-06
4 plat362 362 2.18e+11 4.57e-01 3.53e-21
5 mhdb416 416 3.99e+09 1.67e+00 1.39e-19
6 bcsstk06 420 7.57e+06 2.42e+09 7.70e-34
7 bcsstk07 420 7.57e+06 2.42e+09 7.70e-34
8 bcsstm06 420 3.46e+06 7.60e+03 2.20e-03
9 bcsstm07 420 7.62e+03 1.74e+03 9.81e-33
10 nos5 468 1.10e+04 4.27e+05 8.88e-16
11 bcsstk20 485 3.89e+12 1.21e+16 4.88e-04
12 bcsstm20 485 2.55e+05 4.78e+07 1.87e+02
13 494_bus 494 2.42e+06 2.00e+04 1.70e-01
14 Trefethen_500 500 3.19e+03 3.57e+03 1.00e+00

For the precisions (u`, u, ur) we take (half, single, double), (half, double, double),
(half, double, quad), and (single, double, double).

6.1. Linear systems. We first consider linear systems Ax = b with symmetric
positive definite A. Iterative refinement in Algorithm 4.1 is terminated when the
normwise backward error satisfies

‖b−Ax̂‖∞
‖A‖∞‖x̂‖∞ + ‖b‖∞

≤ nu,(6.1)

where x̂ is the computed solution. We tried both GMRES and CG as the iterative
solver on line 6 of Algorithm 4.1, and for CG we used the standard symmetrized
form of the preconditioned iteration [31, Alg. 9.2]; both the iterations are terminated
based on a backward error criterion for the preconditioned system with tolerance 10−2
and 10−4 for working precisions of single and double, respectively. The right-hand
side vectors are generated using randn(n,1), and the random number generator is
seeded for reproducibility. In the scaling, we take θ = 0.1. We consider all the
symmetric positive definite matrices of dimension 300 to 500 from the SuiteSparse
Matrix Collection [10]; their properties are displayed in Table 6.1. Note that several
of these matrices are badly scaled. The SuiteSparse matrices are given in double
precision. We store them as dense matrices and apply Cholesky factorization without
row or column interchanges.

First we investigate the choice of c in Algorithm 3.1 and compare Algorithm 3.1
with an alternative that shifts A: in place of lines 1–5 it carries out the operations
1: B = A+ cu`(maxi aii)I

2: D = diag(b
1/2
ii), C = D−1BD−1

3: µ = θxmax

4: A(`) = fl`(µC)

In Table 6.2 we display the minimum positive integer values of c, denoted by
cH for Algorithm 3.1 (since it shifts H) and cA for the modified algorithm (since it
shifts A) such that the Cholesky factorization in fp16 arithmetic succeeds. From the
table we see that cA and cH are identical for all but two matrices and are always at
most 2. The same value c = 2 was also sufficient to ensure the success of Cholesky
factorization in single precision arithmetic. Based on these results we use c = 2 in the

EXPLOITING LOWER PRECISION ARITHMETIC 13

rest of the experiments in this section.
In Table 6.3 we display the iteration counts for the GMRES-based Algorithm 4.1

and its CG-based variant. Several points can be noted.
1. The iteration counts for the GMRES and CG variants are broadly similar,

except that the CG variant fails to converge for matrix 4.
2. Both variants work extremely well for (half, single, double), requiring at

most one step of refinement and very few iterations of the iterative solver, except
for matrix 4. For (half, double, quad) the iteration counts are higher. Note that
rounding to single precision and the shift both have a regularizing effect, so the matrix
for working precision single is in general better conditioned that that for working
precision double.

3. The results for GMRES-IR are consistent with Table 4.1—indeed convergence
is achieved for somewhat larger values of κ∞(A) than the table predicts.

4. “0” iterations denotes that the initial solution computed using the fp16 Cholesky
factors satisfied the normwise backward error criterion and no iterative refinement
steps were necessary, which is because ‖A‖∞‖x‖∞ is so large that (6.1) is satisfied by
the initial solution itself; analogous behavior was observed in [25, sect. 4].

