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THREE-PRECISION GMRES-BASED ITERATIVE REFINEMENT
FOR LEAST SQUARES PROBLEMS∗

ERIN CARSON† , NICHOLAS J. HIGHAM‡ , AND SRIKARA PRANESH‡

Abstract. The standard iterative refinement procedure for improving an approximate solution
to the least squares problem minx ‖b − Ax‖2, where A ∈ Rm×n with m ≥ n has full rank, is based
on solving the (m + n) × (m + n) augmented system with the aid of a QR factorization. In order
to exploit multiprecision arithmetic, iterative refinement can be formulated to use three precisions,
but the resulting algorithm converges only for a limited range of problems. We build an iterative
refinement algorithm called GMRES-LSIR, analogous to the GMRES-IR algorithm developed for
linear systems [SIAM J. Sci. Comput., 40 (2019), pp. A817-A847], that solves the augmented
system using GMRES preconditioned by a matrix based on the computed QR factors. We explore
two left preconditioners; the first has full off-diagonal blocks and the second is block diagonal and
can be applied in either left-sided or split form. We prove that for a wide range of problems the first
preconditioner yields backward and forward errors for the augmented system of order the working
precision under suitable assumptions on the precisions and the problem conditioning. Our proof does
not extend to the block diagonal preconditioner, but our numerical experiments show that with this
preconditioner the algorithm performs about as well in practice. The experiments also show that if
we use MINRES in place of GMRES then the convergence is similar for sufficiently well conditioned
problems but worse for the most ill conditioned ones.

Key words. least squares, iterative refinement, GMRES, MINRES, preconditioning, mixed
precision, half precision arithmetic

AMS subject classifications. 65F05, 65F08, 65F20

1. Introduction. We consider the linear least squares problem minx ‖b−Ax‖2,
where A ∈ Rm×n (m ≥ n) has full rank. A common method of solution uses the QR
factorization

A = Q

[
R
0

]
≡ QU,

where Q = [Q1, Q2] ∈ Rm×m is an orthogonal matrix with Q1 ∈ Rm×n and Q2 ∈
Rm×(m−n), and R ∈ Rn×n is upper triangular. The unique least squares solution is
x = R−1QT1 b with residual ‖b − Ax‖2 = ‖QT2 b‖2. Least squares problems may be ill
conditioned in practice, and so rounding errors may result in an insufficiently accurate
solution. In this case, iterative refinement may be used to improve accuracy, and it
also improves stability.

Two different approaches can be used for iterative refinement of least squares
problems. When the overdetermined system is nearly consistent (i.e., there exists an
x such that ‖Ax− b‖2 is zero or small), an approach analogous to iterative refinement
for square linear systems can be employed. After computing the initial approximate
solution x0, the solution is refined via the process whose (i+ 1)st step is

1. Compute ri = b−Axi.
2. Solve the least squares problem mindi ‖Adi − ri‖2.
3. Update xi+1 = xi + di.
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If a QR factorization was used to compute the initial approximate solution x0 then the
QR factors can be reused to solve for the correction di in each step 2. This approach
was used by Golub [10] and analyzed by Golub and Wilkinson [11].

A generalization of this approach that works even when Ax = b is inconsistent
or not nearly consistent was suggested by Björck [2]. Refinement is performed on the
augmented system

(1.1)

[
I A
AT 0

] [
r
x

]
=

[
b
0

]
,

which is equivalent to the normal equations. Given x0 and r0 = b−Ax0, the (i+ 1)st
refinement step is as follows.

1. Compute the residual vector for the augmented system:

(1.2)

[
fi
gi

]
=

[
b
0

]
−
[
I A
AT 0

] [
ri
xi

]
=

[
b− ri −Axi
−AT ri

]
.

2. Solve

(1.3)

[
I A
AT 0

] [
δri
δxi

]
=

[
fi
gi

]
.

3. Update the solution to the augmented system:

(1.4)

[
ri+1

xi+1

]
=

[
ri
xi

]
+

[
δri
δxi

]
.

In this way, the solution xi and residual ri for the least squares problem are
simultaneously refined. Björck [2] shows that the linear system (1.3) can be solved by
reusing the QR factors of A via the process

h = R−T gi,(1.5) [
d1
d2

]
= [Q1, Q2]T fi,(1.6)

δri = Q

[
h
d2

]
,(1.7)

δxi = R−1(d1 − h).(1.8)

Existing analyses of the convergence and accuracy of this approach in finite pre-
cision assume that at most two precisions are used; the working precision u is used
to compute the QR factorization, solve the system (1.3), and compute the update
(1.4). A second precision ur ≤ u is used to compute the residuals in (1.2). Typically
ur = u2, in which case it can be shown that as long as the condition number of the
augmented system matrix is smaller than u−1, the refinement process will converge
with a limiting forward error on the order of u; see [3] and [15, sect. 20.5] and the
references therein.

Motivated by the emergence of multi-precision capabilities in hardware, Carson
and Higham [5] have recently analyzed iterative refinement for (square) linear systems
in the case where three different precisions are used: uf for the matrix factorization, u
for the working precision, and ur for the computation of residuals, where uf ≥ u ≥ ur.
The analysis additionally uses a fourth “precision”, denoted us, which is essentially
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a parameter that describes how accurately the correction equation is solved (and us
takes the value u or uf in the cases of interest).

As the factorization of the system matrix is often the most expensive part of
the computation, it is desirable from a performance standpoint that low precision be
used in the factorization, ideally without affecting convergence, numerical stability,
or accuracy. The results in [5] show that this is possible under certain constraints
on the condition number of the matrix, which depend on the particular method of
solving the correction equations. For example, with single precision as the working
precision, the matrix factorization computed in half precision, residuals computed in
double precision, and the correction equation solved by GMRES preconditioned with
the computed LU factors, it is possible to solve the square linear system Ax = b to full
single precision accuracy for condition numbers κ∞(A) = ‖A−1‖∞‖A‖∞ ≤ 107, with
the O(n3) part of the computations carried out entirely in half precision. Therefore
significant speedups can be obtained on hardware that supports half precision. In
[12], [13], using the tensor cores on an NVIDIA V100 GPU, Haidar et al. obtain a
speedup of 4 over the state of the art double precision solver. In this work we wish
to extend the results of [5] to least squares problems. In [17] a mixed-precision least
square solver based on the normal equations was proposed for the case where A is well
conditioned. The present work differs in that it is not based on the normal equations
and it is applicable to a wider range of problems. This work also differs from that in
[9], which focuses on the use of higher precision arithmetic and does not use a lower
precision than the working precision.

Define

(1.9) Ã =

[
I A
AT 0

]
, b̃ =

[
b
0

]
, yi =

[
ri
xi

]
, δyi =

[
δri
δxi

]
, si =

[
fi
gi

]
.

