
Generating extreme-scale matrices with specified
singular values or condition numbers

Fasi, Massimiliano and Higham, Nicholas J.

2020

MIMS EPrint: 2020.8

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

GENERATING EXTREME-SCALE MATRICES WITH SPECIFIED
SINGULAR VALUES OR CONDITION NUMBERS∗

MASSIMILIANO FASI† AND NICHOLAS J. HIGHAM‡

Abstract. A widely used form of test matrix is the randsvd matrix constructed as the product
A = UΣV ∗, where U and V are random orthogonal or unitary matrices from the Haar distribution
and Σ is a diagonal matrix of singular values. Such matrices are random but have a specified
singular value distribution. The cost of forming an m× n randsvd matrix is m3 + n3 flops, which is
prohibitively expensive at extreme scale; moreover, the randsvd construction requires a significant
amount of communication, making it unsuitable for distributed memory environments. By dropping
the requirement that U and V be Haar distributed and that both be random, we derive new algorithms
for forming A that have cost linear in the number of matrix elements and require a low amount of
communication and synchronization. We specialize these algorithms to generating matrices with
specified 2-norm condition number. Numerical experiments show that the algorithms have excellent
efficiency and scalability.

Key words. Test matrix, random matrix, randsvd, singular value decomposition, 2-norm condi-
tion number, Householder reflector

AMS subject classifications. 65F35, 65Y05.

1. Introduction. The TOP500 list1 ranks the world’s fastest computers using
the High-Performance Linpack Benchmark (HPL) [25], which measures the time taken
to solve a dense linear system with random coefficients by means of a direct factoriza-
tion method. The more powerful the machine being tested, the larger the test matrix
must be in order to extract the best performance from the system.

The largest linear systems solved on Summit,2 the machine that heads the No-
vember 2019 TOP500 list, have order 107, and the systems needed to benchmark
the coming generation of exascale supercomputers will be even larger. HPL employs
random matrices with entries drawn from the uniform distribution on (−1/2, 1/2]. For
such matrices, the expected value of the logarithm of κ2(A) is bounded by 4 log n+1 [9,
sect. 3.2], so these matrices are potentially ill conditioned for today’s most extreme
cases.

In the future, in HPL and other benchmarks we may wish to generate random
matrices with a specified singular value distribution or a specified condition num-
ber. For example, solving a linear system by low precision LU factorization with
iterative refinement at higher precisions can be faster than solving entirely at double
precision [7], [8], [14], but for convergence to be guaranteed there may be a limit
κ2(A) ≤ κmax, where κmax � u−1 and u is the unit roundoff of the working precision
(u−1 ≈ 1016 for IEEE double precision arithmetic [21]). The new HPL-AI mixed-
precision benchmark [12] uses this approach, and in such a case we need to generate
matrices with κ2(A) suitably bounded.

For large dimensions, existing techniques for generating dense matrices with a

∗Version of March 26, 2020.
Funding: This work was supported Engineering and Physical Sciences Research Council grant

EP/P020720/1 and the Royal Society.
†Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(massimiliano.fasi@manchester.ac.uk).
‡Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk).
1http://www.top500.org
2https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit

1

http://www.top500.org
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit

2 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

chosen singular value distribution are too expensive, as their cost significantly exceeds
the cost of solving Ax = b. A new approach is therefore needed. In order to be
efficient when run at extreme scale on machines with a high degree of parallelism, the
algorithms we develop must be concurrent and require a low amount of communication
and synchronization. As our primary goal is to provide test cases, it is also desirable
that generating the matrix takes only a fraction of the execution time of the method
being tested. This is the first in the following list of requirements.

R1. The cost of generating the matrix, measured by the number of floating-point
operations (flops) required, should be linear in the number of entries.

R2. The matrix should not be a low rank perturbation of a diagonal matrix (such
a matrix is too special).

R3. The matrix should be well scaled in the sense that there do not exist diagonal
matrices D1 and D2 such that κ2(D1AD2)� κ2(A). (Such diagonal scalings
lead to artificial ill conditioning that some algorithms automatically remove
or are insensitive to.)

R4. The matrix should not have a large growth factor for LU factorization with
pivoting (otherwise the factorization will suffer from numerical instability,
which will affect the interpretation of results for such solution methods).

R5. κ∞(A) should not be especially far from κ2(A). We know that n−1κ2(A) ≤
κ∞(A) ≤ nκ2(A) [19, sect. 6.2], and since κ∞(A) rather than κ2(A) is of-
ten used in error bounds it is preferable that κ∞(A) and κ2(A) differ by
substantially less than a factor n.

In this work we design an algorithm that constructs random dense matrices with
specified singular values and is suitable for a distributed memory environment. The
algorithm comes in two different forms, the most efficient of which depends on the
shape of the matrix. We also derive a cheaper variant that, given the required 2-norm
condition number, chooses the singular values in a way that minimizes the overall
computational cost. Our algorithms satisfy requirements R1 and R2, and we will
show experimentally that they satisfy R3–R5 for suitable choices of the singular value
distribution.

In the next section we describe the method used by several software packages to
produce random matrices with specified singular values. In section 3 we show how the
cost of this technique can be substantially reduced so as to obtain practical algorithms
for extreme-scale architectures. In section 4 we show that further cost reductions are
possible if one is interested only in the 2-norm condition number of the matrix that
is generated, and not in the distribution of its singular values. Finally, we compare
these algorithms experimentally in section 5.

We recall that a Householder matrix is defined in terms of a unit 2-norm vector u
by

(1.1) H(u) = I − 2uu∗, ‖u‖2 = 1.

We denote by sign the function of a real argument x for which sign(x) is −1 if x < 0
and 1 if x ≥ 0

2. The randomized SVD construction. In order to construct an m× n ma-
trix with given singular values σ1, . . . , σmin(m,n) we can construct the singular value
decomposition (SVD)

(2.1) A = UΣV ∗,

GENERATING EXTREME-SCALE TEST MATRICES 3

Algorithm 2.1: Random matrix with specified singular values.
1 function A← randsvd(m,n, σ ∈ Rmin(m,n), realout)

Generate m× n real (if realout is true) or complex (if realout is false)
matrix A with specified singular values.

2 Σ ← diag(σ) ∈ Rm×n
3 A← UMult(Σ, realout)
4 A← UMult(A∗, realout)

5 function R← UMult(A ∈ Cm×n, realtransf)
Compute action R = QA of a random orthogonal (if realtransf is true)
or unitary (if realtransf is false) matrix Q from the Haar distribution.

6 B ← A
7 for k ← 2 to m do
8 v ← randn(k, 1)
9 if realtransf then

10 dm−k+1 ← − sign(v1)
11 else
12 v ← v + i · randn(k, 1)
13 θ ← Arg(v1)

14 dm−k+1 ← −eiθ

15 u← v − dm−k+1‖v‖2e1
16 u← u/‖u‖2
17 x←

[
0m−k
u

]
18 B ← B − (2x)(xTB) exploiting the nonzero pattern of x.

