
Algorithms for stochastically rounded elementary
arithmetic operations in IEEE 754 floating-point

arithmetic

Fasi, Massimiliano and Mikaitis, Mantas

2020

MIMS EPrint: 2020.9

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

1

Algorithms for Stochastically Rounded
Elementary Arithmetic Operations in
IEEE 754 Floating-Point Arithmetic

Massimiliano Fasi and Mantas Mikaitis

F

Abstract—We present algorithms for performing the four elementary
arithmetic operations (+, −, ×, and ÷) in floating point arithmetic with
stochastic rounding, and discuss a few examples where using stochastic
rounding may be beneficial. The algorithms require that the hardware
be compliant with the IEEE 754 floating-point standard and that a
floating-point pseudorandom number generator be available, either in
software or in hardware. The goal of these techniques is to emulate
operations with stochastic rounding when the underlying hardware does
not support this rounding mode, as is the case for most existing CPUs
and GPUs. When stochastically rounding double precision operations,
the algorithms we propose are on average over 5 times faster than an
implementation that uses extended precision. We test our algorithms
on various problems where stochastic rounding is expected to bring
advantages: harmonic sum, summation of small random numbers, and
ordinary differential equation solvers.

Index Terms—Computer arithmetic, floating-point arithmetic, multi-
word arithmetic, stochastic rounding, numerical analysis, numerical al-
gorithms

1 INTRODUCTION

The IEEE 754-1985 standard for floating-point arithmetic [1,
Sec. 4] specifies four rounding modes: the default round-
to-nearest, denoted by RN, and three directed rounding
modes, round-toward +∞, round-toward −∞, and round-
toward-zero, which we denote by RU, RD, and RZ, re-
spectively. The 2008 revision of the standard [2, Sec. 4]
defines the attribute rounding-direction, which can take any
of five possible values: roundTiesToEven and roundTiesTo-
Away for round-to-nearest with two different tie-breaking
rules, and roundTowardPositive, roundTowardNegative, and
RoundTowardZero for directed rounding. The standard states,
however, that it is not necessary for a binary format to im-
plement roundTiesToAway, thus confirming that only four
rounding modes are necessary for a floating-point hardware
implementation to be IEEE compliant. No major changes to
this section were introduced in the most recent revision of
the standard [3].

• The authors are with the Department of Math-
ematics, University of Manchester, Manchester,
M13 9PL, UK (mantas.mikaitis@manchester.ac.uk,
massimiliano.fasi@manchester.ac.uk).

Version of March 31, 2020.

These four rounding modes are deterministic, in that the
rounded value of a number is determined solely by the
value of that number in exact arithmetic, and an arbitrary
sequence of elementary arithmetic operations will always
produce the same results if repeated. Here we focus on
stochastic rounding, a non-deterministic rounding mode
that randomly chooses in which direction to round a num-
ber that cannot be represented exactly at the current work-
ing precision. Informally speaking, the goal of stochastic
rounding is to round a real number x to a nearby floating-
point number y with a probability that depends on the
proximity of x to y, that is, on the quantity |x − y|. We
formalize this concept in Section 2.

Stochastic rounding is inherently more expensive than
the standard IEEE rounding modes, as it requires the gen-
eration of a floating-point pseudorandom number, and its
advantages might not be entirely obvious, at first. Round-
to-nearest maps an exact number to the closest floating-
point number in the floating-point number system in use,
and always produces the smallest possible roundoff error.
In doing so, however, it discards most of the data encapsu-
lated in the bits that are rounded off. Stochastic rounding
aims to capture more of the information stored in the least
significant of the bits that are lost when rounding. This
benefit should be understood in a statistical sense: stochastic
rounding may produce an error larger than that of round-
to-nearest on a single rounding operation, but over a large
number of roundings it may help to obtain a more accurate
result due to errors of different signs cancelling out. This
rounding strategy is particularly effective at alleviating stag-
nation [4], a phenomenon that often occurs when computing
the sum of a large number of terms that are small in
magnitude. A sum stagnates when the summands become
so small compared with the partial sum that their values
are “swamped” [5], causing a dramatic increase in forward
error. We examine stagnation experimentally in Section 6.

Stochastic rounding is being increasingly used in arti-
ficial intelligence as well as in disciplines that rely heav-
ily on numerical simulations, where it often improves the
accuracy of the computation. In machine learning, it can
help compensate the loss of accuracy caused by reducing
the precision at which deep neural networks are trained
in fixed-point [6] as well as floating-point [7] arithmetic.
Similar improvements were shown in the use of numerical

2

methods for the solution of ordinary differential equations
arising in the Izhikevich neuron model [8]. The general
floating-point format simulator developed by Higham and
Pranesh [9] includes stochastic rounding because, as the
authors point out, there is a need to better understand its
behavior.

Stochastic rounding plays an important role in neuro-
morphic computing. Intel uses it to improve the accuracy of
biological neuron and synapse models in the neuromorphic
chip Loihi [10]. The SpiNNaker2 neuromorphic chip [11]
will be equipped with a hardware rounding accelerator
designed to support, among others, fast stochastic round-
ing [12]. In general, various patents from AMD, NVIDIA,
and other companies propose stochastic rounding imple-
mentations [13], [14], [15]. Of particular interest are two
patents from IBM [16], [17], where the entropy from the
registers is proposed as a source of randomness. We note,
however, that a pseudorandom sequence should be pre-
ferred to true randomness for reproducible results.

Our contribution is twofold: on the one hand, we present
algorithms for emulating stochastic rounding of addition,
multiplication, and division of signed numbers; on the other
we discuss some examples in which using stochastic round-
ing can yield more accurate solutions, and even achieve
convergence in cases where round-to-nearest would lead
numerical methods to diverge.

In order to round the result of an arithmetic operation
stochastically, it is necessary to know the residual, that is, the
error between the exact result of the computation and its
truncation to working precision. Today’s CPUs and GPUs
typically do not return this value to the software layer, and
the most common technique to emulate stochastic rounding
via software relies on the use of two levels of precision. The
operation is performed at higher precision and the direction
of the rounding is chosen with probability proportional to
the distance between this reference and its truncation to the
target precision. The MATLAB chop function,1 for instance,
follows this approach [9].

In general, this strategy cannot guarantee a faithful
implementation of stochastic rounding unless an extremely
high precision is used to perform the computation. The sum
of the two binary32 numbers 2127 and 2−126, for instance,
would require a floating point system with at least 253 bits
of precision in order to be represented exactly, and up to
2045 bits may be necessary for binary64. The requirements
would be even higher if subnormal numbers were allowed.
This is hardly an issue in practice, and it is easy to check, the-
oretically as well as experimentally, that as long as enough
extra digits of precision are used the results obtained with
chop differ from those obtained using full precision only in
a negligible portion of cases [18].

