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Abstract

The governing equation of the stochastic Galerkin method can be formulated as a generalized
Sylvester equation. Therefore, developing solvers for it is attracting a lot of attention from
the uncertainty quantification community. In this regard Krylov subspace based iterative
solvers, that are used for standard linear systems are being used for the generalized Sylvester
equations as well. This is achieved by converting the generalized Sylvester equation to a
standard linear system using the Kronecker product. Accordingly the residual norm is used
as a stopping criterion for the iterations, and the condition number of linear systems is used
for the generalized Sylvester equations as well. For a linear system a small residual norm
implies a small backward error, and hence using residual norm as a stopping criterion is
justified. In this work we prove that this need not be the case for the generalized Sylvester
equation. We introduce two definitions for the backward error, and then derive an upper
bound on each of them. We also verify the predictions of the analysis using numerical
experiments. For the special case of the stochastic Galerkin method we show that the upper
bound on the backward error can be computed with minimal computational overhead, and
hence it can be used as a stopping criterion in the iterative solvers. For the matrices
stemming from the stochastic Galerkin method we numerically demonstrate that the actual
backward error can be up to 3 orders of magnitude higher than the relative residual. Finally
by taking into account the structure of the equation we derive an expression for the condition
number, and discuss an algorithm for its computation in the special case of the stochastic
Galerkin method.
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1. Introduction

The equation

p∑
i=1

AiXBi = C, (1.1)

where {Ai}pi=1 ∈ Rn×n, {Bi}pi=1 ∈ Rm×m, and X,C ∈ Rn×m is called generalized Sylvester
equation. Using the Kronecker product, this can also be written as[

p∑
i=1

(BT
i ⊗ Ai)

]
Vec(X) = Vec(C), (1.2)

where A⊗B = (aijB) is the Kronecker product, and Vec(·) operator stacks the columns of
a matrix one above the other forming a vector. Until recently this equation was thought to
be of only theoretical interest [1, Sec 16.5], and now many applications have emerged where
generalized Sylvester equation is being used. For example stochastic Galerkin method [2],
PDEs constrained optimization [3], solution of deterministic PDEs [4], data assimilation [5],
fluid-structure interaction [6], neuroscience [7] to name a few. In this work we are inter-
ested in the generalized Sylvester equation that arises in the context of stochastic Galerkin
method. This development has initiated interest in the uncertainty quantification commu-
nity to develop efficient algorithms, which exploits the matrix structure. Several attempts
in this directions have already been made, for example [2], [8], [9], [10], that are based on
the Krylov subspace based iterative methods. In these Krylov subspace based algorithms,
the following two criteria are employed.

1. The norm of the residual is used to measure the backward stability of the computed
solution.

2. If A ∈ Rn×n and M ∈ Rn×n is a preconditioner for A, then κ2(M
−1A) =

‖ (M−1A)
−1 ‖2‖M−1A‖2 — 2-norm condition number — is used to measure the effec-

tiveness of the preconditioner.

The above two criteria are standard procedures adopted in the solution of linear systems
but (1.1) is a matrix equation, that is unknown is a matrix rather than a vector. Therefore
in this work we examine the suitability of the above two criteria for the solution of (1.1)
in the context of the stochastic Galerkin method. The main contribution of this work is to
demonstrate that the tools for the analysis of a standard linear system do not carry over in
a straightforward manner to the generalized Sylvester equation, and it should be analysed
separately considering the matrix structure of the equation. We would like to indicate that
methods based on low rank approximation of the solution X in (1.1) have also been proposed
in [11]. Focus of this work is on Krylov subspace based solver.

Residual norm is usually used as a stopping criterion for the solution of linear systems
by iterative methods, because a small residual norm implies a small backward error [12,
Sec 4.2]. However this need not be true for (1.1) since the unknown is a matrix. If it
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is the case then the computed solution would be an exact solution to a problem which
is a much larger perturbation of the original problem than stipulated. This is indeed the
case for the Sylvester and the Lyapunov equations, as shown by Higham in [13]. Similar
result for a two term generalized Sylvester equation was proved by K̊agström in [14] by
transforming it into a system of Sylvester equations. In this work we will prove a similar
result for a generalized Sylvester equation with p terms. One unique feature of the backward
error analysis of the generalized Sylvester equation is that, unlike Sylvester or Lyapunov
equations, the perturbations appear non-linearly. To address this issue we consider two
alternative definitions of the backward error, and derive an upper bound on each of them.
All the predictions made by the theory are verified using numerical experiments. We simplify
the results for the special case of the stochastic Galerkin method, and demonstrate that the
bound on the backward error can be derived with minimal computational overhead. Using
numerical experiments we will compare the actual backward error and the relative residual
and demonstrate that the former can be up to 3 order of magnitude higher. For a complete
discussion on the perturbation theory of the generalized Sylvester equation we refer to [15,
Ch. 8], however the authors do not discuss the backward error analysis.

The condition number of a function is its sensitivity to the change in its output with
respect to the input. Therefore the condition number depends on the structure of the
function under consideration. Since (1.1) can be represented as a standard linear system,
condition number of a linear system is used for it as well. A major drawback of this approach
is that it completely ignores the structure of the equation. In this work we derive the
Frobenius norm condition number of the generalized Sylvester equation by considering its
structure. Again for the special case of the matrices from stochastic Galerkin method we
discuss an efficient way to estimate the condition number. In the context of the stochastic
Galerkin method, an upper bound on the condition number of the preconditioned matrix
are derived in [16], [2] and [17]. These bounds are derived in terms of the parameters
of discretization space. In this work we emphasize the computational estimation of the
condition number of the final matrix, and furthermore it is not restricted to the generalized
Sylvester equation arising from stochastic Galerkin method.