19 B ← diag(d1, . . . , dm−1, sign(randn(1, 1))) ·R

where U ∈ Cm×m and V ∈ Cn×n are unitary and Σ ∈ Cm×n is the diagonal matrix
diag(σ1, . . . , σmin(m,n)). Stewart [27] considered real matrices and proposed taking U
and V as random matrices from the Haar distribution, which is a natural uniform
probability distribution on the orthogonal matrices. Let N (0, 1) denote the normal
distribution with mean 0 and variance 1, and let the entries of B ∈ Rn×n be sampled
from N (0, 1). If the QR factorization B = QR is normalized so that the diagonal
elements of R are nonnegative, then Q is from the Haar distribution [5], [27]. Stewart
showed that Q can be generated in factored form as Q = DP1P2 . . . Pn−1, where
Pi = diag(Ii−1, P̂i) with P̂i the Householder transformation that reduces xi ∈ Rn−i+1

with elements from N (0, 1) to riie1, D = diag(sign(rii)), and rnn ∈ N (0, 1). Forming
A by generating and applying U and V in product form requires around half as many
flops as explicitly computing U and V via QR factorization and then forming the
product in (2.1).

Demmel and McKenney [10] implemented Stewart’s method for constructing (2.1)
in LAPACK’s test matrix generation suite. Higham implemented the method in
MATLAB as function randsvd in the Test Matrix Toolbox [17], [18], and this function
was subsequently incorporated into the MATLAB gallery('randsvd',...) function.
Stewart’s method is also available in Julia through the randsvd function in Zhang
and Higham’s Matrix Depot package [31].

4 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

Mezzadri [24] shows that it is straightforward to extend Stewart’s construction of
real random orthogonal matrices to complex unitary matrices. Algorithm 2.1 summa-
rizes how to generate both real and complex random matrices with specified singular
values and orthogonal or unitary matrices of singular vectors from the Haar distribu-
tion. In the algorithm, the function randn(m,n) generates an m× n matrix with
entries sampled from N (0, 1), and Arg : C → (−π, π] denotes the principal value of
the argument function.

Algorithm 2.1 is not appropriate for generating large-scale matrices as it requires
m3+n3 flops [19, sect. 28.3] and so it is unduly expensive for large m and n. Moreover,
it is not well suited to a distributed-memory environment because of the high volume
of data communication required by the m− 1 matrix-vector multiplications that are
performed on line 18. This communication bottleneck can be reduced, to some extent,
by blocking the m− 1 Householder vectors and applying them together. This is the
approach followed by the magma_generate_svd function of MAGMA [11].

3. The randomized SVD construction at scale. The SVD construction in
the previous section can be modified so as to reduce the cost of generating real and
complex matrices with specified singular values from m3+n3 flops to only O(mn) flops.
For practical purposes, it is not necessary that the orthogonal or unitary matrices of
left and right singular vectors be Haar distributed, and it will usually not be necessary
that both matrices are random. Therefore we will turn our attention to families of
orthogonal or unitary matrices that are cheaper to construct and apply.

The simplest approach is as follows. For m ≥ n, we can generate a matrix
A ∈ Cm×n by taking U ∈ Cm×n with orthonormal columns and rescaling its columns
by the desired singular values. The resulting matrix A = UΣ, however, has a special
structure, and would be, for instance, a bad test problem for least squares solvers: the
normal equations matrix ATA = Σ2 is diagonal, and the triangular factor of the QR
factorization of A is, by construction, the diagonal matrix DΣ, where D = diag(±1).
Another reason for concern in the square case is that matrices generated in this
way are not ill-conditioned in the sense of the Skeel condition number cond(A) =
‖ |A−1||A| ‖∞ [19, sect. 7.2], [26], since cond(AT) = cond(ΣUT) = cond(UT). Hence
these matrices do not satisfy the requirement R3 in section 1.

We conclude that in order to obtain test matrices with desirable properties, it
is necessary to use nontrivial transformations on both sides of Σ in (2.1). In order
to keep the computational cost under control, we will employ a class of rectangular
matrices with orthonormal columns that generalize Householder transformations.

Take m > n, let α ∈ C, u ∈ Cn, v ∈ Cm−n, and w ∈ Cn, and consider the matrix

W :=

[
In
0

]
+ α

[
u
v

]
w∗ =

[
In + αuw∗

αvw∗

]
∈ Cm×n.

We have

W ∗W = (In + αwu∗)(In + αuw∗) + |α|2(v∗v)ww∗

= In + αwu∗ + αuw∗ + |α|2(u∗u+ v∗v)ww∗.(3.1)

If we assume that w = u 6= 0, we can further simplify the expression in (3.1) and
obtain that W has orthonormal columns if and only if

(3.2) 2C Reα+ |α|2 = 0, where C =
1

‖u‖22 + ‖v‖22
.

GENERATING EXTREME-SCALE TEST MATRICES 5

Algorithm 3.1: Matrix with specified singular values.
1 function A← rsvdFwd(m,n, σ ∈ Rmin(m,n), realout)

Generate m× n real (if realout is true) or complex (if realout is false)
matrix A with specified singular values using (3.5) or (3.6).

2 p← min(m,n)

3 Q̃← orthog(m, p, realout) · diag(σ) Q̃ = QΣ

4 if realout then
5 F← R
6 α← −2
7 else
8 F← C
9 Choose θ ∈ R \ {(2k + 1)π : k ∈ Z}.

10 α← −(eiθ + 1)

11 Generate u ∈ Fp \ {0}.
12 Generate v ∈ Fn−p.
13 ζ ← ‖u‖22 + ‖v‖22
14 α← α/ζ

15 y ← Q̃u

16 A←
[
Q̃+ αyu∗, αyv∗

]

By writing α = ρeiϕ, the condition in (3.2) can be rewritten as ρ = −2C cosϕ, which
gives

α = −C(2 cos2 ϕ+ 2i sinϕ cosϕ) = −C − C(cos 2ϕ+ i sin 2ϕ) = −C(1 + ei2ϕ).

In other words, we can choose for α any complex number on the disc of radius C
centered at −C. Therefore, for any choice of vectors u ∈ Cn \ {0} and v ∈ Cm−n, the
matrix

(3.3) W (θ, u, v) :=

[
In + αuu∗

αvu∗

]
, α = − eiθ + 1

‖u‖22 + ‖v‖22
, θ ∈ R,

has orthonormal columns. In order to avoid the trivial case α = 0, we restrict θ to
the set R \ {(2k + 1)π : k ∈ Z}.

A similar argument for the real case shows that for any u ∈ Rn\{0} and v ∈ Rm−n
the matrix

(3.4) Z(α, u, v) :=

[
In + αuuT

αvuT

]
∈ Rm×n

has orthonormal columns if and only if α = −2C or α = 0, where C is defined in (3.2).
These results can be readily used to develop an algorithm for constructing an

m× n random matrix with specified singular values. First we consider the case of
matrices with complex entries.

Let p = min(m,n), let Q ∈ Cm×p have orthonormal columns (we will discuss how
to choose Q at the end of the section), let Σ ∈ Rp×p be a diagonal matrix of singular
values, and let W := W (θ, u, v) ∈ Cn×p for some u ∈ Cp \ {0} and v ∈ Cn−p. We

6 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

stress that the construction we present here requires only that u have at least one
nonzero element, and that no assumptions on v are necessary. In the experiments in
section 5 we will draw the entries of these two vectors from a Gaussian distribution,
but this is not necessary, and one might want to choose u and v in a non-random way
when reproducibility is required. For this reason, in our pseudocode we simply state
that the two vectors have to be generated and we do not specify how their elements
should be chosen.

