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The dual inverse scaling and squaring algorithm
for the matrix logarithm∗
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Abstract: The inverse scaling and squaring algorithm computes the logarithm of a square
matrix � by evaluating a rational approximant to the logarithm at the matrix � := �2−B for a
suitable choice of B. We introduce a dual approach and approximate the logarithm of � by
solving the rational equation A(-) = �, where A is a diagonal Padé approximant to the matrix
exponential at 0. This equation is solved by a substitution algorithm in the style of [M. Fasi
and B. Iannazzo, MIMS EPrint 2019.8, 2019] which is tailored to the special structure of the
approximants to the exponential. In terms of floating-point operations, the resulting method
is cheaper than the state-of-the-art inverse scaling and squaring algorithm.
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Schur form, Padé approximant

AMS Classification: 65F60, 15A16

1 Introduction

Any matrix - ∈ C#×# satisfying the equation

(1) exp- = �

is a logarithm of � ∈ C#×# . It can be shown that (1) has infinitely many solutions if � is
nonsingular and no solution otherwise. When � has no nonpositive real eigenvalues, how-
ever, there exists a unique matrix that satisfies (1) and has spectrum in the complex strip
{I ∈ C : |Im(I)| < �}. This solution, denoted by log�, is the principal logarithm or the standard
branch of the logarithm [10] of �. With some abuse of notation, we can define the principal log-
arithm of nonsingular matrices with eigenvalues on the open negative real axis as the unique
solution to (1) whose eigenvalues lie in the strip {I ∈ C : −� < Im(I) ≤ �}.

The principal logarithm has applications in a wide variety of domains. In engineering, it
can be employed to recover the coefficient matrix of a system governed by the linear differential
equation 3H/3C = -H from observations of the state vector H [23]. In control theory, it is used
to convert discrete-time linear dynamical systems to continuous-time state-space systems [28]
and to compute the time-invariant component of the state transition matrix of ordinary differ-
ential equations with periodic time-varying coefficients [8]. Other recent applications include
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computing the Lambert, function [11] and the matrix geometric mean [7], and finding gen-
erators of Markov chains in finance [21] and sociology [33]. The matrix logarithm also appears
in optics [12], mechanics [13], and computer graphics [16].

The principal logarithmofmatrix can be defined as a primarymatrix function [19, Chap. 11].
If � is diagonalizable, that is, there exists a nonsingular matrix " such that "−1�" =

diag(�1 , . . . ,�# ), then

(2) log� = " diag(log�1 , . . . , log�# )"−1.

If � is nondiagonalizable, log� can be obtained from (2) by continuity [27], but extra care is
necessary for matrices with real negative eigenvalues.

The formula (2) readily translates into an algorithm for computing the principal logarithm
of a diagonalizablematrix. Such an algorithm turns out to be unstable, as the conditioning of"
may potentially spoil the computation, leading to a forward error far larger than that predicted
by the conditioning of the matrix logarithm itself. Due to this restriction, in practice (2) is the
algorithm of choice only when � is normal, as in this case the matrix " can be chosen to be
unitary and thus perfectly conditioned.

Several diverse techniques for approximating numerically the principal logarithm of non-
normal matrices have been proposed in the literature, see [19, Chap. 11] for a survey and [9]
and [2] for more recent examples. Awell-established approach is the inverse scaling and squar-
ing algorithm, a method initially proposed by Kenney and Laub [29] and further developed by
several authors over the course of the last thirty years [15], [14], [20], [25], [6], [19, Chap. 11],
[30]. This technique exploits the matrix identity log� = 2B log�2−B , and evaluates log� by
combining argument reduction and rational approximation. By taking a certain number of
square roots of �, the problem is reduced to the approximation of the logarithm of a matrix
with eigenvalues close to 1. The latter task is accomplished by evaluating the rational function
C< at the matrix argument � := �2−B , where C< is the [</<] diagonal approximant to the scalar
function log I at I = 1. Scaling the result to take into account the effect of the initial square
roots leads to the approximation log� ≈ 2BC<(�2−B ).

Here we follow a dual approach, and rather than evaluating a rational function we approx-
imate the logarithm of �2−B by solving the rational equation

A(-) = �2−B ,

where A(I) is a rational approximant to eI at I = 0. This technique may seem unnecessarily
convoluted, as in most cases evaluating a function 5 at a matrix � requires less effort than
solving the matrix equation 5 (-) = �. As we shall see, this is not the case for the matrix
function at hand. In previous work [5], [3], it has been shown that if ) is a quasi-triangular
matrix and A is a rational function, then computing a quasi-triangular solution . to A(.) = )
has the same asymptotic computational cost as evaluating A()). The use of quasi-triangular
matrices is not a restriction: if a quasi-triangular matrix . satisfies A(.) = ), where ) = *∗�*
is upper quasi-triangular and* is unitary, then thematrix- = *.*∗ is a solution to thematrix
equation A(-) = �, and conversely, any solution to A(-) = � that is a polynomial of � can be
obtained in this way [5].

The advantage of the dual approach for the matrix logarithm lies in the fact that the
[2ℓ + 1, 2ℓ + 1] Padé approximant to eI at I = 0 can be written as [17, Thm. 5.9.1]

(3) A(I) =
6(I2) + Iℎ(I2)
6(I2) − Iℎ(I2) ,

where 6 and ℎ are polynomials of degree ℓ . The diagonal Padé approximants to log I at I = 1,
on which the inverse scaling and squaring algorithm is based, do not have such a special form.
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In the next section we recall some key definitions and results that will be of used in later
sections. In section 3 we briefly review existing substitution algorithms for rational equations
and introduce our new algorithm for rational functions that can be written in the form (3). In
section 4 we discuss how this technique can be used to compute the matrix logarithm in an
inverse scaling and squaring fashion, and evaluate the performance of the resulting algorithm
in section 5. The final section summarizes our contribution and outlines possible directions for
future work.

2 Background

Characterizing primary and isolated solutions tomatrix equations. Let us consider thematrix
equation 5 (-) = � where -, � ∈ C#×# and 5 is a primary matrix function in the sense of [19,
Chap. 1]. We say that -̂ such that 5 (-̂) = � is a primary solution if there exists a polynomial ?
such that -̂ = ?(�), and that it is isolated if there exists a neighborhoodU ⊂ C#×# of -̂ where
-̂ is the only matrix that satisfies 5 (-) = �.