Only recently the p term generalized Sylvester equation is being considered by the numer-
ical linear algebra community, and work in this regard is very sparse. Fundamental results
such as the existence and uniqueness of the solution of a generalized Sylvester equation for a
general Ai and Bi are not available. However for the specific case of the stochastic Galerkin
application this result is available [2, Sec 2], and therefore in the analysis we will assume
that (1.2) is nonsingular. A discussion regarding the general case is beyond the scope of this
work.

Rest of the paper is organised as follows. In the next section we briefly describe the
stochastic Galerkin method. In section 3 we introduce two definitions for the backward
error of a generalized Sylvester equation and derive an upper bound on both of them, and
in section 4 we derive an expression for the condition number of the generalized Sylvester
equation. Next in section 5 we specialise the results of sections 3 and 4 for the stochastic
Galerkin application, and discuss an algorithm for their computation. In Section 6 we
perform numerical experiments to verify the predictions made by the analysis of sections
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3 and 4. Further in this section we also consider matrices from the stochastic Galerkin
discretisation of an elliptic stochastic partial differential equation. We summarise, and
enumerate a few open problems in Section 7.

2. Stochastic Galerkin formulation

To clarify the context of the problem, and for the sake of completeness, in this section
we provide a very brief introduction to the stochastic Galerkin formulation. Specifically we
consider an elliptic stochastic partial differential equation (spde). If x ∈ D ⊂ Rd, where
usually d = 1, 2, or 3, then an elliptic spde is given as

−∇ · [κ(x, θ)∇u(x, θ)] = f(x, θ) a.s, (2.1)

with u(x) = 0 on ∂D ,

where a.s means almost surely, ∂D is the boundary of D. Let (Ω,F ,P) be the probability
space, then θ ∈ Ω, where Ω is the sample space. Further the input coefficients κ(x, θ) and
f(x, θ) are modelled as real valued random fields and are assumed to be positive and finite.
This assumption guarantees the positive definiteness of the final matrix [2, Sec 2]. Now
using the finite element method to discretise (2.1) we obtain

A(θ)x(θ) = b(θ), (2.2)

where A(θ) ∈ Rn×n, b(θ), x(θ) ∈ Rn, and n is the dimension of the finite element space. At
this point there are various possible ways to solve (2.2), and the stochastic Galerkin method
is one of them, which consists of the following two steps.

1. The matrix A(θ) and the vector b(θ) are discretised as

A(θ) = A1 +

p∑
i=2

Aiξi, (2.3)

b(θ) = b1 +

p1∑
i=p+1

biξi. (2.4)

where ξi are bounded, zero mean, unit variance, and uncorrelated random variables.
Furthermore Ai are sparse, symmetric and positive definite. (2.3) and (2.4) are called
as finite-noise assumption and can be computed using the Karhunen-Loéve expansion
[18].

2. The solution x(θ) is discretised using orthogonal polynomials, which are functions of
the random variables ξi in (2.3) and (2.4). Orthogonality is defined with respect to
the joint distribution of ξi-s, and they are called generalised polynomial chaos (gPC)
functions2. Accordingly we obtain

x(θ) =
m∑
i=1

xiψi(θ), (2.5)

2These gPC functions are the bases of a subspace of L2(Ω) [19].
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where ψi-s are the gPC bases functions,

m = (pt + q)!/pt!q!, (2.6)

pt is the total number of input random variables3 and q is the maximum degree of the
polynomials ψi(θ). Also the degree of the polynomial ψi is the sum of the degrees of
the random variables ξi, such polynomials are called as complete polynomials [20]. For
a detailed discussion on gPC we refer interested reader to [9, Sec. 1].

Now substitute (2.3), (2.4), (2.5) in (2.2), and apply Galerkin projection to obtain (1.1),
where {Ai}pi=1 is given by (2.3), and X = [x1, x2, . . . , xm] , where xi ∈ Rn are from (2.5).
Further C = [c1, c2, . . . cm], where

ci = b1E(ψi) +

p1∑
j=p+1

bjE(ξjψi), for i = 1, 2, . . .,m,

(Bi)jk = E(ξiψjψk), for i = 1, 2, . . . , p, j, k = 1, 2, . . .,m, (2.7)

and E(·) denotes the expectation operator, and ξ1 = 1. For a detailed description of the
formulation we refer interested reader to [21, Ch. 1] and references therein. In the next
section we consider a generalized Sylvester equation— no structure is assumed on Ai, Bi

— and derive an upper bound on a backward error. However we will return to the special
case of the generalized Sylvester equation arising from the stochastic Galerkin method in
section 5. In this work we consider only matrices with real entries, as the stochastic Galerkin
method results in real matrices. However results for the complex case follows directly from
the analysis in the next section.

3. Backward error

For the Sylvester equation, which is AX−XB = C with appropriate matrix dimensions,
Higham in [1, Ch. 16] showed that the backward error can be written in terms of the
perturbations in the component matrices. If we define the normwise backward error as

η
′
(Y ) = min

{
ε : (A+ ∆A)Y − Y (B + ∆B) = C + ∆C, ‖∆A‖F ≤ εα,

‖∆B‖F ≤ εβ, ‖∆C‖F ≤ εγ
}
,

where ‖ · ‖F is the Frobenius norm, α, β, γ > 0, and Y is an approximate solution. Then it
was shown that

η
′
(Y ) ≤ µ

‖R′‖F
(α + β)‖Y ‖F + γ

,

where R′ = C − AY + Y B is the residual,

µ :=
(α + β)‖Y ‖F + γ

(α2σ2
m + β2σ2

n + γ2)1/2
, (3.1)

3 In the present context by counting the number of random variables in (2.3) and (2.4) pt = p1 − 3.
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and σn, σm are the n-th and m-th singular values of Y. This idea was used in [14] for a two
term generalized Sylvester equation, by reformulating it as a two term Sylvester equation.

