
Semidirect Products and Applications to
Geometric Mechanics

Arathoon, Philip

2019

MIMS EPrint: 2020.1

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


SEMIDIRECT PRODUCTS AND

APPLICATIONS TO GEOMETRIC

MECHANICS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2019

Philip Arathoon

School of Natural Sciences

Department of Mathematics



Contents

Abstract 7

Declaration 8

Copyright 9

Acknowledgements 10

Introduction 11

1 Background Material 17

1.1 Adjoint and Coadjoint representations . . . . . . . . . . . . . . . 17

1.1.1 Lie algebras and trivializations . . . . . . . . . . . . . . . . 17

1.1.2 The Adjoint representation . . . . . . . . . . . . . . . . . . 18

1.1.3 The adjoint representation and some Lie theory . . . . . . 21

1.1.4 The Coadjoint and coadjoint representations . . . . . . . . 24

1.2 Symplectic reduction . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.1 The problem setting . . . . . . . . . . . . . . . . . . . . . 26

1.2.2 Poisson reduction . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.3 Cotangent bundle reduction of a Lie group . . . . . . . . . 29

1.2.4 Poisson manifolds and the foliation into symplectic leaves . 31

1.2.5 Hamiltonian actions and momentum maps . . . . . . . . . 33

1.2.6 Ordinary symplectic reduction . . . . . . . . . . . . . . . . 37

1.3 Semidirect products . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3.1 Definitions and split exact sequences . . . . . . . . . . . . 41

1.3.2 The Adjoint representation of a semidirect product . . . . 44

1.3.3 The Coadjoint representation of a semidirect product . . . 46

1.3.4 The Semidirect Product Reduction by Stages theorem . . . 49

2



1.4 Applications to mechanics . . . . . . . . . . . . . . . . . . . . . . 52

1.4.1 The Legendre transform . . . . . . . . . . . . . . . . . . . 52

1.4.2 Left-invariant geodesics on a Lie group . . . . . . . . . . . 55

1.4.3 The rigid body with a fixed point . . . . . . . . . . . . . . 57

1.4.4 The Kirchhoff equations . . . . . . . . . . . . . . . . . . . 60

1.4.5 The heavy top . . . . . . . . . . . . . . . . . . . . . . . . . 68

1.4.6 The Lagrange top . . . . . . . . . . . . . . . . . . . . . . . 70

1.5 The next two chapters . . . . . . . . . . . . . . . . . . . . . . . . 74

2 An Adjoint and Coadjoint Orbit Bijection 75

2.1 Background and outline . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 A bijection between orbits . . . . . . . . . . . . . . . . . . . . . . 77

2.2.1 The coadjoint orbits . . . . . . . . . . . . . . . . . . . . . 77

2.2.2 The adjoint orbits . . . . . . . . . . . . . . . . . . . . . . . 78

2.2.3 Constructing the bijection . . . . . . . . . . . . . . . . . . 79

2.3 The affine group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.3.2 The centralizer group representation . . . . . . . . . . . . 82

2.3.3 Establishing the orbit bijection . . . . . . . . . . . . . . . 84

2.3.4 An iterative method for obtaining orbit types . . . . . . . 85
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2.5.2 The case for the Poincaré group . . . . . . . . . . . . . . . 95

2.5.3 The case for the affine group . . . . . . . . . . . . . . . . . 96

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3 The 2-Body Problem on the 3-Sphere 99

3.1 Background and outline . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2.1 The problem setting . . . . . . . . . . . . . . . . . . . . . 102

3.2.2 Symmetries and one-parameter subgroups . . . . . . . . . 103

3



3.2.3 Reduction and relative equilibria . . . . . . . . . . . . . . 104

3.2.4 The Lagrange top . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.3.1 The left and right reduced spaces . . . . . . . . . . . . . . 108

3.3.2 The full reduced space . . . . . . . . . . . . . . . . . . . . 111

3.3.3 The singular strata . . . . . . . . . . . . . . . . . . . . . . 114

3.3.4 The equations of motion and the Poisson structure . . . . 115

3.3.5 A reprise of the Lagrange top . . . . . . . . . . . . . . . . 118

3.4 Relative equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.1 A classification of the relative equilibria on the left reduced

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.4.2 Reconstruction and the full relative equilibria classification 121

3.4.3 Linearisation and the energy-momentum map . . . . . . . 123

3.4.4 Stability of relative equilibria for the 2-body problem . . . 126

3.4.5 Stability of the relative equilibria for the Lagrange top . . 129

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Bibliography 135

Word Count: 30915

4



List of Tables

2.1 Orbit types for E(1, 3). . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1 Structure constants for the Poisson bracket on s∗−/GR . . . . . . . 117

5



List of Figures

1.1 Adjoint orbits of SO(3) and SL(2;R). . . . . . . . . . . . . . . . 20

1.2 Adjoint and Coadjoint orbits of SE(2) . . . . . . . . . . . . . . . 21

1.3 Schematic diagram for the coadjoint orbits of a semidirect product 50

1.4 The relations between body and spatial velocity vectors . . . . . . 56

1.5 Rigid body solutions in so(3)∗ . . . . . . . . . . . . . . . . . . . . 60

1.6 Kirchhoff solutions in se(2)∗ . . . . . . . . . . . . . . . . . . . . . 67

1.7 Lagrange top reduced spaces . . . . . . . . . . . . . . . . . . . . . 73

2.1 Adjoint and coadjoint orbits of Aff(1). . . . . . . . . . . . . . . . 82

2.2 Hierarchy of orbit types for Aff(n). . . . . . . . . . . . . . . . . . 85

2.3 Hierarchy of orbit types for E(m,n) with m > n. . . . . . . . . . 92

3.1 Commuting reduction . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.2 Reduced spaces (Mλ)ρ for ρ = 0 . . . . . . . . . . . . . . . . . . . 114

3.3 Energy-Casimir bifurcation diagram for bodies of equal mass . . . 126

3.4 Energy-Casimir bifurcation diagram for bodies of non-equal mass 129

3.5 Energy-Casimir bifurcation diagram for the Lagrange top . . . . . 131

6



Abstract

Philip Arathoon

Doctor of Philosophy

Semidirect Products and Applications to Geometric Mechanics

27th of September, 2019

In this thesis we provide an overview of themes in geometric mechanics and

apply them to the study of adjoint and coadjoint orbits of a semidirect product,

and to the two-body problem on a sphere.

Firstly, we show the existence of a geometrically defined bijection between the

sets of adjoint and coadjoint orbits for a particular class of semidirect product.

We demonstrate the bijection for the examples of the affine linear group and the

Poincaré group. Additionally, we prove that any two orbits paired between this

bijection are homotopy equivalent.

