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LOCAL-GLOBAL PRINCIPLE FOR THE
BAUM-CONNES CONJECTURE WITH COEFFICIENTS

PAUL BAUM, STEPHEN MILLINGTON AND ROGER PLYMEN

Abstract. We establish the Hasse principle (local-global prin-
ciple) in the context of the Baum-Connes conjecture with coeffi-
cients. We illustrate this principle with the discrete group GL(2, F )
where F is any global field.

1. Introduction

Let G be a second countable locally compact Hausdorff topological
group. We shall say that G satisfies BCC, or BCC is true for G, if
the Baum-Connes conjecture with coefficients in an arbitrary G− C∗-
algebra is true for G.

Our main result is:

Theorem 1.1. Let G be the ascending union of open subgroups Gn,
and let A be a G−C∗-algebra. If each subgroup Gn satisfies the Baum-
Connes conjecture with coefficients A, then G satisfies the Baum-Connes
conjecture with coefficients A.

One application is to the following new permanence property.

Theorem 1.2. Let F be a global field, A its ring of adeles, G a linear
algebraic group defined over F . Let Fv denote a place of F . If BCC is
true for each local group G(Fv) then BCC is true for the adelic group
G(A).

Another application of Theorem 1.1 is the proof of the Baum-Connes
conjecture for reductive adelic groups [2].

To derive Theorem 1.2 from Theorem 1.1 we note that the adelic
group G(A) admits an ascending union of open subgroups. We then
make use of a crucial permanence property due to Chabert-Echterhoff
[5], namely that BCC is stable under direct product of finitely many
groups.

If G satisfies BCC, then any closed subgroup of G also satisfies BCC
[5, Theorem 2.5]. Since G(F ) is a discrete subgroup of G(A), we have
the following result:
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Theorem 1.3. If BCC is true for each local group G(Fv) then BCC is
true for the discrete group G(F ).

There is, at present, a limited supply of local groups for which BCC
is known to be true. Nevertheless, some examples are known.

For the group SO(n, 1), Kasparov [12] proved that γ = 1G in the Kas-
parov representation ring R(G) = KKG(C, C). For the group SU(n, 1),
Julg-Kasparov [11] and Higson-Kasparov [8] proved that γ = 1G in the
ring R(G). For the group Sp(n, 1), Julg [9] has recently proved that,
for any G− C∗-algebra A, the image of γ via the map:

R(G) → KKG(A, A) → KK(A or G, A or G) → EndK∗(A or G)

is the identity element even though γ 6= 1 in the ring R(G). Therefore
the following rank-one Lie groups satisfy BCC:

SO(n, 1), SU(n, 1), Sp(n, 1).

The Haagerup property (or a-T-menability in the sense of Gromov)
is discussed in detail in [6]. We quote the main result in [8, Theorem
1.1].

Theorem 1.4. (Higson-Kasparov) If G is a second countable locally
compact Hausdorff group which has the Haagerup property then G sat-
isfies BCC.

Let F be a global field and consider the group GL(2, F ). At each
place v of F we have the local group GL(2, Fv). Each local group
GL(2, Fv) is a-T-menable by [6, p.91]. By Theorem 1.4, each local
group satisfies BCC.

Let AF be the adele ring attached to F . By Theorem 1.2, we have

Theorem 1.5. The adelic group GL(2, AF ) satisfies BCC.

By Theorem 1.3, we have

Theorem 1.6. The discrete group GL(2, F ), and each of its subgroups,
satisfies BCC.

Our method is therefore an example of the Hasse principle (local-
global principle) applied to the local groups G(Fv) and the discrete
group G(F ).

It is worth noting that if the Baum-Connes conjecture fails for the
discrete group SL(n, Z), then BCC fails for SL(n, R).

We note that in [6, 6.1.2] it is proved that the adelic group SL(2, A)
is a-T-menable. It then follows from [6, 6.1.6] and the short exact
sequence

1 → SL(2, A) → GL(2, A) →det A× → 1
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that GL(2, A) is a-T-menable, and therefore satisfies BCC.
Our method is new, but does not at present create new examples of

groups which satisfy BCC. It does, however, raise the following ques-
tion.

Consider the group SO(n, 1, Q) and the local groups SO(n, 1, Qp)
with 2 ≤ p ≤ ∞. We know from [12] that SO(n, 1, R) satisfies BCC.