Adopting a similar strategy, again if Y is an approximate solution of a generalized
Sylvester equation, then we define

η(Y ) = min
{
ε :

p∑
i=1

(Ai + ∆Ai)Y (Bi + ∆Bi) = C + ∆C, ‖∆Ai‖F ≤ εαi,

‖∆Bi‖F ≤ εβi, for i ∈ {1, 2, 3, . . . , p}, and ‖∆C‖F ≤ εγ
}
,

(3.2)

where αi, βi and γ are positive and indicators of the extent of perturbation. The choice
αi = ‖Ai‖F , βi = ‖Bi‖F , and γ = ‖C‖F are of practical interest, and in such cases we refer
to η(Y ) as the normwise relative backward error. Now the perturbed generalized Sylvester
equation

p∑
i=1

(Ai + ∆Ai)Y (Bi + ∆Bi) = C + ∆C

can be written as

p∑
i=1

(∆AiY Bi + AiY∆Bi + ∆AiY∆Bi)−∆C = R, (3.3)

where R = C−
∑p

i=1AiY Bi. Note that, determining ∆Ai, ∆Bi and ∆C from (3.3) involves
solution of a non-linear least square problem. This aspect poses a major difficulty in the
analysis, unlike Sylvester or Lyapunov equations where the perturbations appear linearly.
Similar situation also arises in the backward error analysis of matrix-matrix multiplication,
and this is the reason for the absence of a unique expression for its backward error. For
various alternative definitions for the backward error of matrix-matrix multiplication we
refer to [1, p 77]. In this work we consider the following two definitions for the backward
error.

ηA(Y ) = min
{
ε :

p∑
i=1

(Ai + ∆Ai)Y Bi = C + ∆C, ‖∆Ai‖F ≤ εαi,

for i ∈ {1, 2, 3, . . . , p}, and ‖∆C‖F ≤ εγ
}
, (3.4)

and

ηB(Y ) = min
{
ε :

p∑
i=1

AiY (Bi + ∆Bi) = C + ∆C, ‖∆Bi‖F ≤ εβi,

for i ∈ {1, 2, 3, . . . , p}, and ‖∆C‖F ≤ εγ
}
. (3.5)

Perturbations appears linearly in (3.4) and (3.5), and therefore the analysis will simplify
greatly. Now instead of deriving a bound on ηA(Y ) and ηB(Y ) separately, we analyse
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the linear part of (3.3), and at the end of the section demonstrate that bounds for (3.4)
and (3.5) can be obtained as a special case. Before we begin with the analysis, we would
like to emphasize that we are interested in estimating the error incurred by the floating-
point computation, and they are modest compared to truncation error4 in (2.3), (2.4), and
discretization error. Therefore it is very unlikely that the second order terms in (3.3) will
be important. However for the sake of rigour we use the definitions (3.4) and (3.5).

(3.3) is linearized by neglecting the second order perturbation terms, and can be written
as,

[
H1 H2 −γImn

]  Vec (∆A′)
Vec (∆B′)

Vec (∆C)/γ

 = Vec(R), (3.6)

where

H1 =
[
α1(B

T
1 Y

T ⊗ In), α2(B
T
2 Y

T ⊗ In), . . . , αp(B
T
p Y

T ⊗ In)
]
, (3.7)

H2 = [β1(Im ⊗ A1Y ), β2(Im ⊗ A2Y ), . . . , βp(Im ⊗ ApY )] ,

Vec (∆A′) =
[

Vec (∆A1)
T/α1, Vec (∆A2)

T/α2, . . . , Vec (∆Ap)
T/αp

]T
,

Vec (∆B′) =
[

Vec (∆B1)
T/β1, Vec (∆B2)

T/β2, . . . , Vec (∆Bp)
T/βp

]T
,

Im ∈ Rm×m, In ∈ Rn×n and Imn ∈ Rmn×mn are identity matrices. Compactly written, (3.6)
is Hz1 = r, which is an underdetermined system and is of full rank if γ 6= 0. Therefore there
exists a unique minimum two norm solution z1 = H†r, where H† is the pseudo inverse. Let

z =

[
‖∆A1‖F
α1

, . . . ,
‖∆Ap‖F
αp

,
‖∆B1‖F

β1
, . . . ,

‖∆Bp‖F
βp

,
‖∆C‖F

γ

]T
.

Using the relation between the 2-norm and infinity norm it follows that

1√
2p+ 1

‖z‖2 ≤ ‖z‖∞ ≤ ‖z‖2,

which can be further simplified using ‖z‖2 = ‖z1‖2 = ‖H†r‖2, to obtain

1√
2p+ 1

‖H†r‖2 ≤ ‖z‖∞ ≤ ‖H†r‖2.

Note that ‖z‖∞ = ηA(Y ) if ∆Bi = 0, and ‖z‖∞ = ηB(Y ) if ∆Ai = 0. Further if the
second order terms are negligible in (3.3), then ‖z‖∞ ≈ η(Y ). Now using the relation
‖H†r‖2 ≤ ‖H†‖2‖r‖2 we can deduce that

‖z‖∞ ≤ ‖H†‖2‖r‖2 = ‖r‖2/σmin(H), (3.8)

4Usually O(10−3).
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where σmin(H) is the minimum singular value of H. From (3.8) we can see that even if the
norm of the residual is low, ‖z‖∞ can be high, as it also depends on σmin(H), which in turn
depends on Ai, Bi, C, and Y . To quantify this dependency we now derive a lower bound on
σmin(H).

Consider the singular value decomposition (SVD) Y = UΣV T , where U ∈ Rn×n, V ∈
Rm×m have orthonormal columns, and Σ ∈ Rm×n is a diagonal matrix of singular val-
ues σi(Y ). Singular values are assumed to have the ordering σ1(Y ) ≥ σ2(Y ) ≥ . . . ≥
σmin(m,n)(Y ), and σmin(m,n)+1(Y ) = . . . = σmax(m,n)(Y ) = 0. Now substitute the SVD of Y
in the expression of H in (3.6). Since the singular values are invariant under orthonormal
transformations σmin(H) = σmin(H̃), where

H̃ = Q1HQ2,

Q1 = V T ⊗ UT ,

Q2 = diag(Ip ⊗ U ⊗ U, Ip ⊗ V ⊗ V, V ⊗ U).