The matrix

(3.5) A := QΣW ∗ =
[
QΣ + αQΣuu∗, αQΣuv∗

]
∈ Cm×n, α = − eiθ + 1

‖u‖22 + ‖v‖22
,

has the diagonal entries of Σ as singular values.
For the real case, the matrix

(3.6) A := QΣZT =
[
QΣ + αQΣuuT , αQΣuvT

]
, α = − 2

‖u‖22 + ‖v‖22
,

where Q ∈ Rm×n has orthonormal columns and Z := Z(α, u, v) ∈ Rn×p for some
u ∈ Rp \ {0} and v ∈ Cn−p, has the diagonal entries of Σ as singular values.

The matrices in (3.5) and (3.6) can be constructed efficiently as shown in Algo-
rithm 3.1. As this strategy evaluates the two matrix products in (3.5) and (3.6) from
left to right, i.e., in a forward fashion, we use the expression “forward algorithm” to
refer to it. In the pseudocode, calling orthog(m, p, realout) returns, for m > p,
an m× p matrix with orthonormal columns whose elements are either real or complex
depending on the value of the third input argument. If m = n, so that n− p = 0, then
one can either assume, for consistency, that the vector v is 0× 1 or replace lines 12–16
with

12 α← α/‖u‖2
13 A← Q̃+ (Q̃u)(αu∗)

where the parentheses are used to indicate the evaluation order that yields the smallest
flop count. The best strategy to evaluate the expression on line 16 depends on the
values of m and n: if m < n, then it is convenient to compute αy, store it, and use it
to evaluate both blocks of A, whereas if n < m the optimal flop count is obtained by
computing αu∗ and αv∗ and using those to compute the outer products.

Let γ(m,n) ∈ O(mn) be the number of flops required by orthog to generate an
m× n matrix with orthonormal columns. Then generating the matrix and applying
the diagonal scaling on line 3 requires γ(m, p) +mp flops; the cost of the if statement
starting on line 4 and the division on line 14 do not depend on m or n; generating
the vectors on lines 11 and 12, which we assume to be random, has cost ψn, where ψ
is the number of flops required to generate a single random number; and computing
the norms on line 13 costs 2n − 1 flops. The matrix-vector product on line 15 and
the outer products on line 16 require 2mp−m and mn+mp+ p flops, respectively.
Therefore, the total flop count of Algorithm 3.1 is

(3.7)
Cf (m,n) = mn+ γ(m, p) + 4mp−m+ (ψ + 2)n+ p+O(1)

≈ mn+ γ(m, p) + 4mp.

The only operations in Algorithm 3.1 that require communication are the matrix-
vector product on line 15 and the outer products on line 16. In a distributed-memory
implementation, this algorithm requires synchronization of the processes only between

GENERATING EXTREME-SCALE TEST MATRICES 7

Algorithm 3.2: Matrix with specified singular values.
1 function A← rsvdBwd(m,n, σ ∈ Rmin(m,n), realout)

Generate m× n real (if realout is true) or complex (if realout is false)
matrix A with specified singular values using (3.8) or (3.9).

2 p← min(m,n)

3 Q̃← orthog(n, p, realout) · diag(σ) Q̃ = QΣ

4 if realout then
5 F← R
6 α← −2
7 else
8 F← C
9 Choose θ ∈ R \ {(2k + 1)π : k ∈ Z}.

10 α← −(eiθ + 1)

11 Generate u ∈ Fp \ {0}.
12 Generate v ∈ Fm−p.
13 ζ ← ‖u‖22 + ‖v‖22
14 α← α/ζ

15 y ← Q̃u

16 A←
[
Q̃+ αuy∗

αvy∗

]

these two lines, as neither of the outer products on line 16 can be evaluated before the
computation of y has been completed. This represents, however, a great improvement
over Algorithm 2.1, where the processes need to synchronize after each of the m− 1
matrix-vector products on line 18.

Alternatively one could consider, instead of (3.5), the SVD

(3.8) A :=WΣQ∗ =

[
ΣQ∗ + αuu∗ΣQ∗

αvu∗ΣQ∗

]
, α = − eiθ + 1

‖u‖22 + ‖v‖22
,

where W := W (θ, u, v) ∈ Cm×p for some u ∈ Cp \ {0} and v ∈ Cm−p, Σ ∈ Rp×p is
a diagonal matrix of singular values, and Q ∈ Cn×p has orthonormal columns. If a
matrix with real entries is sought, one can instead use the decomposition

(3.9) A := ZΣQT =

[
ΣQT + αuuTΣQT

αvuTΣQT

]
, α = − 2

‖u‖22 + ‖v‖22
,

where Z := Z(α, u, v) ∈ Rm×p for some u ∈ Rp \ {0} and v ∈ Rm−p, Σ ∈ Rp×p, and
Q ∈ Rn×p has orthonormal columns.

The matrices in (3.8) and (3.9) can be evaluated efficiently in a backward fashion,
as shown in Algorithm 3.2. If p = m, then we can either assume, as before, that v is
a 0× 1 matrix, or replace lines 12–16 with

12 α← α/‖u‖2
13 A← Q̃+ αu(u∗Q̃)

By choosing the best evaluation order for the expression on line 16, we can show

8 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

that Algorithm 3.2 has a flop count of

(3.10)
Cb(m,n) = mn+ γ(n, p) + 4np+ (ψ + 2)m− n+ p+O(1)

≈ mn+ γ(n, p) + 4np.

Algorithms 3.1 and 3.2 have the same cost if they are used to construct a square matrix
with specified singular values. In order to minimize the overall computational cost
we should use Algorithm 3.2 when m > n and Algorithm 3.1 otherwise. In terms of
communication and synchronization, the requirements of Algorithm 3.2 are the same
as those of Algorithm 3.1.

The choice of the matrix generated by the function orthog used in Algo-
rithms 3.1 and 3.2 makes a difference to performance and to the structure of the
matrix the algorithms produce. One possibility is to use a matrix of the form (3.3)
or (3.4), which would have to be explicitly formed, at the cost of mn flops. This ap-
proach has two major drawbacks if m = n. On the one hand, the matrices generated
by the algorithms in this section would be just a rank-3 update of the diagonal matrix
Σ, violating requirement R2 in section 1. On the other hand, in a distributed-memory
environment the resulting algorithm would be less efficient than computing locally
the entries of the matrix because of the high communication cost associated with
generating, normalizing, and distributing the vectors u and v. We support this claim
by means of numerical experiments in section 5.2.1.

We will choose Q to be a matrix whose elements are given by explicit formulae
that can be evaluated independently, without communication. Various such unitary
and orthogonal matrices exist in the literature, including the Fourier matrix (“the most
important of all unitary matrices” [28]); the Helmert matrix [15] and its generaliza-
tions [22], [23]; the Hartley matrix [4]; and matrices associated with the discrete sine [4]
and the cosine [29] transform. Some orthogonal structured matrices are also discussed
in the literature: most of the matrices above, as well as [20, eqs. (2.3) and (2.4)] and [3,
eq. (3.2)] are symmetric orthogonal.