QUESTION. Do the p-adic groups SO(n, 1, Qp) satisfy BCC ?
A positive answer to this would prove (due to Theorem 1.3) that the

discrete group SO(n, 1, Q) satisfies BCC.
If Qp admits a square root of −1 then the split-rank of SO(n, 1, Qp)

is equal to the Witt index (the dimension of a maximal isotropic sub-
space) of the quadratic form

x2
0 − x2

1 + x2
2 − x2

3 + · · · ,

see [7, p. 222]; thanks to Alain Valette for this remark. The Witt index
is [(n + 1)/2], the integer part of (n + 1)/2. Therefore, if n ≥ 3, the
affine building of SO(n, 1, Qp) is not a tree. In this case, the proof in
[10] does not apply.

EXAMPLE. The affine building of SO(3, 1, Q5) is of dimension 2.
In the course of our work, we find it necessary to use a model Pc(G)

of the universal example for proper actions of G which is itself a direct
limit of compact spaces. This model Pc(G) is paracompact, Hausdorff
and separable, but not metrizable, and so falls outside the discussion of
proper actions in [1]. We have therefore to choose a different starting
point for the theory of proper actions: we use the definition of Bourbaki
[4].

This paper is a sequel to our Note [2]. We thank Siegfried Echter-
hoff, Pierre Julg, Ryszard Nest for valuable conversations, and the two
referees for their detailed comments.

2. The ring of adeles

A local field is a non discrete locally compact topological field. It
is shown in [15] that a local field F must be of the following form. If
char(F ) = 0, then F = R, C or a finite extension of Qp for some prime
p. If char(F ) = p > 0, then F is the field Fq((X)) of formal Laurent
series (with finite tail) in one variable with coefficients in a finite field
Fq.

The fields R, C are known as archimedean fields. All other local
fields are known as nonarchimedean fields. The topology on a nonar-
chimedean field is always totally disconnected.

Let Fp(t) denote the field of fractions of the polynomial ring Fp[t].
A global field is a finite extension of Q, or a finite extension of the
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function field Fp(t). A completion (v, Fv) of F is a dense isomorphic
embedding v of F into a local field Fv. Two completions (v, Fv), (u, Fu)
are said to be equivalent if there is an isomorphism ρ of Fv onto Fu

such that u = ρ◦v. A place of F is an equivalence class of completions.
We say the place (v, Fv) is infinite if Fv is an archimedean field and
finite otherwise. If char(F ) = p > 0, then F has countably many finite
places and no infinite places. If char(F ) = 0 then F has countably
many finite places and finitely many (but at least one) infinite places.

Suppose we have an ascending sequence of topological spaces

X1 ⊂ X2 ⊂ X3 ⊂ . . .

Then we can give the union X = ∪Xn the direct limit topology : that is
a set is open in X if and only if it has open intersection with each Xn.

The following Lemma is immediate.

Lemma 2.1. Let X be a topological space and let X1, X2, X3, . . . be
open subsets of X such that X1 ⊂ X2 ⊂ X3 ⊂ . . . and X = ∪nXn.
Then any compact subset of X lies entirely within some Xn.

Suppose that for each n = 1, 2, 3, . . . we have a locally compact,
second countable and Hausdorff topological group Gn, such that Gm is
an open subgroup of Gn for m ≤ n:

G1 ⊂ G2 ⊂ G3 ⊂ . . .

Let G = ∪∞n=1Gn and furnish this with the direct limit topology. Then
G is a topological group which is locally compact, second countable
and Hausdorff.

Any nonarchimedean local field Fv contains a unique maximal com-
pact open subring Ov. Let S denote any finite set of places of F
which contains all the infinite places. By an adele we mean an element
a = (a)v of the product

∏
v Fv such that a ∈ AS =

∏
v∈S Fv ×

∏
v/∈S Ov

for some S. The adeles of F form a ring AF , addition and multiplica-
tion being defined componentwise. Each AS has its natural topology
and AF = ∪SAS is topologized as the inductive limit with respect to
S. There is an obvious embedding of F in AF , by means of which we
identify F with a subring of AF . The field F is a discrete cocompact
subfield of the non-discrete locally compact semisimple commutative
ring AF .

Now suppose G is a linear algebraic group defined over F . We shall
be interested in the adelic group G(AF ) of AF -rational points of G. For
a finite place v of F let G(Ov) denote the group G(Fv)∩GLn(Ov). We
set

GS =
∏
v∈S

G(Fv)×
∏
v/∈S

G(Ov)
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Then G(A) is equal, by definition, to the direct limit of the groups
GS. We now equip G(A) with the direct limit topology, following Weil
[14, p.2]. Then G(A) is a locally compact second countable Hausdorff
group. The map x 7→ (x, x, x, . . .) embeds G(F ) as a discrete subgroup
of G(A).

