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RANDOM MATRICES GENERATING LARGE GROWTH IN LU
FACTORIZATION WITH PIVOTING∗

DESMOND J. HIGHAM† , NICHOLAS J. HIGHAM‡ , AND SRIKARA PRANESH†

Abstract. We identify a class of random, dense n× n matrices for which LU factorization with
any form of pivoting produces a growth factor of at least n/(4 logn) for large n with high probability.
The condition number of the matrices can be arbitrarily chosen and large growth also happens for
the transpose. No previous matrices with all these properties were known. The matrices can be
generated by the MATLAB function gallery('randsvd',..), and they are formed as the product
of two random orthogonal matrices from the Haar distribution with a diagonal matrix having only
one diagonal entry different from 1, which lies between 0 and 1 (the “one small singular value”
case). Our explanation for the large growth uses the fact that the maximum absolute value of any
element of a Haar distributed orthogonal matrix tends to be relatively small for large n. We verify
the behavior numerically, finding that for partial pivoting the actual growth is significantly larger
than the lower bound, and much larger than the growth observed for random matrices with elements
from the uniform [0, 1] or standard normal distributions. We show more generally that a rank-1
perturbation to an orthogonal matrix producing large growth for any form of pivoting also generates
large growth under reasonable assumptions. Finally, we demonstrate that GMRES-based iterative
refinement can provide stable solutions to Ax = b when large growth occurs in low precision LU
factors, even when standard iterative refinement cannot.

Key words. LU factorization, Gaussian elimination, large growth factor, pivoting, random
orthogonal matrix, Haar distribution, MATLAB, randsvd, GMRES-based iterative refinement

AMS subject classifications. 65F05

1. Introduction. The MATLAB code

rng(1), n = 750; kappa = 1e8; mode = 2;

A = gallery('randsvd',n,kappa,mode,[],[],1);
[L,U,P,Q,growth] = gep(A,'p'); growth % Partial pivoting

produces the output

growth =

103.7971

The code uses the function gep from the Matrix Computation Toolbox [15] to compute
the growth factor for LU factorization with partial pivoting on a random n×n matrix
A with n = 750. The growth factor is defined by

ρn(A) =
maxi,j,k |a(k)ij |
maxi,j |aij |

,

where a
(k)
ij (k = 1: n) are the elements at the kth stage of the factorization [16,

sect. 9.3], [35]. Growth of over 100 for a matrix of this size with partial pivoting is
very unusual. Unusually large growth is also obtained for the same matrix with rook
pivoting and complete pivoting:

∗Draft version of May 14, 2020.
Funding: This work was supported by Engineering and Physical Sciences Research Council

grant EP/P020720/1 and the Royal Society.
†School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie

Tait Road, Edinburgh, EH9, 3FD, UK (d.j.higham@ed.ac.uk)
‡Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, srikara.pranesh@manchester.ac.uk).

1



>> [L,U,P,Q,growth] = gep(A,'r'); growth % Rook pivoting

growth =

57.1362

>> [L,U,P,Q,growth] = gep(A,'c'); growth % Complete pivoting

growth =

43.2643

(See [16, sect. 9.1], [30], [35] for details of all these pivoting strategies.) Large growth
factors are undesirable because they are a warning that numerical instability is likely
in the LU factorization, as originally shown by Wilkinson [35].

Several classes of matrices generating large growth factors for partial pivoting are
known. Wilkinson [35, p. 327], [36, p. 212] showed that the n× n matrix of the form
illustrated for n = 4 by

An =


1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1


gives ρn = 2n−1, which is the worst case for partial pivoting. Higham and Higham
[17] give examples of practically occurring n × n matrices for which ρ(A) & n/2 for
any pivoting strategy; they are all orthogonal matrices or well-conditioned diagonal
scalings of orthogonal matrices. Wright [37] describes a class of two-point boundary
value problems for which the multiple shooting method leads to a linear system on
which partial pivoting suffers exponential growth. The matrix is block lower bidiag-
onal, except for a nonzero block in the top right-hand corner. Foster [9] shows that
a quadrature method for solving a practically occurring Volterra integral equation
gives rise to dense linear systems for which partial pivoting again gives growth factors
exponential in the dimension. In all these examples the matrices are well conditioned.