4. Large matrices with specified 2-norm condition number. Algorithms
3.1 and 3.2 can readily be used to construct a dense square matrix A ∈ Cn×n with
specified 2-norm condition number κ by choosing σ ∈ Rn so that σ1σ−1n = κ. We now
show how a suitable choice of Σ and u in (3.5) and (3.8) can lead to algorithms with
a lower computational cost.

Since m = n, (3.5) simplifies to A = QΣ(I + αuu∗). Denoting the ith row of
Q ∈ Cn×n by qT(i), where q(i) ∈ Cn, we can write the ith entry of the vector y := QΣu
computed on line 15 of Algorithm 3.1 as

yi = (QΣu)i = qT(i)Σu =

n∑
k=1

qikσkuk.

Since Q is unitary, by setting u = q(`), for some ` between 1 and n, we obtain

(4.1) yi =
n∑
k=1

qikσkq`k =

n∑
k=1

qikσkq`k+

(
δi` −

n∑
k=1

qikq`k

)
=

n∑
k=1

qik(σk−1)q`k+δi`,

where δi` denotes the Kronecker delta, which equals 1 if i = ` and 0 otherwise.
Equation (4.1) shows that the number of flops required to compute y can be

reduced by setting as many entries of σ as possible to 1. Since in our application we

GENERATING EXTREME-SCALE TEST MATRICES 9

Algorithm 4.1: Matrix with specified 2-norm condition number.
1 function A← svdcondFwd(n, κ, realout)

Generate n× n real (if realout is true) or complex (if realout is false)
matrix A with specified 2-norm condition number κ.

2 Q̃← orthog(n, n, realout)
3 if realout then
4 α← −2
5 else
6 Choose θ ∈ R \ {(2k + 1)π : k ∈ Z}.
7 α← −(eiθ + 1)

8 Choose ` between 1 and n.
9 Choose σ1 and σn using one of the three strategies in (4.2).

10 for i← 1 to n do
11 yi ← qi1q`1(σ1 − 1) + qinq`n(σn − 1) + δi`

12 for i← 1 to n do
13 qi1 ← σ1qi1
14 qin ← σnqin

15 A← Q+ αyqT(`)

are interested only in the ratio of the largest to the smallest singular values, we will
set σk = 1 for k between 2 and n− 1. Then (4.1) becomes

yi = (σ1 − 1)qi1q`1 + (σn−1 − 1)qinq`n + δi`.

There are three natural choices of the extremal singular values:

(4.2) σ1 = κ1/2, σn = κ−1/2; σ1 = κ, σn = 1; σ1 = 1, σn = κ−1.

After scaling A← κ−1/2A in the first case and A← κ−1A in the second, the complete
set of singular values becomes

(4.3)

σ1 = 1, σk = κ−1/2, k = 2, . . . , n− 1, σn = κ−1,

σ1 = 1, σk = κ−1, k = 2, . . . , n− 1, σn = κ−1,

σ1 = 1, σk = 1, k = 2, . . . , n− 1, σn = κ−1,

which for κ � 1 can be described as “many moderately small singular values”, “one
large singular value”, and “one small singular value.” Which choice is best will depend
on the application.

Algorithm 4.1 implements this approach. Generating the matrix on line 2 requires
γ(n) flops, where γ(n) denotes the number of flops required by orthog to generate
an n× n orthogonal or unitary matrix. The for loops on lines 10 and 12 require
5n + 1 and 2n flops, respectively, the outer product on line 15 entails n2 additions
and (n+ 1)n multiplications, and the cost of all the other operations is constant with
respect to n. Therefore, Algorithm 4.1 requires

γ(n) + 2n2 + 8n+O(1) ≈ γ(n) + 2n2

10 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

(a) Blocks assigned to each process.

P21 P22 P23

P11 P12 P13

P31 P32 P33

P21 P22 P23

P11 P12 P13

P31 P32 P33

P21 P22 P23

P11 P12 P13

P21 P22 P23

P11 P12 P13

P31 P32 P33

P21 P22 P23

P11 P12 P13

P31 P32 P33

P21 P22 P23

P11 P12 P13

P21 P22

P11 P12

P31 P32

P21 P22

P11 P12

P31 P32

P21 P22

P11 P12

(b) Data dependencies for P22.

y

q(`)

P22

P22

P22

P22

P22

P22

P22

P22

P22

Fig. 4.1: Left: two-dimensional block-cyclic distribution of the entries of a block 8× 8 matrix among
the processes of a 3× 3 grid. Right: entries of the vectors y and q(`) that the processor P22 needs
to compute in order to avoid communication when generating its portion of the test matrix using
svdcondFwd.

flops to generate a matrix of order n with specified 2-norm condition number. For
comparison, Algorithms 3.1 and 3.2 require

Cf (n, n) = Cb(n, n) ≈ γ(n) + 5n2

flops to construct a matrix with the same characteristics.
Algorithm 4.1 is cheaper than Algorithm 3.1 not only in terms of computational

cost, but also in terms of communication, as the matrix-vector product on line 15 of
Algorithm 3.1 is replaced with the communication-lighter instruction on line 11 of
Algorithm 4.1. The need to synchronize the processes after this computation remains,
since the elements computed on line 11 may be required by other processes in order
to evaluate the outer product on line 15.

It is possible, however, to implement Algorithm 4.1 in a communication-avoiding
fashion [1], at the price of a linear increase in the overall flop count. Since we are inter-
ested in developing algorithms for high-performance distributed-memory environments,
we consider only the case of in-core matrices, and focus on the data distribution model
of BLACS/PBLAS/ScaLAPACK, as we rely on these libraries in our numerical exper-
iments. In particular, we assume that the computational processes are arranged in a
rectangular grid [6, sect. 4.1], and that the entries of vectors and matrices are assigned
to them according to the two-dimensional block-cyclic distribution [6, sect. 4.3.1]; see
Figure 4.1a.

In Algorithm 4.1, the operation on line 11 always requires some communication
among the processes as long as the process grid has at least two rows. Similarly,
computing the outer product on line 15 requires the elements of y to be communicated
among the processes if the grid has two or more columns.

GENERATING EXTREME-SCALE TEST MATRICES 11

Algorithm 4.2: Matrix with specified 2-norm condition number.
1 function A← svdcondBwd(n, κ, realout)

Generate n× n real (if realout is true) or complex (if realout is false)
matrix A with specified 2-norm condition number.

2 Q̃← orthog(n, n, realout)
3 if realout then
4 α← −2
5 else
6 Choose θ ∈ R \ {(2k + 1)π : k ∈ Z}.
7 α← −(eiθ + 1)

8 Choose ` between 1 and n.
9 Choose σ1 and σn using one of the three strategies in (4.3).

10 for i← 1 to n do
11 yi ← q1iq1`(σ1 − 1) + qniqn`(σn − 1) + δi`

12 for i← 1 to n do
13 q1i ← σ1q1i
14 qni ← σnqni

15 A← Q+ αq(`)yT

Let us now focus on the computation of a single entry of the matrix A generated
by Algorithm 4.1. From line 15 we have that aij = qij +αyiq`j . The process in charge
of the element aij computes qij on line 2 and thus can retrieve its value without any
communication, but in general may not have access to yi and q`j . Even though it
would be possible to obtain these values from the processes that have computed them,
it may be more efficient to recompute them locally: evaluating a single element of y
or q(`) requires only a constant number of flops, and since the elements of the matrix
are distributed by blocks, a linear amount of extra work can be used to produce a
quadratic number of entries of A, as illustrated in Figure 4.1b.