3. Proper actions and universal examples

We recall that a topological space X is completely regular if it satisfies
the following separation axiom: If B is a closed subset of X and p ∈
X \B then there exists a continuous function f : X → [0, 1] such that
f(p) = 0 and f(B) = {1}. Let G be a locally compact, Hausdorff,
second countable group. A G-space is a topological space X with a
given continuous action of G such that

• X is completely regular and any compact subset of X is metriz-
able.

• The quotient space X/G is paracompact and Hausdorff.

Note that the definition of a G-space in [1] uses the slightly more re-
strictive conditions that X and X/G be metrizable. Nothing is altered
in [1] if this is replaced throughout with the above relaxed conditions.

The following definition may be found in Bourbaki [4, Definition 1,
p.250, Prop.7, p.255].

Definition 3.1. The action of G on a G-space X is proper if given any
two points x, y ∈ X there are open neighbourhoods Ux, Uy of x and y
respectively such that the set

{g ∈ G : gUx ∩ Uy 6= ∅}
has compact closure in G. A proper G-space X is said to be G-compact
if the quotient X/G is compact.

In appendix A we give the full statement of Theorem 3.8 in Biller
[3]. This theorem, on the existence of slices, reconciles the Bourbaki
definition of proper actions with the definition in [1]. In particular, if
X is a proper G-space such that X and and X/G are metrizable then
X satisfies the condition which was taken in [1] to be the definition
of proper. The reverse implication is also valid. If X is a metrizable
G-space which is proper in the sense of [1], then X is a proper G-space.

Note that if X is locally compact then this is equivalent to the fol-
lowing condition: if K1, K2 are compact subsets of X then the set

{g ∈ G : gK1 ∩K2 6= ∅} is compact.

It is easy to see any locally compact Hausdorff group acts properly
on itself. Also note if X is a proper G-space and Y is any G-invariant
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subset of X then Y is a proper G-space when equipped with the sub-
space topology and obvious action of G. We shall want to define KK
groups for the algebra C0(X) of a G-compact proper G-space and the
following ensures that these algebras are separable.

Proposition 3.2. Suppose G acts properly on X and X/G is compact.
Then X is locally compact and second countable.

Proof. The space X is locally compact by [4, (e), p.310]. There exists
a compact set S ⊂ X such that X = G · S.

By assumption any compact subset of X is metrizable, and we may
deduce that S is second countable when given the subspace topology
from X.

The action of G on X gives rise to a map

G× S → GS = X,

which is continuous, open and surjective. By assumption G is second
countable and so clearly X must be second countable. �

Definition 3.3. Let X be a proper G-space. A cutoff function on
X is a function c : X → R+ such that the support of c has compact
intersection with GK for any compact subset K of X and∫

c(g−1x)dg = 1, for each x ∈ X

Note the set of all such functions is convex. For the proof of the next
Proposition, see Tu [13, 6.11].

Proposition 3.4. Let X be a G-compact proper G-space. Then there
exists a cutoff function on G.

Definition 3.5. Let X, Y be proper G-spaces. A continuous map
ϕ : X → Y is a called a G-map if

ϕ(gx) = gϕ(x) for all g ∈ G, x ∈ X

Two G-maps are G-homotopic if they are homotopic through G-maps.

Definition 3.6. A universal example for proper actions of G, denoted
EG, is a proper G-space with the following property: If X is any proper
G-space, then there exists a G-map f : X → EG, and any two such
maps are G-homotopic.

Let K be any compact subset of G. The set of all probability mea-
sures on K — denoted P(K) — is a separable compact Hausdorff space
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in the topology induced from the weak* topology on C(K). Recall
µi → µ in the weak* topology if and only if∫

fdµi →
∫

fdµ for any f ∈ C(K).

If K1 ⊂ K2 are compact subgroups of G then define the following
map

ι : P(K1) → P(K2), (ιµ)(U) = µ(U ∩K1) for each Borel set U ⊆ K2

This is clearly injective and continuous. So ι is an injective map
from a compact space to a Hausdorff space and hence gives rise to
a homeomorphism between P(K1) and its image in P(K2) with the
subspace topology. To simplify notation we identify P(K1) with its
image in P(K2).

As G is locally compact and second countable it is clearly σ-compact
and by [4, p.94, Prop. 15 and Cor. 2] we may find compact subsets
K1 ⊂ K2 ⊂ K3 ⊂ . . . with G = ∪∞i=1Ki such that any compact subset
of G is contained within some Ki. Now define

Pc(G) = ∪∞i=1P(Ki).