The matrix in our example has 2-norm condition number κ2(A) = σ1/σn = 108,
with singular value decomposition (SVD) of the form

A = PΣQT ∈ Rn×n, PTP = QTQ = I,(1.1a)

Σ = diag(1, . . . , 1, σn), 1 ≥ σn ≥ 0.(1.1b)

Here, n−1 of the singular values of A are equal to 1 and the last one is less than or equal
to 1. The matrices P and Q are orthogonal matrices from the Haar distribution, that
is, they are distributed according to the Haar measure, which is the unique measure
on the orthogonal matrices that is invariant under multiplication on the left and right
by orthogonal matrices [27]. A Haar distributed random orthogonal matrix can be
obtained as the orthogonal QR factor of a matrix with elements from the normal
(0,1) distribution, provided that the factorization is normalized so that the diagonal
elements of R are nonnegative [3], [32].

Matrices of the form (1.1) are generated by a MATLAB function call of the
form gallery('randsvd',n,kappa,mode) with kappa = σ−1n ≥ 1 and mode = 2 (the
default value of mode is 3, which produces geometrically distributed singular values).
Figure 1.1 shows the results of an experiment in which we generated matrices this
way for dimensions n = 100: 100: 2500 and computed the growth factors for partial
pivoting, rook pivoting, and complete pivoting. For each dimension we generated
12 matrices and took the mean growth factor. The figure illustrates the results for
κ2(A) = 102, 106, 1010. As above, we used the the gep function, which computes
the exact growth factor (as opposed to the lower bound maxi,j |uij |/maxi,j |aij | that
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Fig. 1.1. Mean growth factors for matrices (1.1) with κ(A) = 102, 106, 1010 and for rand and
randn matrices, with 12 samples for each n. The black curve is n/(4 logn).

must be used if we have access to the LU factors but not the intermediate quantities).
We used the Parallel Computing Toolbox [29] to speed up the computations. We
see that irrespective of the condition number, the growth factor increases with n at
a rate roughly proportional to n for all three pivoting strategies. The largest growth
factor observed in this experiment was 483. By contrast, for random matrices with
elements from the uniform [0, 1] distribution (rand in MATLAB) or the normal (0, 1)
distribution (randn in MATLAB) the figure shows that the growth factor for partial
pivoting grows more slowly than linearly in n (as previously observed in [34]).

The significance of the matrices (1.1) is that they provide a new class of dense
matrices A for which

• A generates large growth for any pivoting strategy,
• AT also generates large growth for any pivoting strategy,
• κ2(A) is arbitrary and is easily assigned by choosing σn in (1.1).

The existing examples of large growth mentioned above are all well conditioned, some
produce large growth only for partial pivoting, and not all of them produce large
growth for AT .

A growth factor of order αn for some constant α < 1 with α > 1/10 (say) may not
seem to be a serious problem, given that the worst-case growth for partial pivoting is
2n−1. But matrix dimensions in practical problems are increasing, with dense linear
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systems of order 107 being solved on today’s largest machines [4]. The backward
error bound for solution of a linear system Ax = b by LU factorization is proportional
to ρnu, where u is the unit roundoff [16, Thm, 9.5], so growth of order n can be
problematic. Matters are exacerbated by the growing use of low precision arithmetics
such as IEEE half precision (u ≈ 5×10−4) [21] and bfloat16 (u ≈ 4×10−3) [22]. Low
precision LU factorizations are being used in combination with iterative refinement to
achieve faster solution times [11], [12], [13], [20] and the new HPL-AI benchmark uses
this approach [8]. In low precision arithmetic large growth can even cause overflow.
Indeed we spotted the relatively large growth factor for randsvd matrices with mode 2
because it led to overflow in LU factorization on these matrices in IEEE half precision
arithmetic, for which the largest finite number is of order 6× 104.

In the next section we prove that for large n, large growth occurs with high prob-
ability for the matrices (1.1) with κ2(A) = 1. This is the case of Haar distributed
orthogonal matrices. In section 3 we show that if an orthogonal matrix generates
large growth for any pivoting strategy then large growth persists after a rank-1 per-
turbation, under reasonable assumptions. In section 4 we specialize the results to a
rank-1 perturbation of a Haar distributed orthogonal matrix, that is, matrices of the
form (1.1) with an arbitrary κ2(A). In section 5 we provide an alternative analy-
sis for the growth factor of a rank-1 perturbation of an orthogonal matrix based on
the Sherman–Morrison formula. In section 6 we investigate the ability of iterative
refinement to overcome the instability in LU factorization caused by large growth
factors.