We look at some information that gives further insight into these results. Table 6.4
displays κ2(H) for the diagonally scaled matrix H in Algorithm 3.1. The values of
κ2(H) are smaller than those of κ2(A) and a factor 108 smaller for matrix 5. After
conversion to fp16, and before shifting, λmin(H) was negative for matrices 4 and 11,
which is consistent with the κ2(H) values. The table also displays the values of the
condition numbers of MHA and MAA, the products (explicitly computed in double
precision) of the preconditioners with A, where MH is obtained from Algorithm 3.1
and MA from the modified algorithm. The matrices in Table 6.3 with the larger
GMRES and CG iteration counts are those with the larger values of κ2(MHA).

In Table 6.5 we display results for the same experiment but now using the modified
version of Algorithm 3.1 in Algorithm 4.1, which shifts A instead of H. Comparing
with Table 6.3, we see slightly larger numbers of iterative refinement steps but many
more steps for GMRES and CG. This is consistent with Table 6.4, in which the values
of κ2(MAA) are mostly larger than the values of κ2(MHA). Clearly, the Cholesky
factors obtained by shifting A are not nearly as effective preconditioners as those
obtained by shifting H.

Since quadruple precision is not supported by hardware, ur = u was used in
GMRES-IR in [18], [20]. We show results for (half, double, double) and (single, dou-
ble, double) in Table 6.6. We see that (half, double, double) in Table 6.6 generally
results in more iterative refinement steps and GMRES or CG iterations than (half,
double, quad) in Table 6.3, which is because the preconditioned operator is being
applied at a lower precision in Table 6.6. However, the (single, double, double) col-
umn shows convergence in significantly fewer iterative refinement steps and GMRES
or CG iterations than (half, double, quad) in Table 6.3; here, the higher quality pre-
conditioner outweighs the lesser precision at which it is applied; the last column of
Table 6.4 confirms the quality of the preconditioner.

From these experiments we can see that CG performs as well as GMRES in
practice within Algorithm 4.1, but we recall that the existing error analysis guarantees
convergence of the iterative refinement process only for GMRES, not for CG.

6.2. Least squares problems. To study the behavior of Algorithm 5.1, we
consider all full rank rectangular matrices A ∈ Rm×n from the SuiteSparse Matrix
Collection [10], with m > n, 20 ≤ m ≤ 2000, n ≤ 400, and κ2(A) ≤ 105. The matrix

14 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

Table 6.2
Minimum positive integer constants cH and cA in Algorithm 3.1 (which shifts H) and its

modified version (which shifts A) to ensure the success of Cholesky factorization in fp16 arithmetic.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14

cA 0 0 0 1 0 1 1 0 0 0 1 0 1 0
cH 0 0 0 2 0 1 1 0 0 0 2 0 1 0

Table 6.3
Total number of GMRES and CG iterations in Algorithm 4.1 and its CG variant, for single

and double working precisions. Numbers in parentheses denote the number of iterative refinement
steps. Failure to converge is denoted by “–”.

Index (half, single, double) (half, double, quad)

GMRES-IR CG-IR GMRES-IR CG-IR

1 0 (0) 0 (0) 4 (2) 4 (2)
2 2 (1) 2 (1) 6 (2) 6 (2)
3 2 (1) 2 (1) 6 (2) 6 (2)
4 362 (1) 362 (1) 382 (2) – (–)
5 0 (0) 2 (1) 3 (2) 3 (1)
6 0 (0) 8 (1) 25 (2) 26 (2)
7 0 (0) 6 (1) 34 (3) 34 (3)
8 0 (0) 0 (0) 1 (1) 1 (1)
9 0 (0) 0 (0) 4 (2) 4 (2)

10 3 (1) 4 (1) 18 (3) 19 (3)
11 0 (0) 0 (0) 124 (2) 71 (2)
12 0 (0) 0 (0) 1 (1) 1 (1)
13 0 (0) 0 (0) 27 (2) 20 (2)
14 0 (0) 0 (0) 4 (2) 4 (2)

names and properties are listed in Table 6.7. Iterative refinement is terminated when
the Frobenius norm backward error