Primary solutions can be characterized in terms of their spectrum. We recall that an
eigenvalue is semisimple if it appears only in Jordan blocks of size 1, and that a semisimple
eigenvalue is simple if it has algebraic multiplicity 1. It can be shown [26, Thm. 6.1] that a
solution - is primary if and only if the following two conditions are satisfied:

1. 5 (�8) ≠ 5 (�9) for any two distinct eigenvalues �8 , �9 of -;

2. if an eigenvalue � of - is critical ( 5 ′(�) = 0), then it is semisimple.

Furthermore, a primary solution is isolated if and only if all its critical eigenvalues are simple [5,
Thm. 6].

Padé approximation of the exponential function. Rational approximation is a powerful tool
for the computation of matrix functions. Here we recall the definition of Padé approximants
and state some of their fundamental properties. Readers interested in theoretical aspects of
Padé approximation are referred to the encyclopedic work by Baker and Graves-Morris [24].

Let 5 : Ω → C be analytic on * ⊂ Ω and let I0 ∈ * . The rational function A<=(I) :=
?<=(I)@<=(I)−1, where

?<=(I) :=
<∑
:=0

2
[</=]
:

I: , @<=(I) :=
=∑
:=0

3
[</=]
:

I: ,

is an [</=] Padé approximant to 5 (I) at I = I0 if the denominator is normalized so that
@<=(I0) = 1 and 5 (I) − A<=(I) = $

(
(I − I0)<+=+1) as I → I0. Given 5 , <, and =, an [</=] Padé

approximation might not exist, but if it does then it is unique. If we further require that ?<=
and @<= are coprime, then ?<= and @<= are also unique.

In order to develop a new algorithm for the matrix logarithm, we consider the Padé approx-
imants to eI at I = 0, which we denote by Ã<=(I) := ?̃<=(I)̃@<=(I)−1. These approximants exist
for any choice of < and =, and the coefficients of numerator and denominator of Ã<= are [17,
Thm. 5.9.1]

(4)
2̃
[</=]
:

=

(
<

:

)
(< + = − :)!
(< + =)! , for : = 0, . . . , <,

3̃
[</=]
:

= (−1):
(
=

:

)
(< + = − :)!
(< + =)! , for : = 0, . . . , =,
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respectively. Here we focus in particular on diagonal approximants, for which < = =, as our
algorithm exploits the property 2

[</<]
:

= (−1):3[</<]
:

, which in turn implies that ?̃<<(I) =
@̃<<(−I) and that Ã<(I) := Ã<<(I) has the special structure (3).

As is customary in the literature of matrix function, we restrict our attention to approx-
imants that, from a computational point of view, are optimal, in the sense that they are the
approximants of highest degree that can be evaluated with a fixed number of matrix multiplic-
ations. Since in our algorithms we do not use Ã2, which is the only optimal Padé approximant
to the matrix exponential of even degree [4, Prop. 4], in section 3 we will consider only odd
values of <.

3 Specialized substitution algorithms

We discuss numerical algorithms for the solution of the matrix equation

(5) ?(-)@−1(-) = �,

where ? and @ are coprime polynomials of degree 2ℓ + 1 for some positive integer ℓ . Then
we will move to the special case ?(I) = @(−I), in order to take full advantage of the special
structure (3) of the diagonal Padé approximants to the exponential.

As shown in [5, Prop. 9], if ? and @ are coprime then - satisfies (5) if and only if it satisfies
?(-) = �@(-), thus we will consider only the latter equation, which does not feature matrix
inversions. By noting that ?(*−1-*) = *−1�*@(*−1-*), we can further reduce (5) to

(6) ?(.) = )@(.),

where

(7) ) = *−1�*

is block upper triangular with � blocks of size �1 , . . . , �� along the main diagonal. Note that if
. is a primary solution to (6), then it has the same block structure as ).

In practice, it suffices to consider two cases: upper triangularmatrices, which have diagonal
blocks of order 1, and upper quasi-triangularmatrices, which can have diagonal blocks of order
1 or 2. More specifically, we focus on two (block) triangularizations: the Schur decomposition
� =: *)*∗, where ),* ∈ C#×# are upper triangular and unitary, respectively; and the
real Schur decomposition � := &(&) , where (, & ∈ R#×# are upper quasi-triangular and
orthogonal, respectively. We stress that this choice is not restrictive, as all square complex
matrices have a Schur decomposition, and all square real matrices have also a real Schur
decomposition.

In order to exploit the structure of the diagonal Padé approximants to the exponential
function, it is convenient to rewrite (6) as

(8) 6(.2) + .ℎ(.2) − )6(.2) + ).ℎ(.2) = 0,

where 6(G) = ∑ℓ
:=0 �:G

: and ℎ(G) = ∑ℓ
:=0 �:G

: . Note that since 6 and ℎ are polynomials of
degree ℓ , working with (8) might significantly reduce the computational cost of solving (5).

3.1 Substitution algorithms for (8)

Nowwedescribe a technique for solvinggeneral equations of the type (6), where) = ()8 9)8 , 9=1,...,�
and . = (.8 9)8 , 9=1,...,� are block upper triangular matrices with the same block structure. By
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writing the equation at block level, we obtain the nonlinear system of equations

?(.88) = )88@(.88), 8 = 1, . . . , �,(9)
!8 9(.8 9) = 18 9 , 1 ≤ 8 < 9 ≤ �,(10)

where !8 9 is a linear operator depending only on .88 and .9 9 , and 18 9 is a nonlinear polynomial
in the blocks )̄y z̄ and .ȳ z̄ such that either ȳ = 8 and z̄ < 9, or ȳ > 8 and z̄ = 9.

Equations (9) and (10) naturally lead to an algorithm for the solution of (6), as we now
explain. The diagonal blocks .11 , . . . , .�� of the solution can be computed by solving the
equations in (9), whereas the blocks above the diagonal can be obtained by solving those
in (10), one superdiagonal at a time, with a substitution procedure.

In order for this algorithm to be effective, it is necessary to find efficient techniques to
compute .88 , !8 9 , and 18 9 . When ) is upper (quasi-)triangular, (9) is made of scalar equations
or matrix equations with 2 × 2 unknowns and coefficients, whose solutions can be found by
solving only scalar polynomial equations [5, Prop. 15]. The computation of !8 9 and 18 9 can be
performed in a number of ways that are equivalent mathematically, but not numerically.

For several evaluation schemes it has been shown that the computational cost of computing
. by constructing !8 9 and 18 9 for all 8 and 9 is asymptotically the same as the cost of evaluating the
rational function A(I) := ?(I)@(I)−1 at an upper quasi-triangular matrix. Existing substitution
methods are derived from schemes that evaluate A at the matrix argument � by computing
% := ?(�) and& := @(�) separately and then solving themultiple right-hand side linear system
&- = %. These algorithms differ in the way the numerator and denominator are evaluated: [5,
Alg. 1] uses Horner’s scheme, [3, Alg. 1] explicitly computes powers of � and combines them,
whereas [3, Alg. 2] relies on the more powerful Paterson–Stockmeyer scheme for polynomial
evaluation.