The main drawback of this technique is that it requires
the availability of an efficient mechanism to perform high-
precision computation. To date, no major hardware vendor
supports precision higher than binary64, thus implementing
stochastic rounding in binary64 would necessarily require
emulating binary128, or an even more precise floating-point
arithmetic, via software. In Section 4 we show how the
four elementary arithmetic operations can be implemented

1. https://github.com/higham/chop

stochastically with the same guarantees as chop without
resorting to higher precision. This approach brings a per-
formance gain, as we show in Section 5. In Section 6, we
explore three applications showing that stochastic rounding
may be beneficial over the four rounding modes defined by
the IEEE 754 standard. We summarize our contribution and
point at directions for future work in Section 7.

2 STOCHASTIC ROUNDING

Let F be a normalized family of binary floating-point num-
bers with p digits of precision and maximum exponent emax,
and let ε := 21−p. The number x ∈ F can be written as
x = (−1)s · 2e ·m, where s ∈ {0, 1} is the sign bit of x, the
exponent e is an integer between emin := 1− emax and emax

inclusive, and the significand m ∈ [0, 2) can be represented
exactly with p binary digits, of which only p − 1 are stored
explicitly. We remark that since F is normalized m can be
smaller than 1 only when e = emin. We denote the exponent
of x by exponent(x).

A rounding is any function that maps the real line to F .
As mentioned in the previous section, here we consider
stochastic rounding. In order to give a precise definition, let us
denote the truncation of a number x to its p most significant
digits by tr(x) := sign(x) · 21−pb2p−1|x|c = RZ(x), where
sign(x) is 1 if x ≥ 0 and −1 otherwise. The function
SR : R→ F is a stochastic rounding if for any real number
x in the range of F one has that

SR(x) =

{
(−1)s · 2e · tr(m), with p. 1− rx,
(−1)s · 2e · (tr(m) + ε), with p. rx,

(2.1)

where

rx =
m− tr(m)

ε
. (2.2)

Note that m− tr(m) ∈ [0, ε), which implies that rx ∈ [0, 1).
We note that this definition gives the desired result if x

is subnormal. Let xmax be the largest floating-point number
representable in F . If |x| ≥ xmax, then the definition (2.1)
does not work, as (−1)s · 2e · (tr(m) + ε) is not repre-
sentable in F . In this case, it is more reasonable to assume
SR(x) = sign(x)·xmax rather than SR(x) = sign(x)·∞. This
convention has two main advantages: it is consistent with
the informal definition of stochastic rounding given above,
and it ensures that only computations, but not roundings,
can produce infinities.

The quantity rx in (2.2) is related to the rounding error
when rounding toward zero, since

x− RZ(x) = x− tr(x) = sign(x) · 2e · (m− tr(m)) =: %x.

When other rounding modes are used, however, this is not
necessarily the case. As %x depends only on x, we call it the
residual of x.

We now discuss how to implement (2.1). Let X ∼ UI
denote a random variable X that follows the uniform distri-
bution over the interval I ⊂ R. Then for any x ∈ R we have
that

SR(x) =

{
(−1)s · 2e · tr(m), X ≥ rx,
(−1)s · 2e · (tr(m) + ε), X < rx,

(2.3)

where rx is as in (2.2) and X ∼ U[0,1).

https://github.com/higham/chop

FASI AND MIKAITIS: STOCHASTIC ROUNDING ALGORITHMS IN FLOATING-POINT ARITHMETIC 3

TABLE 2.1: Demonstration of stochastic roundings in a 2-
bit case for every pair of X/Y and rx. The table on the left
considers (2.3), whereas (2.4) is shown on the right. Arrow
directions correspond to rounding directions, ↓ for round-
toward −∞ and ↑ for round-toward +∞. Note that corre-
sponding columns in the two tables have the same number
of arrows pointing upward and arrows pointing downward:
this shows that for any given rx the probability of rounding
up or down does not depend on which definition is used.

rx
X

0.00 0.01 0.10 0.11

0.00 ↓ ↑ ↑ ↑

0.01 ↓ ↓ ↑ ↑

0.10 ↓ ↓ ↓ ↑

0.11 ↓ ↓ ↓ ↓

rx
Y

0.00 0.01 0.10 0.11

0.00 ↓ ↓ ↓ ↓

0.01 ↓ ↓ ↓ ↑

0.10 ↓ ↓ ↑ ↑

0.11 ↓ ↑ ↑ ↑

Algorithm 3.1: TWOSUM augmented addition.

1 function TWOSUM(a ∈ F , b ∈ F , ◦ : R→ F)
Compute σ, τ ∈ F s.t. σ + τ = a+ b.

2 σ ← ◦(a+ b);
3 a′ ← ◦(σ − b);
4 b′ ← ◦(σ − a′);
5 δa ← ◦(a− a′);
6 δb ← ◦(b− b′);
7 τ ← ◦(δa + δb);
8 return (σ, τ);

Using the strict inequality for the second case ensures
that if x ∈ F then SR(x) = x, since rx = 0 if x is exactly rep-
resentable in F . An alternative way of implementing (2.1)
can be obtained by substituting Y = 1 − X in (2.3). The
random variable Y thus defined takes values in the interval
(0, 1], but moving the equality from the first to the second
case is enough to shift the domain of Y to [0, 1) while
ensuring that SR(x) = x when x belongs to F . Therefore,
definition (2.1) can be equivalently written as

SR(x) =

{
(−1)s · 2e · tr(m), Y < 1− rx,
(−1)s · 2e · (tr(m) + ε), Y ≥ 1− rx,

(2.4)

where Y ∼ U[0,1). We will rely on both (2.3) and (2.4) in later
sections.

We note that definitions (2.3) and (2.4) are equivalent
to (2.1) not only if X and Y are continuous random vari-
ables, but also in the discrete case. This is illustrated for the
2-bit rounding case in Table 2.1.

3 AUGMENTED OPERATIONS

The IEEE 754-2019 standard for floating-point arithmetic [3]
includes, among the new recommended operations, three
augmented operations: augmentedAddition, augmentedSubtrac-
tion, and augmentedMultiplication. These homogeneous oper-
ations take as input two values in any binary floating-point

Algorithm 3.2: TWOPRODFMA augmented multiplication.

1 function TWOPRODFMA(a ∈ F , b ∈ F , ◦ : R→ F)
If a, b satisfy (3.1), compute σ, τ ∈ F s.t. σ + τ = a · b.

2 σ ← ◦(a× b);
3 τ ← ◦(a× b− σ);
4 return (σ, τ);

format and return two floating-point numbers in the same
format: a correctly rounded result and a rounding error.

How to perform these tasks efficiently is a well-
understood problem. Algorithms for augmented addition
(and thus subtraction) and augmented multiplication are
discussed in [19, Sec. 4.3] and [19, Sec. 4.4], respectively. The
former can be performed efficiently by using the function
TWOSUM in Algorithm 3.1, due to Knuth [20, Th. B] and
Møller [21], which for ◦ = RN computes the correctly
rounded sum and the rounding error at the cost of six
floating-point operations. If the two summands are ordered
by decreasing magnitude, this task can achieved more ef-
ficiently by using Dekker’s FASTTWOSUM [22], which re-
quires only 3 operations in round-to-nearest. The names
we use for these two routines were originally proposed by
Shewchuck [23].