Three-precision iterative refinement based on the augmented system is written in
Algorithm 1.1 in an analogous way as for linear systems.

Algorithm 1.1 (LSIR) Iterative refinement in three precisions for the augmented
system defined in (1.9).

1: Solve Ãy0 = b̃ in precision uf and store y0 at precision u.
2: for i = 0 :∞ do
3: Compute si = b̃− Ãyi at precision ur and round si to precision us.
4: Solve Ãδyi = si at precision us and store δyi at precision u.
5: yi+1 = yi + δyi at precision u.
6: end for

The theorems developed in [5] regarding the forward error and normwise and
componentwise backward error for iterative refinement of linear systems are thus
applicable. The only thing that will change is the analysis of the method for solving
the correction equation in line 4, since we now have a QR factorization of A, which
can be used in various ways, including the procedure (which we will refer to as the
“standard” method) outlined in (1.5)–(1.8). For a given solver, in order to apply the
analysis from [5, sec. 3–5] we need to show that

δ̂yi = (I + usEi)δyi, us‖Ei‖∞ < 1,(1.10)

‖ŝi − Ã δ̂yi‖∞ ≤ us(c1‖Ã‖∞‖δ̂yi‖∞ + c2‖ŝi‖∞),(1.11)

|ŝi − Ã δ̂yi| ≤ usGi|δ̂yi|,(1.12)
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Table 1.1
For Algorithm 1.1, under assumptions (1.10)–(1.12), conditions for convergence and the limit-

ing size of the forward error, normwise backward error, and componentwise backward error for the
solution of the augmented system Ãy = b̃ (1.1). The quantity p denotes the maximum number of

nonzeros per row of [Ã, y] and µi ≡ ‖Ã(y− ŷi)‖∞/(‖Ã‖∞‖y− ŷi‖∞); for further explanation see [4,
sect. 2.1].

Error Convergence condition Bound on limiting value

Forward 2us min(cond(Ã), κ∞(Ã)µi)
+ us‖Ei‖∞ < 1

4pur cond(Ã, y) + u

Normwise backward (c1κ∞(Ã) + c2)us < 1 pu

Componentwise
backward

us‖Gi|Ã−1| ‖∞ + (1 + us)

× γrp cond(Ã−1) ≤ 1/2

γrp(1 + us‖Gi|Ã−1| ‖∞ + γrp cond(Ã−1))

× ξ(|̃b|+ |Ã||y|) + u

where hats denote quantities computed in finite precision and Ei, c1, c2, and Gi are
functions of m+ n, Ã, ŝi, and us, and have nonnegative entries. Here, and through-
out, inequalities between vectors and matrices hold componentwise. Given these
bounds for a particular solution method, the convergence conditions and bounds on
limiting values of various errors for three-precision iterative refinement for linear sys-
tems proved in [5] yield the convergence conditions and bounds for Algorithm 1.1

shown in Table 1.1, which is based on [5, Table 5.1]. In Table 1.1, cond(Ã) =

‖ |Ã−1||Ã| ‖∞ denotes the Skeel condition number, cond(Ã, y) = ‖ |Ã−1||Ã||y| ‖∞,
and ξ(x) = maxj |xj |/minj |xj | where xj is the jth component of the vector x. In
Table 1.1 and in remainder of the paper we use the quantities

γk =
ku

1− ku
, γ̃k =

cku

1− cku
,

where c is a small constant independent of m and n. A superscript on γ will denote
that u carries that superscript as a subscript; thus, for example, γrk = kur/(1− kur).
The quantity µi ≡ ‖Ã(y− ŷi)‖∞/(‖Ã‖∞‖y− ŷi‖∞) that appears in the forward error

convergence criterion in Table 1.1 describes the tightness of the inequality ‖Ã(y −
ŷi)‖∞ ≤ ‖Ã‖∞‖y − ŷi‖∞. As explained in [4, sect. 2.1], we expect µi to be close to

its lower bound of κ∞(Ã)−1 near the beginning of the iterations and to only grow
close to its upper bound of 1 once the forward error becomes small. We note that
depending on the particular solver that is used for the correction equation, the term
with µi or the term with ‖Ei‖∞ can dominate.

Our contributions in this work are as follows.
• We show that (1.10)–(1.12) hold for Algorithm 1.1 and determine bounds for
‖Ei‖∞, c1, c2, and ‖Gi‖∞.

• We extend the GMRES-based refinement scheme of [4] to the least squares
case and show that one can construct a left preconditioner using the existing
QR factors of A such that GMRES provably converges to a backward stable
solution of the preconditioned augmented system.

• We show that an existing preconditioner developed for saddle point systems
can also work well in the GMRES-based approach in practice, even though
our error analysis is not applicable.

In section 2, we analyze the normwise relative error, normwise relative backward
error, and componentwise relative backward error for the QR-based correction solve
for the augmented system and write these bounds in the forms given by (1.10)–(1.12).
In section 3, we discuss a technique that uses the already computed QR factors in a
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preconditioned Krylov subspace method for solving the correction equations, which
extends the range of matrix condition numbers for which lower precision factorizations
can be used. This is analogous to the GMRES-IR technique presented in [4]. In
section 4 we present numerical experiments, and we give conclusions in section 5.

2. Least squares iterative refinement in three precisions. We will assume
that the QR factorization is computed via the Householder method, carried out in
precision uf . We note that one could also use an MGS-QR factorzation; see [?, Remark

2.9.2]. By [7, Thm. 1.1], [15, Thm. 19.4] if Û is the computed upper trapezoidal factor
of A obtained via Householder QR, then there exists an orthogonal matrix Q ∈ Rm×m
such that

(2.1) A+ E = QÛ = Q1R̂, ‖E‖F ≤ γ̃fmn‖A‖F , |E| ≤ mγ̃fmnC1|A|,

with C1 ≥ 0 and ‖C1‖F = 1, where Q1 = Q(:, 1: n) and R = Û(1 : n, 1: n). For the

computed factor Q̂, we have [15, p. 360]

(2.2) Q̂ = Q(Im +∆I) ≡ Q+∆Q,

where ∆Q = Q∆I , with ‖∆I(:, j)‖2 ≤ γ̃fmn. Therefore ‖∆Q(:, j)‖2 = ‖Q∆I(:, j)‖2 ≤
γ̃fmn, and thus by [15, Lem. 6.6],

(2.3) ‖∆Q‖F ≤
√
mγ̃fmn, |∆Q| ≤ mγ̃fmnC2,

where C2 ≥ 0 and ‖C2‖F = 1.
We first state a result showing that if the system (1.3) is solved via equations

(1.5)–(1.8) in precision uf ≥ u using a QR factorization computed in precision uf
then the effective solve precision is us = uf .