The applicability of the algorithms depends on the existence of solutions to the equations
in (9) and to the nonsingularity of the operators !8 9 in (10). It has been shown in [3, Thm. 3.4]
that once the diagonal blocks are computed, the three algorithms are applicable if and only if
for 1 ≤ 8 < 9 ≤ � one has that A[�8 ,� 9] ≠ 0, where �8 and � 9 denote an eigenvalue of .88 and
.9 9 , respectively. In principle, any of [5, Alg. 1], [3, Alg. 1], or [3, Alg. 2] can be used to solve
(8), but by exploiting the special structure of the numerator and denominator of this rational
equation we can develop tailored algorithms that require fewer arithmetic operations than a
straightforward application of the algorithms in [5] or [3].

Our algorithm for solving (8) is based on an evaluation scheme that uses only even powers
of .. This approach roughly halves the computational cost of solving (5) with respect to [3,
Alg. 1], and for ℓ = 1, . . . , 5 requires fewer matrix multiplications than [3, Alg. 2] or [5, Alg. 1].

For ℓ greater than 5 it is possible to use evaluation schemes that do not form all the powers of
.2. In principle, for any such evaluation scheme, one could implement a “more complicated”
structured algorithm for the solution of A(.) = ) that roughly requires as many operations
as the evaluation of A()). Such “optimal schemes” are not needed for the computation of
the matrix logarithm in double precision floating-point arithmetic, as neither accuracy nor
performance would improve if ℓ greater than 5 were used. Larger values may be of interest or
even necessary in a multiprecision setting, but we will not discuss this aspect here.
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3.2 Structured algorithm based on even powers

In analogy with [3, Eq. (3.6)], we define the sequence

.[:] =


� , : = 0,
.2 , : = 1,
.[1].[:−1] , : = 2, . . . , ℓ ,

where .[:] = .2: . The diagonal blocks of .[:] can be computed by solving the equation
A(.) = )88 , for 8 = 1, . . . , �. For the off-diagonal block we rewrite (8) as an equation involving
only.8 9 and blocks of 6(.)ȳ z̄ , ℎ(.)ȳ z̄ , and.[:]ȳ z̄

such that ȳ+ z̄ < 8+ 9. These blocks are located below
and to the left of that in position (8 , 9), and together with the blocks of ) they can be regarded
as known quantities, assuming an algorithms that computes the blocks of . one diagonal at a
time from the main diagonal to the top right corner.

The block in position (8 , 9) of the sequence can be written, for : = 2, . . . , ℓ , as

.
[:]
8 9
= .

[1]
88
.
[:−1]
8 9

+ .[1]
8 9
.
[:−1]
9 9
+ �[:]

8 9
, �

[:]
8 9

:=
9−1∑
C=8+1

.
[1]
8C
.
[:−1]
C 9

.

For : > 2, by substituting the formula for .[:−1]
8 9

into that for .[:]
8 9

one obtains a formula for the

latter that involves only known quantities and the two blocks .[:−2]
8 9

and .[1]
8 9

, and repeating the
procedure we obtain, for : = 2, . . . , ℓ ,

(11) .
[:]
8 9
=

:−1∑
D=0

.
[D]
88
.
[1]
8 9
.
[:−D−1]
9 9

+Φ[:]
8 9
, Φ

[:]
8 9

:=
:−2∑
D=0

.
[D]
88
�
[:−D]
8 9

,

where .[:]
8 9

is given in terms of .[1]
8 9

and known quantities. Using (11) and setting Φ[1]
8 9
= 0, we

can write, for : = 1, . . . , ℓ ,

(12) .
[:]
8 9
= �

[:]
8 9
(.[1]
8 9
) +Φ[:]

8 9
, �

[:]
8 9
(+) :=

:−1∑
D=0

.
[D]
88
+.
[:−D−1]
9 9

.

From (8), we have that

(13) (� − )88)6(.2)8 9 + (� + )88)
(
.88ℎ(.2)8 9 + .8 9ℎ(.2)9 9

)
=

− (� + )88)
9−1∑
C=8+1

.8Cℎ(.2)C 9 +
9∑

C=8+1
)8C&C 9 ,

where & = 6(.2) −.ℎ(.2), and the right hand side contains just known quantities. In order to
isolate the terms containing .8 9 in the left hand side, we exploit (12) to obtain

6(.2)8 9 =
ℓ∑
:=0

�:.
[:]
8 9
=

ℓ∑
:=1

�:�
[:]
8 9
(.[1]
8 9
) +

ℓ∑
:=1

�:Φ
[:]
8 9
,

ℎ(.2)8 9 =
ℓ∑
:=0

�:.
[:]
8 9
=

ℓ∑
:=1

�:�
[:]
8 9
(.[1]
8 9
) +

ℓ∑
:=1

�:Φ
[:]
8 9
,
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and we note that

(14) .
[1]
8 9
= #8 9(.8 9) + Φ̃8 9 , #8 9(.) := .88. + ..9 9 , Φ̃8 9 :=

9−1∑
C=8+1

.8C.C 9 .

Therefore, (8) is equivalent to an equation of the form

(15) !8 9(.8 9) = 18 9 ,

where

!8 9(.8 9) :=
ℓ∑
:=1

�:�
[:]
8 9
(#8 9(.8 9)) + (��8 + )88).8 9ℎ(.2)9 9 ,

18 9 :=
9∑

C=8+1
)8C@(.)C 9 − (��8 + )88)

9−1∑
C=8+1

.8Cℎ(.2)C 9 −
ℓ∑
:=1

�:
(
�
[:]
8 9
(Φ̃8 9) +Φ[:]8 9

)
,

with �: = �: ��8 + �:.88 + )88(�:.88 − �: ��8 ).
In order to get the matrix coefficient of the linear system !8 9(.8 9) = 18 9 , we use the operator

vec, which stacks the columns of an " × # matrix into a long vector of length "# . The vec
operator features in the identity vec(�1�2�3) = (�)3 ⊗ �1)vec(�2) [27, Lemma 4.3.1], where
� ⊗ � denotes the Kronecker product of the two matrices � and �.