Clearly Pc(G) consists of all compactly supported probability measures
on G. We topologize Pc(G) by giving it the direct limit topology with
respect to the sequence P(Ki). This topology is independent of the
sequence Ki.

The group G acts on Pc(G) by setting

(gµ)(U) = µ(g−1U) for any Borel set U ⊆ G.

Lemma 3.7. The action of G on Pc(G) is continuous.

Proof. Let (gα, µα) → (g, µ), α ∈ A, be a convergent net in G×Pc(G).
By definition of the direct limit topology on Pc(G), we must have
µα → µ in P(Ki) for some i. Given f ∈ C(Ki) and ε > 0 we can
find α0 with the property that

α > α0 ⇒
∣∣∣∣∫ f dµα −

∫
f dµ

∣∣∣∣ ≤ ε/2

Furthermore gα → g and so we may choose α0 in such a way that we
also have

α > α0 ⇒ ‖fgα − fg‖ ≤ ε/2
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where fg denotes the function x 7→ f(g−1x). Finally note∣∣∣∣∫ f d(gαµα)−
∫

f d(gµ)

∣∣∣∣ =

∣∣∣∣∫ fgα dµα −
∫

fg dµ

∣∣∣∣
≤

∣∣∣∣∫ (fgα − fg) dµα

∣∣∣∣ +

∣∣∣∣∫ fg dµα −
∫

fg dµ

∣∣∣∣
≤ ε/2 + ε/2

This shows that gαµα → gµ in P(Ki) and therefore gαµα → gµ in
Pc(G). �

Lemma 3.8. The action of G on Pc(G) is proper.

Proof. Take µ ∈ Pc(G) and let fµ be a continuous compactly supported
function fµ : G → [0, 1] with fµ ≡ 1 on supp (µ).

Then the set

Uµ =

{
λ ∈ Pc(G) :

∣∣∣∣∫ fµ dµ−
∫

fµ dλ

∣∣∣∣ ≤ 1/2

}
=

{
λ ∈ Pc(G) :

∫
fµ dλ > 1/2

}
is an open neighbourhood of µ in Pc(G).

Now take any µ, ν ∈ Pc(G) and assume gUµ∩Uν 6= ∅ for some g ∈ G.
Indeed let λ ∈ gUµ ∩ Uν . Then∫

g−1fµ dλ > 1/2 and

∫
fν dλ > 1/2

If supp (g−1fµ) and supp (fν) are disjoint then we have 0 ≤ g−1fµ+fν ≤
1. However by the above∫

g−1fµ + fν dλ > 1

clearly contradicting the fact that λ is a probability measure. Hence
we may conclude that g supp (µ) ∩ supp (ν) 6= ∅ and so

{g ∈ G : gUµ ∩ Uν 6= ∅} ⊂ {g ∈ G : g supp (µ) ∩ supp (ν) 6= ∅}.

Now both µ and ν are compactly supported and since any group acts
properly on itself the larger set here is compact. �

Theorem 3.9. The space Pc(G) is a universal example for proper ac-
tions of G.

Proof. Let X be any proper G-space, we aim to show there exists a
G-equivariant map X → Pc(G). Take any x ∈ X. By [3, Theorem 3.8]
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there is a G-invariant open neighbourhood Ux of x, a compact subgroup
H of G, and a G-equivariant map

ρ : Ux → G/H.

Let µH denote Haar measure on the compact subgroup H, normalized
to have total mass 1. There is an obvious G-equivariant map

Ψ : G/H → Pc(G), gH 7→ g · µH

and let

θx = Ψ ◦ ρ : Ux → Pc(G).

Now X may be covered by such neighbourhoods and if π denotes the
quotient map X → X/G then {π(Ux)} is an open cover of X/G. Recall
that by definition X/G is paracompact and Hausdorff and so there is
a locally finite partition of unity subordinate to the cover {π(Ux)}.
Precisely there are continuous maps

ωx : X/G → [0, 1], for each x ∈ X

with supp (ωx) ⊆ π(Ux) and for each [y] ∈ X/G we have

ωx([y]) = 0 for almost all x ∈ X and
∑
x∈X

ωx([y]) = 1.

Now

Ξ : X → Pc(G), Ξ(y) =
∑
x∈X

ωx(π(y))θx(y)

is the required map. Note that (as remarked above) Pc(G) is a convex
set and this convexity is being used in the construction of Ξ.

Finally, if ϕ1, ϕ2 : X → Pc(G) are G-equivariant maps then they are
G-homotopic via

tϕ1 + (1− t)ϕ2, t ∈ [0, 1].