Secondly, a correspondence is found between the two-body problem on a three-

dimensional sphere and the four-dimensional Lagrange top. This correspondence

establishes an equivalence between the two problems after reduction, and allows

us to treat both reduced problems simultaneously. We implement a semidirect

product reduction by stages to exhibit the reduced spaces as coadjoint orbits of a

special Euclidean group, and then reduce by a further symmetry to obtain a full

reduced system. This allows us to fully classify the relative equilibria for both

problems and describe their stability.
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Introduction

Geometric mechanics lies within the intersection of geometry and physics. Many

problems in classical dynamics may be formulated as Hamiltonian systems de-

fined on symplectic manifolds. The necessary framework therefore to describe

these classical systems belongs to the arena of symplectic geometry. By combin-

ing these two pillars of mathematics and physics we obtain a rich and broad theory

whose geometric foundations lead to insights in physics, and where the physical

understanding of a problem often advances its mathematical underpinnings. Ow-

ing to the breadth of this intersection of ideas there is no strict definition for

what geometric mechanics actually is. Its study includes the main focus of this

thesis, that of classical dynamics, but its reach also includes quantum mechan-

ics through the theory of geometric quantization, along with infinite dimensional

systems which, for example, include fluid flow equations, various lattice models,

and certain partial differential equations.

It is often the case that some dynamical problem is invariant with respect

to a certain symmetry. Take for example the motion of a planet around a star.

Imagine pausing the motion at an instant and moving both bodies to another

point in space whilst keeping their distance from each other constant. What

we have applied is a so-called rigid motion. If we now resume the dynamics

we will find that the resulting motion of the planet and star is the same as

it was originally, albeit translated by this rigid motion. More technically, this

invariant property is described by a certain action of a group on the phase space.

The necessary language used to describe such actions is that of group theory,

particularly that of Lie groups. Among such groups a fairly general collection is

given by those which are semidirect products between a reductive group with an

abelian group. Indeed, the rigid motions from this example arise from the action

of such a group.

In this thesis we will primarily be interested in applying ideas from the theory

11
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of semidirect products to systems in classical dynamics which are invariant under

an action of a group of this kind. This explains the rationale behind the choice of

title for this thesis. Applications of semidirect products to geometric mechanics is

not however a tightly focused aim to which we will unwaveringly adhere. Instead,

our title is designed to be sufficiently broad to allow for self-contained excursions

into questions which pertain solely to the theory of semidirect products, or to

geometric mechanics.

Central to this thesis is the theory of reduction for Hamiltonian systems.

The concept of reduction, that being the process of removing the redundancy

in a system which arises from a symmetry, has its roots in the works of Euler,

Lagrange, Poisson, Liouville, Hamilton, Routh, Noether, Poincaré, and many

others. The theory in its modern form was initiated by Arnold [Arn66], Smale

[Sma70], Meyer [Mey73], and Marsden and Weinstein [MW74]. The works of

Arnold in particular are especially relevant to the content of this thesis. It was

Arnold who generalised Euler’s equations for the motion of a rigid body and

exhibited them as a simple example of a more general theory concerning geodesics

on a Lie group with an invariant metric. These equations, sometimes referred to as

the Euler-Arnold equations, are defined on the coalgebra of the group. Although

Arnold was the first to notice the connection with geodesics, a general system

of equations defined on a Lie algebra was first introduced by Poincaré, and even

earlier still by Lagrange in a few restricted examples [HMR98]. For this reason, a

more general system of equations on a Lie algebra are referred to as Euler-Poincare

equations. These equations are all obtained from a variational principle using the

Euler-Lagrange equations. By applying the Hamiltonian formulation instead, we

obtain a set of equations on the coalgebra known as Lie-Poisson equations.

A few years after Arnold’s paper in 1966, the modern theory of reduction

would be introduced in [MW74] and would continue to flourish until present day.

By using this theory, specifically that of Poisson reduction developed later, the

Lie-Poisson equations on the dual of a Lie algebra can be seen as the reduced

system obtained from an invariant Hamiltonian system defined on the cotangent

bundle of the group. This idea would prove to be enormously fruitful. Not

only is the motion of a rigid body an example of such a system, but so too is

the infinite dimensional example for the motion of a perfect fluid, geodesics of

invariant metrics, the Kirchhoff equations for a body moving through a fluid, and

the dynamics of a heavy top, to name just a few.
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The Lie-Poisson equations corresponding to the heavy top are especially cu-

rious as they are defined on the coalgebra of the group of rigid motions in space.

This group is a semidirect product as we have already mentioned, but it is strange

that it should apply to the heavy top since such rigid motions seemingly have

no significance; the heavy top is after all constrained to move about a fixed

point. These equations of motion were known to Poincaré, however it took al-

most seventy years for a geometric answer to explain why the coalgebra should

be a semidirect product. This answer came from the works of Guillemin and

Sternberg [GS80], and Marsden, Ratiu and Weinstein [MW74, MRW84c]. They

present a theory of semidirect product reduction by stages which shows that,

under a certain kind of symmetry breaking, a Hamiltonian system defined on a

cotangent bundle of a group reduces to a system on a coalgebra of a semidirect

product of that group. For the example of the heavy top, it is the introduction

of a gravitational field which breaks the symmetry.

In a general sense, the theory of semidirect product reduction by stages and the

corresponding Lie-Poisson systems defined on a coalgebra is the unifying theme

which runs throughout this thesis. As we will now explain, it is this central idea

which motivates us to look more closely at the structure of the coadjoint orbits of

a semidirect product, and to look for new ways to apply the theory to interesting

physical examples.

The structure of this thesis is in three main parts. The first is a large intro-

ductory chapter which establishes all of the necessary background for the next

two chapters. Additionally, this chapter also serves to function as a self-contained

and readable exposition to the ideas from dynamics that we have just mentioned.

The next two chapters are both individual papers written solely by the author

which have been published in peer-reviewed journals [Ara19a, Ara19b]. As such,

this thesis is understood to be submitted in ‘Alternative Format’. The content of

these chapters does not differ from that found in the respective publications, with

the exception of some minor stylistic and formatting changes to better accom-

modate this thesis submission. As these two chapters both represent individual

papers, they are entirely self-contained within the thesis. In particular, there are

no references in and out of these chapters.

The introductory background chapter begins with some Lie theory. The ad-

joint and coadjoint representations for a Lie group are defined and presented

alongside a few guiding examples. The theory of symplectic reduction is given
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next. The presentation is fairly non-standard, and differs from the usual pro-

gram of introducing Hamiltonian actions, then a momentum map, and then the

reduced spaces. Instead we begin in greater generality and present what is essen-

tially Poisson reduction. This has the principal advantage of quickly demonstrat-

ing the significance of the entire coalgebra, not just the coadjoint orbits alone.