Much like Algorithm 3.1, Algorithm 4.1 is a forward algorithm, as it computes
the two matrix products in (3.5) and (3.6) from left to right. A backward variant of
Algorithm 4.1 based on Algorithm 3.2 can be derived similarly by setting u in (3.8)
and (3.9) to q(`), the `th column of Q. The pseudocode of this approach is given
in Algorithm 4.2.

We comment on requirement R3 of well scaling in section 1. This condition is
difficult to check theoretically. However, we note that if A = XΣY T with X and Y
orthogonal then aij =

∑p
i=1 xikσkyjk, p = min(m,n). Hence |aij | ≤ σ1 and unless the

xik, σk, and yjk are highly correlated, we expect |aij | ≥ cpσ1 for some constant cp ≤ 1
depending only on p. Hence we do not expect a wide variation in the size of the |aij |
and hence do not expect A to have a severe row or column scaling.

5. Numerical experiments. Now we investigate the numerical behavior of the
new algorithms in sections 3 and 4 and compare their performance with that of
Algorithm 2.1, which uses random orthogonal matrices from the Haar distribution.

5.1. Small-scale tests. First we consider the numerical properties of the test
matrices generated by these algorithms. The small-scale experiments discussed here
were run using the GNU/Linux (glnxa64) version of MATLAB 9.7.0 (R2019b Update 2)

12 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

Table 5.1: Distribution of the singular values for different values of the parameter mode.

mode Singular values

0 σ1 = 1, σk = κ−1/2, k = 2, . . . , n− 1, σn = κ−1

1 σ1 = 1, σk = κ−1, k = 2, . . . , n

2 σk = 1, k = 1, . . . , n− 1, σn = κ−1

3 σk = κ
1−k
n−1 , k = 1, . . . , n

4 σk = 1
κ

(
1 + κ−1

n−1
(k − 1)

)
, k = 1, . . . , n

5 σk = exp(−γk log κ), k = 1, . . . , n, γk ∼ U [0, 1]

on a machine equipped with an Intel processor I5-6500 running at 3.20GHz and 16
GiB of RAM. We test several algorithms to generate a real square matrix of order n
with 2-norm condition number kappa:

• rsvd: a call to gallery('randsvd',n,kappa,mode), the built-in MATLAB
function that implements Algorithm 2.1. The distribution of the singular
values depends on the parameter mode, which can take any of the values in
Table 5.1 except 0.
• rsvd_fwd: an implementation of Algorithm 3.1 where m = n, the entries of
u are sampled from N (0, 1), and v is a 0× 1 vector. By default, the matrix
Q is an orthogonal matrix from the Haar distribution. The parameter mode
can take any of the values in Table 5.1.

• rsvd_bwd: an implementation of Algorithm 3.2 that uses the same parameters
as rsvd_fwd.

• svdcond_fwd: an implementation of Algorithm 4.1 where the parameter ` is
an integer drawn with uniform probability from the set {1, 2, . . . , n}, and the
matrix Q is generated as in rsvd_fwd. The parameter mode can take only the
three values 0, 1, or 2, which correspond to the modes in Table 5.1 (or more
precisely to the choices in (4.3), since we need σk = 1 for k between 2 and
n− 1 (cf. (4.3)).

• svdcond_bwd: an implementation of Algorithm 4.2 that uses the same param-
eters as svdcond_fwd.

The implementation of rsvd_fwd, rsvd_bwd, svdcond_fwd, and svdcond_bwd we
used for the tests is available on the MATLAB Central File Exchange.3

5.1.1. Conditioning. This experiment is designed to test how the matrices that
these algorithms generate compare with respect to different measures of sensitivity.
Figure 5.1 reports the value of the ratio µ(A) = κ∞(A)/κ2(A) where A is a matrix of
order 1,000 generated by rsvd, rsvd_fwd, rsvd_bwd, svdcond_fwd, and svdcond_bwd
with the parameter kappa set to 10i, for i = 1, . . . , 15. As some of the parameters
used by the algorithms are chosen randomly, we take the average value of µ(A) over 20
generated matrices. The results in each of the six plots refer to a different distribution
of the singular values.

The figure shows that that the ratio depends not only on the algorithm used
to generate the test matrix, but also on which singular value distribution is chosen.
Generally speaking, as κ2(A) increases the value of µ(A) follows one of three patterns:
it remains constant, it has a sharp initial drop followed by a fairly constant regime, or

3https://uk.mathworks.com/matlabcentral/fileexchange/74485.

https://uk.mathworks.com/matlabcentral/fileexchange/74485

GENERATING EXTREME-SCALE TEST MATRICES 13

(a) mode = 0.

101 104 107 1010 1013
10−1

100

101

κ2(A)

(b) mode = 1.

101 104 107 1010 1013
10−1

100

101

κ2(A)

(c) mode = 2.

101 104 107 1010 1013
10−1

100

101

κ2(A)

(d) mode = 3.

101 104 107 1010 1013
10−1

100

101

κ2(A)

(e) mode = 4.

101 104 107 1010 1013
10−1

100

101

κ2(A)

(f) mode = 5.

101 104 107 1010 1013
10−1

100

101

κ2(A)

rsvd rsvd_fwd rsvd_bwd
svdcond_fwd svdcond_bwd

Fig. 5.1: Ratio µ(A) = κ∞(A)/κ2(A) of condition numbers for matrices of order 1,000 generated by
rsvd, rsvd_fwd, rsvd_bwd, svdcond_fwd, and svdcond_bwd.

14 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

it decreases at a sublinear rate.
The only algorithms that always exhibit the first kind of behaviour are rsvd_bwd

and svdcond_bwd: both methods always generate matrices with an∞-norm condition
number larger than the 2-norm condition number in our experiments. We remark that
for matrices of order 1,000 the maximum theoretical value of µ(A) is n2 = 106, and a
value between 20 and 30 can still be regarded as small.

The forward methods rsvd_fwd and svdcond_fwd, on the other hand, typically
achieve the smallest values of µ(A), the only exception being when mode is 2. This
suggests that for these two methods the conditioning in the sense of the ∞-norm is
sensitive to a large gap between the two largest singular values, but not between the
smallest two. We note that these are the only two of the new algorithms for which µ(A)
falls below 1, which indicates matrices that are more ill conditioned in the 2-norm
than in the ∞-norm sense.

Finally, for rsvd the value of this ratio is typically in-between those of rsvd_fwd
and rsvd_bwd.

As mentioned above, in these experiments Q is a Haar distributed matrix. When
considering these algorithms at scale, however, performance constraints call for the use
of orthogonal matrices whose elements can be generated in constant time and without
requiring any communication. In order to check whether this limitation affects the
results discussed in this section, we repeated the same experiments using the symmetric
orthogonal matrix Q ∈ Cn×n in [20, Eq. (2.3)], defined by

(5.1) qij =
2√

2n+ 1
sin

(
2ijπ

2n+ 1

)
, i, j = 1, . . . , n.