Theorem 2.1. Let the system (1.3) be solved via the process in (1.5)–(1.8) carried
out in working precision u, with the QR factorization of A computed in precision
uf ≥ u such that (2.1)–(2.3) hold. Then

(2.4)

[
I A+∆A1

(A+∆A2)T 0

][
δ̂ri
δ̂xi

]
=

[
fi +∆fi
gi +∆gi

]
,

with

|∆fi| ≤
√
mn(γ̃fm2 + γ̃m2)(H1|fi|+H2|δ̂ri|),

|∆gi| ≤
√
mn(γ̃fm2 + γ̃m2)(|AT |H3|δ̂ri|),

|∆Aj | ≤ mn(γ̃fmH4 + γ̃mH5)|A|, j = 1, 2,

where ‖Hj‖F = 1, Hj ≥ 0 for j = 1 : 5.

Proof. The proof follows closely the analysis in [2] and [14] and is omitted.

This theorem essentially says that the backward error in the correction solve using
the standard approach is limited by the precision in which the QR factorization is
computed. Following the argument in [15, sect. 20.5] and using the assumption that
uf ≥ u, we can obtain an expression in which only the matrix is perturbed, giving([

I A
AT 0

]
+∆Ã

)[
δ̂ri
δ̂xi

]
=

[
fi
gi

]
, ‖∆Ã‖2 ≤ cm,nuf

∥∥∥∥[ I A
AT 0

]∥∥∥∥
2

,
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where cm,n is a constant that depends on m and n. Changing notation as described
in (1.9), we can write the error in the correction solve in each step of least squares
iterative refinement as

(Ã+∆Ã)δ̂yi = si, ‖∆Ã‖∞ ≤ c̃m,nuf‖Ã‖∞.

Thus

δ̂yi = (I − Ã−1∆Ã)δyi ≡ (I + usEi)δyi,

so in (1.10), we can take

us‖Ei‖∞ = c̃m,nufκ∞(Ã).

Thus for the forward error, the us‖Ei‖∞ term will dominate the criterion for con-
vergence (see the convergence condition in Table 1.1), and we can say that as long

as κ∞(Ã) . u−1f , we expect the method to converge to achieve the limiting relative
forward error

‖y − ŷ‖∞
‖y‖∞

. 4pur cond(Ã, y) + u,

where p is the maximum number of nonzeros per row of [Ã, y]. It is also clear that we

can take us max (c1, c2) = O(uf ) in (1.11) and us‖Gi‖∞ = O(uf‖Ã‖∞) in (1.12), so
again, we expect the normwise and componentwise backward errors for the augmented
system to be of order u as long as κ∞(Ã) . u−1f . (The backward error for the least
squares problem is not bounded by our analysis; see [15, secs 20.5, 20.8] for details of
this backward error.)

It is important to comment on the condition number of the augmented system Ã
and how it is related to the condition number of A. Björck [2] shows that the matrix
that results from scaling by a parameter α,

Ãα ≡
[
αI A
AT 0

]
,

has condition number bounded by

(2.5)
√

2κ2(A) ≤ min
α
κ2(Ãα) ≤ 2κ2(A), max

α
κ2(Ãα) > κ2(A)2,

where minα κ2(Ãα) is attained for the choice

(2.6) α = 2−1/2σmin(A).

This scaling is equivalent to b−Ax← (b−Ax)/α, which does not change the solution

to the problem, so we can assume in the analysis that κ2(Ã) is the same order of
magnitude as κ2(A). We can further make the simplifying assumption that α is a
power of the machine base and thus does not affect the rounding errors. With this
scaling, the correction equation to solve in each step of iterative refinement becomes

(2.7)

[
αI A
AT 0

] [
δ̂ri
αδ̂xi

]
=

[
αfi
gi

]
.

In the remainder of the paper we will let Ã denote the scaled system (i.e., Ã← Ãα),
with α as in (2.6), to simplify the notation.
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Table 2.1
Summary of results for various choices of IEEE standard precisions for standard least squares

iterative refinement. The value of κ∞(A) shown is the maximum for which the indicated limiting
forward errors and backward errors (for the augmented system) are guaranteed to hold.

Backward error
uf u ur κ∞(A) Normwise Componentwise Forward error

half single single 2 · 103 single single cond(Ã, y) · 10−7

half single double 2 · 103 single single single

half double double 2 · 103 double double cond(Ã, y) · 10−16

half double quad 2 · 103 double double double

single single single 107 single single cond(Ã, y) · 10−7

single single double 107 single single single

single double double 107 double double cond(Ã, y) · 10−16

single double quad 107 double double double

Table 2.2
Parameters for several floating-point arithmetics to three significant figures: unit roundoff u,

smallest positive (subnormal) number xsmin, smallest normalized positive number xmin, and largest
finite number xmax. In current implementations of bfloat16, subnormal numbers are not supported
(e.g., [21]).

u xsmin xmin xmax

bfloat16 3.91× 10−3 9.18× 10−41 1.18× 10−38 3.39× 1038

fp16 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

fp128 9.63× 10−35 6.48× 10−4966 3.36× 10−4932 1.19× 104932

We summarize the implications of the analysis in Table 2.1, which gives the lim-
iting forward error, normwise, and componentwise backward error, and the maximum
κ∞(A) (with which we are approximating κ∞(Ã), for the reasons explained in the
previous paragraph) for which these bounds apply for various combinations of preci-
sions (uf , u, ur). For example, we expect that standard iterative refinement for least
squares problems using half precision for the QR factorization, single precision as
the working precision, and double precision for the residual computation, will obtain
forward and backward errors to single precision accuracy for matrices A with condi-
tion number less than u−1f . In Table 2.1, half, single, double, and quad refer to the
IEEE arithmetics prefixed “fp” whose unit roundoffs and other parameters are given
in Table 2.2.

3. GMRES-based least squares iterative refinement. The analysis in [4]
(and in the subsequent work [5]) shows that iterative refinement for linear systems
can converge even in cases where the condition number of the matrix exceeds u−1f ,
as long as the corrections are computed with some degree of relative accuracy. The
standard approach based on LU factorization, in which the computed LU factors are
reused to solve the correction equation, will not provide any relative accuracy for
matrix condition numbers larger than u−1f . Thus for linear systems that are very ill
conditioned relative to the factorization precision, a different solver is needed.

In [4], [5] it was shown that the GMRES method with the computed LU factors
(potentially computed in lower precision) used as left preconditioners can provide
the required relative accuracy in the computed solution of the correction equation.



8 E. CARSON, N. J. HIGHAM, and S. PRANESH

This idea was motivated by the observation that even for ill-conditioned matrices
the computed LU factors contain useful information and thus can still be effective
preconditioners in terms of reducing the condition number.