Indeed, the first example developed of Poisson reduction is that for the action of

a group on its cotangent bundle. In doing so, the Poisson structure on a coal-

gebra is obtained along with the corresponding Lie-Poisson equations which a

Hamiltonian system defines. The section is concluded with the usual introduc-

tion of momentum maps, Hamiltonian group actions, and orbit-reduced spaces.

The discussion concerning adjoint and coadjoint orbits is then resumed for the

case of semidirect products and culminates in an original proof of the Semidirect

Product Reduction by Stages Theorem. This theorem finds its application both

later in the background chapter, but also crucially in the third chapter where

it is once again presented, except without proof. The chapter ends with a tour

through classical dynamics exhibiting many well-known problems as examples of

the general theory presented earlier. The rigid body is shown to correspond to the

Euler-Arnold equations for the special orthogonal group; the Kirchhoff equations

for the special Euclidean group; and the heavy top is shown to define a system

of Lie-Poisson equations on the coalgebra of the special Euclidean group. After

this chapter the reader is well-equipped for the next two, which are inevitably

less pedestrian in tone.

The second chapter concerns a classification of orbit types for the adjoint and

coadjoint representations of a semidirect product. Cushman and Van Der Kallen

in [CVDK06a] noticed that the orbit types for the Poincaré group exhibit a “cu-

rious bijection”. As the two representations are not isomorphic such a bijection

is, as the authors note, “unusual”. In this chapter we present an explanation for

this bijection for a more general class of semidirect products and demonstrate it

explicitly for the case of the Poincaré group and the group of affine linear transfor-

mations. We make essential use of a classification of coadjoint orbits introduced

by Rawnsley in [Raw75] in terms of bundles of little-group orbits, and generalise

this to the adjoint orbits. Even more unusually, we also show that any two orbits

which are paired in the bijection are homotopy equivalent.

In the third and final chapter we explore the problem of two gravitating bodies

constrained to move on a sphere. It suffices to consider the problem defined on
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the three-dimensional sphere. By taking this sphere to be the set of unit length

quaternions we are able to leverage a great deal of geometry and apply it to

the problem. In particular, owing to this special geometric circumstance we

are able to identify the phase space of the problem with a double cover of the

phase space for the four-dimensional heavy top. For when this heavy top is the

symmetric Lagrange top, the symmetries for both problems coincide and both

descend to give equivalent reduced spaces. Therefore, we are able to treat the

symplectic reduction of the two-body problem and the four-dimensional Lagrange

top simultaneously. The quaternionic formulation of the problem leads to a very

pleasant simplification of much of the algebra involved, and it is without too

much strain that we are able to describe the reduced spaces and provide a full

classification of the relative equilibria.

Conventions and notation

Regrettably, there is a persistent sign-error which plagues Hamiltonian dynamics

owing to a number of alternative conventions different authors choose to take.

Speaking from experience, although seemingly innocuous, this sign-error is often

infuriating, and therefore, we will here set in stone our definitions and notation

which shall be used throughout.

– The pairing between a (real) vector space V and its dual V ∗ will be denoted

by

〈 , 〉 : V ∗ × V −→ R.

– For a diffeomorphism φ : M → N , the pullback φ∗ of a one-form η on N is

the one-form φ∗η on M which satisfies

〈φ∗η,X〉 = 〈η, φ∗X〉

for all tangent vectors X and where φ∗ denotes the pushforward. If M and

N are vector spaces and φ a linear map, then φ∗ is elsewhere referred to in

the literature as the ‘adjoint’ to φ. For reasons which will be clearer later,

we actively avoid this terminology to avoid a sign confusion.

– If π is a representation of G on V then the contragredient representation

π∗ is defined by

〈π∗gη,X〉 = 〈η, π−1
g X〉
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for all X ∈ V . Correspondingly, if Π is a representation of the Lie algebra

g on V then the contragredient representation Π∗ is defined by

〈Π∗ωη,X〉 = −〈η,ΠωX〉

for all X ∈ V .

– The standard Euclidean inner product between vectors in Rn will be written

as

x · y = xTy.

– The Lie algebra g of a group G has a Lie-bracket defined by either taking

the algebra of left- or right-invariant vector fields. For when we write g

it assumed that we are using the algebra of left-invariant vector fields. In

situations for when it is not clear, we write g∓ where the minus sign indicates

left- and the plus sign indicates right-invariant vector fields.

– If λ is the canonical one-form on a cotangent bundle, the canonical sym-

plectic form is taken to be ω = −dλ. The Hamiltonian vector field Vf of a

function f is defined to satisfy

ω(Vf , ·) = df.

The Poisson bracket between two functions is defined as

{f, g} = ω(Vf , Vg).

Be advised that the change in a function g along the flow of a Hamiltonian

vector field Vf is then given by

ġ = Vf (g) = {g, f}.



Chapter 1

Background Material

1.1 Adjoint and Coadjoint representations

1.1.1 Lie algebras and trivializations

Let G be a Lie group and denote by L and R the left and right group multipli-

cations

Lag = ag, and Rag = ga

for a and g in G. A property enjoyed by a Lie group is that the left and right

multiplications each provide a free and transitive group action of G on itself.

As these actions are free and transitive they allow us to unambiguously push

forward any tangent vector defined at any point of the group, and push it around

to globally define a left- or right-invariant vector field.

To demonstrate this more precisely, let X be an element of the tangent space

of G at the identity e. In the case of left translation we may define a global vector

field on G by setting

X(g) = (Lg)∗X

where (Lg)∗ denotes the push-forward. This vector field is left-invariant by con-

struction, and it is clear that every left-invariant vector field arises in this way.

Therefore, we may identify the tangent space TeG with the space of left-invariant

vector fields on G. As the space of left-invariant vector fields is closed under the

Lie bracket of vector fields, we obtain by restriction to the identity a Lie bracket

defined on TeG. This bracket equips TeG with the structure of a Lie algebra

which we will from now on denote by g.

17



18 CHAPTER 1. BACKGROUND MATERIAL

Remark 1.1.1. We can instead use right-invariant vector fields to define a dif-

ferent Lie algebra on TeG. As we will see later in Proposition 1.1.1, these two

structures only differ by sign. Therefore, in situations where we need to distin-

guish between the two algebras we will write g∓ where the minus sign indicates

left-invariant, and the plus sign indicates right-invariant vector fields.

Apart from endowing the tangent space to the identity with a Lie algebra

structure, an additional use of the left and right translations is in showing that

the tangent bundle TG is trivial. The trivializations are given explicitly by the

left and right multiplications below

L : TG −→ G× g; Xg 7−→ (g, (Lg−1)∗Xg)

R : TG −→ G× g; Xg 7−→ (g, (Rg−1)∗Xg)

where Xg ∈ TgG. Moreover, by taking the pullback instead of the pushforward

we can also construct trivializations for the cotangent bundle too

L∗ : T ∗G −→ G× g∗; ηg 7−→ (g, (Lg)∗ηg)
R∗ : T ∗G −→ G× g∗; ηg 7−→ (g, (Rg)

∗ηg)

for ηg ∈ T ∗gG.