Despite the very special structure of this matrix, we found that using it in place of the
default matrix in rsvd_fwd, rsvd_bwd, svdcond_fwd, and svdcond_bwd yields results
very similar to those in Figure 5.1.

5.1.2. Growth factors. For the matrices generated we are interested in the
the growth factor for LU factorization with partial pivoting, an important quantity
for gauging the backward stability of the factorization as a means to solve linear
systems [19, sect. 9.3], [30]. We recall that for the Gaussian elimination algorithm
that transforms a matrix A(0) ∈ Cn×n into the upper triangular matrix A(n−1) by
constructing the sequence of matrices A(1), A(2), . . . , the growth factor is defined as

(5.2) ρ(A) =
maxi,j,k|a(k)ij |
maxi,j |a(0)ij |

.

Seventy years of digital computing attest to the fact that the growth factor is almost
always small, say less than 50.

We generated matrices of order n between 10 and 1,000, using the default choice
for the orthogonal matrix Q and the six singular value distributions in Table 5.1. The
growth factors were less than 50 for all choices of mode other than 2, and approxi-
mately 1 when mode was set to 0 or 1. When mode is set to 2, the growth is above 100
for all the algorithms we consider. The reasons for the large growth are investigated
in [16].

Our results suggest that replacing one of the singular vector matrices in Algo-
rithm 2.1 with a Householder transformation, does not influence the growth factor of
the test matrices being generated.

We repeated the experiment using the matrix Q in (5.1) instead of the default
choice. When mode is 0, 1, 2, or 3, the behavior of the four new algorithms is not

GENERATING EXTREME-SCALE TEST MATRICES 15

influenced by the different choice of Q, although we remark that when not constant
the growth factors tend to increase somewhat more quickly for an orthogonal matrix
with such a special structure. The two algorithms rsvd_bwd and rsvd_fwd, on the
other hand, exhibit large growth when mode is 4 and 5, respectively.

The conclusion to be drawn is that for LU factorization tests, mode should be set
to 2, 4, or 5 only if large growth is wanted.

5.1.3. Scaling. It is known that the minimum value of κ2(D1AD2) over all
nonsingular diagonal matrices D1 and D2 is bounded above by %(|A||A−1|), where
% is the spectral radius, provided that |A||A−1| and |A−1||A| are irreducible [2], [19,
Prob. 7.10]. We computed the ratio %

(
|A||A−1|

)
/κ2(A) for every matrix used in

the experiments in section 5.1.1, and found that the behavior of this quantity varies
greatly depending not only on the algorithm used to generate the matrix but also on
the distribution of the singular values.

In many cases the ratio was greater than 1. If we regard a ratio less than 10−2 as
signaling poor scaling, then for our algorithms poor scaling was observed only when
mode was 0. Empirically, then, requirement R3 is satisfied for rsvd_fwd, rsvd_bwd,
svdcond_fwd, and svdcond_bwd when mode is not 0.

5.1.4. Performance. Although our main focus is on distributed memory imple-
mentations, we note that the MATLAB implementations of the new algorithms are
substantially faster than the existing MATLAB gallery('randsvd',...) function.
We illustrate this with the following example. The code

n = 10000; kappa = 1e6; mode = 2; rng(1)
% gallery('randsvd',...)
fprintf('gallery(''randsvd'',...): elapsed time is %f seconds.\n',...

timeit(@()gallery('randsvd',n,kappa,mode,[],[],1)));
% Algorithm 3.1.
method = 1;
fprintf('Algorithm 3.1: elapsed time is %f seconds.\n',...

timeit(@()randsvdfast(n,kappa,mode,method)));
% Algorithm 4.1.
method = 3;
fprintf('Algorithm 4.1: elapsed time is %f seconds.\n',...

timeit(@()randsvdfast(n,kappa,mode,method)));

produces the output:

gallery('randsvd',...): elapsed time is 87.258131 seconds.
Algorithm 3.1: elapsed time is 22.919747 seconds.
Algorithm 4.1: elapsed time is 21.004196 seconds.

5.2. Large-scale tests. In this set of experiments we focus on the performance
of our algorithms in a distributed-memory environment. Our codes were implemented
in C using the BLACS, PBLAS, and ScaLAPACK routines provided by the Intel
Math Kernel Library4 (version 18.0.3) linked against the Open MPI5 implementation
(version 3.1.4) of version 3.1 of the MPI standard [13]. Our experiments were run
on the High Performance Computing Pool of the Computational Shared Facility 3

4https://software.intel.com/mkl
5https://www.open-mpi.org

https://software.intel.com/mkl
https://www.open-mpi.org

16 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
×105

10−2

10−1

100

101

n

H(u)

Q

Fig. 5.2: Wall-clock time (in seconds) required to generate the orthogonal matrices H(u) and Q
in (5.1) of order n between 100,000 and 800,000 using 1,024 processes.

of the University of Manchester. Each node in the pool is equipped with two 16-
core Intel Xeon Gold 6130 CPUs, running at 2.10GHz with 187GiB of RAM, with
a Mellanox Technologies ConnectX-5 InfiniBand port adaptor supporting 100Gb/s
Ethernet. Some of the experiments discussed in section 5.2.3 require a single node with
at least 298 GiB of RAM: for those we use a high-memory node that complements
two CPUs as above with 1.5 TiB of RAM.

We compare the following codes for generating an n× n matrix with specified
condition number κ.

• prsvd: a C port of ScaLAPACK’s pdlagge, which is not available in the Intel
MKL Library. This function returns the matrix UΣV , where U and V are
the orthogonal factors of the QR and LQ decomposition, respectively, of two
matrices with random entries drawn from (−1, 1). As we are interested only
in the 2-norm condition number, we need to specify only the extreme singular
values, and are not concerned with their distribution. Therefore, we use mode
3 in Table 5.1.
• prsvd_fwd: an implementation of Algorithm 3.1 where m = n, the entries of
u are sampled from N (0, 1), v is a 0× 1 vector, the matrix Q is that in (5.1)
and the singular values are distributed according to mode 3 in Table 5.1.

• prsvd_bwd: an implementation of Algorithm 3.2 using the same parameters
as prsvd_fwd.

• psvdcond_fwd: a communication-avoiding implementation of Algorithm 4.1
that uses the matrix Q in (5.1). The parameter ` is an integer drawn with
uniform probability from the set {1, 2, . . . , n} and mode is 0.

• psvdcond_bwd: a communication-avoiding implementation of Algorithm 4.2
that uses the same parameters as psvdcond_fwd.

The code we used for our experiments is available on GitHub.6

5.2.1. Generation of orthogonal matrices. First, we investigate the effi-
ciency of different techniques for generating large matrices with orthonormal columns
in a distributed-memory environment.

In Figure 5.2 we compare the wall-clock time necessary to generate the Householder
matrix H(u) in (1.1), where the parameter vector u is generated randomly, with the

6https://github.com/mfasi/randsvdfast

https://github.com/mfasi/randsvdfast

GENERATING EXTREME-SCALE TEST MATRICES 17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
×105

10−3

10−2

10−1

100

101

102

103

104

n

prsvd prsvd_fwd prsvd_bwd
psvdcond_fwd psvdcond_bwd

Fig. 5.3: Wall-clock time (in seconds) required by prsvd, prsvd_fwd, prsvd_bwd, psvdcond_fwd, and
psvdcond_bwd to generate matrices of order n between 10,000 and 100,000 and 2-norm condition
number 108 using 1,024 processes.

wall-clock time needed to construct the matrix in (5.1). We consider matrices of order
between 100,000 and 800,000, and use 1,024 MPI processes.