One option is to apply this GMRES-based iterative refinement—referred to as
GMRES-IR—to the augmented system. However, computing the LU factorization of
Ã is expensive compared with QR factorization of A. Furthermore, we already have
an existing QR factorization of A and in the next section we show that it is possible
to construct an effective left preconditioner M for Ã from the already computed QR
factors. As a side-effect, our analysis demonstrates how the analysis of GMRES-IR
in [4] and [5] can be extended to allow for a general choice of preconditioner (i.e., one
not necessarily based on an LU factorization).

3.1. A preconditioner from computed QR factors. The analysis in [4]
shows that left-preconditioned GMRES obtains a backward stable solution to the
preconditioned linear system under certain assumptions on the accuracy with which
the preconditioned system is applied to a vector. We thus wish to construct a left
preconditioner for which the resulting preconditioned matrix has a sufficiently small
condition number, which will allow us to prove that preconditioned GMRES will find
an approximate solution with relative error small enough that the iterative refinement
process converges. For details see [4, Section 3].

We note that our desire for a well-conditioned system is entirely for the purpose
of proving that the relative error is small; our analysis implies nothing about the
resulting convergence rate of GMRES. In fact, a small condition number does not
necessarily imply fast GMRES convergence even in the normal case; see [?]. For
analysis purposes we are restricted to left preconditioning, as right-preconditioned
(and thus split-preconditioned) GMRES is not backward stable, although we note
that split preconditioning may nevertheless work well in practice. We elaborate on
this in section 3.2.

For a given preconditioner M , we write Ẽ = Ã−M . We have

M−1Ã = M−1(M + Ẽ) = I +M−1Ẽ,

Ã−1M = (M + Ẽ)−1M ≈ I −M−1Ẽ,

and therefore

(3.1) κ∞(M−1Ã) = ‖M−1Ã‖∞‖Ã−1M‖∞ . (1 + ‖M−1Ẽ‖∞)2.

We now give results for the particular preconditioner

(3.2) M =

[
αI Q1R̂

R̂TQT1 0

]
,

which will meet our stated requirements. In order to simplify the analysis, we have
used Q1 rather than Q̂1 in the definition above; i.e., we assume that Q̂1 has or-
thonormal columns. This is equivalent to ignoring terms in u2f and will not affect the
conclusions of the analysis. We have

(3.3) M−1 =

[
1
α (I −Q1Q

T
1 ) Q1R̂

−T

R̂−1QT1 −αR̂−1R̂−T

]
and by (2.1),

(3.4) Ẽ = Ã−M =

[
0 −E
−ET 0

]
.
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Then

(3.5) M−1Ẽ =

[
−Q1R̂

−TET − 1
α (I −Q1Q

T
1 )E

αR̂−1R̂−TET −R̂−1QT1 E

]
.

Now we seek to bound ‖M−1Ẽ‖∞. We have

‖M−1Ẽ‖∞ ≤ max
(
‖M−1Ẽ(1, 1)‖∞ + ‖M−1Ẽ(1, 2)‖∞, ‖M−1Ẽ(2, 1)‖∞

+ ‖M−1Ẽ(2, 2)‖∞
)

≤
√
mmax

(
‖M−1Ẽ(1, 1)‖F , ‖M−1Ẽ(2, 1)‖F

)
+
√
nmax

(
‖M−1Ẽ(1, 2)‖F , ‖M−1Ẽ(2, 2)‖F

)
,(3.6)

where M−1Ẽ(i, j) denotes the (i, j) block of M−1Ẽ as in (3.5). Bounding the indi-

vidual blocks of M−1Ẽ, using |α| ≈ ‖A+‖−12 , and again ignoring terms of order u2f ,
we have

‖ 1

α
(I −Q1Q

T
1 )E‖F ≤

1

|α|
‖I −Q1Q

T
1 ‖2‖E‖F . γ̃fmn‖A+‖F ‖A‖F ,

‖R̂−1QT1 E‖F ≤ ‖R̂−1QT1 ‖F ‖E‖F . γ̃fmn‖A+‖F ‖A‖F ,

‖Q1R̂
−TET ‖F ≤ ‖Q1R̂

−T ‖F ‖ET ‖F . γ̃fmn‖A+‖F ‖A‖F ,

‖αR̂−1R̂−TET ‖2 ≤ |α|‖R̂−1R̂−T ‖F ‖ET ‖F . γ̃fmn‖A+‖F ‖A‖F .

Therefore, using (3.6),

‖M−1Ẽ‖∞ . (
√
m+

√
n)γ̃fmn‖A+‖2‖A‖F ≤

√
m
√
n(
√
m+

√
n)γ̃fmn‖A+‖∞‖A‖∞

≤ 2m
√
nγ̃fmnκ∞(A),

and hence from (3.1) we have

(3.7) κ∞(M−1Ã) . (1 + 2m
√
nγ̃fmnκ∞(A))2,

where we note that this inequality is pessimistic. Thus even in cases where κ∞(A)�
u−1f , we still expect the preconditioner M composed from the QR factors computed in

precision uf to reduce the condition number of Ã. By the result proved in [4, sect. 3],

if ur = u2 then GMRES run on Ã with left preconditioner M will result in

(3.8) us‖Ei‖∞ ≡ uf(m+ n)κ∞(M−1Ã),

where f(m + n) is a quadratic polynomial. Thus for the GMRES-based solver, we
achieve an error of order us = u in (1.10). Combining the above with (3.7), we expect
to have us‖Ei‖∞ < 1 (and thus convergence of the forward error in GMRES-based
iterative refinement) when κ∞(A) < u−1/2u−1f . The case where ur = u is treated
in [16, sect. 3.1]. In this case, the condition for convergence of the backward error
becomes κ∞(A) < u−1/2 and the condition for the convergence of the forward error
becomes κ∞(A) < u−1/3u

−2/3
f . We note, as is stated in [16], that these results are

pessimistic. These results are summarized for various combinations of IEEE standard
precisions in Table 3.1; note that the table exploits the fact that κ∞(Ã) can be
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Table 3.1
Summary of results for various choices of IEEE standard precisions for GMRES-based least

squares iterative refinement. The value of κ∞(A) shown in the fourth column is the maximum value
for which the indicated limiting backward errors (for the augmented system) and forward errors,
respectively, are guaranteed to hold.

Backward error
uf u ur κ∞(A) Norm. Comp. κ∞(A) Forward error

half half single 2 · 103 half half 105 half

half single single 103 single single 104 cond(Ã, y) · 10−7

half single double 107 single single 107 single

half double double 106 double double 107 cond(Ã, y) · 10−16

half double quad 1016 double double 1011 double

single single double 107 single single 1011 single

single double double 107 double double 1010 cond(Ã, y) · 10−16

single double quad 1016 double double 1015 double

replaced by κ∞(A) (up to a constant that includes the change of norm) in view of
(2.5). Note also that this table is very similar to that for iterative refinement of square
linear systems in [16, Table 3.1]. Again, the value of the unit roundoff parameter for
various precisions can be found in Table 2.2.