So Pc(G) is a universal example for G. �

Baum-Connes conjecture with coefficients. If A is any G-C∗-algebra
then we may define

Ktop
∗ (G, A) = lim−→

G-invariant
G-compact

Z⊆EG

KKG
∗ (C0(Z), A)

We say a group G satisfies the Baum-Connes conjecture with coeffi-
cients if for every G-C∗-algebra A the map

µA : Ktop
∗ (G, A) → K∗(A or G)

is an isomorphism.
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4. K-theory for ascending unions of groups

Theorem 4.1. Let H be an open subgroup of G. Then the inclusion
of H in G determines a homomorphism of abelian groups

T G
H : K∗(A or H) → K∗(A or G).

Furthermore suppose G1 ⊂ G2 ⊂ G3 ⊂ . . . is an ascending sequence of
open subgroups , then there is an inductive system of abelian groups

K∗(A or G1)
T G2

G1−−−→ K∗(A or G2)
T G3

G2−−−→ K∗(A or G3)
T G4

G3−−−→ . . .

If G = ∪Gn we have

K∗(A or G) = lim−→
n

K∗(A or Gn).

Proof. If H is an open subgroup of G and A is a G–C∗–algebra then
the canonical inclusion ι : Cc((H, A) → Cc(G, A) embeds the ∗-algebra
Cc(H, A) into the ∗-algebra Cc(G, A). Since it preserves convolution
and involution, it extends to an isometric embedding of the Hilbert A-
module F := L2(H, A) into the Hilbert A-module E := L2(G, A) with
respect to the inner product < ξ, η >A= ξ∗ ∗ η(e) for ξ, η ∈ Cc(G, A).
It is then easy to check that

‖ιf‖AorG = sup {‖ιf ∗ ξ‖E : ξ ∈ E, ‖ξ‖E ≤ 1}
= sup {‖f ∗ ξ‖F : ξ ∈ F, ‖ξ‖F ≤ 1}
= ‖f‖AoH ,

which implies that ι extends to an injective ∗-homomorphism

ι : A or H → A or G.

We then define

T G
H = ι∗ : K∗(A or H) → K∗(A or G).

If G = ∪nGn for the ascending sequence of open subgroups Gn, then
Lemma 2.1 implies that Cc(G, A) = ∪nCc(Gn, A). But this implies
that

A or G = ∪nι(A or Gn)

and hence

K∗(A or G) = K∗(lim−→
n

(A or Gn) = lim−→
n

K∗(A or Gn).

�
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5. Equivariant K-homology for ascending sequences of
groups

Theorem 5.1. Let H be an open subgroup of G. Then the inclusion
of H in G determines a homomorphism of abelian groups

RG
H : K top

∗ (H, A) → K top
∗ (G, A).

Furthermore suppose G1 ⊂ G2 ⊂ G3 ⊂ . . . is an open ascending se-
quence of groups , then there is an inductive system of abelian groups

K top
∗ (G1, A)

RG2
G1−−−→ K top

∗ (G2, A)
RG3

G2−−−→ K top
∗ (G3, A)

RG4
G3−−−→ . . .

If G = ∪Gn then we have

K top
∗ (G, A) = lim−→

n

K top
∗ (Gn, A)

In the course of proving this result, we shall make use of the reci-
procity isomorphism [5, p.157] in equivariant KK-theory. Let H be an
open subgroup of G, let A be an H − C∗-algebra, let IndG

HA denote
the induced algebra and let B be a G−C∗-algebra. Then we have the
reciprocity isomorphism:

InfG
H : KKH

∗ (A, B) ∼= KKG
∗ (IndG

HA, B).

If A is commutative we have A ∼= C0(X), IndG
HA ∼= C0(G×H X) and

so we have

InfX : KH
∗ (C0(X), B) → KG

∗ (C0(G×H X), B).

Lemma 5.2. Let H be an open subgroup of G and let X be any H-
compact subset of Pc(H) ⊂ Pc(G) then G×H X ∼= G ·X as G-spaces.

Proof. Recall the definition of the space G×H X. The group H acts on
the product G×X by setting h · (g, x) = (gh−1, hx) and G×H X is the
quotient. The action of G on G ×H X is given by g′ · [g, x] = [g′g, x],
where [g, x] is the equivalence class of the pair (g, x).

The map FX is defined as follows:

FX : G×H X → G ·X, [g, x] 7→ gx.