By taking the vec of both sides of (15), we get

(16) "8 9vec(.8 9) = !8 9 ,

where

"8 9 :=
ℓ∑
:=1

�:�̂
[:]
8 9
#̂8 9 + ℎ(.2))9 9 ⊗ (��8 + )88),

!8 9 := "8 9 − #8 9 ,

"8 9 := vec
( 9∑
C=8+1

)8C@(.)C 9 − (��8 + )88)
9−1∑
C=8+1

.8Cℎ(.2)C 9
)
,

#8 9 :=
ℓ∑
:=1

�:
(
�̂
[:]
8 9

vec
(
Φ̃8 9

)
+ vec

(
Φ
[:]
8 9

) )
,

(17)

and �̂[:]
8 9

and #̂8 9 are the matrices representing the operators �[:]
8 9

and #8 9 , respectively.
Using the techniques in [3, sect. 3], we can use (17) to design an algorithm for the solution

of (8): after computing the diagonal blocks of .[:], 6(.2) and ℎ(.2) directly, the off-diagonal
blocks in the upper triangular half of. can be obtained, one super-diagonal at a time, using (16).
The pseudocode of this procedure is given in detail in Algorithm 1.

Some computation can be saved by observing that Φ[:]
8 9

and �̂[:]
8 9

follow the recursions

Φ
[2]
8 9
= �
[2]
8 9
, Φ

[:]
8 9
= �
[:]
8 9
+ .[1]

88
Φ
[:−1]
8 9

, : = 3, . . . , ℓ ,

�̂
[1]
8 9
= ��8�9 , �̂

[:]
8 9
=

(
(.[1]
9 9
)) ⊗ ��8

)
�̂
[:−1]
8 9
+ ��9 ⊗ .

[:−1]
88

, : = 2, . . . , ℓ .
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Algorithm 1: Algorithm for A(-) = �, with A as in (3), based on even powers.
Input : � ∈ C#×# , �0 , . . . , �ℓ coefficients of 6, �0 , . . . , �ℓ coefficients of ℎ.
Output: - ∈ C#×# such that ?(-)@−1(-) ≈ �.

1 Compute a block upper triangular decomposition � := *)*−1 as in (7).
2 for 8 = 1 to � do
3 .88 ← a solution to 6(-2) + -ℎ(-2) − )88(6(-2) − -ℎ(-2)) = 0
4 .

[1]
88
← .2

88

5 for : = 2 to ℓ do
6 .

[:]
88
← .

[1]
88
.
[:−1]
88

7 �88 ←
∑ℓ
:=0 �:.

[:]
88

8 �88 ←
∑ℓ
:=0 �:.

[:]
88

9 &88 ← �88 − .88�88

10 for E = 1 to � − 1 do
11 for 8 = 1 to � − E do
12 9 ← 8 + E
13 for : = 2 to ℓ do
14 �

[:]
8 9
← ∑9−1

C=8+1.
[1]
8C
.
[:−D−1]
C 9

15 Φ̃8 9 ←
∑9−1
C=8+1.8C.C 9

16 Φ
[2]
8 9
← �

[2]
8 9

17 for : = 3 to ℓ do
18 Φ

[:]
8 9
← �

[:]
8 9
+ .[1]

88
Φ
[:−1]
8 9

19 �̂
[1]
8 9
← ��8�9

20 for : = 2 to ℓ do

21 �̂
[:]
8 9
←

((
.
[1]
9 9

))
⊗ ��8

)
�̂
[:−1]
8 9
+

(
��9 ⊗ .

[:−1]
88

)
22 for : = 1 to ℓ do
23 �: ← �: ��8 + �:.9 9 + )88(�:.88 − �: ��8 )

24 "8 9 =

(∑ℓ
:=1(��9 ⊗ �:)�̂

[:]
8 9

)
(.)
9 9
⊗ ��8 + ��9 ⊗ .88) + �)

9 9
⊗ (��8 + )88)

25  ← ∑9−1
C=8+1.8C�C 9

26 !8 9 ← vec
(∑9

C=8+1 )8C&C 9 − (��8 + )88) 
)

27 !8 9 ← !8 9 −
∑ℓ
:=2 �:

(
�̂
[:]
8 9

vec
(
Φ̃8 9

)
+ vec

(
Φ
[:]
8 9

) )
− �1 vec

(
Φ̃8 9

)
28 .8 9 ← vec−1("−1

8 9
!8 9)

29 .
[1]
8 9
← .88.8 9 + .8 9.9 9 + Φ̃8 9

30 for : = 2 to ℓ do
31 .

[:]
8 9
← .

[1]
88
.
[:−1]
8 9

+ .[1]
8 9
.
[:−1]
9 9
+ �[:]

8 9

32 �8 9 ←
∑ℓ
:=1 �:.

[:]
8 9

33 &8 9 ←
∑ℓ
:=1 �:.

[:]
8 9
−  − .88�8 9 − .8 9�9 9

34 - ← *.*−1

8



Applicability The algorithm may have a breakdown if "8 9 is singular. We show that this
depends on what solutions to (9) are chosen, but does not happen when computing isolated
solutions. Before stating the applicability condition, we provide a technical lemma.

Lemma 1. For the matrix "8 9 in (17), one has that

(18) "8 9 =

2ℓ+1∑
:=1

2: �̂
[:]
8 9
− (� ⊗ )88)

2ℓ+1∑
:=1

3: �̂
[:]
8 9
, �̂

[:]
8 9

:=
:−1∑
D=0
(.:−1−D
9 9 )) ⊗ .D88 .

where 2: and 3: , for : = 1, . . . , 2ℓ + 1, are the coefficients of ?(I) := 6(I2) + Iℎ(I2) and @(I) :=
6(I2) − Iℎ(I2), respectively.
Proof. First, observe that

�̂
[:]
8 9
#̂8 9 =

( :−1∑
D=0
(.[:−1−D]
9 9

)) ⊗ .[D]
88

)
(.)9 9 ⊗ ��8 + ��9 ⊗ .88)

=

:−1∑
D=0

(
(.2(:−1−D)+1
9 9

)) ⊗ .2D
88 + (.

2(:−1−D)
9 9

)) ⊗ .2D+1
88

)
=

2:−1∑
D=0
(.2:−1−D
9 9 )) ⊗ .D88 = �̂

[2:]
8 9
.

Define

%̃8 9 :=
ℓ∑
:=1

(
��9 ⊗ (�: ��8 + �:.88)

)
�̂
[2:]
8 9
+ ℎ(.2))9 9 ⊗ ��8 ,

%̂8 9 :=
ℓ∑
:=1

(
��9 ⊗ (�: ��8 − �:.88)

)
�̂
[2:]
8 9
− ℎ(.2))9 9 ⊗ ��8 .

(19)

In view of (17), it is necessary to prove only that %̃8 9 =
∑2ℓ+1
:=1 2: �̂

[:]
8 9

and that %̂8 9 =
∑2ℓ+1
:=1 3: �̂

[:]
8 9
.