2. Orthogonal matrices from the Haar distribution. We first consider the
case where σn = 1 in (1.1), so that A = PQT with P and Q orthogonal matrices
from the Haar distribution. Since the Haar distribution is invariant under left or
right multiplication by an orthogonal matrix, A is also Haar distributed, so we are
effectively taking a single sample from the Haar distribution.

We need the following result from [17].

Theorem 2.1. Let A ∈ Cn×n be nonsingular and set α = maxi,j |aij |, β =
maxi,j

∣∣(A−1)
ij

∣∣, and θ = (αβ)−1. Then θ ≤ n, and for any permutation matri-

ces Πr and Πc such that ΠrAΠc has an LU factorization, the growth factor for GE
without pivoting on ΠrAΠc satisfies ρ(A) ≥ θ.

Theorem 2.1 is used in [17] to show that for certain specific matrices that are
orthogonal, or are well conditioned diagonal scalings of orthogonal matrices, the in-
equality ρn(A) & n/2 holds for any pivoting strategy.

Jiang [24] shows that for n × n matrices A drawn from the Haar distribution,
Pr
(
maxi,j |aij | > 2

√
log(n)/n(1 + ε)

)
→ 0 as n → ∞ for any ε > 0. Hence

maxi,j |aij | . 2
√

log(n)/n for large n with high probability. Since A−1 = AT , we

can take α = β = 2
√

log(n)/n in Theorem 2.1 and conclude that

(2.1) ρn(A) &
n

4 log n

for large n with high probability for any pivoting strategy.
The lower bound in (2.1) is not as large as those for the (scaled) orthogonal

matrices in [17], but those matrices are non-random. Orthogonal matrices from the
Haar distribution are the first class of random orthogonal matrices to be shown to
give large growth.

Figure 2.1 shows the results of an experiment in which we generated Haar dis-
tributed orthogonal matrices of dimensions n = 100: 100: 2500 and computed the
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Fig. 2.1. Growth factors for orthogonal matrices from the Haar distribution: maximum growth
factor (left) and mean growth factor (right) over 12 samples for each n. The black curve is
n/(4 logn).

growth factors for partial pivoting, rook pivoting, and complete pivoting. For each
dimension we generated 12 matrices and we show the maximum and average growth
factors. We see that all the growth factors exceed the approximate lower bound and
that they increase with n a little more rapidly than the lower bound. As expected,
the growth factor for partial pivoting exceeds that for rook pivoting which in turn
exceeds that for complete pivoting.

3. Rank-1 perturbations of orthogonal matrices. Before we treat general
matrices of the form (1.1), we consider the larger class of matrices

(3.1) A = W + xyT ,

where W is orthogonal. Later, we will assume that ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1, but for
now we make no assumptions on the norms.

For the moment, we take W to be any nonsingular matrix that has an LU fac-
torization. We know that the U factor in the LU factorization of W ∈ Rn×n is given
explicitly by [16, sect. 9.2]

uij =
det
(
W (1: i, [1: i− 1, j])

)
det(Wi−1)

, i ≤ j,(3.2)

where Wj = W (1: j, 1: j). Suppose A in (3.1) has the LU factorization A = L̃Ũ . It is
easy to show that

(3.3) det(A) = det(W )(1 + yTW−1x).

Now

A(1: i, [1: i− 1, j]) = W (1: i, [1: i− 1, j]) + x(1: i)y([1: i− 1, j])T

and hence, analogously to (3.3), assuming W (1: i, [1: i− 1, j]) is nonsingular,

det(A(1: i, [1: i− 1, j]) = det
(
W (1: i, [1: i− 1, j])

)
×
(
1 + y([1: i− 1, j])TW (1: i, [1: i− 1, j])−1x(1: i)

)
.
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Similarly,

det(Ai−1) = det
(
Wi−1

)(
1 + y(1: i− 1)TW−1i−1x(1: i− 1)

)
,

so by (3.2) applied to A we have

ũij =
det
(
W (1: i, [1: i− 1, j])

)(
1 + y([1: i− 1, j])TW (1: i, [1: i− 1, j])−1x(1: i)

)
det
(
Wi−1

)(
1 + y(1: i− 1)TW−1i−1x(1: i− 1)

) .