Further

H̃ =
[
H̃1 H̃2 −γImn

]
, where

H̃1 =
[
α1(B̃

T
1 ΣT ⊗ In), α2(B̃

T
2 ΣT ⊗ In), . . . , αp(B̃

T
p ΣT ⊗ In)

]
,

H̃2 =
[
β1(Im ⊗ Ã1Σ), β2(Im ⊗ Ã2Σ), . . . , βp(Im ⊗ ÃpΣ)

]
,

Ãi = UTAiU, i = 1, 2, 3, . . . , p, and

B̃i = V TBiV, i = 1, 2, 3, . . . , p.

Now recall that the singular values of H̃ are the eigenvalues of

H̃H̃T =

p∑
i=1

{
α2
i (B̃

T
i ΣTΣB̃i ⊗ In) + β2

i (Im ⊗ ÃiΣΣT ÃTi )
}

+ γ2Imn.

Using the Courant-Fischer min-max theorem [22, Coro. 7.7.4], and a property of the eigen-
values of the Kronecker product5, we can show that

λmin(H̃H̃T ) ≥
∑
j∈J

α2
jλmin(B̃T

j ΣTΣB̃j) +
∑
k∈J ′

β2
kλmin(ÃkΣΣT ÃTk ) + γ2, (3.9)

where λmin(·) denotes the minimum eigenvalue, J ,J ′ ⊂ (1, 2, 3, . . . , p) are the indices for
which the matrices Bi and Ai respectively are nonsingular. We can further simplify the
summands of (3.9) as

λmin(B̃T
i ΣTΣB̃i) =

1

‖B̃−1i (ΣTΣ)†B̃−Ti ‖2
≥ σm(Y )2

‖B−1i ‖2F
, (3.10)

5If A ∈ Rn×n ,B ∈ Rm×m, then λk(A ⊗ B) ∈ {λi(A)λj(B) : i ∈ (1, 2, . . . , n), j ∈ (1, 2, . . . ,m)} for k ∈
(1, 2, . . . ,mn) [23, Theorem 4.2.15].
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and

λmin(ÃiΣΣT ÃTi ) =
1

‖Ã−Ti (ΣΣT )†Ã−1i ‖2
≥ σn(Y )2

‖A−1i ‖2F
. (3.11)

To obtain the last inequality we have used ‖AB‖2 ≤ ‖A‖2‖B‖2, the unitary invariance of
the two norm, and ‖A‖2 ≤ ‖A‖F . Substituting (3.10), (3.11) in (3.9) we can show that

λmin(H̃H̃T ) ≥
∑
j∈J

α2
j

σm(Y )2

‖B−1j ‖2F
+
∑
k∈J ′

β2
k

σn(Y )2

‖A−1k ‖2F
+ γ2,

and therefore

σmin(H) ≥

(∑
j∈J

α2
j

σm(Y )2

‖B−1j ‖2F
+
∑
k∈J ′

β2
k

σn(Y )2

‖A−1k ‖2F
+ γ2

)1/2

. (3.12)

Finally using (3.12) in (3.8) we obtain

‖z‖∞ ≤ µ
‖R‖F
τ

, (3.13)

µ =
τ(∑

j∈J α
2
j
σm(Y )2

‖B−1
j ‖2F

+
∑

k∈J ′ β
2
k
σn(Y )2

‖A−1
k ‖

2
F

+ γ2
)1/2

, (3.14)

τ =

p∑
i=1

(αi‖Bi‖F + ‖Ai‖Fβi) ‖Y ‖F + γ. (3.15)

The scalar µ ≥ 1 is a magnification factor, therefore small residual norm need not imply
small ‖z‖∞.

Now we demonstrate that the analysis of this section generalizes the results of [13] and
[14, p. 1051]. Consider just the Sylvester equation AX − XB = C, then it can be recast
into a generalized Sylvester equation in the following way,

(AXIm)− (InXB) = C.

For the above equation A1 = A, B2 = B, only α1 and β2 are non zero, B1 = Im, A2 = In,
and are non-singular, therefore, (3.13) and (3.14) reduce to

µ =
(α1 + β2)‖Y ‖F + γ

(α2
1σm(Y )2 + β2

2σn(Y )2 + γ2)
1/2
,

η(Y ) ≤ µ
‖R‖F

(α1 + β2)‖Y ‖F + γ
. (3.16)

(3.16) is same as (3.1), and the result of [14, p 1051]. Furthermore if B = 0 and X ∈ Rn×1,
Sylvester equation simplifies to a system of linear equations, and (3.16) further reduces to
the backward error of a linear system of equation within a factor of

√
2.
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To explore the conditions under which µ is very large, consider the case where m = n,
Ai-s and Bi-s are non-singular. Further the normwise relative perturbation, that is αi =
‖Ai‖F , βi = ‖Bi‖F , and γ = ‖C‖F , are considered. Since all Ai and Bi are non-singular
J = J ′ = (1, 2, 3, . . . , p), and (3.14) simplifies to

µ =
2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F(∑p
i=1 ‖Ai‖2F

σm(Y )2

‖B−1
i ‖2F

+
∑p

i=1 ‖Bi‖2F
σn(Y )2

‖A−1
i ‖2F

+ ‖C‖2F
)1/2 ,

≥ 2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F
σmin(Y )

(∑p
i=1

‖Ai‖F ‖Bi‖F
κF (Bi)

+
∑p

i=1
‖Bi‖F ‖Ai‖F
κF (Ai)

)
+ ‖C‖F

, (3.17)

where κF (Bi) = ‖B−1i ‖F‖Bi‖F and κF (Ai) = ‖A−1i ‖F‖Ai‖F . From (3.17) we can conclude
that µ � 1 when either ‖Y ‖F � σmin(Y), and/or matrices Ai, Bi are ill conditioned. To
further clarify the dependence on the condition numbers of Y , Ai, and Bi, we consider the
case when ∆C = 0, that is the right hand side matrix is assumed to be known exactly.
Under this assumption (3.17) simplifies to