Note that, since �: = 22: and �: = 22:+1, we have

(20) (��9 ⊗ �: ��8 )�̂
[2:]
8 9

= 22: �̂
[2:]
8 9

, : = 1, . . . , ℓ ,

and, since ℎ(.2)9 9 =
∑ℓ
:=0 �:.

2:
9 9
, we have

(21)
ℓ∑
:=1

(
��9 ⊗ �:.88)�̂

[2:]
8 9
+ ℎ(.2))9 9 ⊗ ��8

=

ℓ∑
:=1

22:+1
(
(��9 ⊗ .88)�̂

[2:]
8 9
+ (.2:

9 9 )) ⊗ ��8
)
+21��8�9 =

ℓ∑
:=0

22:+1�̂
[2:+1]
8 9

,

where the latter equality follows from the definition of �̂[:]
8 9
, since

(��9 ⊗ .88)�̂
[2:]
8 9
+ (.2:

9 9 )) ⊗ ��8 =
2:−1∑
D=0
(.2:−1−D
9 9 )) ⊗ .D88.88 + (.2:

9 9 )) ⊗ �

=

2:∑
D=0
(.2:−D
9 9 )) ⊗ .D88 = �̂

[:+1]
8 9

.

9



Equations (20) and (21) together show the first equality in (19). The corresponding equality
for %̂8 9 can be proved analogously, and this concludes the proof.

Now we can state the applicability theorem.

Theorem 2. Let 6 and ℎ be polynomials of degree ℓ , let ?(I) := 6(I2)+Iℎ(I2) and @(I) := 6(I2)−Iℎ(I2)
be coprime, let A(I) := ?(I)@(I)−1, let ) = ()8 9) ∈ C#×# be block upper triangular with � diagonal
blocks of size �1 , . . . , ��, and let Ξ8 ∈ C�8×�8 , for 8 = 1, . . . , �, be a solution to A(Ξ) = )88 . Then the
following two conditions are equivalent:

1. Algorithm 1 with the choice .88 = Ξ8 is applicable, i.e., equation (16) has a unique solution .8 9 for
1 ≤ 8 < 9 ≤ �;

2. for all 1 ≤ 8 < 9 ≤ �, if �8 and �9 are eigenvalues of Ξ8 and Ξ9 , respectively, then A[�8 , �9] ≠ 0.

Under these conditions, if Ξ8 is an isolated solution of the equation A(Ξ) = )88 for 8 = 1, . . . , � then
Algorithm 1 computes an isolated solution to (8).

Proof. The proof is analogous to that of [3, Thm. 3.4] once one observes that the matrix "8 9

in (18), which determines the applicability of Algorithm 1, is the same as that in [3, Eq. (3.15)],
which determines the applicability of [3, Alg. 1].

Implementation details Cancellation can occur in the computation of the diagonal elements
of the matrix � − )88 . This issue can be addressed by defining 6

[D]
9 9

:=
∑ℓ
E=D �E.

2(E−D)
9 9

and

ℎ
[D]
9 9

:=
∑ℓ
E=D �E.

2(E−D)
9 9

, and rewriting the matrix coefficient in (18) as

"8 9 = (� ⊗ (� − )88))
ℓ∑
D=1
((6[D]

9 9
)) ⊗ .2D−1

88 ) + ((6[D]
9 9
.9 9)) ⊗ .2D−2

88 )

+ (� ⊗ (� + )88).88)
ℓ∑
D=1
((ℎ[D]

9 9
)) ⊗ .2D−1

88 ) + ((ℎ[D]
9 9
.9 9)) ⊗ .2D−2

88 )

+ (ℎ[0]
9 9
)) ⊗ (� + )88),

which given 6
[D]
9 9

, ℎ[D]
9 9
, and .[D]

88
= .2D

88
for D = 1, . . . , ℓ can be evaluated with the following

algorithm:
1. compute Γ8 9 = (� ⊗ .88 + .)9 9 ⊗ �);

2. compute (6[D]
9 9
)) ⊗ .[D−1]

88
and (ℎ[D]

9 9
)) ⊗ .[D−1]

88
, for D = 1, . . . , ℓ ;

3. compute �1 =
∑ℓ
D=1((6

[D]
9 9
)) ⊗ .[D−1]

88
)Γ8 9 ;

4. compute �2 = (� ⊗ .88)
∑ℓ
D=1((ℎ

[D]
9 9
)) ⊗ .[D−1]

88
)Γ8 9 ;

5. compute "8 9 = �2 + (ℎ[0]9 9 )) ⊗ � + �1 + (� ⊗ )88)(�2 + (ℎ[0]9 9 )) ⊗ � − �1).
The last step replaces the cheaper and more obvious:
∗5. compute "8 9 = (� ⊗ (� − )88))�1 + (� ⊗ (� + )88))(�2 + (ℎ[0]9 9 )) ⊗ �);

which may, however, be prone to numerical cancellation.
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Computational cost As in the other substitution algorithms for (quasi-)triangular matrices,
the computational cost is related to the number of matrix multiplication needed by the eval-
uation scheme on which the algorithm is based. For a triangular matrix, the most expensive
steps of Algorithm 1 with respect to the size � = # are the computation of �[:]

8 9
, for : = 1, . . . , ℓ ,

and the two sums on the right-hand side of (13). The total cost of the algorithm is ℓ+2
3 �3 + >(�3)

operations. Since � = max{<, =} = 2ℓ + 1, we can write the cost as �+3
6 �3 + >(�3). Therefore

Algorithm 1 is asymptotically cheaper than [3, Alg. 1] for any< and notmore expensive than [3,
Alg. 2] for < ≤ 15.

4 Computing the matrix logarithm

The inverse scaling and squaring algorithm is one of the most effective techniques for com-
puting the principal logarithm of a matrix. For instance, the functions logm of MATLAB and
Base.log of Julia are based on the inverse scaling and squaring method as described in [15,
Alg. 4.1] and [14, Alg. 6.1], whereas the function logm of Octave implements the variant in [19,
Alg. 11.9].

The algorithm finds the (real) Schur decomposition � = *)*∗ and sets � = )2−B where B is
an integer such that the spectrum of � lies within the open disc {I ∈ C : |I−1| < 1}. Thematrix
log � is then approximated by A<(� − �), where A< is the [</<] diagonal Padé approximant
to log I at I = 1. Finally, the logarithm of � is recovered through log� = *(log))*∗ =
*(2B log �)*∗ ≈ *

(
2BA<(� − �)

)
*∗.