Combining this equation with (3.2) we obtain

ũij
uij

=
1 + y([1: i− 1, j])TW (1: i, [1: i− 1, j])−1x(1: i)

1 + y(1: i− 1)TW−1i−1x(1: i− 1)
.(3.4)

Assume now that W is orthogonal and that there is large growth in its LU fac-
torization. Then |uij | must be large for some indices i and j. In practice we would
expect these i and j to be large (essentially because otherwise a much smaller matrix
can be constructed that gives the same growth), and experiments confirm that this
is usually the case. For example, with n = 1000 and partial pivoting we found that
for the orthogonal MATLAB matrices gallery('orthog',n,j) with j = 1, 2, 5, 6, all
of which have growth factors at least 500, the largest element of U was in the (n, n)
position in every case, while for one hundred 1000 × 1000 matrices of the form (1.1)
with σmin = 10−8, the largest element of U was always in row 953 or higher.

From (3.4), we have the lower bound

(3.5)

∣∣∣∣ ũijuij
∣∣∣∣ ≥ 1− σmin(W (1: i, [1: i− 1, j]))−1‖x‖2‖y‖2

1 + σmin(Wi−1)−1‖x‖2‖y‖2
,

where σmin denotes the smallest singular value, but this bound is too weak to be
informative because the σ−1min terms can both be larger than 1.

Let B be an (n− k)× (n− k) submatrix of W , which we identify with either of
the submatrices on the right-hand side of (3.4). We will argue that the second terms
in the numerator and the denominator of (3.4) should be safely less than 1 for large
n and small k. By Lemma A.1, B has n − 2k singular values equal to 1 as long as
k < n/2. Let B have the SVD B = ŨDṼ T . Assume ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1 and let
g, h ∈ Rn−k denote subvectors of x and y. Then, assuming B is nonsingular,

gTB−1h = gT Ṽ D−1ŨTh(3.6)

= g̃TD−1h̃
(
g̃ = Ṽ T g, h̃ = ŨTh

)
(3.7)

=

n−2k∑
i=1

g̃ih̃i +

n−k∑
i=n−2k+1

g̃ih̃iσi(B)−1.(3.8)

If we assume that g̃ and h̃ have elements of similar magnitudes, so that the elements
are of order at most (n− k)−1/2, then (3.8) expresses gTB−1h as the sum of a term

of order (n− 2k)/(n− k) and a term of order
∑n−k

n−2k+1 σi(B)−1/(n− k). For large n
and k � n, the second term will be less than 1 as long as the sum of the reciprocals of
the k smallest singular values of B is smaller than n− k; since B is a large submatrix
of an orthogonal matrix this is likely to be the case unless B is very special. Under
these conditions we will have |gTB−1h| < 1.
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We conclude that as long as ‖x‖2 ≤ 1 and ‖y‖2 ≤ 1 we can expect the right-hand
side of (3.4) to be of order 1 and hence a large |uij | to imply a large |ũij |, that is, A
will have a large growth factor if W does.

This analysis is for LU factorization without pivoting. The effect of pivoting is
easily incorporated by multiplying on the left and the right of (3.1) by permutation
matrices. It is possible that different pivot sequences are used in the LU factorizations
of A and W , but this is not a concern because we are interested in orthogonal W for
which large growth is obtained for any pivot sequence.

To summarize, we have argued that if the LU factorization of the orthogonal
matrix W suffers large growth with any form of pivoting then the same will be true of
a rank-1 perturbation of 2-norm bounded by 1 provided that (a) large elements of U
occur in the bottom right of the matrix, (b) the corresponding submatrices of W are
not too ill conditioned, and (c) the relevant subvectors of the vectors making up the
rank-1 perturbation have roughly equal elements after transformation by the singular
vector matrices of the submatrices in (b).

A key point is that none of this analysis is particular toW being a Haar distributed
matrix. As an illustration, consider the following MATLAB code, which uses an
orthogonal matrix [17, Eq. (2.3)] that is known to give growth factor at least (n+1)/2.

rng(1), n = 2000;

W = gallery('orthog',n); % Orthog. matrix giving large growth.