In Figure 3.1 we plot the infinity norm condition numbers of Ã and M−1Ã, for
M defined in (3.2) with the QR factorization performed in half precision and α set to
the optimal value 2−1/2σmin(A). We also plot an approximation of the bound (3.7)
with the dimensional constants ignored, as well as the value u−1 for single precision.
By (3.8), when κ∞(M−1Ã) is approximately below this level, we expect convergence
of the forward error. The computations (and all computations in the remainder of the
paper) were performed in MATLAB R2019a. To compute a QR factorization of A
in half precision we use a MATLAB implementation of Householder QR factorization
that calls the chop function of Higham and Pranesh [18]1. The preconditioned system

M−1Ã was computed in quadruple precision arithmetic using the Advanpix Multi-
precision Computing Toolbox [23] and then rounded to the working precision. The
matrices were generated as gallery(’randsvd’,[100,10],kappa(i),3), which con-
structs a random 100× 10 matrix with specified 2-norm condition number kappa(i)
and geometrically distributed singular values. We tested kappa values 10j , j = 0: 10.

From Figure 3.1, we can see that indeed, the condition number of M−1Ã grows
as expected with the bound (3.7), and that the preconditioned matrix has a smaller

condition number than Ã until around κ∞(A) ≈ 107. The horizontal line plotting the
quantity u−1 indicates the maximum condition number allowable such that us‖Ei‖∞
in (3.8) is less than 1, meaning that the iterative refinement process is guaranteed
to converge. As mentioned, the bound (3.7), which intersects the horizontal line at
u−1/2u−1f , is a slight overestimate; the value of us‖Ei‖∞ can actually remain below 1
for even higher values of κ∞(A).

Again, for the backward errors the results in [4] show that when the matrix–
vector products with the preconditioned matrix are computed at precision ur = u2,
the original correction equation Ãδyi = si is solved with backward error of order u,
and thus c1 and c2 in (1.11) can be taken to be of order 1 and Gi in (1.12) can be

taken to have norm of order ‖Ã‖∞.

1https://github.com/higham/chop.

https://github.com/higham/chop
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Fig. 3.1. Condition numbers for augmented matrix Ã and preconditioned augmented matrix
M−1Ã for M in (3.2), for 100× 10 matrices A described in the text. The solid blue line shows the

approximate bound on κ∞(M−1Ã) given in (3.7) without constants.

3.2. Practical considerations and other preconditioners. Table 2.2 dis-
plays the properties of some floating-point formats currently available in hardware,
where IEEE formats are denoted “fp” [20]. Owing to the narrow range of the half
precision fp16 format, underflow and overflow can readily arise in practice. To address
this issue in the context of solving linear systems, a two-sided diagonal scaling-based
algorithm was proposed in [19]. In our context of QR factorization we propose one-
sided diagonal scaling on the right, which is summarized in Algorithm 3.1, in which
flh denotes rounding to fp16. Note that the scaled matrix AS has columns of unit
2-norm. The purpose of the scaling by µ is to make full use of the dynamic range
while allowing some headroom for subsequent computations. Note that this column
scaling strategy is not required for bfloat16 because of its much larger range. We are
not concerned here with the implementation details of QR factorization in fp16; see
[28] for an implementation targeted at GPU tensor cores.

Algorithm 3.1 (fp16 QR factorization). This algorithm rounds A ∈ Rm×n given in
precision u to the fp16 matrix A(h), scaling all elements to avoid overflow, and then
performs the QR factorization in fp16. θmax ∈ (0, 1] is a parameter and xmax is given
in Table 2.2.

1: S = diag
(
‖A(:, j)‖−1∞

)
2: µ = θmaxxmax

3: A(h) = flh(µ(AS))

4: Compute the QR factorization A(h) = Q̂R̂.

There is a wealth of work towards developing preconditioners for saddle-point sys-
tems. Common preconditioners that can be constructed using the QR factors of A in-
clude block diagonal preconditioners, triangular preconditioners, and constraint-based
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preconditioners. For example, we could construct the block diagonal preconditioner

(3.9)

[
αI 0

0 1
α R̂

T R̂

]
=

[√
αI 0

0 1√
α
R̂T

][√
αI 0

0 1√
α
R̂

]
≡M1M2.

This block diagonal preconditioner may have an advantage over the preconditioner
(3.2) in terms of the communication cost of applying it to a vector; this will depend on
the relative sizes of m and n and the particular parallel distribution of the QR factors.
It follows from the results in [22], [24] that if the QR factorization is computed exactly
then the left-preconditioned system matrix

M−12 M−11 Ã =

[
I A/α

αR̂−1R̂−TAT 0

]
will be nonsymmetric and diagonalizable with three distinct nonzero eigenvalues,
{1, 12 (1±

√
5)}. However, as the resulting left-preconditioned matrix is nonsymmetric,

this tells us nothing about the singular values. We have observed experimentally that
the condition number of M−12 M−11 Ã can be very large when A is ill-conditioned (often

larger than the condition number of Ã itself), making this preconditioner unsuitable
for our purpose of proving that GMRES provides a backward stable solution to the
left-preconditioned system.

The preconditioner in (3.9) can also be used as a two-sided preconditioner. Ac-
cordingly we obtain

(3.10) M−11 ÃM−12 =

[
I AR̂

R̂−TAT 0

]
.

In this case, the preconditioned system is symmetric, so the absolute values of the
eigenvalues (which, again, are {1, 12 (1±

√
5)}) coincide with the singular values, and in

contrast to the left-preconditioned case we are guaranteed a well-conditioned system in
the 2-norm, at least in exact arithmetic. We confirm this behavior numerically in Fig-
ure 3.2; the computational details are as for Figure 3.1, which plots κ∞(M−12 M−11 Ã)

and κ∞(M−11 ÃM−12 ), for M1 and M2 defined in (3.9). We note that the 2-norm and
the ∞-norm differ here by at most a factor of

√
m+ n.

It is clear from the plot that the preconditioned matrix has a much lower condition
number for split preconditioning than for left preconditioning. In fact, the condition
number of the left preconditioned matrix quickly becomes much larger than κ∞(Ã)!
Thus the left preconditioned system is too ill conditioned to ensure that us‖Ei‖∞ < 1
in (1.10). Despite the improved condition number of the split preconditioned system,
we cannot use it for the theoretical purpose of proving the backward stability of GM-
RES; in contrast to the left-preconditioned case (see [4] and [26]), right-preconditioned
(and thus split-preconditioned) GMRES is not backward stable [1, pp. 2035], essen-
tially because the solution vector is scaled by the preconditioner. We note that our
desire for a well-conditioned preconditioned system comes from meeting the constraint
us‖Ei‖∞ < 1 in (1.10); the condition number alone does not dictate the convergence
behavior of Krylov subspace methods even in the case of symmetric positive definite
linear systems; see, e.g., [6].