When dealing with augmented multiplication, extra care
is required, as in this case it is necessary to ensure that
overflow does not occur. In [19, Sec. 4.4] it is shown that
if a, b ∈ F and

exponent(a) + exponent(b) ≥ emin + p− 1, (3.1)

then τ = a · b− ◦(a× b), with ◦ ∈ {RN,RD,RU,RZ}, also
belongs to F . In other words, the error of a floating-point
product is exactly representable in the same format as its
arguments. If an FMA (Fused-Multiply-Add) instruction is
available, augmented multiplication can be realized very ef-
ficiently with the function TWOPRODFMA in Algorithm 3.2,
which requires only two floating-point operations and guar-
antees that if a and b satisfy (3.1), then σ+τ = a·b regardless
of the rounding mode used for the computation.

If an FMA is not available, another algorithm due to
Dekker [22] may be used to compute σ and τ . This algo-
rithm requires 16 floating-point operations, and is therefore
considerably more expensive than TWOPRODFMA which
requires only 2. We do not reproduce the algorithm here,
and in our pseudocode we denote by TWOPRODDEK the
function that has the same interface as TWOPRODFMA and
implements [19, Alg. 4.10]. This algorithm also requires
that condition (3.1) hold, but is proven to work only when
round-to-nearest is used.

4 OPERATIONS WITH STOCHASTIC ROUNDING

In order to perform stochastic rounding as defined in Sec-
tion 2, we need to know rx in (2.2). It may be possible to
compute this quantity exactly, if the operation is carried out
in higher precision and then rounded to lower precision, but
the value of rx is not available when one wishes to round
the result of an arithmetic operation performed in hardware
to the same precision as the arguments. One example is
rounding the sum of two double-precision numbers with

4

Algorithm 4.1: Stochastically rounded addition.

1 function SRADD(a ∈ F , b ∈ F)
Compute % = SR(a+ b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TWOSUM(a, b,RN);
4 η ← exponent(RZ(a+ b));
5 π ← sign(τ)× Z × 2η × ε;
6 if τ ≥ 0 then
7 ◦ = RD;
8 else
9 ◦ = RU;

10 %← ◦(�(τ + π) + σ);
11 return %;

π π1 π2

b b2b1

1
a a1 a2

2

Fig. 4.1: Alignment of the fractions of a, b, and π on line 10
of Algorithm 4.1.

different exponents: the fraction of the operand smaller
in magnitude will have to be shifted right to match the
exponent of the other summand, causing roundoff bits to
appear.

4.1 Addition
The first solution we propose leverages the TWOSUM al-
gorithm to round stochastically the sum of two floating-
point numbers without explicitly computing the quantity
rx. This is achieved by exploiting the relation between the
residual and the roundoff error in round-to-nearest, which
can be computed exactly with the TWOSUM algorithm. This
approach is shown in Algorithm 4.1.

In the pseudocode, rand() returns a pseudorandom
floating-point number in the interval [0, 1). The algorithm
first computes σ, the sum of a and b in round-to-nearest, the
error term τ such that σ + τ = a + b in exact arithmetic,
and the exponent of the sum computed in round-toward-
zero. Then it generates a p-digit floating-point number in
the interval [0, 1) and scales it, by multiplying by the value
of the least significant digit of RZ(a + b), so that it has the
same sign as the rounding error τ and absolute value in
[0, 2ηε).

Finally, stochastic rounding is performed by computing
(τ + π) + σ, in the order indicated by the parentheses,
using round-toward-zero. The alignment of a, b, and π in
Algorithm 4.1 is illustrated in Fig. 4.1.

We now argue the correctness of the algorithm. Note that
if σ = a+b, then τ = 0 and 0 ≤ Z < 1 guarantees that τ = σ
on line 10.

If σ and τ have the same sign, then |σ| < |a + b|, and
% = tr(a+ b) if and only if |π| < 2ηε− |τ |, or equivalently if
and only if Z < 1−ra+b. Similarly, % = tr(a+b)+2ηε if and
only if Z ≥ 1 − ra+b, and we conclude that Algorithm 4.1
implements (2.4) when sign(σ) = sign(τ).

Algorithm 4.2: Fast stochastically rounded addition.

1 function SRADD2(a ∈ F , b ∈ F)
Compute % = SR(a+ b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TWOSUM(a, b,RZ);
4 η ← exponent(σ);
5 π ← sign(τ)× Z × 2η × ε;
6 %← RZ(RZ(τ + π) + σ);
7 return %;

Algorithm 4.3: Multiplication with stochastic
rounding using the FMA instruction.

1 function SRMULFMA(a ∈ F , b ∈ F)
If a, b satisfy (3.1), compute % = SR(a · b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TWOPRODFMA(a, b,RZ);
4 η ← exponent(σ);
5 π ← sign(τ)× Z × 2η × ε;
6 %← RZ(�(τ + π) + σ);
7 return %;

If σ and τ have opposite sign, on the other hand,
then |σ| > |a + b|. Thus % = tr(a + b) if and only
if |π| ≥ 2ηε− |τ |, which can be equivalently rewritten as
Z ≥ ra+b, since ra+b = 1 − τ/ε in this case. The case
% = tr(a + b) + 2ηε is analogous, which shows that Al-
gorithm 4.1 implements (2.3) for sign(σ) = − sign(τ).

The diagram in Fig. 4.2 justifies the use of different
rounding modes. The idea is that |RZ(τ + π)| can become
as large or larger than the least significant digit of σ, in
which case the instruction on line 10 will revert the rounding
performed by TWOSUM. If, on the other hand, |RZ(τ + π)|
ends up being smaller than 2ηε, then the sum computed in
rounding to nearest remains unchanged and is returned.

The error on the quantity ra+b used by Algorithm 4.1
depends on which rounding operator � is chosen on line 10.
If we denote by r̂a+b the approximate quantity used by the
algorithm, it is easy to see that for round-to-nearest and
directed rounding we have that |r̂a+b − ra+b| < 2ηε2 and
|r̂a+b − ra+b| < 2η−pε, respectively.

Algorithm 4.2 is a faster variant of Algorithm 4.1 in
which round-toward-zero is used everywhere. We note that
TWOSUM does not return an exact unevaluated sum of the
two arguments with this rounding mode. Specifically, for
floating-point systems with p ≥ 4 bits of precision, [19,
Th. 4.7] shows that if overflow does not occur then TWOSUM
satisfies τ = (a+ b)− σ + α with |α| < 2−p+1 · ulp(a+ b),
where ulp(a + b) is an upper error bound in the addition
operation with round-toward-zero [19, Sec. 2.3.2]. In our
terms, |α| < 2ηε2.

4.2 Multiplication
The function SRMULFMA in Algorithm 4.3 exploits
TWOPRODFMA to compute SR(a× b). Since the algorithm
works with any rounding mode [19, Sec. 4.4.1], we use
round-toward-zero in order to obtain a more efficient al-
gorithm. In this way, we compute the residual as τ and

FASI AND MIKAITIS: STOCHASTIC ROUNDING ALGORITHMS IN FLOATING-POINT ARITHMETIC 5

τ > 0

σ a � b σ + 2ηε a � b+ 2ηε

|τ | π

σ σ+2ηε

τ < 0

a � b− 2ηε σ − 2ηε a � b σ

|τ |π

σ−2ηε σ

Fig. 4.2: Diagram that motivates the use of different directed
rounding modes depending on the sign of τ . The dot dashed
line represents the range of the variable π, numbers that fall
in the range of a thick grey line are rounded in the direction
of the black dot at one end. The symbol � represents any of
the elementary arithmetic operations, a � b and σ denote the
result computed in exact arithmetic and in round-to-nearest,
respectively.