(6.2) ηF (x̂) :=
min{ ‖[∆A, ξ∆b]‖F : ‖(A+∆A)x̂− (b+∆b)‖2 = min }

‖[A, ξb]‖F

is less than nu, where ξ is a parameter that we set to 1. This backward error is
computed from the formula [21, sect. 20.7], [37]

ηF (x̂) =
min{φ, σmin

(
[A φ(I − rr†)]

)
}

‖[A, ξb]‖F
,(6.3)

where r = b−Ax̂ and

φ =
√
µ
‖r‖2
‖x̂‖2

, µ =
ξ2‖x̂‖22

1 + ξ2‖x̂‖22
.

The right-hand side vector is generated using randn(m,1) and θ = 0.1 is used.
In Table 6.8 we show the minimum values of c on line 5 of Algorithm 5.1 such

that Cholesky factorization succeeds in fp16 arithmetic. On the basis of these results,
we select c = 12 when the low precision is half precision, but when the low precision
is single precision we use c = 2, which is sufficient in this case.

We consider the solution of a least squares problem using Algorithm 5.1 and a
variant that on line 13 uses CG instead of GMRES. Table 6.9 displays the numbers of
iterations. Once again, CG-IR and GMRES-IR require similar numbers of iterations.

EXPLOITING LOWER PRECISION ARITHMETIC 15

Table 6.4
For n × n matrices A in Table 6.1, quantities of interest in Algorithm 3.1. Recall that H =

D−1AD−1, where D = diag(a
1/2
ii). Here, MH is the preconditioner from Algorithm 3.1 and MA is

the preconditioner from the modified version of Algorithm 3.1 that shifts A instead of H.

(half, double, quad) (single, double, double)

Index κ2(H) κ2(MHA) κ2(MAA) κ2(MHA)

1 4.45e+00 1.00e+00 2.73e+00 1.00e+00
2 1.21e+02 1.10e+00 1.20e+00 1.00e+00
3 1.27e+02 1.09e+00 1.14e+00 1.00e+00
4 1.85e+11 8.52e+08 2.05e+08 2.73e+04
5 6.97e+01 6.23e+00 2.96e+06 1.00e+00
6 3.18e+04 8.72e+01 5.17e+03 1.00e+00
7 3.18e+04 8.72e+01 5.17e+03 1.00e+00
8 1.00e+00 1.00e+00 3.37e+03 1.00e+00
9 2.73e+01 1.10e+00 6.15e+00 1.00e+00
10 1.95e+03 2.63e+00 9.65e+00 1.00e+00
11 1.80e+08 2.32e+08 3.65e+09 1.04e+04
12 1.00e+00 1.00e+00 2.50e+02 1.00e+00
13 7.90e+04 6.82e+02 1.60e+03 1.02e+00
14 4.45e+00 1.00e+00 4.11e+00 1.00e+00

Table 6.5
Total number of GMRES and CG iterations in Algorithm 4.1 using modified version of Algo-

rithm 3.1 that shifts A, for single and double working precisions. Numbers in parentheses denote
the number of iterative refinement steps. Failure to converge is denoted by “–”.

Index (half, single, double) (half, double, quad)

GMRES-IR CG-IR GMRES-IR CG-IR

1 3 (1) 4 (1) 16 (3) 16 (3)
2 2 (1) 2 (1) 10 (3) 12 (3)
3 2 (1) 2 (1) 9 (3) 9 (3)
4 362 (1) 362 (1) 434 (2) – (–)
5 416 (1) 416 (1) 492 (2) 397 (1)
6 129 (1) 132 (1) 529 (3) 356 (2)
7 87 (1) 91 (1) 503 (3) 516 (3)
8 11 (1) 12 (1) 45 (3) 23 (2)
9 5 (1) 7 (1) 32 (3) 35 (3)

10 7 (1) 10 (1) 37 (3) 37 (3)
11 485 (1) 485 (1) 485 (1) – (–)
12 24 (1) 30 (1) 122 (3) 84 (2)
13 47 (1) 61 (1) 248 (3) 235 (3)
14 4 (1) 5 (1) 19 (3) 19 (3)

Table 6.10 shows that matrix 8, which has the highest iteration counts in Table 6.9
has the largest value of κ2(MATA). Once again, employing single precision for factor-
ization significantly reduces the number of iterative refinement steps and GMRES or
CG iterations. This is because of the superior quality of the preconditioner, as shown
in third column of Table 6.10. We also tried (half, double, double); the results were
similar to those for (half, double, quad).