We emphasize that the GMRES method and the preconditioner (3.2) were chosen
so that we could prove that GMRES-based iterative refinement converges. In prac-
tical applications one might use any preconditioning technique or any other Krylov
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Fig. 3.2. Condition numbers for augmented matrix Ã and left, split, preconditioned matrices
M−1

2 M−1
1 Ã, M−1

1 ÃM−1
2 respectively, where M1 and M2 are defined in (3.9).

subspace method. As a demonstration, in section 4, we show convergence of GMRES-
based iterative refinement with the use of both the left preconditioner defined in (3.2)

and the split block diagonal preconditioner (3.9). We note that since the matrix Ã
is symmetric, it makes sense to use a Krylov subspace method designed for sym-
metric linear systems (such as MINRES) in practice. Higham and Pranesh [17] show
that such other techniques can work for symmetric positive definite linear systems, al-
though we cannot say that Krylov subspace methods for symmetric linear systems such
as conjugate gradient and MINRES are backward stable in the traditional sense [25].

Based on these practical considerations GMRES-based least squares iterative re-
finement method is summarized in Algorithm 3.2.

4. Numerical experiments. We present numerical experiments to illustrate
the results of our analysis for three-precision least squares iterative refinement us-
ing the combinations of precisions, (uf , u, ur) = (half, single, double), (half, double,
quad), and (single, double, quad). All the experiments were performed in MAT-
LAB 2019a on a MacBook Pro with Intel Core i5 and 16 Gb RAM. Mixed pre-
cision computations were carried out both in the native single and double preci-
sions and using chop to simulate half precision and the Advanpix Multiprecision
Computing Toolbox [23] for quadruple precision. Our codes are available at https:
//github.com/SrikaraPranesh/LSIR3. We test both the standard least squares iter-
ative refinement described in Section 2 and our GMRES-based approach described
in Algorithm 3.2. Furthermore, to study the effectiveness of solvers that exploit the
symmetry of the augmented matrix we consider MINRES [27] in place of of GMRES
in Algorithm 3.2. For uf = half, θmax = 0.1 is used in Algorithm 3.1. In the GMRES-
based approach, we present results for the left and split preconditioners (3.2), and
(3.9) respectively. For the MINRES-based approach, the block diagonal precondi-
tioner (3.9) applied in the symmetric form (3.10) is considered. All the condition
numbers reported are computed at 64 (decimal) digit precision using the Advanpix
Multiprecision Computing Toolbox.

As before, in all tests we generate A via gallery(’randsvd’,[m,n], kappa,3)

with m = 100 and n = 10 with various 2-norm condition numbers kappa. The same

https://github.com/SrikaraPranesh/LSIR3
https://github.com/SrikaraPranesh/LSIR3
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Algorithm 3.2 (GMRES-LSIR) Let A ∈ Rm×n (m ≥ n) and b ∈ Rm be given in
precision u. This algorithm solves the least squares problem minx ‖b − Ax‖2 using

GMRES-based iterative refinement with precisions uf , u, and ur. The quantities Ã,

b̃, si, and yi are defined in (1.9).

1: if uf is fp16 then
2: Compute the QR factors, diagonal matrix S and scalar µ using Algorithm 3.1,

such that A ≈ (1/µ)Q̂1R̂S
−1.

3: else
4: Compute the QR factorization A = Q̂1R̂ in precision uf .
5: end if
6: Solve minx ‖b−Ax‖2 in precision uf using the computed QR factors and store in

precision u.
7: for i = 0: imax − 1 do
8: Compute si = b̃− Ãyi at precision ur and round ri to precision u.
9: Solve M−1Ãdi = M−1ri by GMRES at precision u, with matrix–vector prod-

ucts with MÃ computed at precision ur, exploiting the block structure, and
store di at precision u. M is given by either (3.3) or (3.9).

10: yi+1 = yi + di at precision u.
11: if converged then
12: return yi+1, quit
13: end if
14: end for

right-hand side b is used in all tests, generated as a MATLAB randn vector with
unit 2-norm. For reproducibility we seed the random number generator by calling
the MATLAB function rng(1). For the GMRES and MINRES-based approaches, to
minimize the condition number we scale the (1,1) block of the augmented matrix (1.9)
by α in (2.6), which is estimated at the working precision using the R factor of the
QR factorization computed in precision uf using the svd command.

For the iterative refinement process, we use the convergence condition that the
relative error in both the solution x̂i and the residual r̂i is less than u. We set the
GMRES and MINRES convergence tolerances to 10−6 for u = single and 10−12 for
u = double.

First we consider (uf , u, ur) = (half, single, double). In Table 4.1 we display
the number of refinement steps for standard least squares iterative refinement in Al-
gorithm 1.1 (LSIR), for GMRES-based iterative refinement with left preconditioner
M in Algorithm 3.2 (GMRES-LSIR), and GMRES and MINRES-based iterative re-
finement with split block diagonal preconditioners M1 and M2 (GMRES-LSIR-BD
and MINRES-LSIR-BD respectively). For GMRES-LSIR, GMRES-LSIR-BD and
MINRES-LSIR-BD the numbers in parentheses denotes the total number of GMRES
or MINRES iterations. Infinity norm condition numbers of some relevant matrices
are displayed in Table 4.2.

From Tables 4.1 and 4.2 we can see that indeed, standard LSIR converges to
single precision if κ∞(Ã) . u−1f , and fails to converge for κ∞(Ã)� u−1f , as predicted
by the analysis. From the analysis in section 3, we expect the GMRES-based ap-
proach to work for higher κ∞(Ã) than the standard approach, for κ∞(Ã) . u−1/2u−1f .
When u is single precision and uf is half precision, this condition becomes roughly
κ∞(Ã) . 107. Indeed, GMRES-based iterative refinement (with both precondition-
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Table 4.1
Two norm condition number and number of iterative refinement steps for (uf , u, ur) = (half,

single, double). Numbers in parentheses denote the total number of GMRES or MINRES iterations
in Algorithm 3.2. Failure to converge is denoted by “–”.

κ2(A) LSIR GMRES-LSIR GMRES-LSIR-BD MINRES-LSIR-BD

1.00e+03 11 2 (12) 2 (23) 2 (25)
1.00e+04 – 2 (20) 2 (37) 2 (62)
1.00e+05 – 2 (80) 2 (41) 4 (259)
1.00e+06 – 5 (292) 3 (91) – (–)
1.00e+07 – 12 (724) 3 (105) – (–)
1.00e+08 – – (–) 6 (210) – (–)

Table 4.2
Various condition numbers corresponding to (uf , u, ur) = (half, single, double).