1.1.2 The Adjoint representation

What is the difference between the two choices of trivialization, either by the

left or right? The answer to this question is given by the Adjoint and Coadjoint

representations. The left and right trivializations are both vector bundle isomor-

phisms over G and the composition R◦L−1 = L−1 ◦R, which may be thought of

as measuring the difference between the two, is a bundle endomorphism of G× g

given by

(g,X) 7−→ (g, (Lg ◦ Rg−1)∗X) .

We denote the fibrewise isomorphisms (Lg ◦ Rg−1)∗ on g by Adg. Observe that

Adgh = Adg ◦Adh and that Ade is the identity. It follows that Ad: G → GL(g)

is a group homomorphism, and thus, Ad defines a representation of G on g;

the Adjoint representation. In a vague sense, this is a measure of how non-

commutative the group is. If G is commutative then Lg ◦ Rg−1 is always trivial
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for all g and hence the Adjoint representation is trivial.

Example 1.1.1 (Adjoint orbits of SO(3)). Many, but not all, Lie groups G may

be realised as (closed) subgroups of some GL(n); a so-called matrix group. For

these groups the group product is given by matrix multiplication which, as this

is linear, imply that the Adjoint representation is given by conjugation. As an

explicit example we will present the case of SO(3) whose Lie algebra is

so(3) =


 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω1, ω2, ω3 ∈ R

 .

We may identify such elements with vectors (ω1, ω2, ω3) and in doing so identify

so(3) with R3. Note that the squared norm of this vector is equal to

1

2
Trace(ωTω), (1.1)

and that the Adjoint action Adg ω = gωg−1 preserves this norm since ggT = I

for g ∈ SO(3). It follows that the Adjoint orbits must be contained to spheres

of constant radius centred at the origin in R3 ∼= so(3). In fact, it can be shown

that the identification so(3) ∼= R3 is an interwining map between the Adjoint

representation of SO(3) and the standard representation on R3. The orbits of

the Adjoint action therefore coincide with those of SO(3) on R3 which we have

included in Figure 1.1(a).

Example 1.1.2 (Adjoint orbits of SL(2;R)). Another example is given by the

group SL(2;R) with Lie algebra

sl(2;R) =

{(
ξ2 ξ1 + ξ3

ξ1 − ξ3 −ξ2

)
, ξ1, ξ2, ξ3 ∈ R

}
.

Such elements ξ may be identified with vectors (ξ1, ξ2, ξ3) ∈ R3 which again

identifies sl(2;R) with R3. Observe that

det ξ = −ξ2
1 − ξ2

2 + ξ2
3 . (1.2)

is an invariant of the Adjoint action since conjugation preserves the determinant.

The orbits are therefore contained to the surfaces of constant −ξ2
1 − ξ2

2 + ξ2
3 . For
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ω2 ω1

ω3

(a)

ξ2 ξ1

ξ3

(b)

Figure 1.1: Adjoint orbits of SO(3) and SL(2;R).

det ξ 6= 0 the orbits are the connected components of these hyperboloids in R3.

For when det ξ = 0 there are three orbits: the origin ξ = 0, and the two conical

surfaces minus the vertex. These orbits are illustrated in Figure 1.1(b).

Example 1.1.3 (Adjoint orbits of SE(2)). Unlike the last two examples the

example we now consider is not immediately given to us as a matrix group.

We consider the group SE(2) of rigid motions of the plane. Such a motion is

determined by a pair (r, d) where r ∈ SO(2) represents a rotation and d ∈ R2 a

translation. The composition of two such motions defines the group multiplication

(r1, d1) · (r2, d2) = (r1r2, r1d2 + d1).

The following map defines a faithful representation of SE(3) on R3, and thus, we

may proceed to consider SE(2) as a matrix group

(r, d) 7−→
(
r d

0 1

)
.

By differentiating a curve in SE(2) through the identity we may identify the Lie

algebra of SE(2) with

se(2) =

{(
ωJ v

0 0

)
, ω ∈ R, v ∈ R2

}
where J =

(
0 −1

1 0

)
.
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v1

v2

ω

(a)

p1

p2

L

(b)

Figure 1.2: Adjoint and Coadjoint orbits of SE(2)

As everything is now written in terms of matrices the Adjoint action is simply

given by conjugation. It is then only a matter of calculation to show that

Ad(r,d)(ω, v) = (ω, rv − ωJd) =

(
1 0

−Jd r

)(
ω

v

)
. (1.3)

The orbits are illustrated in Figure 1.2(a).

1.1.3 The adjoint representation and some Lie theory

Consider the Adjoint representation Ad: G → GL(g). If we differentiate this

map at the identity we obtain

ad: g→ gl(g)

which is also, confusingly, called the adjoint representation. In this chapter we

will distinguish between the two representations with the use of an upper and

lowercase letter ‘a’. The linear map ad(X) will be denoted by adX .

Proposition 1.1.1. The adjoint representation on g∓ satisfies adX Y = ±[X, Y ]

where [X, Y ] denotes the Lie bracket on the algebra of left- and right-invariant
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vector fields, g− and g+, respectively. Incidentally, this shows that the Lie bracket

on g∓ differs only in sign.

Proof. For elements X and Y in g let X and Y also denote the corresponding

left-invariant vector fields on G. These vector fields generate locally defined flows

x(t) and y(t) through the origin at t = 0. For any g ∈ G consider the flow

through this point generated by X. As X(g) = (Lg)∗X the vector X(g) is the

tangent vector to the curve Lgx(t) at t = 0. The flow through g generated by

X is therefore right-translation by x(t). The same argument applies for Y . We

can then use this to find the Lie bracket of vector fields [X, Y ] at the identity by

using the Lie derivative formula

(LXY )e = lim
t→0

{
(Rx(t)−1)∗Y (x(t))− Y

t

}
.

As Y (x(t)) = (Lx(t))∗Y we may rewrite the above as

lim
t→0

{
(Lx(t) ◦ Rx(t)−1)∗Y − Y

t

}
.

By definition (Lx(t) ◦ Rx(t)−1)∗ is equal to Adx(t) and so

(LXY )e = lim
t→0

{
Adx(t) Y − Y

t

}
= adX Y.

If we were using right-invariant vector fields the flow would be generated by left

translation of x(t) instead of right, and we would have Adx(t)−1 in the last line

above. Upon differentiation this yields − adX Y .