µ ≥ 2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F
σmin(Y )

(∑p
i=1

‖Ai‖F ‖Bi‖F
κF (Bi)

+
∑p

i=1
‖Bi‖F ‖Ai‖F
κF (Ai)

) ,
≥ min

i∈(1,2,...,p)
[κF (Ai), κF (Bi)]‖Y ‖F‖Y †‖2,

≥ κ2(Y ) min
i∈(1,2,...,p)

[κF (Ai), κF (Bi)], (3.18)

where κ2(Y ) = ‖Y †‖2‖Y ‖2. From (3.18) it is clear that, even if some Ai and Bi are ill
conditioned the backward error can still be small, in Section 6 we will verify these predictions
numerically. Therefore the only remaining question is, under what conditions the computed
solution is ill conditioned? This is an open problem even for Sylvester equations, [1, Ch.
16].

Recall that ‖z‖∞ = ηA(Y ) if ∆Bi = 0, by considering βk = 0 in (3.14) we obtain

ηA(Y ) ≤ µA
‖R‖F
τ

, (3.19)

µA =
τ(∑

j∈J α
2
j
σm(Y )2

‖B−1
j ‖2F

+ γ2
)1/2

,

τ =

p∑
i=1

αi‖Bi‖F‖Y ‖F + γ.

In (3.19), µA is the magnification factor, which is a ratio of the backward error ηA(Y ) and
the relative residual ‖R‖F/τ . Similarly a bound on ηB(Y ) can be derived by setting αj = 0
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in (3.14). Therefore,

ηB(Y ) ≤ µB
‖R‖F
τ

, (3.20)

µB =
τ(∑

k∈J ′ β
2
k
σn(Y )2

‖A−1
k ‖

2
F

+ γ2
)1/2 ,

τ =

p∑
i=1

βi‖Ai‖F‖Y ‖F + γ.

An interpretation similar to µA can be given for µB as well.

4. Condition number

In this section we derive the condition number of a generalized Sylvester equation using
the perturbation theory. To achieve this we first consider

p∑
i=1

(
(Ai + ∆Ai)(X + ∆X)(Bi + ∆Bi)

)
= C + ∆C.

Unlike backward error analysis, only small perturbations are of interest here, therefore second
order terms can be dropped. Hence we obtain

p∑
i=1

Ai∆XBi = ∆C −
p∑
i=1

(∆AiXBi + AiX∆Bi) . (4.1)

Using the Kronecker product, (4.1) can be restated as

P Vec(∆X) = γ ( Vec(∆C)/γ)−
p∑
i=1

{[
αi(B

T
i X

T ⊗ In) βi(Im ⊗ AiX)
] [ Vec(∆Ai)/αi

Vec(∆Bi)/βi

]}
,

(4.2)

where P =
∑p

i=1B
T
i ⊗ Ai, and αi, βi, γ are positive and a measure of the extent of pertur-

bation. (4.2) can be also written as

P Vec(∆X) =
[
H1 H2 −γImn

]  Vec (∆A′)
Vec (∆B′)

Vec (∆C)/γ


where all the symbols carry the same meaning as in (3.6). If we consider a normwise
perturbation

ε = max{‖∆Ai‖F/αi, ‖∆Bi‖F/βi, ‖∆C‖F/γ}, for i ∈ (1, 2, 3, . . . , p),
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and apply Cauchy-Schwarz inequality we obtain

‖∆X‖F
‖X‖F

≤ (2p+ 1)1/2Ψε, (4.3)

where

Ψ = ‖P−1
[
H1 H2 −γImn

]
‖2/‖X‖F , (4.4)

and (2p + 1)1/2Ψ is the condition number of the generalized Sylvester equation, also the
above bound is attainable. For the Sylvester equation, recalling that p = 2, β1 = 0, α2 = 0,
B1 = In and A2 = In, accordingly we obtain

51/2‖P−1
[
α1(X

T ⊗ In) β2(Im ⊗X) −γImn
]
‖2/‖X‖F ,

which is the condition number derived in [13] to within a factor of (3/5)1/2. Similar conclusion
holds for the results of [14], which are derived for a two term generalized Sylvester equation.
The bound in (4.3) can be weakened to

‖∆X‖F
‖X‖F

≤ (2p+ 1)1/2Φε, where

Φ = ‖P−1‖2

(
p∑
i=1

[αi‖Bi‖F + βi‖Ai‖F ] ‖X‖F + γ

)
/‖X‖F . (4.5)

Note that Φ can be much greater than Ψ as demonstrated in [1] for the Sylvester equation.
For a linear system Ax = b, in [1, Sec 7.1] the condition number is given by

κA,b(A, x) =
‖A−1‖‖b‖
‖x‖

+ ‖A−1‖‖A‖, (4.6)

where ‖ · ‖ can be any norm of choice, and we will consider the Frobenius norm for con-
sistency with (4.3). The system of equations stemming from the stochastic Galerkin were
initially identified as a standard linear system [24, Section 3.3.6], and therefore their condi-
tion number is estimated using (4.6). One major drawback of using (4.6) for estimating the
condition number is that it does not take into account the actual structure of the equation.
For the generalized Sylvester equation, (4.6) can be written as

κP,b(P, x) =
‖
(∑p

i=1(B
T
i ⊗ Ai)

)−1 ‖F‖C‖F
‖X‖F

+

∥∥∥∥∥∥
(

p∑
i=1

(BT
i ⊗ Ai)

)−1∥∥∥∥∥∥
F

∥∥∥∥∥
p∑
i=1

(BT
i ⊗ Ai)