The degree < is chosen so to guarantee that the relative backward truncation error

(22)
‖�< ‖
‖� − �‖ ,

where �< := exp(A<(� − �)) − �, is smaller than the unit roundoff D in exact arithmetic.
Computing �< directly would be too expensive, and a possible approach is to expand �< in a
power series and bound (22) by

(23)
‖�< ‖
‖� − �‖ ≤

∞∑
:=2<+1

|�̂: |?(� − �): =: �<(?(� − �)),

where

(24) ?(-) = max{‖-? ‖1/? , ‖-?+1‖1/(?+1)}

and ? is any positive integer that satisfies ?(? − 1) ≤ 2< + 1.
The coefficients of the series (23) can be computed symbolically, and by combining symbolic

and high precision computation, one can estimate accurately, for 8 between 1 and some positive
integer <max, the quantity

(25) ��8 = max
�∈R+
{�8(�) ≤ D}.

Note that ?(� − �) ≤ ��
8
guarantees that ‖�8 ‖/‖� − �‖ ≤ D. It is convenient to set < to the

smallest 8 such that A8(� − �) delivers an approximation to log � with a backward error below
the unit roundoff.

We now comment on the choice of the number of square roots B and the degree of the
approximation <. On the one hand, a large B leads to a matrix � with eigenvalues near 1, for
which a small < is sufficient to compute an approximation whose truncation error is bounded

11



Tab. 1: The values of �< in [15, Table 2.1] are compared with those of ��< for < between 1 and
8.

< �< ��<

1 1.586970738772063 × 10−5 3.650024116682167 × 10−8

2 2.313807884242979 × 10−3 3.759321363926338 × 10−4

3 1.938179313533253 × 10−2 8.202379304954202 × 10−3

4 6.209171588994762 × 10−2 3.792548581321354 × 10−2

5 1.276404810806775 × 10−1 9.334652296460314 × 10−2

6 2.060962623452836 × 10−1 1.668083440029836 × 10−1

7 2.879093714241195 × 10−1 2.479601520292692 × 10−1

8 3.666532675959788 × 10−1 3.287599317808182 × 10−1

by D. On the other hand, a small B requires a larger < to get an approximation of the same
quality. The algorithm attempts to minimize the computational cost by finding a trade-off
between B and <. Since for a triangular � evaluating A<(� − �) and computing the square root
of � require <#3/3 and #3/3 flops, respectively, it may be worth taking an additional square
root if doing so is expected to decrease the degree of the approximant to be used by more
than 1. Therefore, in view of the estimate

(26) ?(�1/2 − �) ≈
?(� − �)

2 ,

the algorithm takes an additional square root when ?(� − �) ≤ 2��
<−2. In fact, this condition

has to be checked only if ��
<−1 < 2��

<−2, as the degree < is selected as a candidate only if
��
<−1 < ?(� − �) ≤ ��< .
Once the pair (B, <) is chosen, the algorithm evaluates the [</<] Padé approximant at �− �,

then reverts the square roots by exploiting thematrix identity log) = 2B log)2−B = 2B log(� − �),
and returns the approximation 2B*A<(�−�)*∗. In order to improve the accuracy of the solution,
the diagonal and first upper diagonal of � − � and A<(� − �) can be recomputed by using direct
formulae for the blocks along the diagonal [15].

As noted in [19, Chap. 11], it is not necessary to check the values of < larger that <max = 7,
since <max is the largest integer 8 that satisfies ��

8
≤ 2��

8−2, and for larger values taking an
additional square root is expected to reduce the cost of the evaluation of the Padé approximant
by at least 2#3/3 flops.

Remark 1. The values of �< in [15, Table 2.1] for double precision are computed using an expansion
different from that in (23). The values in [15, Table 2.1] and the correct value of these constants for
double precision are reported in the first and second column of Table 1, respectively.

4.1 A new analysis

In order to exploit the algorithm in section 3 to compute log�, we explore a different approach
to the approximation of log �, which relies on solving the rational equation Ã<=(-) = �, where
Ã<=(I) = ?̃<=(I)̃@<=(I)−1 is the [</=] Padé approximant to eI at I = 0. As the poles of Ã<=(I)
lie in the annulus [32, Thm. 2.2]{

I ∈ C : (< + =),0(e−1) < |I | < < + = + 4
3

}
,
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where,0 is the principal branch of the Lambert, function, there exists a neighborhood of 0
where Ã<= is analytic. By applying the quotient rule to Ã<= and using (4), one can easily see
that Ã ′<=(0) ≠ 0. Thus, there exists an inverse of Ã<= , say Ã −1

<= , analytic in a neighborhood of 1
and such that Ã −1

<=(1) = 0.
For a sufficiently small � > 0, there exists a ball ℬ<= with center 1 where the branch Ã −1

<= is
analytic, |eÃ −1

<=(I) − I |/|I | ≤ � for all I ∈ ℬ<= , and Ã ′<=(I) ≠ 0 in Ã −1
<=(ℬ<=). This branch of Ã −1

<=

approximates the principal logarithm in a neighborhood of 0, where the quantity �<=(I) :=
eÃ −1

<=(I)/I − 1 can be seen as a relative backward truncation error, and in a neighborhood of 1 we
have the series expansion

(27) �<=(I) =
∞∑

:=<+=+1
�̂:(I − 1): .

The coefficients in (27) can be easily computed from those of the series expansion

(28) exp(̃A −1
<=(I)) − I =

∞∑
:=0

�:(I − 1): ,

which can be obtained by composing the series expansion for eI at I = Ã −1
<=(1) = 0 with the

series expansion for Ã −1
<=(I) at 1 determined using Lagrange’s expansion formula [34, Fact 3.6.7].

Since Ã ′<=(I) approximates eI up to the (< + =)th derivative we have that �: = 0 for : ≤ < + =,
and we can conclude that (27) holds with �̂<+=+1 = �<+=+1 and �̂: = �: − �̂:−1 for : > < + = + 1.

Turning tomatrices, if the eigenvalues�1 , . . . ,�# of � lie inℬ<= , then the equation Ã<=(-) =
�, has a unique solution, say - := Ã −1

<=(�), with eigenvalues Ã −1
<=(�1), . . . , Ã −1

<=(�# ), which is
primary and isolated, and can thus be computed using Algorithm 1. The existence of such a
solution follows from [3, Thm. 3.3], since Ã ′<=(�8) ≠ 0 for 8 = 1, . . . , # and no pair of distinct
eigenvalues of - is mapped to the same complex value. The applicability of Algorithm 1
follows from Theorem 2.