The map FX is clearly surjective and G-equivariant. To show this
map is injective take [g1, x1], [g2, x2] ∈ G×H X with g1x1 = g2x2. Recall
that x1, x2 are in fact probability measures on H and so

1 = x1(H) = g−1
1 g2x2(H) = x2(g

−1
2 g1H)
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As x2 is a measure in Pc(H) it will clearly be equal to zero on the coset
g−1
2 g1H unless g−1

2 g1 ∈ H. Now g−1
2 g1 · (g1, x1) = (g1g

−1
1 g2, g

−1
2 g1x1) =

(g2, x2) as required.

It now remains to show this map is a homeomorphism. Let π de-
note the quotient map G × X → G ×H X and θ : G × X → G · X
denote the map given by the action of G on X. Both π and θ are open,
continuous maps. Since θ = FX ◦ π, this implies that FX is open and
continuous. �

Let RG
H,X denote the composition

KKH
∗ (C0(X), A)

InfX−−−→ KKG
∗ (C0(G×H X), A)

(FX)∗−−−→ KKG
∗ (C0(G ·X), A)

If X and Y are H-compact subsets of Pc(H) with X ⊂ Y then the
following diagram commutes,

KKH
∗ (C0(X), A) −−−→ KKH

∗ (C0(Y ), A)

RG
H,X

y RG
H,Y

y
KKG

∗ (C0(G ·X), A) −−−→ KKG
∗ (C0(G · Y ), A)

where each horizontal map is given by inclusion of the spaces involved.
Now Pc(H),Pc(G) are universal examples for H, G respectively. If

X is an H-compact subset of Pc(H) then G ·X is a G-compact subset
of Pc(G). Due to the above the following map is well defined

RG
H : Ktop

∗ (H, A) → Ktop
∗ (G, A).

Now let G1 ⊂ G2 ⊂ G3 ⊂ . . . be an ascending sequence of open
subgroups and let G = ∪Gn. There is then an inductive system of
abelian groups

Ktop
∗ (G1, A)

RG2
G1−−−→ Ktop

∗ (G2, A)
RG3

G2−−−→ Ktop
∗ (G3, A)

RG4
G3−−−→ . . .

Lemma 5.3. There exist compact sets ∆1 ⊂ ∆2 ⊂ ∆3 ⊂ . . . such that
∆n ⊂ Gn and ∪n Interior(∆n) = G. Set Zn,m = Gn · Pc(Gn ∩ ∆m).
Then

• Zn,m ⊂ Pc(Gn)
• Zn,m is preserved by Gn and is Gn-compact
• Zn,m ⊂ Zn,m+1

• ∪mZn,m = Pc(Gn)
• Gn+1 · Zn,m ⊂ Zn+1,m

Proof. Since G is σ-compact, there exists an ascending sequence Kn of
compact subsets of G such that G = ∪nKn. Let V be a fixed compact
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neighbourhood of the identity and put ∆n = (Kn · V ) ∩Gn. Then the
sequence (∆n) has all the desired properties.

Any compact set in G is contained in some ∆n.
�

Lemma 5.4. Let {Am,n} be a commutative diagram of abelian groups
in which the typical commutative square is

An,m −−−→ An,m+1y y
An+1,m −−−→ An+1,m+1

with n, m = 1, 2, 3, . . . . Then there is a canonical isomorphism of
abelian groups:

limm→∞(limn→∞ Am,n) ∼= limn→∞(limm→∞ Am,n).

Proof. Each side is canonically isomorphic to the direct limit lim−→An,n

of the directed system {An,n}. �

Theorem 5.5. limn→∞K top
∗ (Gn, A) = K top

∗ (G, A).

Proof. Let KG
j (Zn,m, A) = KKG

j (C0(Z
n,m, A) and consider the com-

mutative diagram of abelian groups in which the typical commutative
square is:

KGn
j (Zn,m, A) −−−→ KGn

j (Zn,m+1, A)

ρn

y ρn

y
K

Gn+1

j (Zn+1,m, A) −−−→ K
Gn+1

j (Zn+1,m+1, A)

with n,m = 1, 2, 3, . . . . Each horizontal arrow

KGn
j (Zn,m, A) → KGn

j (Zn,m+1, A)

is the map of abelian groups determined by the inclusion Zn,m →
Zn,m+1. Each vertical map ρn : KGn

j (Zn,m, A) → K
Gn+1

j (Zn+1,m, A) is

the map RGn+1

Gn
followed by the map of abelian groups induced by the

inclusion Gn+1 · Zn,m → Zn+1,m.
We will write

An,m = KGn
j (Zn,m, A).