Finally, we note that the results are consistent with our expectations from the
convergence analysis. The most extreme case is matrix 8 for (half single, double),
since it has condition number of order 104, which is at the limit of what the second
row of Table 4.1 can accept to guarantee convergence (recall that we need to take the
square root of the condition number bound). The refinement nevertheless converges.

16 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

Table 6.6
Total number of GMRES and CG iterations in Algorithm 4.1 for double precision and ur = u.

Numbers in parentheses denote the number of iterative refinement steps. Failure to converge is
denoted by “–”.

Index (half, double, double) (single, double, double)

GMRES-IR CG-IR GMRES-IR CG-IR

1 3 (3) 3 (3) 1 (1) 1 (1)
2 6 (3) 8 (4) 2 (2) 2 (2)
3 6 (3) 6 (3) 1 (1) 1 (1)
4 562 (3) – (–) 61 (2) 38 (1)
5 3 (2) 3 (2) 0 (0) 0 (0)
6 38 (5) 32 (4) 2 (1) 2 (1)
7 39 (5) 32 (4) 2 (1) 2 (1)
8 1 (1) 1 (1) 1 (1) 1 (1)
9 4 (4) 4 (4) 1 (1) 1 (1)

10 13 (4) 16 (4) 2 (2) 2 (2)
11 157 (3) 105 (3) 4 (1) 6 (1)
12 1 (1) 1 (1) 1 (1) 1 (1)
13 40 (4) 32 (4) 3 (2) 2 (1)
14 3 (3) 3 (3) 1 (1) 1 (1)

Table 6.7
Matrices A ∈ Rm×n chosen from the SuiteSparse Matrix Collection.

Index Matrix (m,n) κ2(A) maxi,j |aij | mini,j{ |aij | : aij 6= 0 }

1 divorce (50,9) 1.94e+01 1.00e+00 1.00e+00
2 Cities (55,46) 2.07e+02 7.10e+01 1.00e+00
3 ash219 (219,85) 3.02e+00 1.00e+00 1.00e+00
4 WorldCities (315,100) 6.60e+01 1.00e+00 1.00e+00
5 ash331 (331,104) 3.10e+00 2.37e+06 1.85e+04
6 ash608 (608,188) 3.37e+00 2.46e+07 4.00e+00
7 ash958 (958,292) 3.20e+00 1.00e+00 1.00e+00
8 illc1033 (1033,320) 1.89e+04 1.57e+02 3.04e-05
9 well1033 (1033,320) 1.66e+02 1.95e+00 1.24e-02

Table 6.8
Minimum positive integer constant c in line 5 of Algorithm 5.1 to ensure the success of Cholesky

factorization in fp16 arithmetic.

Index 1 2 3 4 5 6 7 8 9
c 0 4 0 0 0 0 0 12 2

Table 6.9
Total number of GMRES and CG iterations in Algorithm 5.1 and its variant, for single and

double working precisions. Numbers in parentheses denote the number of iterative refinement steps.

Index (half, single, double) (half, double, quad) (single, double, double)

GMRES-IR CG-IR GMRES-IR CG-IR GMRES-IR CG-IR

1 4 (2) 4 (2) 9 (3) 9 (3) 2 (2) 2 (2)
2 11 (2) 13 (2) 29 (3) 26 (3) 2 (2) 2 (2)
3 1 (1) 1 (1) 6 (3) 6 (3) 1 (1) 1 (1)
4 3 (1) 3 (1) 15 (3) 14 (3) 2 (2) 2 (2)
5 1 (1) 1 (1) 4 (2) 4 (2) 1 (1) 1 (1)
6 1 (1) 1 (1) 4 (2) 4 (2) 1 (1) 1 (1)
7 1 (1) 1 (1) 4 (2) 4 (2) 1 (1) 1 (1)
8 13 (1) 136 (1) 457 (3) 683 (3) 24 (3) 13 (2)
9 12 (1) 14 (1) 60 (3) 51 (3) 3 (2) 2 (1)