Algorithm 4.4: Multiplication with stochastic
rounding using Dekker’s algorithm.

1 function SRMULDEKKER(a ∈ F , b ∈ F)
If a, b satisfy (3.1), compute % = SR(a · b) ∈ F .

2 Z ← rand();
3 (σ, τ)← TWOPRODDEK(a, b);
4 η ← exponent(RZ(a× b));
5 π ← sign(t)× Z × 2η × ε;
6 if τ ≥ 0 then
7 ◦ = RD;
8 else
9 ◦ = RU;

10 %← ◦(�(τ + π) + σ);
11 return %;

the exponent can be calculated directly from σ, without
requiring an extra floating-point operation as was the case
in Algorithm 4.1.

The correctness of Algorithm 4.3 can be shown with an
argument analogous to that used for Algorithm 4.1. Note
that the proof is easier in this case, as the use of round-to-
zero implies that either τ = 0 or sign(σ) = sign(τ).

A method that exploits TWOPRODDEK in place of
TWOPRODFMA is given in Algorithm 4.4. As it has not been
shown to be exact for rounding modes other than round-to-
nearest, an extra floating-point operation to get the correct
exponent of tr(a × b) is necessary. This corresponds to the
operation on line 4 of SRADD in Algorithm 4.1.

4.3 Division
We note that it would not be possible to derive an algorithm
for stochastically rounded division in the spirit of the other
algorithms in this section, as the binary expansion of the er-
ror arising in the division of two floating point numbers may
have, in general, infinitely many nonzero digits. An example
of this is the binary number 1/11 = 0.01 = 0.010101

Algorithm 4.5: Division with stochastic rounding.

1 function SRDIV(a ∈ F , b ∈ F)
Compute % = SR(a÷ b) ∈ F .

2 Z ← rand();
3 σ ← RZ(a÷ b);
4 τ ′ ← RZ(−σ × b+ a);
5 τ ← RZ(τ ′ ÷ b);
6 η ← exponent(σ);
7 π ← sign(τ)× Z × 2η × ε;
8 %← RZ(�(τ + π) + σ);
9 return %;

In order to obtain an algorithm for division, we exploit
a result by Bohlender et al. [24]. Let a and b be floating-
point numbers and let σ := ◦(a ÷ b) where ◦ is any of the
IEEE rounding functions. If σ is neither an infinity nor a
NaN, then under some mild assumptions (see [25, Th. 4])
τ ′ := a − σ · b is exactly representable. In our algorithm,
we first compute σ, then obtain τ ′ using a single FMA
operation, and estimate the rounding error in the division by
computing τ ′/b. If an FMA is not available, then Dekker’s
multiplication algorithm can be used to compute τ ′. The
stochastic rounding step is performed as in previous algo-
rithms. The method we propose to stochastically round this
operation without relying on higher precision is illustrated
in Algorithm 4.5.

The error |r̂a÷b − ra÷b| is larger than that of the other
algorithms discussed so far, since only the approximate
residual τ ≥ 0 is available. We note, however, that this error
is of the same magnitude as that introduced by rounding
τ + π, which suggests that |r̂a÷b − ra÷b| < 2η+1ε.

5 PERFORMANCE

In this section we evaluate experimentally the perfor-
mance of the techniques in Section 4. We implemented
Algorithms 4.1, 4.2, 4.3, and 4.5 in C, and compiled our
experiments with GCC 8.3 using the optimization flags
-O3 and -mach=native. The experiments were run on
a GNU/Linux machine equipped with an Intel Core i5-
6500 CPU and 16 GiB of RAM. We enabled the use of
FMA with -mfma, and disabled the use of optimizations
that assume default floating-point rounding behavior and
the storage of floating-point variables in registers using
the flags -frounding-math and -ffloat-store, respec-
tively. Note that the latter flag is necessary as the Intel
processor we are using has 80-bit extended format registers.

We compared our methods with a C port of the stochastic
rounding functionalities of the MATLAB chop function [9],
which simulates floating-point arithmetics with a choice of
rounding modes and a wide range of precisions. As our
focus in this section is on binary64 arithmetic, we used the
GNU MPFR library [26] (version 4.0.1) to compute in higher-
than-binary64 precision. We denote by sr_<mpfr_op> the
function that uses the MPFR operator <mpfr_op> to com-
pute the high-precision result that is subsequently stochas-
tically rounded to binary64. The codes we used for this
benchmark are available on GitHub.2

2. https://github.com/mmikaitis/stochastic-rounding-evaluation

https://github.com/mmikaitis/stochastic-rounding-evaluation

6

TABLE 5.1: Throughput (in Mop/s) of our implementations of the algorithms discussed in the paper. The parameter p
represents the number of significant digits in the fraction of the MPFR numbers being used; algorithms that do not use
MPFR have a missing value in the corresponding row. The baseline for the speedup is the mean throughtput of the MPFR
variant that uses 113 bits to perform the same operation.

sr_mpfr_sum SRADD SRADD2 sr_mpfr_mul SRMUL sr_mpfr_div SRDIV

p 61 88 113 – – 61 88 113 – 61 88 113 –

min 5.31 4.85 5.02 20.77 22.82 4.45 4.53 4.28 23.69 4.38 4.41 4.13 21.53
max 6.71 6.49 6.56 28.96 34.46 6.34 5.91 5.98 32.10 6.14 5.74 5.70 29.55
mean 6.29 6.05 6.08 26.81 32.23 5.73 5.42 5.37 30.25 5.51 5.26 5.35 28.11
↪→ speedup 1.03× 0.99× 1.00× 4.41× 5.30× 1.07× 1.01× 1.00× 5.63× 1.03× 0.98× 1.00× 5.25×
deviation 0.26 0.27 0.24 1.34 1.96 0.17 0.22 0.26 1.52 0.21 0.17 0.14 1.36

In Table 5.1 we consider the throughput (in Mop/s, mil-
lions of operations per second) of the functions we imple-
mented on a test set of 1,000 pairs of uniformly distributed
binary64 random numbers in the interval [0, 1). For each
pair of floating-point inputs, we estimate the throughput
by running each algorithm 100,000 times, and in the table
report the minimum, maximum, and mean value over the
1,000 test cases, as well as the value of the standard devia-
tion and the speedup with respect to the 113-bit variant of
the GNU MPFR-based algorithm.

The new algorithms that work only in binary64 arith-
metic are up to 5 times more efficient than those relying on
the GNU MPFR library, regardless of the number of extra
digits of precision used.