∥∥∥∥∥
F

,

(4.7)

recall P =
∑p

i=1(B
T
i ⊗ Ai). Note that in deriving the above expression, a perturbation of∑p

i=1(B
T
i ⊗ Ai) is considered rather than individual matrices, we refer to [1, Sec 7.1] for

further details. We will compare (4.7), (4.4) and (4.5) numerically in Section 6.
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5. Application to the stochastic Galerkin method

In the stochastic Galerkin method the matrices {Ai}pi=1 are symmetric and positive
definite, B1 is a diagonal matrix with positive entries and {Bi}pi=2 are sparse, symmetric,
singular matrices, and for problems of practical interest m � n [25, Section 4] . Therefore
the expression for µA in (3.19) simplifies to

µ
(sg)
A =

(
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F(
‖A1‖2F
‖B−1

1 ‖2F
σm(Y )2 + ‖C‖2F

)1/2 . (5.1)

Note that we are using αi = ‖Ai‖F , βi = ‖Bi‖F , and γ = ‖C‖F , that is normwise relative
backward error. From a computational point of view evaluating (5.1) is not expensive
because B1 is a diagonal matrix, and m � n, that is Y is a tall, skinny matrix, and
therefore σm(Y ) can be computed very efficiently [26, Sec 5.4], or can be estimated cheaply
[1, Ch. 15]. Similarly the expression for µB in (3.20) can also be simplified by noting that
σn(Y ) = 0 to obtain

µ
(sg)
B =

(
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F
‖C‖F

. (5.2)

From (5.1) and (5.2) we can infer that the solution of the generalized Sylvester equation in
the stochastic Galerkin method is backward stable in Bi, and conditionally backward stable
in Ai.

Next we consider the estimation of the condition number Φ given by (4.5). As men-
tioned in section 1, iterative solvers are used for the solution of (1.1) in the context of the
stochastic Galerkin method. Further, since (1.2) is a symmetric and positive definite matrix,
preconditioned conjugate gradient (PCG) is the most popular choice, and extremely good
preconditioners are available as well [2], [17]. Now note that in (4.5), ‖P−1‖2 = 1/λmin(P ),
that is the inverse of the minimum eigenvalue of P , that can be computed by exploiting
the connection between PCG and the Lanczos algorithm [12, Sec. 5.1]. Thus the condition
number Φ can be computed as a by-product of solving the generalized Sylvester equation
using PCG. Further since the Lanczos iteration converges to the extreme eigenvalues very
quickly [12, Sec. 4.2.3], this method is computationally efficient.

Estimating the condition number Ψ would involve either inversion of P or solution of a
linear system with multiple right hand sides, that is for each column of H1, H2, and Imn
as right hand side. Therefore even though Ψ is desirable, for problem of practical interest,
estimating it would be extremely expensive.

6. Numerical Experiments

In this section we perform numerical experiments to achieve three objectives.

1. Verify the predictions made by the analysis in section 3 regarding the conditions in
which µ of (3.13) has a large value.
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Table 6.1: Combinations of the 2-norm condition numbers of the matrices A1, A2, B1, and B2 in (6.1).

κ2(A1) κ2(B1) κ2(A2) κ2(B2)

case 1 1× 1015 1× 1015 1× 1015 1× 1015

case 2 1× 1015 1× 1015 1× 102 1× 1015

case 3 1× 1015 1× 1015 1× 102 1× 102

2. Compare the actual backward error ηA(Y ) and the relative residual — to be defined
later — for matrices from the stochastic Galerkin method.

3. Compare the condition number given by (4.4), (4.5) and (4.7) for matrices from the
stochastic Galerkin method.

All the experiments are performed on a Lenovo ThinkStation with Intel Xeon W-2123 CPU,
32 Gb RAM, using MATLAB 2019a. We have made our codes available at https://github.
com/SrikaraPranesh/GeneralizedSylvester. In all our experiments we are interested in
normwise relative backward error.

To numerically verify the predictions made by the analysis of the Sections 3 regarding µ
in (3.13), we consider a two term generalized Sylvester equation, that is

A1XB1 + A2XB2 = C. (6.1)

We consider 1000 square matrices of size 4 × 4, and the matrices are generated using the
randsvd command of MATLAB. To make the results reproducible we seed the random
number generator using rng(s), where s = [1 : 1 : 1000]. Right hand side C is generated
using the randn command. (6.1) is solved by converting it to a linear system using the
Kronecker product form (1.2), and using Gaussian elimination with partial pivoting, namely
the ‘\’ command of MATLAB. We will refer to ‘\’ as the backslash command. Backward
error for the linear system, which we refer to as the relative residual is computed using∥∥[∑2

i=1(B
T
i ⊗ Ai)

]
x̂− b

∥∥
∞

‖
∑2

i=1B
T
i ⊗ Ai‖∞‖x̂‖∞+‖b‖∞

, (6.2)

where x̂ is the computed approximate solution, and the actual backward error η(Y ) is
computed using (3.6) again by using the backslash command. Recall that µ in (3.13) was
derived by considering only the first order perturbation terms, and therefore to be consistent
with the analysis the test matrices were chosen so that the second order terms are negligible.
We verify this by solving the non-linear least square problem (3.3) using lsqnonlin function
of MATLAB with default options. The combinations of 2-norm condition numbers of Ai
and Bi are listed in Table 6.1. We would like to emphasize that the combination of the
condition numbers in Table 6.1 are chosen specifically to test the predictions of the analysis.

We choose the condition numbers of all the matrices to be 1 × 1015, that is case 1 in
Table 6.1. We choose a high condition number to demonstrate the dependency of the back-
ward error on the condition number of the component matrices. The results are displayed in
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Figure 6.1a and we can observe that the actual backward error is up to 6 orders of magnitude
higher than the relative residual which is O(u), where u = 2.22× 10−16 is the unit round off
of the double precision, therefore µ ≈ 106. From (3.18) we can see that the magnification
factor depends on the condition number of the solution as well. In Figure 6.1b we display
the condition number of the computed solution and it can be observed that the solution
matrix is well conditioned compared to the input matrices. Therefore the high value of µ is
because of the high condition number of the input matrices.