Each Zn,m is Gn-compact, ∪m Zn,m = Pc(Gn) and any Gn-compact
set in Pc(Gn) is contained in some Zn,m. Taking the direct limit along
the nth row, we have

limm→∞ Am,n = Ktop
j (Gn, A).
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If we now take the direct limit in a vertically downward direction,
we obtain

limn→∞ Ktop
j (Gn, A).

Now we fix attention on the mth column. If n ≥ m then Gn ⊃ ∆m

and so Gn ∩∆m = ∆m. Then we have

An,m = KGn
j (Gn · Pc(∆m), A).

Now the Gn-saturation of Pc(∆m) is equal to the G-saturation of Pc(∆m).
Now we apply the reciprocity isomorphism and we have

An,m ∼= KG
j (G · Pc(∆m), A).

if n ≥ m. Therefore the mth column stabilizes as soon as n ≥ m.
Therefore the direct limit down the mth column is given by

limn→∞Am,n = KG
j (G · Pc(∆m), A)).

Now the sets G·Pc(∆m) are cofinal in G-compact sets in Pc(G). Taking
the direct limit in the horizontal direction, we have

limm→∞limn→∞Am,n ∼= Ktop
j (G, A).

By Lemma 5.4 we have

limn→∞Ktop
j (Gn, A) ∼= Ktop

j (G, A).

�

6. Adelic groups

For H an open subgroup of G we have constructed a homomorphism
from Ktop

∗ (H, A) to Ktop
∗ (G, A), and likewise for the K theory of the

reduced crossed product C∗-algebras. We wish to check that these
maps are compatible with the Baum–Connes µ map, i. e. that the
following diagram commutes.

Ktop
∗ (H, A)

RG
H

��

µH // K∗(A or H)

T G
H

��
Ktop
∗ (G, A)

µG // K∗(A or G)

As a first step, we prove that the reciprocity isomorphism InfX is
compatible with the Baum-Connes µ map.
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Lemma 6.1. Let A be a G − C∗-algebra, let H be an open subgroup
of G and let X be a locally compact proper H-compact H-space. Then
the following diagram commutes:

KKH
∗ (C0(X), A)

µH−−−→ K∗(A or H)

InfX

y T G
H

y
KKG

∗ (C0(G×H X), A)
µG−−−→ K∗(A or G)

Proof. The inverse of the reciprocity isomorphism Inf is the compres-
sion isomorphism [5, p. 157] and is given by the composition i∗ ◦
ResX , where ResX is the obvious restriction map KKG

∗ (C0(X), A) →
KKH

∗ (C0(X), A) and i is the inclusion C0(X) ↪→ C0(G×H X) given by

i(f)[g, x] =

{
f(gx) if g ∈ H
0 otherwise.

Each of these maps is clearly functorial.
There is a commutative diagram

KKH
∗ (C0(X), A)

jH−−−→ KK∗(C0(X) or H, A or H)

i∗

x i′∗

x
KKH

∗ (C0(G×H X), A)
jH−−−→ KK∗(C0(G×H X) or H, A or H)

ResX

x p∗◦q∗
y

KKG
∗ (C0(G×H X), A)

jG−−−→ KK∗(C0(G×H X) or G, A or G)

in which jH , jG are descent homomorphisms. Here p denotes the map

p : C0(G×H X) or G → C0(G×H X) or H

induced from the obvious restriction map Cc(G, A) → Cc(H, A), with
A = C0(G×H X). And q denotes the map

q : A or H → A or G

of Theorem 4.1.
Now let c be a cutoff function on the proper H-space X, we claim

i(c) ∈ C0(G×H X) is a cutoff function on the proper G-space G×H X.
To see this take any [g0, x] ∈ G×H X. Then by definition we have

i(c)([g0, x]) = 0

unless g0 ∈ H in which case

i(c)[g0, x] = c(g0x).
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Up to a normalizing factor between the Haar measures on H and G∫
G

i(c)(g−1[g0, x]) dg =

∫
G

i(c)(g−1g−1
0 [g0, x]) dg

=

∫
G

i(c)([g−1, x]) dg

=

∫
H

c(h−1x) dh = 1.

If K is any compact subset of G ×H X and if F denotes the homeo-
morphism between G ×H X and G · X then F (GK) = G · F (K) and
F (K) is compact. Also note F (supp (i(c)) ⊆ H · supp (c) and so

F (GK ∩ supp (i(c))) ⊆ G · F (K) ∩H · supp (c) ⊆ H · F (K) ∩ supp (c)

which is compact and so GK ∩ supp (i(c)) is compact. So we have
shown i(c) is a cutoff function on G×H X.