6 NUMERICAL EXPERIMENTS

Now we gauge the accuracy of the new algorithms in
Section 4. We do so by illustrating their numerical be-
havior on three benchmark problems on which stochastic
rounding outperforms round-to-nearest when low-precision
arithmetic is used. These are the computation of partial
sums of the harmonic series in finite precision, the sum-
mation of badly scaled random values, and the solution of
simple ordinary differential equations (ODEs). Our codes
can be found on GitHub.3 The experiments were run in
MATLAB 9.7 (2019b) using the Stochastic Rounding Tool-
box we developed, also available on GitHub.4 Reduced-
precision floating-point formats were simulated on binary64
hardware using the MATLAB chop function [9].

6.1 Harmonic series
In exact arithmetic, the harmonic series

∞∑
i=1

1

i
= 1 +

1

2
+

1

3
+ . . . (6.1)

is divergent. If the partial sums of (6.1) are evaluated in
finite precision, however, this is not the case: using binary64
arithmetic and round-to-nearest, Malone [27] showed that
the series converges numerically to the value S248 ≈ 34.122
afterN = 248 terms. In the experiment, the author evaluated
the sum by simply adding the terms from left to right, and
convergence was achieved on an AMD Athlon 64 processor
after 24 days. The same experiment was run in fp8 (an 8-
bit floating-point format), bfloat16, binary16, and binary32

3. https://github.com/mmikaitis/stochastic-rounding-evaluation
4. https://github.com/mfasi/srtoolbox

arithmetics by Higham and Pranesh [9], who showed that
in binary32 arithmetic with round-to-nearest the series con-
verges to S221 ≈ 15.404 on iteration N = 221 = 2,097,152.

Here we use the computation of

Hk(s0) := s0 +
k∑
i=1

1

i
= s0 + 1 +

1

2
+

1

3
+ · · ·+ 1

k
(6.2)

as a simple test problem to compare the behavior of
stochastic summation with classic summation algorithms in
round-to-nearest. We include two variants of stochastically
rounded recursive summation, one that simulates stochastic
rounding using Algorithm 4.1 and one that relies on the
MATLAB chop function [9]. We use a single stream of ran-
dom numbers produced by the mrg32k3a generator seeded
with 300, and at each step we generate only one random
number and use it for both algorithms. For round-to-nearest
we consider, besides recursive summation at working pre-
cision, compensated summation [28], which at each step
computes the rounding error with TWOSUM and adds it to
the next summand, and cascaded summation [29], which
accumulates all the rounding errors in a temporary variable
which is eventually added to the total sum. We do not
include doubly compensated summation [19, Sec. 5.3.2], [30]
because its results are indistinguishable from those of com-
pensated summation on this example. As reference we take
the sum computed by recursive summation in binary64
arithmetic.

Our goal is to show that recursive and compensated
summation stagnate with the standard IEEE 754 rounding
mode but not when stochastic rounding is used; this is
easily achieved with bfloat16 and binary16 in 105 steps. For
binary16, we had to set s0 = 256 to cause stagnation. In
other words, for binary16 we computed 256 +

∑∞
i=1 1/i,

obtaining the results in Fig. 6.1(b). As expected, recursive
summation is the first method to fail, while compensated
summation follows the reference quite accurately before
starting to stagnate. Cascaded summation stagnates after
recursive summation but before compensated summation.
When paired with stochastic rounding, on the other hand,
recursive summation suffers from an error larger than that
of compensated summation, but does not stagnate. Observe
that Algorithm 4.1 and chop perform differently, despite
the fact that the same random number was used at each
step: this is expected, as the two algorithms follow a totally
different approach for the computation of the stochastically
rounded sum.

https://github.com/mmikaitis/stochastic-rounding-evaluation
https://github.com/mfasi/srtoolbox

FASI AND MIKAITIS: STOCHASTIC ROUNDING ALGORITHMS IN FLOATING-POINT ARITHMETIC 7

102 103 104 105
4

6

8

10

12

k

(a) bfloat16, s0 = 0.

103 104 105 106

260

265

270

k

(b) binary16, s0 = 256.

binary64 recursive RN recursive RN compensated RN
cascaded RN recursive with SR (Alg. 4.1) recursive with SR (chop)

Fig. 6.1: Numerical value of the sum Hk(s0) in (6.2) accumulated in bfloat16 (left) and binary16 (right) arithmetics with
various summation algorithms. The sum computed in binary64 precision is taken as reference. The algorithms use round-
to-nearest (RN) or stochastic rounding (SR) as indicated in the legend.

6.2 Sum of random values

In this second test we compare the different summation
algorithms on the task of computing the sum

Sk(s0) = s0 +
k∑
i=1

xi, (6.3)

where the xi are uniformly distributed over an open interval
that contains both negative and positive numbers, but is
biased towards positive values to ensure that the value of
Sk(s0) is increasing for large k. These random numbers
were generated from a second stream of random numbers
seeded with a value of 500. We initialized the sum to a
positive number s0 large enough compared with the range
of the random numbers to cause stagnation.

Fig. 6.2 shows these results. As in the previous experi-
ment, in binary16 both recursive and cascaded summation
stagnate very early, but compensated summation does not in
this test. We note, however, that all three algorithms would
face this problem if smaller random numbers were used.

In order to test the algorithms at precision na-
tively supported by the hardware without using simu-
lated arithmetics, we ran some experiments in binary64.
In MATLAB, the rounding behavior of the underlying
hardware can be controlled as per the IEEE 754 stan-
dard, and the commands feature(’setround’, 0) and
feature(’setround’, 0.5) switch to round-towards-
zero and round-to-nearest respectively. Our test problem is
similar to those above, as we aim to sum random values
small enough for stagnation to occur (random numbers
required to observe stagnation in binary64 are so small
that this phenomenon is unlikely to be observed in real
applications).

The results of this experiments are reported in Fig. 6.3.
While recursive summation stagnated as expected, we were
unable to find any combination of parameters that caused
compensated summation to stagnate in binary64. Therefore,
compensated summation seems to be the best choice in
binary64 arithmetic, whereas lower precision appears to
benefit from recursive summation with stochastic rounding,
as in this case both compensated and cascaded summation
stagnate in our experiments.

6.3 ODE solvers
6.3.1 Exponential decay ODE
Explicit solvers for ODEs of the type y′ = f(x, y) have the
form yt+1 = yt + hφ(xt, yt, h, f) for a fixed step size h.
For small h, they are therefore susceptible to stagnation.
In fixed-point arithmetic, stochastic rounding was shown
to be very beneficial on four different ODE solvers [8].
Here we use the algorithms developed in Section 4 to show
that stochastic rounding brings similar benefits in floating-
point arithmetic, as it increases the accuracy of the solution
for small values of h. For these experiments we used the
default MATLAB random number generator seeded with
the value 1.

Higham and Pranesh [9] tested Euler’s method on the
equation y′ = −y using different reduced precision floating-
point formats, and showed the importance of subnormal
numbers. A similar experiment for time steps as small as
10−8 is shown in [31, Sec. 4.3]. We use their code5 and
compare round-to-nearest and stochastic rounding modes
on the same test problem. The ODE with initial condition
y(0) = 2−6 (chosen so that it is representable exactly in all
arithmetics) is solved over [0, 1] using the explicit scheme

5. https://github.com/SrikaraPranesh/LowPrecision Simulation

https://github.com/SrikaraPranesh/LowPrecision_Simulation

8

0 0.2 0.4 0.6 0.8 1

·106

0

1,000

2,000

3,000

k

(a) bfloat16, s0 = 0, xi ∈ (−0.002, 0.008).