[L,U,P,Q,growth_W] = gep(W,'p'); % Partial pivoting

growth_W

for k = 1:100

x = randn(n,1); x = x/norm(x); y = randn(n,1); y = y/norm(y);

A = W + x*y';
[L,U,P,Q,growth_A(k)] = gep(A,'p'); % Partial pivoting

fprintf('%3.0f %9.2e\n', k, growth_A(k))

end

[min(growth_A) mean(growth_A) max(growth_A)]

The growth factor for W is 1046 versus a lower bound of 1000 (rounding all values
to the nearest integer). The minimum, mean, and maximum growth factors for A =
W + xyT are 797, 997, and 1485, confirming that large growth persists (and can even
increase) under these rank-1 perturbations of unit 2-norm. The conditions (a), (b),
and (c) of the previous paragraph are satisfied in every case in this example.

4. Randsvd matrices. We now consider matrices A of the form (1.1) with P
and Q from the Haar distribution. We have

(4.1) A = PQT + (σn − 1)pnq
T
n ,

where pn and qn are the last columns of P and Q, respectively. Since W = PQT

is Haar distributed, it gives a large growth factor with high probability, as shown in
section 2. We have verified experimentally that for matrices of the form (4.1) the
conditions (a), (b), and (c) in the penultimate paragraph of the previous section are
usually satisfied. Therefore the analysis of the previous section applies and provides
an explanation for the behavior seen in Figure 1.1.

It is worth emphasizing that from the argument in section 3 we know that Haar
distributed orthogonal matrices maintain large growth under a wider class of rank-
1 perturbations than (4.1). Figure 4.1 plots growth factors for partial pivoting for
A = W + xyT with W an orthogonal matrix from the Haar distribution and x and
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y generated with elements from the uniform distribution on [0, 1] and then scaled so
that ‖x‖2 = ‖y‖2 = 1. For each n = 100: 100: 2500 we generated 12 random A and
took the mean growth factor. We see that the growth factors for A are very similar
to those for W .

It is interesting to note that, unlike for (4.1) with small σn, A = W + uvT is
very well conditioned when u and v are random unit 2-norm vectors with indepen-
dent entries from the same distribution. Indeed Benaych-Georges and Nadakuditi [1,
sec. 3.2] show that, almost surely

σ1(A)→ 1 +
√

5

2
, σn(A)→ −1 +

√
5

2
as n→∞,

and we know that the other n − 2 singular values remain at 1 (because they are the
square roots of the eigenvalues of ATA, which is the identity plus a rank-2 matrix).
Hence κ2(A) ≈ (1+

√
5)/(−1+

√
5) ≈ 2.8 for large n. In the experiment just mentioned

the values of κ2(A) were all on the interval [2.49, 2.93].
We have also observed experimentally that large growth is preserved under rank-k

perturbations of Haar distributed orthogonal matrices for k ≥ 1, with the growth
factor decreasing as k increases.

5. Analysis via the Sherman–Morrison formula. In section 3 we used the
explicit characterization (3.2) of U in order to study growth factors for rank-1 per-
turbations xyT of orthogonal matrices, focusing on the case where ‖x‖2 ≤ 1 and
‖y‖2 ≤ 1.

In this section we look at rank-1 perturbations of orthogonal matrices from a
different perspective, applying the Sherman–Morrison formula and then making use
of the indirect bound from Theorem 2.1. We will show that that growth of order
n/(4 log(n)) arises for any rank-1 perturbation xyT of a Haar distributed orthogonal
matrix whenever the vectors x and y have 1-norm bounded by 1 and have elements
of roughly uniform magnitude.
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Theorem 5.1. Let A ∈ Rn×n have the form

(5.1) A = W + txyT ,

where W ∈ Rn×n is orthogonal, t ∈ [0, 1], and x, y ∈ Rn satisfy ‖x‖1 ≤ 1 and
‖y‖1 ≤ 1. Let

αw = max
i,j
|wij |,

and suppose that αw < 1. Then A is nonsingular and, for any pivoting strategy
producing an LU factorization for A, we have the lower bound

(5.2) ρn(A) ≥ 1− tαw

αw (αw + t‖x‖∞‖y‖∞)
.

Proof. The Sherman–Morrison formula [14] gives, since W is orthogonal,

(5.3) A−1 = WT − tWTxyTWT

1 + tyTWTx
.

Using the Hölder inequality (|fT g| ≤ ‖f‖∞‖g‖1) we have

max
k
|WTx|k ≤ αw, max

k
|Wy|k ≤ αw.