Next we set the condition numbers of A1, B1, B2 to 1 × 1015, and A2 to 1 × 102, that
is case 2 in Table 6.1. In Figure 6.2a we display the actual backward error and relative
residual. From the figure we can observe that the actual backward error is up to 12 orders
of magnitude higher than the relative residual which is O(u), that is µ ≈ 1012. Next in
Figure 6.2b we have displayed the condition number of the computed solution for all the
test matrices, and we can observe that the condition number of the solution is also extremely
high, thus leading to a high value of µ.
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Figure 6.1: (a) Compares the actual backward error (3.2) and the relative residual (6.2). (b) Condition
number of the solution matrix. Results are for the case 1 in Table 6.1.

From these two experiments we can conclude that the magnification factor µ can be high
when either the input matrices are ill-conditioned or the solution matrix is ill-conditioned.
However (3.18) predicts that the magnification is a function of the minimum over condition
number of the input matrices. To verify this we set the condition number of A1, B1 to
1 × 1015, and A2, B2 to 1 × 102, that is case 3 in Table 6.1. In Figure 6.3a we display the
actual backward error and the relative residual, and we can observe that the magnification
factor is relatively low, that is µ = O(103). Further from Figure 6.3b we can see that the
solution is relatively well conditioned as well.

From these numerical experiments we can conclude that our analysis successfully captures
the behaviour of the first order perturbation terms in the backward error. Further the
solution of a generalized Sylvester equation is only conditionally backward stable, as the
backward error depends on the condition number of the input matrices and the solution
matrix.
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Figure 6.2: (a) Compares the actual backward error (3.2) and the relative residual (6.2). (b) Condition
number of the solution matrix. Results are for the case 2 in Table 6.1.
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Figure 6.3: (a) Compares the actual backward error (3.2) and the relative residual (6.2). (b) Condition
number of the solution matrix. Results are for the case 3 in Table 6.1.

Next we perform numerical experiments to compare the condition numbers (4.4) and
(4.5). The action of P−1 is obtained by using the backslash command of MATLAB. We
consider the same three combination of condition numbers listed in Table 6.1, and the
corresponding actual condition numbers of the generalized Sylvester equation are displayed
in Figure 6.4. For the sake of clarity we display the results for only the first 30 matrices,
the trend is broadly similar for the remaining matrices as well. In the plot strong condition
number refers to (4.4), and weak condition number refers to (4.5). From the plots we can
observe that the condition number of the generalized Sylvester equation computed using
(4.4) is always smaller than (4.5), and in some cases it is up to four orders of magnitude
lower.

Now for the matrices obtained from the stochastic Galerkin discretisation of an elliptic
spde we perform numerical experiments to compare the actual backward error and the
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Figure 6.4: Condition number of the generalized Sylvester equation, strong condition number is (4.4), and
weak condition number is (4.5), condition number of the component matrices are listed in Table 6.1 (a) case
1, (b) case 2, and (c) case 3. Condition numbers of only the first thirty matrices are displayed.

relative residual. The actual backward error is

ηA(Y ) = ‖H†Ar‖∞, (6.3)

where HA =
[
H1 −‖C‖F Imn

]
, H1 is (3.7), and r is the residual; a bound for the backward

error is

η(Y ) ≤ µ
(sg)
A

‖R‖F
(
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F
, (6.4)

where µ
(sg)
A is (5.1), and relative residual is computed as

‖ Vec(C)−
(∑p

i=1B
T
i ⊗ Ai

)
Vec(X)‖∞

‖
∑p

i=1B
T
i ⊗ Ai‖∞‖ Vec(X)‖∞ + ‖ Vec(C)‖∞

. (6.5)

Recall from (5.2) that for the stochastic Galerkin method, small residual implies small ηB(Y ),
therefore we do not consider it here. Further the condition numbers estimated using (4.4),
(4.5), and (4.7) are also compared.
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We solve (2.1) on a square domain between [0, 0.5] × [0, 0.5]. f(x, θ) is assumed to be
deterministic and a constant function of unit magnitude. A homogeneous Dirichlet boundary
condition is applied at x = 0 and x = 0.5. Finite element spaces of dimension 31 and 127
with linear triangles are used for spatial discretization. Random field κ(x, θ) is assumed to
have a mean of 200, variance of 1000, and a Gaussian covariance model with a correlation
length of 2.5 is adopted. The algorithm proposed in [18] is used to discretise the covariance
function. Two cases for the random variables ξi in (2.3) are considered (i) Standard normal,
then ψi in (2.5) are chosen to be Hermite polynomials, (ii) uniform between [−

√
3,
√

3], then
ψi in (2.5) are chosen to be Legendre polynomials. The matrices Bi in (2.7) are computed
using the stochastic Galerkin toolbox in https://github.com/ezander/sglib. Since the
coefficient of variation of the input random field is small, the positive definiteness can be
guaranteed even when standard normal random variables are used in (2.3). M = BT

1 ⊗A1 is
used as a preconditioner, this is commonly known as the mean based preconditioner in the
uncertainty quantification community. The preconditioned conjugate gradient is terminated
when the 2-norm of the residual — numerator of (6.5) — is less than 1×10−6. For estimating
the actual backward error ηA(Y ), H†A in (6.3) is computed using the pinv command. Further
the action of P−1 in (4.4) is achieved using the backslash command, and ‖P−1‖2 in (4.5) is
computed using the eig command.