0.2 0.4 0.6 0.8 1

·106

0

1,000

2,000

3,000

k

(b) binary16, s0 = 1000, xi ∈ (−0.002, 0.008).

binary64 recursive RN recursive RN compensated RN
cascaded RN recursive with SR (Alg. 4.1) recursive with SR (chop)

Fig. 6.2: Numerical value of the sum Sk(s0) in (6.3) accumulated in bfloat16 (left) and binary16 (right) arithmetics using
various algorithms. The algorithms use round-to-nearest (RN) or stochastic rounding (SR) as indicated in the legend.

0.5 1 1.5 2

·106

0

1

2

3
·10−14

k

recursive RN compensated RN
cascaded RN recursive with SR (Alg. 4.1)

Fig. 6.3: Numerical value of Sk(s0)−1, for the sum Sk(s0) as
defined in (6.3), accumulated in binary64 arithmetic using
various algorithms with s0 = 1, xi ∈ (0, 2−65). The al-
gorithms use round-to-nearest (RN) or stochastic rounding
(SR) as indicated in the legend.

yn+1 = yn + hf(tn, yn) with h = 1/n for n ∈ [10, 106].
Fig. 6.4(a) shows the absolute errors of the ODE solution at
x = 1 for increasing values of the discretization parame-
ter n. For small integration steps, the error is around four
orders of magnitude smaller when stochastic rounding is
enabled for the 16-bit arithmetics.

We tested two other algorithms for the numerical inte-

gration of ODEs:
• the midpoint second-order Runge–Kutta method (RK2)

yn+1 = yn + hf
(
tn +

1

2
h, yn +

1

2
hf(tn, yn)

)
, and

• Heun’s method

y′n = yn + hf(tn, yn)

yn+1 = yn +
1

2
h
(
f(tn, yn) + f(tn + h, y′n)

)
.

The results for these two methods are reported in Fig. 6.4(b)
and Fig. 6.4(c), respectively.

To cause stagnation in binary32 we reformulated the
problem to have a smaller integration period and a larger
initial condition. For instance we could consider the same
ODE y′ = −y, but take as initial condition y(0) = 1 over
[0, 2−6] with h = 2−6/n for n ∈ [10, 106]. We only need the
constant in the initial condition to be large relative to the
time step size, the number 1 was an arbitrary choice. Now
at every step of the integration, we would subtract from
1 a very small positive value whose magnitude decreases
with the time step size, and we expect that even binary32
will show more significant errors. Another way to increase
the errors is to introduce a decay time constant other than
1 into the differential equation. The ODE y′ = −y/20, for
instance, will cause the updates at each step of a solver
to be even smaller. Fig. 6.4(d) shows this scenario using
Euler’s method. In this case only binary64 and binary32
with stochastic rounding manage to avoid stagnation for
small time steps.

6.3.2 Unit circle ODE
The solution to the ODE

u′(t) = v(t),

v′(t) = −u(t),

FASI AND MIKAITIS: STOCHASTIC ROUNDING ALGORITHMS IN FLOATING-POINT ARITHMETIC 9

101 102 103 104 105 106

10−10

10−8

10−6

10−4

10−2

(a) Euler for y′ = −y, y(0) = 2−6, over [0, 1].

101 102 103 104 105 106

10−10

10−8

10−6

10−4

10−2

(b) Midpoint for y′ = −y, y(0) = 2−6, over [0, 1].

101 102 103 104 105 106

10−10

10−8

10−6

10−4

10−2

(c) Heun for y′ = −y, y(0) = 2−6, over [0, 1].

101 102 103 104 105 106

10−10

10−8

10−6

10−4

10−2

(d) Euler for y′ = − y
20 , y(0) = 1 over [0, 2−6].

binary64
bfloat16 with RN binary16 with RN binary32 RN
bfloat16 with SR (Algs. 4.1, 4.3) binary16 with SR (Algs. 4.1, 4.3) binary32 SR (Algs. 4.1, 4.3)

Fig. 6.4: Absolute errors in Euler, Midpoint, and Heun methods for the exponential decay ODE solutions with different
floating point arithmetics and rounding modes. The x-axis represents n while y-axis represents the error.

with initial values u(0) = 1 and v(0) = 0 represents the unit
circle in the uv-plane [32, p. 51]. Higham [32, p. 51] shows
also that the forward Euler scheme

uk+1 = uk + hvk,

vk+1 = vk − huk,
(6.4)

with h = 2π/32 produces a curve that spirals out of the
unit circle. Euler’s method can be improved by using a
smaller time step, which gives a more accurate unit circle at
a higher total computational cost. From the previous section
we know, however, that smaller time steps are more likely
to cause issues with rounding errors.

The goal of this experiment is therefore to see what
curve the methods draw when using round-to-nearest and
stochastic rounding at small step sizes. We note that here
stochastic rounding is used for both addition and multipli-
cation operations in (6.4). Fig. 6.5 shows some circles drawn
when solving (6.4) for various step sizes h = 2π/n.

As expected, for large step sizes the solution spirals out
of the unit circle, then gets gradualy closer to the right solu-
tion as the step size decreases, until rounding errors start
to dominate the computation causing major issues: for a
small enough step size the solution computed using round-
to-nearest looks like an octagon. Stochastic rounding seems
to avoid this problem and keeps the solution near the unit
circle. We do not report the results for binary32, as we found
its behavior to be the same as that of binary16/bfloat16 at
n = 25 regardless of the step size.

The octagonal shape of the circle approximation with
round-to-nearest is interesting and worth looking at in more
detail. In Fig. 6.5c and 6.5g we can see that during the
first few iterations, v changes while u remains constant. In
theory, we would expect u to start decreasing because of
the negative values of v, but the number being subtracted
from u0 = 1 is too small for the 16-bit floating-point number

10

−1 0 1

−1

0

1

(a) n = 25, bfloat16.

−1 0 1

−1

0

1

(b) n = 29, bfloat16.

−1 0 1

−1

0

1

(c) n = 211, bfloat16.

−1 0 1

−1

0

1

RN

(d) n = 213, bfloat16.

−1 0 1

−1

0

1

(e) n = 25, binary16.

−1 0 1

−1

0

1

(f) n = 29, binary16.

−1 0 1

−1

0

1

(g) n = 214, binary16.

−1 0 1

−1

0

1

RN

(h) n = 216, binary16.