EXPLOITING LOWER PRECISION ARITHMETIC 17

Table 6.10
Two norm condition number of the preconditioned matrix MATA in Algorithm 5.1. Half and

single denote the precision in which the Cholesky factorization was computed.

Index half single

1 1.51e+00 1.00e+00
2 3.14e+01 1.00e+00
3 1.01e+00 1.00e+00
4 2.32e+00 1.00e+00
5 1.01e+00 1.00e+00
6 1.01e+00 1.00e+00
7 1.01e+00 1.00e+00
8 1.57e+07 3.03e+02
9 5.77e+01 1.00e+00

6.3. Performance results. Algorithm 4.1 has been implemented for GPUs by
Abdelfattah, Tomov, and Dongarra [2]. Their implementation effectively takes (u`, u,
ur) equal to (half, double, double). The Cholesky factorization is computed in mixed
fp16 and fp32 precisions: the factorization of the diagonal blocks and the multiple
right-hand side triangular solves are done in fp32, while the matrix multiplications
that update the trailing submatrix are done on the tensor cores, exploiting the abil-
ity in NVIDIA’s Volta, Turing, and Ampere architectures to compute a fused block
multiply-add with fp16 arguments in one clock cycle while accumulating the result in
single precision. This approach exploits the speed of half precision arithmetic on the
tensor cores while achieving close to single precision accuracy for large n, as shown
by the error analysis in [5, sec. 4].

On an NVIDIA V100, Abdelfattah, Tomov, and Dongarra, with matrices of di-
mension up to 42,000, obtained speedups of up to 4.7 over a double precision solver,
which is even larger than the speedup of 3.7 mentioned in section 1 for GMRES-IR
for general linear systems.

7. Conclusions. As computer hardware increasingly supports multiple preci-
sions of floating-point arithmetic, it is important to investigate whether scientific
computing tasks can take advantage of these capabilities. Our focus here has been on
exploiting a Cholesky factorization computed at low precision to deliver a solution of
a linear system or least squares problem having accuracy and stability commensurate
with a higher precision. An immediate obstacle is that rounding a symmetric positive
definite matrix to lower precision can produce a matrix for which Cholesky factoriza-
tion breaks down because the rounded matrix is indefinite or not sufficiently positive
definite. We have shown that increasing the diagonal by a small relative amount
proportional to the unit roundoff for the lower precision allows Cholesky factorization
to succeed and yields computed factors good enough to act as preconditioners for
GMRES-based iterative refinement. We have also shown that the standard approach
of shifting by a multiple of the identity matrix is not as effective.

The proposed Cholesky-based GMRES-IR algorithm, Algorithm 4.1, is supported
by rounding error analysis and can produce backward stable solutions for problems
with condition numbers up to around the reciprocal of the unit roundoff of the working
precision. The overall performance depends on the speed of convergence of GMRES,
and is hard to predict, but in our tests on real-life matrices GMRES often converges
quickly, especially for the (half, single, double) and (single, double, double) combina-
tions of precisions.

We found experimentally that GMRES can be replaced by CG with little change

18 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

in the number of iterative refinement steps and inner iterations, despite the fact that
the supporting error analysis is not applicable.

Our proposed use of low precision Cholesky factorization for solving well condi-
tioned least squares problem via the normal equations, in Algorithm 5.1, also works
well in our tests.

Both Algorithm 4.1 and Algorithm 5.1 can benefit from the availability of fast low
precision arithmetic and so they promise to be significantly faster than an optimized
double precision solver. Indeed, as we explained in section 6.3, Abdelfattah, Tomov,
and Dongarra [2] have used Algorithm 4.1 to obtain a speedup of a factor 4.7 over a
double precision solver on an NVIDIA V100, and their code is planned to be integrated
into the MAGMA library [29], [33].