Example 1.1.4 (The adjoint representation of so(3)). As the Adjoint action for

matrix groups is given by conjugation, the Lie bracket is simply the commutator

of matrices [ω, ξ] = ωξ − ξω. With respect to the identification so(3) ∼= R3

established in Example 1.1.1, one may verify with a calculation that the Lie

bracket [ω, ξ] between elements in so(3) corresponds to the vector cross-product

ω × ξ.

We mentioned earlier that the Adjoint representation may be thought of as

a measure of how non-commutative the group G is. In fact, the entire structure

of the group is, in a sense, encoded by the Lie-bracket on g and thus by the

adjoint representation. The necessary disclaimer here is that the claim applies to
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a group up to covering, and for more detail we refer the reader to the Campbell-

Hausdorff formula which expresses the product on the group purely in terms of

the Lie bracket [FH13][8.3]. We will now outline some of the ways that the adjoint

representation plays a key role in determining structural aspects of the group G

and its Lie algebra.

A normal subgroup N of G has the defining property that gNg−1 = N for

any g. From this it follows that the Adjoint representation leaves the subalgebra

n in g invariant. Consequently, by differentiating AdG n = n we obtain [g, n] ⊂ n,

and thus n is an ideal in g. Conversely, by exponentiating any ideal in g we

find that any normal subgroup (up to covering) arises in this way. In summary,

invariant subspaces of the adjoint representation are by definition ideals of g and

correspond to normal subgroups of G.

A non-abelian Lie algebra which possesses no proper ideals is called a simple

Lie algebra. Equivalently, a simple algebra is one whose adjoint representation

is irreducible. The simple Lie algebras over C were first classified by Killing

[Kil88] and then refined a few years later by Cartan in his PhD thesis [Car94].

Cartan would later go on to classify all of the simple algebras over R. As one

can see from Figure 1.1, the Adjoint representations for so(3) and sl(2;R) have

no invariant proper subspaces and are therefore simple, unlike the case for se(2)

where the ω = 0 subspace is invariant; this corresponds to the normal subgroup

of translations R2 ⊂ SE(2).

Suppose h is an invariant subspace in g with respect to the adjoint represen-

tation. A nice scenario is when h admits an invariant complement k. We then

have two subalgebras h and k with g = h⊕ k, [h, g] ⊂ h, and [k, g] ⊂ k. It follows

that [h, k] = {0} and consequently the two algebras commute. Therefore, as Lie

algebras, g is the direct product of h and k, and hence, the same is true of G, at

least up to covering.

Concerning the structure of a Lie algebra, one first checks if g is abelian

or simple, and if not, looks for the irreducible invariant subspaces. In the nicest

possible scenario these subspaces all admit invariant complements. An equivalent

way of saying this is to say that the adjoint representation is completely reducible,

and in which case, the algebra is called reductive. In this case one can decompose

the Lie algebra into the direct sum of simple and abelian algebras. If all of these

algebras are simple then the Lie algebra is called semisimple. Sadly, there exist

many Lie algebras with invariant subspaces which do not possess an invariant
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complement, see for example se(2) in Figure 1.2(a). A classification of all Lie

algebras is a very distant hope, and as such, these Lie algebras are generally less

well understood; they include the solvable and nilpotent algebras.

1.1.4 The Coadjoint and coadjoint representations

The Coadjoint representation Ad∗ : G → GL(g∗) is the contragredient of the

Adjoint representation. It is defined by satisfying

〈Ad∗g η,X〉 = 〈η,Adg−1 X〉 (1.4)

for all X ∈ g where 〈 , 〉 denotes the pairing between g and its dual. One

may verify that Ad∗g is the fibrewise isomorphism in the bundle endomorphism

R∗ ◦ L∗−1 of G× g∗. The coadjoint representation is the infinitesimal Coadjoint

representation ad∗ : g→ gl(g∗). This representation may equivalently be defined

as the contragredient to the adjoint representation as it satisfies

〈ad∗X η, Y 〉 = −〈η, adX Y 〉 (1.5)

for all Y ∈ g. As with the Adjoint and adjoint representations we will in this

chapter distinguish between the Coadjoint and coadjoint representations with an

upper and lowercase ‘c’.

Proposition 1.1.2. Let V be a representation of G and V ∗ the contragredi-

ent. The two representations are isomorphic if and only if there exists a non-

degenerate, G-invariant bilinear form on V .

Proof. If φ : V → V ∗ is a G-equivariant isomorphism the form K(x, y) = 〈φ(x), y〉
is non-degenerate and invariant. Conversely suppose K is non-degenerate and

invariant. The map φ : V → V ∗ given by defining K(x, y) = 〈φ(x), y〉 for all

y ∈ V is a G-equivariant isomorphism as desired.

The examples given earlier for the Adjoint representations of so(3) and sl(2;R)

both possess invariant, non-degenerate bilinear forms: for so(3) it is the trace

form in (1.1), and for sl(2;R) it is the determinant given in (1.2). According to

the proposition we can therefore conclude that the Adjoint and Coadjoint repre-

sentations are identical. This is part of a more general consequence concerning

semisimple Lie algebras, as we now explain.
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To every Lie algebra there is a canonically defined symmetric form called the

Killing form

K(X, Y ) = Trace(adX ◦ adY ).

Cartan’s criterion states that this form is non-degenerate if and only if the Lie

algebra g is semisimple [FH13][C.10]. It follows from the proposition above that

the Adjoint and Coadjoint representations of semisimple algebras are isomorphic.

In fact, more can be said. If the algebra is reductive then g is a direct product

of a semisimple Lie algebra with an abelian algebra. As the Adjoint action fixes

the abelian part, we may extend the invariant form on the semisimple part to the

abelian component arbitrarily. The two representations are therefore isomorphic

for all reductive Lie algebras. We note that this condition is not necessary, and

that there exist Lie algebras which are not reductive but still have isomorphic

Adjoint and Coadjoint representations as we will see later in the example of

SE(3).

Example 1.1.5 (Coadjoint orbits of SE(2)). Here we present our first example of

a Coadjoint representation which is not isomorphic to the Adjoint representation.

As we have already remarked, the algebra se(2) is not semisimple, and we shall

now describe the Coadjoint action explicitly and show that it differs to the Adjoint

action. As in Example 1.1.3 we will identify elements of the Lie algebra se(2) with

those (ω, v) ∈ R× R2. We shall also identify the algebra with its dual using the

pairing

〈(L, p), (ω, v)〉 = Lω + p · v (1.6)

between elements in se(2). By definition

〈Ad∗(r,d)(L, p), (ω, v)〉 = 〈(L, p),Ad(r,d)−1(ω, v)〉

Using the expression for the Adjoint action in (1.3) and the fact that (r, d)−1 =

(rT ,−rTd) we can write the right-hand side above as

〈(L, p), (ω, rTv + ωJrTd)〉

from which it follows that

Ad∗(r,d)(L, p) = (L+ (rp)TJd, rp) =

(
1 −dTJr
0 r

)(
L

p

)
. (1.7)
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The orbits for this action are illustrated in Figure 1.2(b), from which it is clear

that it is not isomorphic to the Adjoint representation.