Also, |yTWTx| ≤ αw < 1, which confirms that the denominator in (5.3) is nonzero
and hence that A is nonsingular, and indeed∣∣∣∣ tWTxyTWT

1 + tyTWTx

∣∣∣∣
ij

≤ tα2
w

1− tαw
.

Hence, in (5.3),

max
i,j
|A−1|ij ≤ αw +

tα2
w

1− tαw
=

αw

1− tαw
.

Using this bound in Theorem 2.1, along with maxi,j |aij | ≤ αw + t‖x‖∞‖y‖∞, we
arrive at (5.2).

In the case where W is an orthogonal matrix from the Haar distribution, we have
αw . 2

√
log(n)/n for large n with high probability, as noted in section 2. In this

case, Theorem 5.1 gives

(5.4) ρ(A) &
1

4 log(n)/n+ 2t
√

log(n)/n‖x‖∞‖y‖∞
.

So if

(5.5) t‖x‖∞‖y‖∞ = o(
√

log(n)/n)

we obtain

(5.6) ρn(A) &
n

4 log n
,

which matches the bound (2.1) for the unperturbed case. Under the constraints
‖x‖1 ≤ 1 and ‖y‖1 ≤ 1, the additional requirement (5.5) will hold when the vectors x
and y have elements of roughly equal magnitude, because then ‖x‖∞ ≈ ‖y‖∞ ≈ 1/n.
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If u and v are constructed by drawing elements independently from the uniform
[0,1] distribution then each element has mean value 1/2, so ‖u‖1 ≈ n/2, and likewise
for v. Let x = u/‖u‖1, y = v/‖v‖1, and t = 1. Then ‖x‖1 = ‖y‖1 = 1 and
‖x‖∞ ≈ ‖y‖∞ ≈ 2/n, so (5.5) is satisfied and hence (5.6) holds.

Now let u and v be columns of Haar distributed orthogonal matrices and consider
a perturbation uvT . For large n, the vectors u and v have components that are
approximately independent normally distributed random variables with mean 0 and
standard deviation n−1/2 [24, Cor. 1], [25, Thm. 3]. Since the mean of the absolute
value of a standard normal random variable is (2/π)1/2 [26, Eq. (3)], the 1-norms of
u and v have means approximately (2/π)1/2n. Moreover, the ∞-norm of a random
vector z ∈ Rn with independent standard normal components has mean and variance
bounded above by terms of order

√
log n and log n, respectively [7, Appendix A]; an

application of the Chebyshev inequality [2, p. 80] then allows us to bound ‖z‖∞ by
order

√
n log n with high probability. Identifying u and v with z/

√
n, we find that

x = u/‖u‖1 and y = v/‖v‖1 each have∞-norms bounded above by order log n/n with
high probability whence, with t = 1, (5.5) and (5.6) follow.

Theorem 5.1 also shows that existing growth factor bounds obtained for orthogo-
nal matrices, such as those in [17], are essentially unchanged under appropriate rank-1
perturbations.

We conclude that Theorem 5.1 can guarantee the preservation of large growth
factors under rank-1 perturbations. However, the theorem constrains the 1-norms of
x and y. Therefore the result obtained with the Sherman–Morrison formula is weaker
than that from section 3, though it requires fewer assumptions.

6. Curing instability with mixed precision iterative refinement. When
an LU factorization of A suffers large growth and we use the factorization to solve
Ax = b, the solution usually (but not always [17]) has a correspondingly large back-
ward error. Suppose A is one of the types of matrix identified in this paper that has
an LU factorization with a large growth factor; how can we obtain a backward stable
solution to Ax = b using this factorization? The natural answer is to apply iterative
refinement. Indeed, it has been known since the 1970s that iterative refinement can
cure instability in LU factorization [23], [31].

A recent usage of iterative refinement is with the LU factorization computed at a
lower precision than the working precision, with residuals possibly computed in extra
precision, and with the refinement equation solved either by substitution using the
LU factors (denoted LU-IR) or by GMRES using the LU factors as preconditioners
(known as GMRES-IR). GMRES-IR was proposed by Carson and Higham in [5], [6]
and the analysis therein (notably [6, Thm. 4.1]) implies that it can tolerate instability
in the factorization provided that the convergence of GMRES is not hindered by a
lower quality preconditioner. Element growth is likely to reduce the quality of the
preconditioner, so it is of interest to test experimentally what is the effect of a large
growth factor on the convergence of GMRES.