Acknowledgments. We thank the referees for their helpful suggestions.

REFERENCES

[1] A. Abdelfattah, S. Tomov, and J. Dongarra, Towards half-precision computation for
complex matrices: A case study for mixed-precision solvers on GPUs, in 2019 IEEE/ACM
10thWorkshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA),
2019, pp. 17–24, https://doi.org/10.1109/ScalA49573.2019.00008.

[2] A. Abdelfattah, S. Tomov, and J. Dongarra, Investigating the benefit of FP16-enabled
mixed-precision solvers for symmetric positive definite matrices using GPUs, in Com-
putational Science—ICCS 2020, V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees,
J. J. Dongarra, P. M. A. Sloot, and S. B. J. Teixeira, eds., no. 12138 in Lecture
Notes in Computer Science, Springer International Publishing, 2020, pp. 237–250, https:
//doi.org/10.1007/978-3-030-50417-5_18.

[3] Arm A64 Instruction Set Architecture Armv8, for Armv8-A Architecture Profile, ARM Lim-
ited, Cambridge, UK, 2019, https://developer.arm.com/docs/ddi0596/e.

[4] Å. Björck, Numerical Methods for Least Squares Problems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1996, https://doi.org/10.1137/1.9781611971484.

[5] P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, Mixed precision
block fused multiply-add: Error analysis and application to GPU tensor cores, SIAM J.
Sci. Comput., 42 (2020), pp. C124–C141, https://doi.org/10.1137/19M1289546.

[6] I. Buck, World’s fastest supercomputer triples its performance record. https://blogs.nvidia.
com/blog/2019/06/17/hpc-ai-performance-record-summit/, June 2019. Accessed June 24,
2019.

[7] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39
(2017), pp. A2834–A2856, https://doi.org/10.1137/17M1122918.

[8] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative re-
finement in three precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847, https:
//doi.org/10.1137/17M1140819.

[9] E. Carson, N. J. Higham, and S. Pranesh, Three-precision GMRES-based iterative re-
finement for least squares problems, MIMS EPrint 2020.5, Manchester Institute for Math-
ematical Sciences, The University of Manchester, UK, Feb. 2020, http://eprints.maths.
manchester.ac.uk/2745/.

[10] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.
Math. Software, 38 (2011), pp. 1:1–1:25, https://doi.org/10.1145/2049662.2049663.

[11] J. W. Demmel, On floating point errors in Cholesky, Technical Report CS-89-87, Department
of Computer Science, University of Tennessee, Knoxville, TN, USA, Oct. 1989. LAPACK
Working Note 14.

[12] J. Dongarra, Report on the Fujitsu Fugaku system, Technical Report ICL-UT-20-06, Innova-
tive Computing Laboratory, University of Tennessee, June 2020, https://www.icl.utk.edu/
publications/report-fujitsu-fugaku-system.

[13] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Ya-
mazaki, Accelerating numerical dense linear algebra calculations with GPUs, in Numerical
Computations with GPUs, V. Kindratenko, ed., Springer International Publishing, Cham,
2014, pp. 3–28, https://doi.org/10.1007/978-3-319-06548-9_1.

[14] Z. Drma»c, Computing eigenvalues and singular values to high relative accuracy, in Hand-

https://doi.org/10.1109/ScalA49573.2019.00008
https://doi.org/10.1007/978-3-030-50417-5_18
https://doi.org/10.1007/978-3-030-50417-5_18
https://developer.arm.com/docs/ddi0596/e
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1137/19M1289546
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
http://eprints.maths.manchester.ac.uk/2745/
http://eprints.maths.manchester.ac.uk/2745/
https://doi.org/10.1145/2049662.2049663
https://www.icl.utk.edu/publications/report-fujitsu-fugaku-system
https://www.icl.utk.edu/publications/report-fujitsu-fugaku-system
https://doi.org/10.1007/978-3-319-06548-9_1

EXPLOITING LOWER PRECISION ARITHMETIC 19

book of Linear Algebra, L. Hogben, ed., Chapman and Hall/CRC, Boca Raton, FL, USA,
second ed., 2014, pp. 59.1–59.21.