1.2 Symplectic reduction

1.2.1 The problem setting

The motivation for symplectic reduction comes from a scenario where we have a

Hamiltonian system on M whose Hamiltonian H is invariant with respect to a

group of symmetries G acting on M . The desire is to remove the redundancy in

the dynamical system which arises from the G-symmetry and obtain a ‘smaller’

Hamiltonian system instead.

An obvious way of removing this redundancy is to pass to the orbit quotient

π : M −→M/G

and ask whether the dynamics project to a dynamical system on M/G. This idea

faces a few immediate challenges.

1. The projection π may not give a well-defined map from trajectories in M

to those in M/G. That is, suppose x(t) and y(t) are two solutions in M .

Then if π(x(t)) = π(y(t)) for t = 0, there is no immediate reason why this

should hold for all t.

2. The topology on M/G could be disastrously unhelpful. It is quite common

for the quotient topology to not even be Hausdorff, as it is for example in

Figure 1.1(b): the origin orbit cannot be separated from the conical orbits

by open sets.

3. Even if M/G is topologically ‘nice’ and there is a well-defined projection of

dynamics, the symplectic geometry and Hamiltonian dynamics is seemingly

abandoned.

By decreasing the generality of the original scenario and imposing sufficiently

many hypotheses we may remedy all of these concerns, to varying degrees.
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1.2.2 Poisson reduction

We begin by addressing the first concern in the list above. To resolve this we

must necessarily suppose that the G-action on M is by symplectomorphisms. We

now claim that if x(t) is a solution in M then so is gx(t). It suffices to show

that the Hamiltonian vector field at gx is given by the pushforward by g of the

Hamiltonian vector field VH at x. Let Y ∈ TgxM be arbitrary and consider the

following chain of equalities

ω(g∗VH , Y ) = ω(VH , g
−1
∗ Y ) = 〈dH, g−1

∗ Y 〉 = 〈dH, Y 〉 = ω(VH , Y ). (1.8)

In the first step we have used the invariance of the symplectic form by G, then

the definition of a Hamiltonian vector field in the next equality, and finally the

G-invariance of H along with the property that pullbacks commute with the

exterior derivative. As Y was arbitrary we conclude that g∗VH(x) = VH(gx) as

desired. We therefore have a well-defined dynamical system on M/G. In fact we

have shown even more: the argument applies to any G-invariant function on M ,

and therefore we see that any such function on M generates a flow on M/G.

The second concern involving the topology of M/G is resolved by asking for

the action of G on M to be sufficiently nice. For instance, if the action is free

and proper the quotient has the structure of a smooth manifold [DK12]. This is

the best we could hope for, but often this restriction is too severe as we will be

interested in actions which are not free and where the quotient is not always a

smooth manifold. A standard, although rather subversive, way around this is to

simply restrict attention to the subset of M at which the action is free. However,

it is sometimes the case that although the quotient is not a smooth manifold,

it is still a reasonable topological space, albeit with a few defects. Instead of

being smooth it might be smooth in a large set and possess singular regions.

Although it is beyond my intention to discuss these ideas in detail, the resulting

spaces might be described as orbifolds, manifolds with corners, stratified spaces,

differential spaces, etc. [Pfl01a, Pfl01b, Ś13, SL91]. We will briefly discuss some

aspects of this later.

Finally we turn to the third issue which is that the resulting dynamical system

on M/G seems to have nothing to do with Hamiltonian dynamics. Indeed, even

if M/G is smooth, it is rarely a symplectic manifold. However, what we will now

show is that it is a Poisson space. That is to say, the ring of smooth functions
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C∞(M/G) ≡ C∞(M)G is equipped with a Poisson bracket { , }M/G. This bracket

is determined by

{f, g}M/G ◦ π = {f ◦ π, g ◦ π}M (1.9)

for all f, g ∈ C∞(M/G). Here it should be highlighted that we have made

essential use of the fact that G preserves the symplectic form on M . It is a

consequence of this that the Poisson bracket between two G-invariant functions

is again G-invariant, and that the expression above is well defined. Equivalently,

Equation (1.9) is the condition for π to be Poisson.

As M/G possesses a Poisson bracket, if we additionally suppose M/G is

smooth (or at least restrict attention to those points which are) then to every

function g on M/G we can define the associated Hamiltonian vector field Vg by

Vg(f)p = {f, g}M/G(p) (1.10)

for all functions f defined in a neighbourhood of p ∈ M/G. Consider the push-

forward π∗Vg◦π of the Hamiltonian vector field Vg◦π on M and observe that

π∗Vg◦π(f)π(x) = 〈dfπ(x), π∗Vg◦π〉 = 〈d(f ◦ π)x, Vg◦π〉 = {f ◦ π, g ◦ π}M(x).

From (1.10) and (1.9) we therefore conclude that π∗Vg◦π coincides with Vg. As

we have already seen, the Hamiltonian flow of a G-invariant function g ◦ π on M

may be projected to give a flow on M/G. The calculation above tells us that this

projected flow is equivalently the Hamiltonian flow of g. This result is actually a

direct consequence of π being a Poisson map.

To summarise this section, we have shown how a symplectic G-action on M

can be used to define a Poisson structure on the algebra C∞(M)G and that, if

M/G is sufficiently nice topologically (which may be imposed by insisting that

G acts properly and freely) this turns M/G into a Poisson manifold where the

projection π is a Poisson map. Consequently, Hamiltonian flows in M of G-

invariant functions project to Hamiltonian flows in M/G. The original motivation

concerned a Hamiltonian system on M with a G-invariant Hamiltonian. We now

obtain a ‘smaller’ Hamiltonian system on the Poisson space M/G.

Remark 1.2.1. With some slight adjustments everything in this subsection ap-

plies equally well when we replace the symplectic manifold M with a Poisson

manifold, and the symplectomorphic G-action with a Poisson action. Insisting
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that the orbit map π is Poisson defines a unique Poisson structure on the algebra

of invariant functions as before. This more general construction belongs to the

theory of Poisson reduction, see [MR86, Vai96, OR98]

1.2.3 Cotangent bundle reduction of a Lie group

Consider the action of left-multiplication by a Lie group G on itself, lifted to its

cotangent bundle. For ηg ∈ T ∗gG the action by a ∈ G sends this form to (La−1)∗ηg

in T ∗agG. If we use the left-trivialization L∗ : T ∗G→ G× g∗ then this left-action

by G is pushed forward to a rather simple action on G× g∗ merely given by

a · (g,Ω) = (ag,Ω). (1.11)

The group quotient T ∗G/G may therefore be identified with g∗ and can be realised

by sending the orbit through ηg to (La−1)∗ηg. We now have a smooth manifold

as the group quotient, which is unsurprising given that the group action is free

and proper. After having described the reduced space we now turn to describing

its Poisson structure defined by (1.9). In order to do this we must first describe

the Poisson structure on T ∗G.