κ2(A) κ∞(Ã) κ∞(MÃ) κ∞(M1ÃM2)

1.00e+03 3.60e+04 2.30e+01 1.27e+03
1.00e+04 3.89e+05 1.57e+03 3.00e+03
1.00e+05 6.49e+06 9.00e+04 5.76e+03
1.00e+06 3.72e+08 5.12e+07 2.81e+04
1.00e+07 2.16e+11 9.92e+09 1.91e+06
1.00e+08 3.05e+09 1.09e+13 3.86e+08

ers) converges for condition numbers κ∞(Ã) up to the order of 107. Note that since α
in (2.6) is estimated using the uf precision R factor, κ∞(Ã) is somewhat larger than
might be expected in view of (2.5). The GMRES-based algorithm converges even for
κ∞(Ã) > 109, but the left preconditioner requires more GMRES iterations than the
split preconditioner. Also from columns 3 and 4 of Table 4.2 we can observe that for
ill-conditioned matrices, split preconditioning gives a lower condition number. From
Table 4.1 we see that MINRES-LSIR-BD converges for a smaller range of condition
numbers than the GMRES-based methods and takes more inner iterations when it
converges.

In Tables 4.3 and 4.5 we display the results for LSIR, GMRES-LSIR, GMRES-
LSIR-BD, and MINRES-LSIR-BD for (uf , u, ur) = (half, double, quad) and (single,
double, quad), respectively. Tables 4.4 and 4.6 display relevant infinity norm con-

dition numbers. Note from the tables that κ∞(Ã) can significantly exceed κ2(A),
which is because we are estimating the optimal α in (2.6) using the R factor com-
puted in lower precision. The results are as expected by the theory; LSIR converges
for κ∞(Ã) up to around u−1, although as κ∞(Ã) approaches u−1, a larger number
of refinement steps are needed. The GMRES-LSIR approach is able to converge for
κ∞(Ã) up to u−1/2u−1f as predicted by the theory, where u−1/2u−1f ≈ 1016 for (single,

double, quad) and u−1/2u−1f ≈ 1012 for (half, double, quad). However, the number
of GMRES iterations required does grow large as κ∞(Ã) approaches u−1/2u−1f . The
split preconditioner tends to perform better than the left preconditioner on the more
ill-conditioned problems. Again, MINRES-LSIR-BD has inferior convergence to the
GMRES solvers. From these experiments we can conclude that even though the con-
vergence of GMRES-based iterative refinement with two-sided preconditioning cannot
be theoretically guaranteed, this approach works well in practice.

For the final experiment we consider matrices from the SuiteSparse matrix col-
lection [8]. We consider all rectangular full rank matrices with 20 ≤ m ≤ 2000,
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Table 4.3
Two norm condition number and number of iterative refinement steps for (uf , u, ur) = (half,

double, quad). Numbers in parentheses denote the total number of GMRES or MINRES iterations
in Algorithm 3.2. Failure to converge is denoted by “–”.

κ2(A) LSIR GMRES-LSIR GMRES-LSIR-BD MINRES-LSIR-BD

1.00e+02 13 2 (16) 2 (31) 2 (33)
1.00e+04 – 2 (26) 2 (41) 2 (47)
1.00e+07 – 2 (49) 2 (41) 3 (173)
1.00e+09 – 3 (153) 2 (49) 9 (847)
1.00e+10 – 4 (292) 3 (83) – (–)
1.00e+11 – 7 (491) 3 (151) – (–)
1.00e+12 – – (–) – (–) – (–)

Table 4.4
Various condition numbers corresponding to (uf , u, ur) = (half, double, quad).

κ2(A) κ∞(Ã) κ∞(MÃ) κ∞(M1ÃM2)

1.00e+02 3.14e+03 2.93e+00 4.37e+02
1.00e+04 3.48e+05 3.48e+03 4.16e+03
1.00e+07 2.55e+10 2.69e+11 1.77e+07
1.00e+09 1.45e+14 1.38e+15 3.69e+10
1.00e+10 2.91e+16 1.62e+15 5.29e+12
1.00e+11 9.17e+17 1.17e+17 8.65e+13
1.00e+12 6.25e+19 2.79e+17 8.32e+15

n ≤ 400, and n < m. Properties of the matrices are displayed in Table 4.7, and
we observe that entries of matrix 5 and 6 will overflow upon conversion to fp16. A
random right-hand side vector is generated using randn, seeded for reproducibility,
and both (half, single, double) and (half, double, quad) precision combinations are
used. Again left (GMRES-LSIR) and two-sided (GMRES-LSIR-BD, MINRES-LSIR-
BD) preconditioners are considered. In Table 4.8 we display the results for (half,
single, double). As predicted by the analysis, LSIR fails to converge for κ∞(Ã) & 104.
GMRES-LSIR and GMRES-LSIR-BD converge for all the matrices except 6 and 11,
for which Ã and the preconditioned matrices are extremely ill conditioned as can be
observed from Table 4.9. Results for (half, double, quad) are displayed in Tables
4.10 and 4.11. For both preconditioners, Algorithm 3.2 converges for all matrices,
but GMRES-LSIR preforms slightly better than GMRES-LSIR-BD. However, for the
ill-conditioned matrices 6 and 11, many GMRES iterations are required.

In Tables 4.8 and 4.10, MINRES-LSIR-BD mostly has similar iteration counts
to GMRES-LSIR-BD, except for matrix 9 in Table 4.8 and matrices 9 and 11 in
Table 4.10 for which it requires many more iterations.

5. Conclusion. We have extended iterative refinement in three precisions for
square linear systems, as studied in [5], to least squares problems. Our approach is to
work with the augmented system and a QR factorization of A computed at the lowest
of the three precisions. Our GMRES-LSIR algorithm (Algorithm 3.2) uses GMRES
to solve the correction equation with a choice of two different preconditioners, (3.2)
and (3.9).

Our rounding error analysis, combined with the results in [4], [5], shows that
GMRES-IR with (3.2) yields a forward error, and a backward error for the augmented
system, of order the working precision under reasonable assumptions. Our error
analysis is not applicable to the preconditioner (3.9). Numerical experiments show
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Table 4.5
Two norm condition number and number of iterative refinement steps for (uf , u, ur) = (single,

double, quad). Numbers in parentheses denote the total number of GMRES or MINRES iterations
in Algorithm 3.2. Failure to converge is denoted by “–”.

κ2(A) LSIR GMRES-LSIR GMRES-LSIR-BD MINRES-LSIR-BD

1.00e+03 3 1 (3) 2 (14) 1 (8)
1.00e+05 5 2 (8) 2 (22) 2 (20)
1.00e+07 19 2 (13) 2 (27) 2 (28)
1.00e+09 – 2 (21) 2 (39) 3 (91)
1.00e+11 – 3 (101) 2 (41) 5 (274)
1.00e+13 – 3 (168) 2 (41) – (–)
1.00e+15 – 7 (629) 3 (61) – (–)
1.00e+16 – – (–) – (–) – (–)

Table 4.6
Various condition numbers corresponding to (uf , u, ur) = (single, double, quad).