In Table 6.2 for two sizes of matrices Ai we display the actual backward error ηA(Y ),
its bound given by (6.4), and the relative residual computed using (6.5) for varying size
of matrices Bi. From the table we can observe that the actual backward error is up to 3
orders of magnitude higher than the relative residual. Furthermore the upper bound on the
backward error is tight. Therefore rather than using a norm of the residual as the stopping
criterion ‖R‖Fµ(sg)

A should be used as the stopping criterion.
Next in Table 6.3 the estimates of Ψ, Φ, and κP,b(P, x) in (4.4), (4.5), and (4.7) respec-

tively are displayed. We would like to emphasize that the condition number of unprecondi-
tioned matrix is displayed here. The size of matrices Ai, and Bi are same as that of Table 6.2.
From Table 6.3 we can observe that Ψ is up to two orders of magnitude lower than Φ and
κP,b(P, x). However the perturbations considered in deriving Φ are in accordance with the
structure of the equation.

7. Conclusion and future direction

In this work we derive an upper bound on the backward error of the generalized Sylvester
equation, and demonstrate that a small residual norm need not imply a small backward error.
We achieve this by introducing two definitions for the backward error, where we consider
the perturbations in Ai and Bi in (1.1) separately, and derived an upperbound on each of
them. Predictions of the analysis are verified using numerical experiments. Further for the
stochastic Galerkin method, a computationally efficient method to estimate a bound on the
actual backward error is discussed. Using numerical experiments we demonstrate that for the
stochastic Galerkin method application, the actual backward error can be up to three orders
of magnitude higher than the relative residual. Therefore accounting for the magnification
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Table 6.2: Comparison of the actual backward error ηA(Y ) (6.3), its bound (6.4), and the relative residual
(6.5). Matrices are obtained from the stochastic Galerkin method. The size of Ai is n, m is the size of
Bi, and the numbers in the parenthesis are (p, q), where p is the number of terms in generalized Sylvester
equation and q is the order of gPC expansion. ‘Hermite’ and ‘Legendre’ indicate the type of gPC polynomials
used in (2.5).

Hermite Legendre
n m (p, q) ηA(Y ) ηA(Y ) bound relative residual ηA(Y ) ηA(Y ) bound relative residual

6 (2,2) 1.81e-07 5.98e-07 1.08e-08 2.53e-08 7.87e-08 2.93e-09
10 (3,2) 1.73e-07 5.88e-07 1.06e-08 2.52e-08 1.20e-07 4.48e-09

31 15 (4,2) 1.73e-07 5.88e-07 1.06e-08 2.53e-08 1.21e-07 4.50e-09
10 (2,3) 7.14e-08 2.23e-07 1.36e-09 1.84e-07 6.12e-07 2.28e-08
20 (3,3) 6.81e-08 2.19e-07 1.34e-09 1.74e-07 6.24e-07 2.32e-08
6 (2,2) 2.96e-07 9.88e-07 4.60e-09 1.36e-08 8.22e-08 8.05e-10
10 (3,2) 2.88e-07 9.74e-07 4.53e-09 1.35e-08 1.26e-07 1.23e-09

127 15 (4,2) 2.88e-07 9.73e-07 4.53e-09 1.35e-08 1.27e-07 1.24e-09
10 (2,3) 1.08e-07 3.53e-07 5.55e-10 5.56e-08 7.21e-07 7.06e-09
20 (3,3) 1.05e-07 3.48e-07 5.47e-10 5.47e-08 7.28e-07 7.13e-09

Table 6.3: Comparison of the actual condition number Ψ (4.4), its upper bound Φ (4.5), and the condition
number of the corresponding linear system computed by (4.7). Matrices are obtained from the stochastic
Galerkin method. The size of Ai is n, m is the size of Bi, and the numbers in the parenthesis are (p, q), where
p is the number of terms in generalized Sylvester equation and q is the order of gPC expansion. ‘Hermite’
and ‘Legendre’ indicate the type of gPC polynomials used in (2.5).

Hermite Legendre
n m (p, q) Ψ Φ κP,b(P, x) Ψ Φ κP,b(P, x)

6 (2,2) 2.46e+02 2.22e+03 8.76e+02 2.37e+02 5.06e+03 1.61e+03
10 (3,2) 2.80e+02 3.11e+03 1.43e+03 2.68e+02 6.11e+03 2.59e+03

31 15 (4,2) 3.09e+02 4.05e+03 2.09e+03 2.97e+02 7.16e+03 3.68e+03
10 (2,3) 2.48e+02 6.22e+03 2.62e+03 2.37e+02 8.64e+03 3.54e+03
20 (3,3) 2.83e+02 8.90e+03 4.74e+03 2.68e+02 1.89e+04 7.29e+03
6 (2,2) 1.93e+03 1.73e+04 6.58e+03 1.85e+03 3.94e+04 1.20e+04
10 (3,2) 2.18e+03 2.43e+04 1.07e+04 2.10e+03 4.76e+04 1.94e+04

127 15 (4,2) 2.41e+03 3.17e+04 1.58e+04 2.32e+03 5.58e+04 2.75e+04
10 (2,3) 1.93e+03 4.86e+04 1.97e+04 1.85e+03 6.73e+04 2.64e+04
20 (3,3) 2.19e+03 6.96e+04 3.57e+04 2.10e+03 1.47e+05 5.45e+04

19



factor it would be advisable to use ‖r‖2µ(sg)
A as the stopping criterion, rather than just ‖r‖2 6.

We also derived an expression for the condition number of the generalized Sylvester equation
by considering the structure of the equation. Since efficient preconditioners are available for
the stochastic Galerkin method, we argued that using Krylov subspace methods to estimate
the actual condition number can be computationally efficient.

This work highlights the fact that the generalized Sylvester equation should be analysed
in its own right as matrix equation, rather than as a usual linear system. As indicated in
the introduction, only recently the generalized Sylvester equation is being considered by the
numerical linear algebra community, therefore many open problems still remain.

1. Conditions for the existence and uniqueness of the solution of a generalized Sylvester
equation, for a general Ai, Bi, and C.

2. Backward error for the generalized Sylvester equation, by using the definition (3.2).

3. Convergence behaviour of PCG considering the matrix structure of the equation.

We will consider these questions in our future research.
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