Exact SR (Algs. 4.1, 4.3) RN

Fig. 6.5: Unit circle drawn by Euler’s method in (6.4) with various arithmetics and rounding modes compared to the exact
solution. The default MATLAB random number generator seeded with 500 was used. The x- and y-axis represent u and v,
respectively. Note that in (d) and (h) only a very small part of the solution with RN is visible (marked with an arrow) since
the ODE solver failed due to stagnation.

systems considered in this experiment, as we now explain.
In order to simplify the analysis, we now assume exact

arithmetic. If no rounding errors strike the computation,
after 7 integration steps we get, for a given h,

u7 = 1− 21h2 + 36h4 − 7h6,

v7 = −7h+ 35h3 − 21h5 + h7.
(6.5)

It is clear that the value of v7 will depend on h even for
very small time steps, but the value of u7 might not, as this
coordinate has a constant term and the update is a second-
order term in h that can potentially be much smaller. The
other terms in this expression for u7 are even smaller, so
we focus only on the the first two. If we expand them so
to make the sequence of operations performed by Euler’s
method explicit, we obtain that

u7 ≈ 1− 21h2 = 1− h2 − 2h2 − 3h2 − 4h2 − 5h2 − 6h2,

where each multiplication and subtraction can potentially
cause a rounding error. If h2 is significantly smaller than 1,
in particular, the subtraction 1 − kh2 might result in
stagnation due to the rounding returning 1 and yielding
uk+1 = 1 = u0. That is why in Fig. 6.5 the value of u
initially remains constant with round-to-nearest but changes
immediately with stochastic rounding: the latter manages
to erode 1 by rounding up some of the kh2 terms. As

k increases, the terms kh2 will eventually become large
enough for subtractions to start taking effect with round-
to-nearest, at which point the curve will move to a different
edge of the octagon.

The situation is similar at the bottom of the circle, where
vN/4 = −1 and uN/4 = 0. At first, the value of hui is
so small that vi+1 = −1 − hui evaluates to −1 in finite
precision. As the magnitude of ui < 0 increases, as is
evident from the diagrams, so does −hui, which eventually
becomes large enough for round-to-nearest to round up the
result of −1 − hui. When rounding stochastically, this is
not as problematic, since any nonzero value of hui has a
nonzero probability of causing the subtraction to round up.
The expanded expression for the first two terms of vN/4+7 is
similar to u7, with increasingly larger multiples of h2 being
added to −1 at each step of Euler’s method

vN/4+7 ≈ −1+21h2 = −1+h2+2h2+3h2+4h2+5h2+6h2.

In Fig. 6.5d and 6.5h, on the other hand, the step size h is
so small that even v stops progressing in round-to-nearest,
and only a small portion of the octagon is drawn. This can
be explained by looking at (6.5): the largest term supposed
to decrease v0 = 0 is the first order term −h, therefore for
large enough h in finite-precision arithmetic one will have
vk = −kh. As can be seen from the figure, this works for

FASI AND MIKAITIS: STOCHASTIC ROUNDING ALGORITHMS IN FLOATING-POINT ARITHMETIC 11

the first few iterations, during which v grows in magnitude
while h remains constant, eventually causing stagnation to
occur. Note that u is also fixed at 1 at that point, which
means that the other terms in the expansion of v in (6.5)
vanish and the whole system of ODEs cannot progress any
further. This does not happen when rounding stochastically,
as this rounding mode avoids stagnation of both variables.

This simple experiment resembles the integration of
planetary orbits. For example, Quinn, Tremaine, and Dun-
can [33, Sec. 3.2] use multistep methods to integrate orbits
over a time span of millions of years with a time step of 0.75
days. The authors comment that roundoff errors arising in
the additions within the integration algorithm can become a
dominant source of the total error, and propose to keep track
of these errors and add them back to the partial sum as soon
as their sum exceeds the value of the least significant bit.
This technique is similar to the approach taken by cascaded
summation. The use of stochastic rounding in the floating-
point addition might alleviate this issue by reducing the
total summation error without requiring any additional
task-specific code or extra storage space at runtime.

We believe that the exploration of stochastic rounding
in this particular application should be a main direction of
future work. Our algorithms for emulating stochastically
rounded elementary arithmetic operations, along with the
code for binary64 precision arithmetic that we provide,
will allow those interested in looking into this problem to
easily access arithmetic with stochastic rounding without
requiring the use MPFR or alternative multiple-precision
libraries.

7 CONCLUSIONS

There is growing interest in stochastic rounding [12], [18].
In this work we proposed and compared several algorithms
for simulating stochastically rounded elementary arithmetic
operations via software. The main feature of our techniques
is that they only assume an IEEE-compliant floating-point
arithmetic, but do not require higher-precision computa-
tions. This is a major advantage in terms of both applica-
bility and performance. On the one hand, our new methods
can be readily implemented on a wide range of platforms,
including those, such as GPUs, for which multiple-precision
libraries are not available. On the other hand, the new
techniques lead to more efficient implementations: our ex-
periments in double precision show a speedup well above
5x over an MPFR-based multiple-precision approach.

We have also discussed some applications where
stochastic rounding is capable of curing the instabilities to
which round-to-nearest is prone. We showed that, in appli-
cations where stagnation is likely to occur, using stochastic
rounding can lead to much more accurate results than
standard round-to-nearest or even compensated algorithms.
This is especially relevant for binary16 and bfloat16, two 16-
bit formats that are starting to appear in hardware.

We feel that many other applications would benefit
from the use of stochastic rounding at lower precision, and
believe that this rounding mode will play an important role
if hardware that does not support 32/64-bit arithmetic starts
appearing. This will be the subject of future work.

8 ACKNOWLEDGMENT

We thank Nicholas J. Higham for fruitful discussions on
stochastic rounding, for suggesting the unit circle ODE
applications, and for his feedback on early drafts of this
work. We also thank Michael Connolly for his comments on
the manuscript. The work of M. Fasi was supported by the
Royal Society. The work of M. Mikaitis was supported by an
EPSRC Doctoral Prize Fellowship.

REFERENCES

[1] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985. Piscataway, NJ, USA: Institute of Electrical
and Electronics Engineers, 1985, reprinted in SIGPLAN Notices,
22(2):9–25, 1987. Available: https://doi.org/10.1109/IEEESTD.
1985.82928

[2] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-
2008 (revision of IEEE Std 754-1985). Piscataway, NJ, USA:
Institute of Electrical and Electronics Engineers, 2008. Available:
https://doi.org/10.1109/IEEESTD.2008.4610935

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-
2019 (revision of IEEE Std 754-2008). Piscataway, NJ, USA:
Institute of Electrical and Electronics Engineers, 2019. Available:
https://doi.org/10.1109/IEEESTD.2008.4610935

[4] P. Blanchard, N. J. Higham, and T. Mary, “A class of fast
and accurate summation algorithms,” Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, MIMS
EPrint 2019.6, Apr. 2019, revised February 2020. To appear in
SIAM J. Sci. Comput. Available: http://eprints.maths.manchester.
ac.uk/2748/

[5] N. J. Higham, “The accuracy of floating point summation,” SIAM
J. Sci. Comput., vol. 14, no. 4, pp. 783–799, Jul. 1993. Available:
https://doi.org/10.1137/0914050

[6] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Proceedings
of the 32nd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, F. Bach and D. Blei,
Eds., vol. 37. Lille, France: PMLR, Jul 2015, pp. 1737–1746.
Available: http://proceedings.mlr.press/v37/gupta15.html

[7] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and
K. Gopalakrishnan, “Training deep neural networks with
8-bit floating point numbers,” in Advances in Neural
Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 7675–
7684. Available: http://papers.nips.cc/paper/7994-training-
deep-neural-networks-with-8-bit-floating-point-numbers.pdf