The backward truncation error in the approximation of log � by means of the inverse of Ã<=
is given by thematrix�<= = e-−� = exp(̃A −1

<=(�))−� ∈ C#×# , which satisfies- = log(�+�<=).
If the eigenvalues of � are within the radius of convergence of the series (27), we can write

(29)

‖�<= ‖
‖�‖ ≤

 ∞∑
:=<+=+1

�̂:(� − �):


≤
∞∑

:=<+=+1
|�̂: |?(� − �):

=: �<=(?(� − �)),

where the function ? is defined in (24). Note that unlike [15], we divide by the norm of �
instead of � − � (compare equation (23)), as the function we are approximating is in fact log �.

In analogy with the algorithm of Al-Mohy and Higham [15], we compute

(30) ��8 = max
�∈R+
{�88(�) ≤ D},

to aid with the choice of the diagonal Padé approximant that will deliver full accuracy. We
report the values of ��

8
for optimal degrees between 1 and 9 in Table 2. These values were

determined by computing symbolically the first 600 terms of the series expansion �88 and
performing all subsequent computation using 250 digits of accuracy. As implicitly assumed in
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Tab. 2: First few optimal degrees for the algorithm that computes the logarithm by solving a
matrix equation with the diagonal approximants to the exponential. For each degree < 9 we
report the asymptotic cost of the algorithm �(< 9), the values of ? that satisfy ?(?−1) ≤ 2< 9 +1,
and the value ��<9

in (30).

9 < 9 �(< 9) ? ��<9

1 1 #3/3 2 1.1003511163692342 × 10−5

2 2 2#3/3 2 2.4012849957497128 × 10−3

3 3 3#3/3 2, 3 2.7099573188927441 × 10−2

4 5 4#3/3 2, 3 2.6059916466908718 × 10−1

5 7 5#3/3 2, 3, 4 6.5282885430846634 × 10−1

6 9 6#3/3 2, 3, 4 9.0572865457020838 × 10−1

the analysis by Al-Mohy and Higham [15], we conjecture that the radius of convergence of �88
is indeed larger than ��

8
, which seems to be the case numerically.

A variant of this algorithm is obtained by considering the [</=] Padé approximant to eI −1
at I = 0, say Â<=(I) := ?̂<=(I)̂@<=(I)−1, and approximating log � as a solution to Â<=(-) = �− �.
Note that Ã<=(I) = Â<=(I) − 1, and in exact arithmetic this variant computes the same solution
as Algorithm 2. Hence the backward error in (29), can equivalently be written as

�<= = exp(̂A −1
<=(� − �)) − �.

and bounded by expanding the function eÂ −1
<=(I) − 1 − I at 0. We note that this method would

require the same values of ��
8
, but in finite arithmetic may produce results which differ from

those of the method above.

4.2 The dual inverse scaling and squaring algorithm

In order to develop a new algorithm for computing the matrix logarithm, we begin by determ-
ining what degrees the new method should be using. A closer look at Table 2 reveals two
important points. First, since ��< must be below 1 and ��<5 = ��7 > 0.5, we are guaranteed that
��<9

< 2��<9−2 for 9 > 6, and the largest degree to consider is <6 = 9, since for larger values of <
taking an additional square root is expected to reduce the computational cost by at least #3/3.
On the other hand, ��<9−1 > 2��<9−2 for 9 ≤ 6, thus if ?(� − �) is smaller than ��<9

, in view of the
estimate (26) taking an additional square root will never reduce the cost of the approximant
to be used by more than #3/3, and we conclude that taking an additional square root is not
likely to reduce the computational cost once an approximant has been found. Finally, we do
not consider the approximants of degree 1 or 2, whose evaluation is prone to loss of accuracy
in floating-point arithmetic [19, p. 245].

The pseudocode of our strategy for computing the matrix logarithm using the analysis in
section 4.1 is given in Algorithm 2. The algorithm begins by computing the Schur decompos-
ition � =: *)*∗, and then uses the algorithm by Björck and Hammarling [31] to take square
roots of ), B of them say, until the spectral radius of )2−B − � becomes smaller than ��9 . Since
‖- : ‖1/: ≥ �(-) for all : ∈ N and - ∈ C#×# , this is a sufficient condition for ?()2−B − �) to be
smaller than ��9 . We prefer to rely on the spectral radius here as �(-) is much cheaper than
?(-) to compute if - ∈ C#×# is quasi-triangular.

Then, the algorithm tries to determine the smallest < ∈ {3, 5, 7, 9} such that the backward
error in the evaluation of Ã −1

< ()2−B − �) is smaller than D, using the error bound (29) and the
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Algorithm 2: Matrix logarithm via inverse Padé approximation.
Input : � ∈ C#×# such that �(�) ⊂ C \ R−0 .
Output: - ≈ log�.

1 Compute the (real) Schur decomposition � =: *)*∗.
2 B ← 0
3 < ← 0
4 �← )

5 while �(� − �) > ��9 do
6 �← �1/2

7 B ← B + 1
8 while < = 0 do
9 �3 ← normest(� − � , 3)1/3

10 �4 ← normest(� − � , 4)1/4
11 03 ← max{�3 , �4}
12 8 ← 9
13 while 8 ≥ 3 do
14 if 03 ≤ ��

8
then

15 < ← 8

16 8 ← 8 − 2
17 if < = 0 then
18 �5 ← normest(� − � , 5)1/5
19 04 ← max{�4 , �5}
20 �← min(03 , 04)
21 if � ≤ ��9 then
22 if � ≤ ��7 then
23 < ← 7
24 else
25 < ← 9
26 else
27 �← �1/2

28 B ← B + 1

29 . ← 2B*Ã −1
< (�)*∗

values in Table 2. Since only an estimate of ?()2−B − �) is needed, we estimate the 1-norm of
powers of - ∈ C#×# with the algorithm of Higham and Tisseur [22], which performs matrix-
(block) vector multiplications without explicitly computing any powers of -, and thus requires
only $(#2) floating-point operations. In our pseudocode, normest(-, :) denotes the function
that estimates ‖- : ‖1 using this algorithm.

Note that ‖-4‖1/41 ≤ ‖-2‖1/21 implies 3(-) ≤ 2(-), thus for < > 2 there is no need to
compute 2()2−B−�). Therefore, our algorithm computes 03, an estimate of 3()2−B−�), and then
checks whether 03 ≤ ��< for one of the values of < of interest. If that is the case, then it selects
the lowest < that satisfies the inequality, and exits the parameter selection loop. Otherwise,
the algorithm computes 04, an estimate of 4()2−B − �), and uses � := min(03 , 04) to determine
whether an approximant of degree 7 or 9 is expected to deliver full accuracy. The algorithm
sets< = 9 if ��7 < � ≤ ��9 and< = 7 if � ≤ ��7 , and in both cases it exits the parameter selection
loop. Finally, if � > ��9 , another square root is taken, and the selection process is attempted
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again.
Once a pair (B, <) such that �<<(?()2−B − �)) < D is found, the algorithm solves the matrix

equation Ã<(-) = )2−B . The 8th diagonal block of - is chosen as the solutions to the matrix
equation Ã<(-88) = )2−B

88
that is closer to log)2−B

88
in norm. Finally the approximation 2B*-*∗ is

returned.