Let λX denote the projection in the twisted convolution algebra
Cc(H ×X) arising from the cutoff function c:

λZ(g, x) = cZ(x)1/2cZ(g−1x)1/2∆(g)−1/2

and let λG×HX denote the projection in Cc(G×G×H X) arising from
the cutoff function i(c).

Then p(λG×HX) is simply the restriction of λG×HX to H ×G×H X,
and for any h in G and any [g, x] ∈ G×H X

p(λG×HX)(h, [g, x]) = i(c)[g, x]1/2i(c)(h−1[g, x])1/2∆G(h)−1/2

=

{
c(gx)1/2c(h−1gx)∆H(h)−1/2 if g ∈ H
0 otherwise.

= i′(λX)

So the following diagram commutes

KK∗(C0(X) or H, A or H)
[λX ]⊗·−−−−→ KK∗(C, A or H)

i′∗

x ∥∥∥
KK∗(C0(G×H X) or H, A or H)

i′∗([λX ])⊗·−−−−−−→ KK∗(C, A or H)

p∗◦q∗
y q∗

y
KK∗(C0(G×H X) or G, A or G)

[λG×HX ]⊗·
−−−−−−→ KK∗(C, A or G)

We finish the proof by splicing together these two diagrams. �
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Lemma 6.2. Let X be an H-compact subset of Pc(H). Then the fol-
lowing diagram commutes:

KKH
∗ (C0(X), A)

µH−−−→ K∗(A or H)

RG
H,X

y T G
H

y
KKG

∗ (C0(G ·X), A)
µG−−−→ K∗(A or G).

Proof. By Lemma 5.2 we know that the induced space G ×H X is
G-homeomorphic to the G-saturation G · X. We now apply Lemma
6.1. �

Theorem 6.3. Let G be a locally compact, second countable Hausdorff
topological group and let A be a G−C∗-algebra. Let G be the union of
open subgroups Gn such that the Baum-Connes conjecture with coeffi-
cients A is true for each Gn. Then the Baum-Connes conjecture with
coefficients A is true for G.

Proof. We start with the commutative diagram in Lemma 6.2 and take
the direct limit over all H-compact subsets of Pc(H). We then obtain
the commutative diagram

Ktop
∗ (H, A)

RG
H

��

µH // K∗(A or H)

T G
H

��
Ktop
∗ (G, A)

µG // K∗(A or G)

If G is the union of open subgroups Gi each of which satisfies BCC,
then applying Theorem 4.1 and Theorem 5.1 along with the above
commutative diagram is enough to show that G satisfies BCC. �

Theorem 6.4. Let F be a global field, A its ring of adeles, G a linear
algebraic group over F . Let Fv denote a place of F . If BCC is true for
each local group G(Fv) then BCC is true for the adelic group G(A).

Proof. Let v1, v2, v3, . . . be an ordering of the finite places of F , let
S∞ denote the finite set of all infinite places of F , and let S(n) =
{v1, v2, . . . , vn} ∪ S∞. Let Gn = GS(n) in the notation of section 2.

If Γ is a compact group then EΓ is a point, and we have

Ktop
∗ (Γ, B) ∼= KKΓ

∗ (B) ∼= K∗(B o Γ)

by the Green-Julg theorem. Therefore BCC is true for any compact
group. Now Gn is a product of finitely many local groups and one
compact group. But BCC is stable under the direct product of finitely
many groups, by an important result of Chabert-Echterhoff [5, Theo-
rem 3.17]. Therefore BCC is true for each open subgroup Gn. Now the
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adelic group G(A) is the ascending union of the open subgroups Gn,
therefore BCC is true for G(A), by Theorem 6.3. �

Appendix A. Biller’s theorem

We give here the full statement of Theorem 3.8 in Biller[3]. The
stabilizer of x ∈ X is denoted Gx.

Theorem (Existence of slices). Let G be a locally compact group
acting properly on a completely regular space X, and choose x ∈ X.
Then there is a convergent filter basis N that consists of compact
subgroups of G normalized by Gx such that for every N ∈ N , the
coset space G/GxN is a manifold and x is contained in a GxN -slice for
the action of G on X. In particular, some neighbourhood of the orbit
G · x is a locally trivial fibre bundle over the manifold G/GxN .

The dimension of G · x is infinite if and only if N ∈ N may be
chosen such that the dimension of G/GxN is arbitrarily high. If the
dimension of G · x is finite, then N ∈ N may be chosen in such a way
that dim G/GxN = dim G · x.
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