We present an experiment in which we used mode 2 gallery('randsvd') matri-
ces (that is, matrices of the form (1.1)) of varying dimensions, and κ2(A) = 102 and
κ2(A) = 107. The iterative refinement algorithms that we use are characterized by a
triple of precisions: (p1, p2, p3), where p1 is the precision at which the LU factorization
is computed, p2 is the working precision, and p3 is the precision at which the residual
is computed. We consider three precision combinations: (H, S, D), (H, D, D), and
(S, D, D), where H, S, and D denote half precision (u ≈ 4.88× 10−4), single precision
(u ≈ 5.96 × 10−8), and double precision (u ≈ 1.11 × 10−16), respectively. Half pre-
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Table 6.1
Total number of iterative refinement steps in standard iterative refinement (LU-IR), and

GMRES-IR for different precision combinations for κ2(A) = 102. Numbers in parentheses denote
the total number of GMRES iterations.

(H, S, D) (H, D, D) (S, D, D)

n LU-IR GMRES-IR LU-IR GMRES-IR LU-IR GMRES-IR

500 1 2 (2) 5 3 (6) 2 2 (2)
750 1 1 (1) 5 3 (6) 2 2 (2)
1000 1 1 (1) 6 3 (6) 2 2 (2)
1250 1 2 (2) 6 3 (6) 2 2 (2)
1500 1 1 (1) 5 3 (6) 2 2 (2)
1750 1 1 (2) 5 3 (6) 2 2 (2)
2000 1 1 (1) 6 3 (6) 2 2 (2)
2250 1 1 (2) 6 3 (7) 2 2 (2)
2500 1 1 (2) 6 2 (6) 2 2 (2)

Table 6.2
Growth factors for partial pivoting and condition number of left preconditioned matrix for

κ2(A) = 102.

κ∞(Û−1L̂−1A)

n ρn (H, S, D) (H, D, D) (S, D, D)

500 44.61 6.44e+00 6.44e+00 1.00
750 92.63 8.43e+00 8.43e+00 1.00
1000 221.61 1.59e+01 1.59e+01 1.00
1250 125.77 2.13e+01 2.13e+01 1.00
1500 167.26 2.09e+01 2.09e+01 1.00
1750 349.38 3.31e+01 3.31e+01 1.00
2000 170.52 3.91e+01 3.91e+01 1.01
2250 256.11 5.41e+01 5.41e+01 1.01
2500 248.20 6.45e+01 6.45e+01 1.01

cision computations are performed using the chop function1 of Higham and Pranesh
[19]. The right-hand side vector is generated using randn. Iterative refinement is
terminated when

‖b−Ax̂‖∞
‖b‖∞ + ‖A‖∞‖x̂‖∞

≤ nu,

where u is the unit roundoff of the working precision. The inner GMRES iterations
are terminated based on a backward error criterion for the preconditioned system
with tolerance 10−2 and 10−4 for working precisions of single and double respectively,
and a maximum of 20 iterative refinement steps are performed. In practice, we hope
for convergence in a handful of iterative refinement steps, but we allow more in order
to explore the speed of convergence for different problems and the two methods.

Table 6.1 shows the convergence for κ2(A) = 102 and Table 6.2 shows the growth
factors and condition numbers. Tables 6.3 and 6.4 give the corresponding information
for κ2(A) = 107. We need κ∞(A)u sufficiently less than 1 to guarantee convergence

of LU-IR and κ∞(Û−1L̂−1A)u sufficiently less than 1 to guarantee convergence of
GMRES-IR [6].

Both LU-IR and GMRES-IR successfully solve the problems with κ2(A) = 102.
For κ2(A) = 107, LU-IR fails to converge in several instances whereas GMRES-IR

1https://github.com/higham/chop
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Table 6.3
Total number of iterative refinement steps in standard iterative refinement (LU-IR), and

GMRES-IR for different precision combinations for κ2(A) = 107. Numbers in parentheses denote
the total number of GMRES iterations. “–” denotes that iterative refinement failed to converge.