κ2(A) κ∞(Ã) κ∞(MÃ) κ∞(M1ÃM2)

1.00e+03 3.44e+04 1.00e+00 1.30e+03
1.00e+05 3.62e+06 1.07e+00 1.35e+04
1.00e+07 2.65e+08 2.00e+01 1.25e+05
1.00e+09 4.81e+10 9.41e+04 4.14e+05
1.00e+11 2.33e+14 9.89e+08 7.95e+05
1.00e+13 2.03e+18 1.08e+14 1.32e+08
1.00e+15 3.78e+22 3.74e+17 3.00e+12
1.00e+16 1.02e+24 1.22e+17 4.29e+13

that GMRES-IR behaves as predicted by the theory and that it can solve a much
wider range of problems than three-precision iterative refinement without the use of
GMRES; it also works about as well with the preconditioner (3.9).

Our experiments using MINRES with the block-diagonal preconditioner (3.9)
within Algorithm 3.2 show that the algorithm works well on the more well conditioned
problems but converges more slowly or not at all on the more ill-conditioned problems.
This may be due to the lack of backward stability of (preconditioned) MINRES.

Future aspects to explore include the extension of the results to the minimum 2-
norm solution of underdetermined systems, refining the implementation details such
as the choice of GMRES convergence tolerance, implementation and performance
studies on available low-precision hardware, and weighted least squares problem.
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Table 4.7
Rectangular test matrices chosen from the SuiteSparse Matrix Collection. m, n denote the

number rows and columns respectively, maxi,j |aij | and the last column denotes the absolute value
of the maximum entry and minimum nonzero entry, respectively.

Index Matrix (m,n) κ2(A) maxi,j |aij | mini,j{ |aij | : aij 6= 0 }

1 divorce (50,9) 1.94e+01 1.00e+00 1.00e+00
2 Cities (55,46) 2.07e+02 7.10e+01 1.00e+00
3 ash219 (219,85) 3.02e+00 1.00e+00 1.00e+00
4 WorldCities (315,100) 6.60e+01 1.00e+00 1.00e+00
5 ash331 (331,104) 3.10e+00 2.37e+06 1.85e+04
6 robot24c1 mat5 (404,302) 3.33e+11 2.46e+07 4.00e+00
7 ash608 (608,188) 3.37e+00 1.00e+00 1.00e+00
8 ash958 (958,292) 3.20e+00 1.57e+02 3.04e-05
9 illc1033 (1033,320) 1.89e+04 1.95e+00 1.24e-02
10 well1033 (1033,320) 1.66e+02 1.00e+00 1.00e+00
11 photogrammetry (1388,390) 4.35e+08 1.00e+00 1.00e+00

Table 4.8
For matrices in Table 4.7, number of iterative refinement steps in standard least squares iter-

ative refinementand Algorithm 3.2, for (uf , u, ur) = (half, single, double). Numbers in parentheses
denote the total number of GMRES or MINRES iterations in Algorithm 3.2, for left (GMRES-
LSIR), and two-sided (GMRES-LSIR-BD and MINRES-LSIR-BD) preconditioning. Failure to con-
verge is denoted by “–”.

Index LSIR GMRES-LSIR GMRES-LSIR-BD MINRES-LSIR-BD

1 3 1 (3) 1 (7) 1 (8)
2 4 1 (4) 1 (11) 1 (12)
3 2 1 (3) 1 (7) 1 (8)
4 4 1 (5) 1 (11) 1 (12)
5 2 1 (3) 1 (7) 1 (8)
6 – – (–) – (–) – (–)
7 2 1 (3) 1 (7) 1 (8)
8 2 1 (3) 1 (7) 1 (8)
9 – 2 (80) 2 (171) 3 (858)
10 – 2 (16) 2 (39) 2 (39)
11 – – (–) – (–) – (–)

Table 4.9
For matrices in Table 4.7, various condition numbers corresponding to (uf , u, ur) = (half,

single, double).

Index κ∞(Ã) κ∞(MÃ) κ∞(M1ÃM2)

1 2.86e+02 1.26e+00 4.76e+01
2 2.69e+03 7.21e+00 8.04e+01
3 4.32e+01 1.05e+00 2.30e+01
4 3.37e+03 4.04e+01 2.30e+02
5 5.27e+01 1.05e+00 2.78e+01
6 3.66e+12 2.94e+20 1.76e+14
7 5.99e+01 1.06e+00 2.75e+01
8 5.86e+01 1.06e+00 2.83e+01
9 1.54e+06 1.21e+06 1.22e+04
10 1.44e+04 2.32e+02 1.34e+03
11 1.10e+10 4.24e+14 3.95e+10
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Table 4.10
For matrices in Table 4.7, number of iterative refinement steps in standard least squares itera-

tive refinementand Algorithm 3.2, for (uf , u, ur) = (half, double, quad). Numbers in parentheses de-
note the total number of GMRES or MINRES iterations in Algorithm 3.2, for left (GMRES-LSIR),
and two-sided (GMRES-LSIR-BD and MINRES-LSIR-BD) preconditioning. Failure to converge is
denoted by “–”.

Index LSIR GMRES-LSIR GMRES-LSIR-BD MINRES-LSIR-BD

1 7 1 (6) 1 (12) 1 (13)
2 9 2 (14) 2 (33) 2 (35)
3 5 1 (5) 1 (10) 1 (11)
4 11 2 (16) 2 (33) 2 (35)
5 5 1 (5) 1 (10) 1 (11)
6 – 6 (1811) 3 (1127) – (–)
7 5 1 (5) 1 (10) 1 (11)
8 5 1 (5) 1 (10) 1 (11)
9 – 2 (90) 2 (191) 2 (292)
10 – 2 (28) 2 (61) 2 (61)
11 – 4 (5428) 2 (1950) 16 (3102)

Table 4.11
For matrices in Table 4.7, various condition numbers corresponding to (uf , u, ur) = (half,

double, quad).

Index κ∞(Ã) κ∞(MÃ) κ∞(M1ÃM2)

1 2.86e+02 1.26e+00 4.76e+01
2 2.69e+03 7.21e+00 8.04e+01
3 4.32e+01 1.05e+00 2.30e+01
4 3.37e+03 4.13e+01 2.30e+02
5 5.27e+01 1.05e+00 2.78e+01
6 1.36e+16 3.35e+20 1.75e+14
7 5.99e+01 1.06e+00 2.75e+01
8 5.86e+01 1.06e+00 2.83e+01
9 1.54e+06 1.21e+06 1.22e+04
10 1.44e+04 2.32e+02 1.34e+03
11 1.66e+15 2.88e+15 1.69e+11
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