Proposition 1.2.1. The left-trivialization L∗ : T ∗G→ G×g∗ pushes forward the

canonical symplectic form on T ∗G to the form ω on G× g∗ which satisfies

ω(g,η) ((Xg,Ω1), (Yg,Ω2)) = 〈Ω2, (Lg−1)∗Xg〉 − 〈Ω1, (Lg−1)∗Yg〉+
〈η, [(Lg−1)∗Xg, (Lg−1)∗Yg]〉. (1.12)

Proof. The canonical one-form λ on T ∗G is given by

λη(X) = 〈η, π∗X〉

where π : T ∗G→ G is the bundle projection and X a tangent vector to η ∈ T ∗G.

We will proceed to use the left-trivialization and work with G × g∗ instead of

T ∗G. In this case, it is fairly straightforward to show that the canonical one-form

pushes forward to the form θ where

θ(g,η)(Xg, L) = 〈η, (Lg−1)∗Xg〉

The canonical symplectic form is then pushed forward to −dθ. We will be able to
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calculate this form using the coordinate-invariant formula for the exterior deriva-

tive

−dθ(V,W ) = −V (〈θ,W 〉) +W (〈θ, V 〉) + 〈θ, [V,W ]〉 (1.13)

for vector fields V and W on G × g∗. Let’s evaluate this expression at (g, η) in

G × g∗ and write V = (Xg,Ω1) and W = (Yg,Ω2) where Xg and Yg are tangent

vectors to G at g and Ω1,Ω2 ∈ g∗. Furthermore, we shall suppose that X and Y

are left-invariant vector fields on G with X(g) = Xg and Y (g) = Yg. We begin

by noting that the function 〈θ,W 〉 is that which assigns to (g, η) the value

〈η, (Lg−1)∗Yg〉 = 〈η, Ye〉

where we have used the left-invariance of Y . The function 〈θ,W 〉 therefore only

depends on η, and hence, the expression V (〈θ,W 〉) is given by 〈Ω1, (Lg−1)∗Yg〉.
Similarly, one finds that W (〈θ, V 〉) is equal to 〈Ω2, (Lg−1)∗Xg〉. Substituting all of

this into (1.13) and using the definition of the Lie bracket on g gives the equation

for the symplectic form in (1.12).

Now that we have an expression for the symplectic form we can use it to write

the Poisson bracket between two left-invariant functions on T ∗G.

Theorem 1.2.2. Left-invariant functions on T ∗G are sent via the left-trivialization

L∗ : T ∗G → G × g∗ to functions which are constant in G. Given two such func-

tions let f and g denote their restriction to the g∗ component. The Poisson

bracket between these two functions on T ∗G gives another G-invariant function

whose restriction to the g∗ component gives the reduced Poisson bracket

{f, g}(η) = −〈η, [δf, δg]〉 (1.14)

on g∗. Here we have introduced the directional derivative δf of a function f .

This is the unique element δf ∈ g which satisfies

〈df,Ω〉 = 〈Ω, δf〉 (1.15)

for all Ω ∈ g∗.

Proof. From the group action in (1.11) on the left-trivialization we see that G-

invariant functions f and g may be considered as functions on G× g∗ which are

constant in G. We will abuse notation and write f and g to mean both the
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functions on G×g∗ and their restrictions to g∗. Using the left-invariance we may

without any loss of generality consider the Hamiltonian vector field Vf evaluated

at the fibre over the identity e ∈ G. This vector field is defined by

−dθ(e,η)(Vf ,W ) = 〈df,W 〉

for all tangent vectors W . Write Vf as (X,Ω1) and W as (Y,Ω2) for X, Y ∈ g and

Ω1,Ω2 ∈ g∗. The right hand side in the equation above may be written as 〈df,Ω2〉
since f is constant in G. By using the expression in (1.12) for the symplectic form

we must therefore have

〈Ω2, X〉 − 〈Ω1, Y 〉+ 〈η, [X, Y ]〉 = 〈df,Ω2〉

for all (Y,Ω2) ∈ g×g∗. From this we deduce that X must be equal to δf and Ω1 =

− ad∗δf η. We have now shown that Vf = (δf,− ad∗δf η) and Vg = (δg,− ad∗δg η)

are the Hamiltonian vector fields of f and g at (e, η) ∈ G×g∗. Upon substituting

these into the symplectic form in (1.12) we obtain (1.14).

Remark 1.2.2. Were we instead to reduce T ∗G by the cotangent lift of right

multiplication of G on itself, the arguments above would proceed almost exactly

the same with every instance of left replaced with right. The one exception

would be in (1.13) where the final term involves the Lie-bracket of two right-

invariant vector fields. From Proposition 1.1.1 we know that this corresponds to

the negative Lie-bracket of the corresponding left-invariant vector fields. If we

identify g∗+ with g∗ = g∗− as sets, not Lie algebras, the overall effect will be a

change of sign in (1.14).

1.2.4 Poisson manifolds and the foliation into symplectic

leaves

For a Poisson manifold P there is a natural subspace defined on the tangent space

at every point p given by the span of all locally defined Hamiltonian vector fields

D(p) = Span {Vf (p) | f ∈ C∞(U), p ∈ U open}⊂ TpP . (1.16)

This defines the characteristic distribution on P . This is a generalised distribution

in the sense that the dimension is allowed to vary from point to point. We will not



32 CHAPTER 1. BACKGROUND MATERIAL

trouble ourselves with the technicalities of such distributions, instead referring the

reader to [Ste74a, Ste74b, Sus73]. An integral leaf of D is an immersed, connected

submanifold of P whose tangent space at every point is given by the distribution.

We say that D is integrable if there is such a leaf through every point of P .

The resulting partition of P into leaves defines a generalised foliation. We will

simply claim the Symplectic Foliation Theorem [OR13][4.1.27] which states that

the characteristic distribution is integrable, and that the integral leaves L are

all immersed symplectic submanifolds equipped with the unique symplectic form

which makes the inclusion L ↪→ P a Poisson map.

The integral leaves of the characteristic distribution may equivalently be de-

fined as the accessible sets of D. One defines an equivalence relation on P by

saying that two points are related if their exists a finite composition of flows gen-

erated by locally defined Hamiltonian vector fields which sends one point to the

other. The resulting equivalence classes are the accessible sets and these coincide

with the integral leaves. Clearly then, any Hamiltonian flow on P must preserve

these leaves. Therefore, if we return to our earlier motivation concerning a Hamil-

tonian system on M and the resulting reduced dynamics on M/G, we can obtain

a Hamiltonian system on an even smaller space by considering the dynamics on

these symplectic leaves of M/G. To demonstrate this we will find the symplectic

leaves on the Poisson space g∗ introduced earlier.