[15] H.-R. Fang and D. P. O’Leary, Modified Cholesky algorithms: A catalog with new ap-
proaches, Math. Programming, 115 (2008), pp. 319–349, https://doi.org/10.1007/s10107-
007-0177-6.

[16] T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, and Y. Yanagisawa, Shifted
CholeskyQR for computing the QR factorization of ill-conditioned matrices, SIAM J. Sci.
Comput., 42 (2020), pp. A477–A503, https://doi.org/10.1137/18M1218212.

[17] A. Greenbaum, Estimating the attainable accuracy of recursively computed residual meth-
ods, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 535–551, https://doi.org/10.1137/
S0895479895284944.

[18] A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov, and J. Don-
garra, The design of fast and energy-efficient linear solvers: On the potential of half-
precision arithmetic and iterative refinement techniques, in Computational Science—
ICCS 2018, Y. Shi, H. Fu, Y. Tian, V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra,
and P. M. A. Sloot, eds., Springer International Publishing, Cham, 2018, pp. 586–600,
https://doi.org/10.1007/978-3-319-93698-7_45.

[19] A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, and N. J. Higham, Mixed-precision
solution of linear systems using accelerator-based computing, Technical Report ICL-UT-
20-05, Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA,
May 2020, https://www.icl.utk.edu/publications/mixed-precision-solution-linear-systems-
using-accelerator-based-computing.

[20] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores
for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC ’18 (Dallas, TX), Piscataway, NJ, USA, 2018, IEEE Press,
pp. 47:1–47:11, https://doi.org/10.1109/SC.2018.00050.

[21] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002, https://doi.org/10.1137/
1.9780898718027.

[22] N. J. Higham, Error analysis for standard and GMRES-based iterative refinement in two and
three-precisions, MIMS EPrint 2019.19, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, Nov. 2019, http://eprints.maths.manchester.ac.uk/
2735/.

[23] N. J. Higham and T. Mary, A new approach to probabilistic rounding error analysis, SIAM
J. Sci. Comput., 41 (2019), pp. A2815–A2835, https://doi.org/10.1137/18M1226312.

[24] N. J. Higham and S. Pranesh, Simulating low precision floating-point arithmetic, SIAM J.
Sci. Comput., 41 (2019), pp. C585–C602, https://doi.org/10.1137/19M1251308.

[25] N. J. Higham, S. Pranesh, and M. Zounon, Squeezing a matrix into half precision, with an
application to solving linear systems, SIAM J. Sci. Comput., 41 (2019), pp. A2536–A2551,
https://doi.org/10.1137/18M1229511.

[26] N. J. Higham and G. W. Stewart, Numerical linear algebra in statistical computing, in
The State of the Art in Numerical Analysis, A. Iserles and M. J. D. Powell, eds., Oxford
University Press, 1987, pp. 41–57.

[27] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std 754-
1985), IEEE Computer Society, New York, 2008, https://doi.org/10.1109/IEEESTD.2008.
4610935.

[28] Intel Corporation, BFLOAT16—hardware numerics definition, Nov. 2018, https://
software.intel.com/en-us/download/bfloat16-hardware-numerics-definition. White paper.
Document number 338302-001US.

[29] Matrix algebra on GPU and multicore architectures (MAGMA). http://icl.cs.utk.edu/magma/.
[30] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.
[31] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Ap-

plied Mathematics, Philadelphia, PA, USA, second ed., 2003, https://doi.org/10.1137/
1.9780898718003.

[32] R. B. Schnabel and E. Eskow, A new modified Cholesky factorization, SIAM J. Sci. Statist.
Comput., 11 (1990), pp. 1136–1158, https://doi.org/10.1137/0911064.

[33] S. Tomov, J. Dongarra, and M. Baboulin, Towards dense linear algebra for hybrid GPU
accelerated manycore systems, Parallel Comput., 36 (2010), pp. 232–240, https://doi.org/
10.1016/j.parco.2009.12.005.