[8] M. Hopkins, M. Mikaitis, D. R. Lester, and S. Furber, “Stochastic
rounding and reduced-precision fixed-point arithmetic for solving
neural ordinary differential equations,” Philos. Trans. R. Soc. A,
vol. 378, no. 2166, Jan 2020, article ID 20190052. Available:
https://doi.org/10.1098/rsta.2019.0052

[9] N. J. Higham and S. Pranesh, “Simulating low precision floating-
point arithmetic,” SIAM J. Sci. Comput., vol. 41, no. 5, pp. C585–
C602, 2019. Available: https://doi.org/10.1137/19M1251308

[10] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H.
Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K.
Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul,
J. Tse, G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, and
H. Wang, “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
Available: https://doi.org/10.1109/MM.2018.112130359

[11] S. Höppner and C. Mayr, “SpiNNaker2-Towards Extremely Effi-
cient Digital Neuromorphics and Multi-scale Brain Emulation,” in
2018 NICE Workshop, 2018. Available: https://niceworkshop.org/
wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf

[12] M. Mikaitis, “Stochastic rounding: Algorithms and hardware
accelerator,” arXiv:2001.01501 [cs.AR], 2020. Available: https:
//arxiv.org/abs/2001.01501

[13] S. Lifsches, “In-memory stochastic rounder,” U.S. Patent
20 200 012 708A1, Jan 9, 2020, application pending.

[14] G. H. Loh, “Stochastic rounding logic,” U.S. Patent
20 190 294 412A1, Sep 26, 2019, application pending.

https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
http://eprints.maths.manchester.ac.uk/2748/
http://eprints.maths.manchester.ac.uk/2748/
https://doi.org/10.1137/0914050
http://proceedings.mlr.press/v37/gupta15.html
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf
https://doi.org/10.1098/rsta.2019.0052
https://doi.org/10.1137/19M1251308
https://doi.org/10.1109/MM.2018.112130359
https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
https://niceworkshop.org/wp-content/uploads/2018/05/2-27-SHoppner-SpiNNaker2.pdf
https://arxiv.org/abs/2001.01501
https://arxiv.org/abs/2001.01501

12

[15] J. M. Alben, P. Micikevicius, H. Wu, and M. Y. Siu, “Stochastic
rounding of numerical values,” U.S. Patent 20 190 377 549A1, Dec
12, 2019, application pending.

[16] J. D. Bradbury, S. R. Carlough, B. R. Prasky, and E. M. Schwarz,
“Stochastic rounding floating-point multiply instruction using
entropy from a register,” U.S. Patent 10 445 066B2, Oct 15, 2019.

[17] ——, “Stochastic rounding floating-point add instruction using
entropy from a register,” U.S. Patent 10 489 152B2, Nov 26, 2019.

[18] M. P. Connolly, N. J. Higham, and T. Mary, “Stochastic rounding
and its probabilistic backward error analysis,” 2020, in prepara-
tion.

[19] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic, 2nd ed. Birkhäuser, 2018. Available:
https://doi.org/10.1007/978-3-319-76526-6

[20] D. E. Knuth, The Art of Computer Programming, 3rd ed. Reading,
MA, USA: Addison-Wesley, 1997, vol. 2: Seminumerical Algo-
rithms.

[21] O. Møller, “Quasi double-precision in floating point addition,”
BIT, vol. 5, no. 1, pp. 37–50, Mar 1965. Available: https:
//doi.org/10.1007/bf01975722

[22] T. J. Dekker, “A floating-point technique for extending the
available precision,” Numer. Math., vol. 18, no. 3, pp. 224–242,
1971. Available: https://doi.org/10.1007/BF01397083

[23] J. R. Shewchuk, “Adaptive precision floating-point arithmetic
and fast robust geometric predicates,” Discrete Comput. Geom.,
vol. 18, no. 3, pp. 305–363, Oct 1997. Available: https:
//doi.org/10.1007/pl00009321

[24] G. Bohlender, W. Walter, P. Kornerup, and D. W. Matula,
“Semantics for exact floating point operations,” Proceedings of the
10th IEEE Symposium on Computer Arithmetic, 1991. Available:
https://doi.org/10.1109/ARITH.1991.145529

[25] S. Boldo and M. Daumas, “Representable correcting terms for
possibly underflowing floating point operations,” Proceedings of

the 16th IEEE Symposium on Computer Arithmetic, 2003. Available:
https://doi.org/10.1109/ARITH.2003.1207663

[26] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with
correct rounding,” ACM Trans. Math. Software, vol. 33, no. 2,
pp. 13:1–13:15, 2007. Available: https://doi.org/10.1145/1236463.
1236468

[27] D. Malone, “To what does the harmonic series converge?”
Irish Math. Soc. Bull., no. 71, pp. 59–66, 2013. Available:
https://www.maths.tcd.ie/pub/ims/bull71/recipnote.pdf

[28] W. M. Kahan, “Pracniques: Further remarks on reducing
truncation errors,” Comm. ACM, vol. 8, no. 1, p. 40, 1965.
Available: http://dx.doi.org/10.1145/363707.363723

[29] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot
product,” SIAM J. Sci. Comput., vol. 26, no. 6, pp. 1955–1988, 2005.
Available: https://doi.org/10.1137/030601818

[30] D. M. Priest, “Algorithms for arbitrary precision floating point
arithmetic,” in Proceedings of the 10th IEEE Symposium on Computer
Arithmetic, 1991. Available: https://doi.org/10.1109/arith.1991.
145549

[31] N. J. Higham, Accuracy and Stability of Numerical Algorithms,
2nd ed. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 2002. Available: https://doi.org/10.1137/
1.9780898718027

[32] ——, “Goals of applied mathematical research,” in The Princeton
Companion to Applied Mathematics, N. J. Higham, M. R. Dennis,
P. Glendinning, P. A. Martin, F. Santosa, and J. Tanner, Eds.
Princeton, NJ, USA: Princeton University Press, 2015, pp.
48–55. Available: https://assets.press.princeton.edu/chapters/s1-
5 10592.pdf

[33] T. R. Quinn, S. Tremaine, and M. Duncan, “A three million year
integration of the Earth’s orbit,” Astron. J., vol. 101, pp. 2287–2305,
1991. Available: https://doi.org/10.1086/115850

https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/bf01975722
https://doi.org/10.1007/bf01975722
https://doi.org/10.1007/BF01397083
https://doi.org/10.1007/pl00009321
https://doi.org/10.1007/pl00009321
https://doi.org/10.1109/ARITH.1991.145529
https://doi.org/10.1109/ARITH.2003.1207663
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://www.maths.tcd.ie/pub/ims/bull71/recipnote.pdf
http://dx.doi.org/10.1145/363707.363723
https://doi.org/10.1137/030601818
https://doi.org/10.1109/arith.1991.145549
https://doi.org/10.1109/arith.1991.145549
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://assets.press.princeton.edu/chapters/s1-5_10592.pdf
https://assets.press.princeton.edu/chapters/s1-5_10592.pdf
https://doi.org/10.1086/115850