4.3 Alternative choice for the diagonal blocks of -

The solution of the equation Ã<(-) = � on line 29 of Algorithm 2 has diagonal elements
Ã −1
< (�11), . . . , Ã −1

< (���), where �11, . . . , ��� are the � diagonal blocks of )2−B . These values are
approximations to the corresponding diagonal blocks of log �.

Since - aims to approximate log �, a variant of Algorithm 1 can be obtained by setting, on
line 3 of Algorithm 1, the diagonal blocks of - to log �11, . . . , log ��� and using these values
in the subsequent substitution step. The whole procedure can then be interpreted as applying
Algorithm 2 to the matrix equation

Ã<(-) = �̃, �̃ = � + diag
(̃
A<(log �11) − �11 , . . . , Ã<(log ���) − ���

)
.

5 Numerical experiments

In this section we assess experimentally the accuracy and performance of the algorithms dis-
cussed in section 4 and compare them with the the MATLAB function logm. The experiments
were run on the 64-bit version of MATLAB 9.8.0 (2020a) on a machine equipped with an Intel
I5-6500 processor, running at 3.20GHz. We use a test set of 62 nonnormal matrices from the
literature of the matrix logarithm [15], [6]. These matrices have size ranging between 2 and 13,
and their spectra do not contain any real nonpositive eigenvalues.

In the tests, we consider four implementations:

• logm: the built-in MATLAB function that combines the inverse scaling and squaring
algorithms for complex and real matrices from [15] and [14], respectively, and uses the
constants �< in Table 1.

• logm_amend: same as logm, using the constants ��< in Table 1.

• logm_ex: an implementation of Algorithm 2 that uses the approximants to eI at ) and
the variant in section 4.3 for the choice of the diagonal blocks.

• logm_exm1: an implementation of Algorithm 2 that uses the approximants to eI − 1 at
) − � and the variant in section 4.3 for the choice of the diagonal blocks.

The accuracy of a computed solution -̃ is assessed by means of the relative forward er-
ror ‖-̃ − -‖1/‖-‖1, where - is a reference solution computed using the logm function in
the Advanpix Multiprecision Computation Toolbox [1] with precision set with the command
mp.Digits(64). In order to gauge the stability of these algorithms, we compare the forward
error with the quantity �log(�)D, where �log(�) and D = 2−53 are the 1-norm condition number
of the logarithm of � and the unit roundoff of IEEE double precision arithmetic, respectively.

5.1 Accuracy of the matrix logarithm

Figure 1 illustrates the accuracy of logm, logm_amend, logm_ex, and logm_ex1. In Figure 1a we
compare the forward error of the four implementations on thematrices in our test set, sorted by
decreasing value of �log(�). Figure 1b reports the same data by means of performance profiles.
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Fig. 1: Left: forward error of logm, logm_amend, logm_ex, and logm_ex1 on the matrices in the
test set sorted by descending condition number �log(�). Right: corresponding performance
profile.

Our new algorithms appear to be as forward stable as the MATLAB function logm, and in
fact the forward error is essentially the same, with occasional differences when the forward
error is smaller than �log(�)D.

The performance of logm_ex and logm_exm1 is remarkably similar, and these two new
algorithms appear to be marginally more accurate than logm and logm_amend on just a few of
the matrices in our test set. The difference between the accuracy of logm and logm_amend is
negligible, with results indistinguishable for all but one matrix, where the latter algorithm is
slightly less accurate.

5.2 Computational cost of matrix logarithm

Figure 2 reports the computational cost of the four algorithms on the matrices in our test set.
The top plot shows, for each of the matrices in the test set, the coefficient in front of the leading
term #3 in the expression for the computational cost. The bottom plot reports, for each matrix,
the relative improvement, measured in percent as

(31)
�logm − �logm_ex

�logm_ex
· 100,

where �logm and �logm_ex are the coefficient in front of #3 in the experimental computational
cost of logm and logm_ex, respectively. The matrices are sorted in descending order by com-
putational cost of logm_amend, logm, and logm_ex.

The algorithm logm_amend reaches the highest computational cost on all matrices in the test
set. The algorithm logm has mostly the same cost as logm_amend, but requires an approximant
of lower degree on one third of the test matrices.

The two new algorithms logm_ex and logm_exm1 always have same computational cost, as
they use the same strategy to select the number of square roots to take and the degree of the
Padé approximant to use. According to the metric we consider, these are always more efficient
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Fig. 2: Top: computational cost of logm, logm_amend, logm_ex, and logm_ex1 on the matrices
in the test set. Bottom: relative gain of logm_ex with respect to logm, according to the formula
in (31).

than both logm and logm_amend. The computational cost of logm is typically 20% to 40% (and
up to 75%) higher than that of logm_ex and logm_exm1.

It is important to stress that this theoretical advantage does not translate into a performance
benefit for our MATLAB codes. In fact, while logm evaluates the Padé approximant at a
matrix argument using LAPACK and BLAS routines, the new algorithms rely on a MATLAB
implementation of Algorithm 1, which is much slower than a BLAS-like implementation of the
same algorithm would be.

6 Conclusions

We presented a new algorithm for solving the matrix equation Ã<(-) = �, where Ã< is the
diagonal approximant to the exponential at 0. This algorithm exploits the special structure of
the coefficients of the rational functions Ã< to accelerate the solution of the matrix equation
Ã<(.) = ), where ) is a block upper (quasi-)triangular matrix. We discussed how this new
algorithm can be combined with a suitable adaptation of the strategy developed by Al-Mohy
and Higham [15] in order to develop two new variants of a dual inverse scaling and squaring
algorithm for computing the matrix logarithm.

According to our experimental results, the new algorithms are essentially as accurate as
the MATLAB function logm, despite occasionally delivering a solution with a slightly smaller
forward error, but are more efficient in terms of asymptotic computational cost.

This does not lead to a faster algorithm in the case of our MATLAB implementations.
The missing step to obtaining a truly competitive algorithm is a low-level implementation of
Algorithm 1 in the style of the level-3 BLAS [18]. This highly nontrivial task will be the subject
of future work.
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