The results clearly show the benefits of generating the matrices from a somewhat
expensive formula (because of the sine evaluations) that depends only on the row
and column index of the entry: this local approach is about one order of magnitude
faster than the approach based on the Householder transformation, which in principle
requires a much lower number of flops.

5.2.2. Scalability. In this experiment we compare the five algorithms in terms of
computational efficiency. Figure 5.3 reports the wall-clock time that prsvd, prsvd_fwd,
prsvd_bwd, psvdcond_fwd, and psvdcond_bwd require in order to generate matrices
of order n between 10,000 and 100,000 using 1,024 processes. As the choice of the
target condition number does not influence the run time of any of the algorithms, we
set κ = 108 in all cases.

The results clearly show that prsvd is far slower than the four new methods, with
a run time between one and three orders of magnitude larger than that of the second
worst algorithm. Moreover, we note that the gap between this algorithm and the
others grows as the order of the matrix increases. For all the sizes we consider in this
experiment, psvdcond_fwd is typically the fastest method, followed by prsvd_fwd, and
then psvdcond_bwd and finally prsvd_bwd. As we will see in the next section, this is
due to the fact that here we are dealing with somewhat small matrices, a constraint due
to the exceedingly long execution time of prsvd. For matrices of order 200,000 or larger,
the communication-avoiding algorithms psvdcond_fwd and psvdcond_bwd tend to be
faster than those based on explicit matrix-matrix or matrix-vector multiplications.

In Figure 5.4, we investigate how well the run time of the methods scales with
the number of processes being used. Figure 5.4a reports the wall-clock time needed
by prsvd, prsvd_fwd, prsvd_bwd, psvdcond_fwd, and psvdcond_bwd to generate
matrices of order 20,000 using an increasing number of processes. The use of such a
small matrix in this experiment is due to the large execution time of prsvd with a

18 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

(a) Wall-clock time.

20 21 22 23 24 25

10−1

100

101

102

103

104

105

p

s

(b) Speedup.

20 21 22 23 24 25
20

21

22

23

24

25

p

θp

prsvd prsvd_fwd prsvd_bwd
psvdcond_fwd psvdcond_bwd Ideal speedup

Fig. 5.4: (a) wall-clock time (in seconds) and (b) speedup for prsvd, prsvd_bwd, prsvd_fwd,
psvdcond_fwd, and psvdcond_bwd generating a matrix of order 20,000 and 2-norm condition number
108 using p processes.

single process.
In order to assess how increasing the number of processes involved in the com-

putation benefits the algorithms individually, in Figure 5.4b we plot the same data
as in Figure 5.4a in the form of latency speedup profiles. In other words, for each
algorithm we plot, as p increases, the quantity

θp =
t1
tp
,

where tp is the wall-clock time required to generate the matrix using p processes.
For reference, we also mark the ideal speedup θp = p, which represents the optimal
theoretical performance gain of a parallel code.

It is clear from the results that the behavior of prsvd is qualitatively different from
that of the new algorithms, which is not surprising as the scalability of this algorithm
is limited by the high communication requirements that the matrix-matrix multipli-
cation entails. Not surprisingly, the communication-avoiding algorithms outperform
prsvd_fwd and prsvd_bwd, with psvdcond_bwd falling just a factor two short of the
ideal speedup.

5.2.3. Generating large-scale matrices. For the final experiment, we test our
new algorithms at scale, generating matrices of order up to 850,000, which is the order
of the largest matrix we can generate with the computational resources at our disposal:
such a matrix occupies about 5.26 TiB out of the 5.85 TiB of RAM available on 32 of
the nodes described above.

In Figure 5.5 we report the wall-clock time required by the new algorithms to
generate a matrix with 2-norm condition number κ = 108 and order between 50,000
and 850,000. The four algorithms appear to follow a similar trend, with psvdcond_fwd
being always the fastest and prsvd_bwd always the slowest. As already mentioned,

GENERATING EXTREME-SCALE TEST MATRICES 19

1 2 3 4 5 6 7 8

×105

0

5

10

15

20

n

prsvd_fwd
prsvd_bwd
psvdcond_fwd
psvdcond_bwd

Fig. 5.5: Wall-clock time (in seconds) required by the new algorithms (prsvd_bwd, prsvd_fwd,
psvdcond_fwd, and psvdcond_bwd) to generate matrices of order n between 50,000 and 850,000 and
2-norm condition number 108 using 1,024 processes.

(a) Wall-clock time.

21 23 25 27 29

100

101

102

103

p

s

(b) Speedup.

21 23 25 27 29

21

23

25

27

29

p

θp

prsvd_fwd prsvd_bwd psvdcond_fwd
psvdcond_bwd Ideal speedup

Fig. 5.6: (a) wall-clock time (in seconds) and (b) speedup for the new algorithms (prsvd_bwd,
prsvd_fwd, psvdcond_fwd, and psvdcond_bwd) in generating a matrix of order 200,000 and 2-norm
condition number 108 using p processes.

there is no clear winner among the remaining two algorithms: prsvd_fwd is faster
than psvdcond_bwd on matrices of size up to 150,000, but slower for larger matrices.
This seems to suggest that the communication avoidance plays a minor role for small
matrices, but becomes more and more important when larger matrices are being
generated.

The scalability of the new algorithms is considered in Figure 5.6. The wall-clock
time required by the four algorithms to generate a matrix of order 200,000 using 1 to
1,024 processes is shown in Figure 5.6a. The timing decreases linearly for all four algo-
rithms; psvdcond_fwd is overall the fastest method and the other three are comparable
but prsvd_bwd becomes slower than the other two when 27 or more processes are used.

20 MASSIMILIANO FASI AND NICHOLAS J. HIGHAM

The speedup curves in Figure 5.6b show that prsvd_fwd, prsvd_bwd, psvdcond_fwd,
and psvdcond_bwd all scale extremely well with the number of processes involved
in the computation, as the first three fall within a factor 2 from the ideal speedup,
whereas psvdcond_bwd is within a factor 3.

We stress that the results discussed in this section depend on the setup of the
computational facility we are using, and that the picture might be different if the
same experiment were repeated on a different parallel computer. In particular, it
is reasonable to expect that the gap between the communication-based algorithms
prsvd_fwd and prsvd_bwd and their communication-avoiding variants psvdcond_fwd
and psvdcond_bwd will widen on clusters with slower network interfaces or faster CPUs.

6. Conclusions. As high performance computing moves towards exascale and
beyond, generating matrices for benchmarks and testing is becoming challenging.
Matrices with elements from a standard probability distribution can be efficiently
formed but become more ill conditioned as the dimension grows, whereas generating
matrices with specified singular values using the randsvd algorithm in Algorithm 3.1
is too expensive. We have developed modified forms of this technique that give up the
property that the matrices of singular vectors are from the Haar distribution and that
both are random, instead using a rectangular generalization of a Householder matrix
defined in terms of a random vector parameter together with an arbitrary orthogonal
matrix, the latter intended to be one whose elements are given by an explicit formula.
The algorithms require only O(mn) operations, as opposed to the m3+n3 flops for the
standard randsvd approach. Two of the algorithms are specialized to the case where
only the 2-norm condition number is specified and they have a reduced operation
count.