(H, S, D) (H, D, D) (S, D, D)

n LU-IR GMRES-IR LU-IR GMRES-IR LU-IR GMRES-IR

500 – 2 (3) – 3 (10) 12 3 (5)
750 4 1 (2) – 3 (10) – 3 (5)
1000 6 3 (7) 17 3 (13) – 2 (4)
1250 16 2 (3) – 4 (16) 16 3 (5)
1500 2 1 (2) 19 3 (12) 12 3 (5)
1750 2 1 (2) – 3 (12) 19 3 (5)
2000 2 1 (2) 18 3 (12) 19 3 (5)
2250 3 1 (2) – 2 (8) – 3 (5)
2500 – 3 (9) – 3 (13) – 2 (4)

Table 6.4
Growth factors for partial pivoting and condition number of left preconditioned matrix for

κ2(A) = 107.

κ∞(Û−1L̂−1A)

n ρn (H, S, D) (H, D, D) (S, D, D)

500 53.29 3.31e+10 3.30e+10 2.32e+03
750 103.80 3.60e+10 3.62e+10 3.33e+03
1000 90.27 8.96e+10 9.07e+10 4.84e+03
1250 102.03 1.58e+11 1.57e+11 1.72e+04
1500 178.48 1.24e+11 1.23e+11 1.51e+04
1750 186.22 2.10e+11 2.11e+11 3.31e+04
2000 321.61 2.49e+11 2.50e+11 1.48e+04
2250 349.27 3.85e+11 3.84e+11 3.28e+04
2500 188.25 3.95e+11 3.97e+11 1.34e+05

always converges within three iterative refinement steps, even though the condition
guaranteeing convergence is not satisfied for (H, S, D). This behavior is consistent
with the theory [6]. The important finding is that the inner GMRES solves converge
in a modest number iterations, which shows that the large growth does not inhibit the
ability of the computed low precision LU factors to act as effective preconditioners
for GMRES.

We note that the convergence of the refinement could be enhanced by improving
the preconditioner using a correction term based on an inexpensive estimate of the
error in the factorization, as proposed by Higham and Mary [18].

7. Conclusions. The matrices (1.1) produce growth factors in LU factorization
of order n/ log n for any pivoting strategy, with high probability. Although these
matrices are readily generated by the MATLAB randsvd function (albeit not with the
default value of the mode parameter), this property appears to have gone unnoticed.
The large growth stems from two properties. First, a random orthogonal matrix from
the Haar distribution has relatively small elements with high probability for large n,
which implies that the growth factor must be large for any pivoting strategy by a
result from [17]. Second, if Q is an orthogonal matrix that gives large growth for
any pivoting strategy then a rank-1 perturbation of 2-norm at most 1 to Q tends
to preserve large growth. We have given two explanations for this second property,
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one based on a determinantal formula for the elements of U and one based on the
Sherman–Morrison formula. The rank-1 perturbation allows the matrix to be given
any 2-norm condition number, resulting in the class (1.1) of matrices with large growth
and an arbitrary condition number.

With matrix dimensions in practical problems growing ever larger and low pre-
cision arithmetic becoming increasingly prevalent, growth of order n/ log n in LU
factorization can render the solution to a linear system unstable. Fortunately, iter-
ative refinement is able to cure the instability, and we found that the performance
of GMRES-IR, which uses the low precision computed LU factors as preconditioners
for a GMRES-based solution to the correction equations, is unaffected by the lower
quality computed LU factors.
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Appendix A. Singular values of submatrix of an orthogonal matrix. Let
σi denote the ith largest singular value.

Lemma A.1. Let B be an (n − k) × (n − k) submatrix of an orthogonal matrix
W ∈ Rn×n, where k < n/2. Then B has at least n − 2k singular values equal to 1
and the remaining singular values are bounded above by 1.

Proof. Assume without loss of generality that B is the leading principal submatrix
of order n− k of W . Then the CS decomposition of the orthogonal matrix W is (see,
e.g., Golub and Van Loan [10, p. 85], Paige and Wei [28], or Stewart [33, p. 75])

[
V T
1 0
0 UT

2

] [
B W12

W21 W22

] [
U1 0
0 V2

]
=

 In−2k 0 0
0 C S

0 S −C


for orthogonal U1, V1 ∈ R(n−k)×(n−k) and U2, V2 ∈ Rk×k, where C = diag(c1, . . . , ck)
and S = diag(s1, . . . , sk) are diagonal and nonnegative with C2 + S2 = I. It follows
that the singular values of B are 1 repeated n− 2k times and c1, . . . , ck.
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