[34] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, Dense linear algebra solvers for mul-
ticore with GPU accelerators, in Proc. of the IEEE IPDPS’10, Atlanta, GA, April 19-23

https://doi.org/10.1007/s10107-007-0177-6
https://doi.org/10.1007/s10107-007-0177-6
https://doi.org/10.1137/18M1218212
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1137/S0895479895284944
https://doi.org/10.1007/978-3-319-93698-7_45
https://www.icl.utk.edu/publications/mixed-precision-solution-linear-systems-using-accelerator-based-computing
https://www.icl.utk.edu/publications/mixed-precision-solution-linear-systems-using-accelerator-based-computing
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
http://eprints.maths.manchester.ac.uk/2735/
http://eprints.maths.manchester.ac.uk/2735/
https://doi.org/10.1137/18M1226312
https://doi.org/10.1137/19M1251308
https://doi.org/10.1137/18M1229511
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
http://icl.cs.utk.edu/magma/
http://www.advanpix.com
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0911064
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1016/j.parco.2009.12.005

20 NICHOLAS J. HIGHAM and SRIKARA. PRANESH

2010, IEEE Computer Society, pp. 1–8, https://doi.org/10.1109/IPDPSW.2010.5470941.
DOI: 10.1109/IPDPSW.2010.5470941.

[35] T. Trader, Cray, AMD to Extend DOE’s exascale frontier. https://www.hpcwire.com/2019/
05/07/cray-amd-exascale-frontier-at-oak-ridge/, May 2019. Accessed June 27, 2019.

[36] A. van der Sluis, Condition numbers and equilibration of matrices, Numer. Math., 14 (1969),
pp. 14–23, https://doi.org/10.1007/BF02165096.

[37] B. Waldén, R. Karlson, and J. Sun, Optimal backward perturbation bounds for the linear
least squares problem, Numer. Linear Algebra Appl., 2 (1995), pp. 271–286, https://doi.
org/10.1002/nla.1680020308.

[38] J. H. Wilkinson, A priori error analysis of algebraic processes, in Proc. International Congress
of Mathematicians, Moscow 1966, I. G. Petrovsky, ed., Mir Publishers, Moscow, 1968,
pp. 629–640.

[39] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, and T. Fukaya, Roundoff error analysis
of the CholeskyQR2 algorithm, Electron. Trans. Numer. Anal., 44 (2015), pp. 306–326,
http://emis.ams.org/journals/ETNA/vol.44.2015/pp306-326.dir/pp306-326.pdf.

[40] I. Yamazaki, S. Tomov, and J. Dongarra, Mixed-precision Cholesky QR factorization and
its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput., 37 (2015),
pp. C307–C330, https://doi.org/10.1137/14M0973773.

[41] I. Yamazaki, S. Tomov, and J. Dongarra, Stability and performance of various singular
value QR implementations on multicore CPU with a GPU, ACM Trans. Math. Software,
43 (2016), pp. 10:1–10:18, https://doi.org/10.1145/2898347.

[42] Y. Yanagisawa, T. Ogita, and S. Oishi, A modified algorithm for accurate inverse Cholesky
factorization, Nonlinear Theory and Its Applications, IEICE, 5 (2014), pp. 35–46, https:
//doi.org/10.1587/nolta.5.35.

https://doi.org/10.1109/IPDPSW.2010.5470941
https://www.hpcwire.com/2019/05/07/cray-amd-exascale-frontier-at-oak-ridge/
https://www.hpcwire.com/2019/05/07/cray-amd-exascale-frontier-at-oak-ridge/
https://doi.org/10.1007/BF02165096
https://doi.org/10.1002/nla.1680020308
https://doi.org/10.1002/nla.1680020308
http://emis.ams.org/journals/ETNA/vol.44.2015/pp306-326.dir/pp306-326.pdf
https://doi.org/10.1137/14M0973773
https://doi.org/10.1145/2898347
https://doi.org/10.1587/nolta.5.35
https://doi.org/10.1587/nolta.5.35