Our algorithms are designed for a distributed memory environment and aim to
minimize the required communication. The experiments show that they are efficient
and scalable. The algorithms satisfy requirements R1 and R2 in section 1, and they
satisfy R3–R5 for suitable choices of the singular value distribution.

Acknowledgments. We thankMark Gates, Mantas Mikaitis, and Srikara Pranesh
for reading early versions of this manuscript and providing helpful comments. We
also acknowledge the assistance given by Research IT at the University of Manchester,
and the use of the HPC Pool funded by the Research Lifecycle Programme at the
University of Manchester.

REFERENCES

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing communica-
tion in numerical linear algebra, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 866–901.

[2] F. L. Bauer, Optimally scaled matrices, Numer. Math., 5 (1963), pp. 73–87.
[3] D. Bini and M. Capovani, Spectral and computational properties of band symmetric

Toeplitz matrices, Linear Algebra Appl., 52-53 (1983), pp. 99–126.
[4] D. Bini and P. Favati, On a matrix algebra related to the discrete Hartley transform,

SIAM J. Matrix Anal. Appl., 14 (1993), pp. 500–507.
[5] G. Birkhoff and S. Gulati, Isotropic distributions of test matrices, Zeitschrift für

angewandte Mathematik und Physik ZAMP, 30 (1979), pp. 148–158.
[6] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
and et al., ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, Jan 1997.

[7] I . Buck, World’s fastest supercomputer triples its performance record. https://blogs.nvidia.
com/blog/2019/06/17/hpc-ai-performance-record-summit/, June 2019. Accessed June 24,
2019.

https://doi.org/10.1137/090769156
https://doi.org/10.1137/090769156
https://doi.org/10.1007/BF01385880
https://doi.org/10.1016/0024-3795(83)80009-3
https://doi.org/10.1016/0024-3795(83)80009-3
https://doi.org/10.1137/0614035
https://doi.org/10.1007/bf01601929
https://doi.org/10.1137/1.9780898719642
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/

GENERATING EXTREME-SCALE TEST MATRICES 21

[8] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative
refinement in three precisions, SIAM J. Sci. Comput., 40 (2018), pp. A817–A847.

[9] J. A. Cuesta-Albertos and M. Wschebor, Some remarks on the condition number
of a real random square matrix, J. Complex., 19 (2003), pp. 548–554.

[10] J. W. Demmel and A. McKenney, A test matrix generation suite, Preprint MCS-P69-
0389, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
IL, USA, Mar. 1989. LAPACK Working Note 9.

[11] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov,
and I. Yamazaki, Accelerating numerical dense linear algebra calculations with GPUs,
in Numerical Computations with GPUs, V. Kindratenko, ed., Springer-Verlag, Cham,
Switzerland, 2014, pp. 3–28.

[12] J. J. Dongarra, P. Luszczek, and Y. M. Tsai, HPL-AI mixed-precision bench-
mark. https://icl.bitbucket.io/hpl-ai/.

[13] M. P. I. Forum, MPI: A Message-Passing Interface Standard, Version 3.1, High Perfor-
mance Computing Center Stuttgart (HLRS), 2015.

[14] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement
solvers, in Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC ’18 (Dallas, TX), Piscataway, NJ, USA, 2018, IEEE
Press, pp. 47:1–47:11.

[15] F. R. Helmert, Die Genauigkeit der Formel von Peters zur Berechnung des wahrschein-
lichen Beobachtungsfehlers directer Beobachtungen gleicher Genauigkeit, Astronomische
Nachrichten, 88 (1876), pp. 113–131.

[16] D. J. Higham, N. J. Higham, and S. Pranesh, Random matrices with arbitrary
condition number generating large growth in LU factorization with pivoting, MIMS EPrint
2020.xx, Manchester Institute for Mathematical Sciences, The University of Manchester,
UK, 2020. In preparation.

[17] N. J. Higham, Algorithm 694: A collection of test matrices in MATLAB, ACM Trans.
Math. Software, 17 (1991), pp. 289–305.

[18] N. J. Higham, The Test Matrix Toolbox for MATLAB (version 3.0), Numerical Analysis
Report No. 276, Manchester Centre for Computational Mathematics, Manchester, England,
Sept. 1995.

[19] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002.

[20] N. J. Higham and D. J. Higham, Large growth factors in Gaussian elimination with
pivoting, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 155–164.

[21] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (revision of IEEE Std 754-
2008), Institute of Electrical and Electronics Engineers, Piscataway, NJ, USA, 2019.

[22] J. O. Irwin, On the distribution of a weighted estimate of variance and on analysis of
variance in certain cases of unequal weighting, J. Roy. Statist. Soc., 105 (1942), p. 115.

[23] H. O. Lancaster, The Helmert matrices, Amer. Math. Monthly, 72 (1965), p. 4.
[24] F. Mezzadri, How to generate random matrices from the classical compact groups, Notices

Amer. Math. Soc., 54 (2007), pp. 592–604.
[25] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, HPL: A porta-

ble implementation of the High-Performance Linpack Benchmark for distributed-memory
computers, Version 2.3, 2018.

[26] R. D. Skeel, Scaling for numerical stability in Gaussian elimination, J. Assoc. Comput.
Mach., 26 (1979), pp. 494–526.

[27] G. W. Stewart, The efficient generation of random orthogonal matrices with an application
to condition estimators, SIAM J. Numer. Anal., 17 (1980), pp. 403–409.

[28] G. Strang, Wavelet transforms versus Fourier transforms, Bull. Amer. Math. Soc., 28
(1993), pp. 288–306.

[29] G. Strang, The discrete cosine transform, SIAM Rev., 41 (1999), pp. 135–147.
[30] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. Assoc. Comput.

Mach., 8 (1961), pp. 281–330.
[31] W. Zhang and N. J. Higham, Matrix Depot: An extensible test matrix collection for

Julia, PeerJ Comput. Sci., 2 (2016), p. e58.

https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1016/s0885-064x(03)00010-4
https://doi.org/10.1016/s0885-064x(03)00010-4
https://doi.org/10.2172/7284674
https://doi.org/10.1007/978-3-319-06548-9_1
https://icl.bitbucket.io/hpl-ai/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1002/asna.18760880802
https://doi.org/10.1002/asna.18760880802
https://doi.org/10.1145/114697.116805
http://www.maths.manchester.ac.uk/~higham/papers/high95m.pdf
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/0610012
https://doi.org/10.1137/0610012
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.2307/2980611
https://doi.org/10.2307/2980611
https://doi.org/10.2307/2312989
http://www.ams.org/notices/200705/fea-mezzadri-web.pdf
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://www.netlib.org/benchmark/hpl/
https://doi.org/10.1145/322139.322148
https://doi.org/10.1137/0717034
https://doi.org/10.1137/0717034
https://doi.org/10.1090/s0273-0979-1993-00390-2
https://doi.org/10.1137/s0036144598336745
https://doi.org/10.1145/321075.321076
https://doi.org/10.7717/peerj-cs.58
https://doi.org/10.7717/peerj-cs.58