Theorem 1.2.3. The connected integral leaves of the characteristic distribution

defined on g∗ are equal to the connected components of the Coadjoint orbits. For

the Coadjoint orbit O through η ∈ g∗ the symplectic form at TηO is

ωη(ad∗X η, ad∗Y η) = −〈η, [X, Y ]〉 (1.17)

for all X, Y ∈ g. This form is often referred to as the Kostant-Kirillov-Souriau

(KKS) symplectic form.

Proof. Let f and g be functions on g∗ perhaps only locally defined in a neigh-

bourhood of η ∈ g∗ and consider the Hamiltonian vector field Vf . By (1.14) we

have

〈dg, Vf〉(η) = {g, f}(η) = 〈η, [δf, δg]〉 = −〈ad∗δf η, δg〉.

By the definition of δg the expression on the far right is equal to −〈dg, ad∗δf η〉
from which it follows that Vf (η) = − ad∗δf η. The characteristic distribution is
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therefore given by

D(η) = {ad∗X η | ∀X ∈ g}

which is clearly equal to the tangent space of the Coadjoint orbit through η.

Remark 1.2.3. As left and right multiplications by a group on itself commute,

it follows that the right cotangent-lifted action of G on T ∗G descends to give a

well-defined action on the quotient of T ∗G by left multiplication. By realising this

quotient as g∗ using the left-trivialization we see that this action descends to give

the Coadjoint actionR∗g◦L∗g−1 = Ad∗g. Since right multiplication lifted to T ∗G is a

symplectomorphism the Coadjoint action on g∗ is Poisson, and therefore restricts

to a transitive symplectic group action on each Coadjoint orbit. Moreover, from

the proof above we see that this group action is generated by Hamiltonian vector

fields: the infinitesimal vector field VX generated by X ∈ g is the Hamiltonian

vector field Vf generated by the linear function f(η) = −〈η,X〉.

Remark 1.2.4. It is a rather special result that all Coadjoint orbits are symplec-

tic manifolds. It provides a helpful method for providing examples of symplectic

manifolds, particularly symplectic manifolds which possess transitive Hamiltonian

group actions, such as complex flag manifolds in the case for Coadjoint orbits of

U(n). In fact, all symplectic manifolds which admit transitive symplectic ac-

tions by some group are, up to coverings, Coadjoint orbits [Kir74, Kos70, Sou70].

As the group of symplectomorphisms acts transitively on a connected symplec-

tic manifold, an interesting generalisation of this result is the claim that every

symplectic manifold is, in a sense, a Coadjoint orbit of its own group of symplec-

tomorphisms [IZ16].

1.2.5 Hamiltonian actions and momentum maps

There appears to be no immediate way to describe the symplectic leaves of M/G

given an arbitrary symplectic group action ofG onM . The purpose of this and the

next subsection is to show that these leaves can be described when the symplectic

group action is a Hamiltonian group action, which we shall now describe.

For the group action of G on M there is also the infinitesimal action which

assigns to everyX in g a vector field VX onM . We will denote this correspondence

X 7→ VX by κ and note that κ : g → Vect(M) is a Lie algebra homomorphism.

The correspondence f 7→ Vf sending functions to Hamiltonian vector fields also
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defines a Lie algebra homomorphism which we shall denote by ρ : C∞(M) →
Vect(M). The group action will be called Hamiltonian if there exists a map

λ : g → C∞(M) for which κ = ρ ◦ λ. In other words, so that the triangle below

commutes.

C∞(M) Vect(M)

g

ρ

λ
κ

If such a λ exists we emphasize that it is not unique since Hamiltonian functions

which differ by locally constant functions give rise to identical Hamiltonian vector

fields. The aim now is to find whether, for a given Hamiltonian action, there exists

a λ which is also a Lie algebra homomorphism.

We may suppose λ is always linear: choose a basis of g and extend the defi-

nition of λ on this basis by linearity. For λ to be a Lie algebra homomorphism

we would like the following function on M to be zero

Σ(X, Y ) = λ([X, Y ])− {λ(X), λ(Y )}.

The vector field

ρ(Σ(X, Y )) = ρ ◦ λ([X, Y ])− ρ ({λ(X), λ(Y )})

generated by this function equals κ([X, Y ]) − [κ(X), κ(Y )] = 0 as κ and ρ are

both Lie algebra homomorphisms and ρ ◦λ = κ. If we suppose that the manifold

M is connected, then ρ(Σ(X, Y )) = 0 shows that the Hamiltonian vector field

generated by the function Σ(X, Y ) for any given X and Y is zero, and hence,

the function is constant on M . The function Σ therefore defines a two-form on

g. Although we won’t perform the calculation here, one can show that this form

is closed as a 2-form in the chain complex of forms on g, and consequently, it

defines a cohomology class [Σ] in H2(g).

Suppose that λ′ is an alternative choice for λ. As ρ ◦ (λ − λ′) = 0 the two

maps must differ by a constant function on M which by linearity must be a linear

functional β on g. For λ′ = λ+β one can show that the corresponding 2-form Σ′
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is

Σ′(X, Y ) = λ([X, Y ]) + β([X, Y ])− {λ(X) + β(X), λ(Y ) + β(Y )}
= Σ(X, Y ) + β([X, Y ]).

In the language of Lie algebra cohomology β([X, Y ]) is the closed 2-form−dβ, and

hence, Σ′ and Σ both define the same cohomology class. This class is therefore

an obstruction to finding such a homomorphism λ. Moreover, if the one-form β

is closed, then Σ = Σ′, and thus, if such a λ exists as desired, it is unique up to

additions of closed one-forms; or in other words, objects in H1(g) [GS90][24.1].

Proposition 1.2.4. If a group action of G on a connected symplectic manifold

M is Hamiltonian, then there exists a well-defined cohomology class [Σ] ∈ H2(g)

which measures the obstruction to finding a Lie algebra homomorphism λ : g →
C∞(M) for which ρ ◦ λ = κ. Such a λ only exists if [Σ] = 0, and if so is

parametrised by H1(g).

Remark 1.2.5. The first cohomology group H1(g) is the space of all forms β ∈ g∗

with dβ(X, Y ) = −β([X, Y ]) = 0 for all X, Y ∈ g. If this group is trivial then

it implies that g = [g, g] which is itself the definition for a Lie algebra to be

perfect. All semisimple Lie algebras are perfect. Moreover, from the Whitehead

Lemmas we have H1(g) = H2(g) = 0 for g semisimple [Jac79]. Consequently,

any Hamiltonian action of a semisimple group admits a unique lift λ with Σ = 0.

Let’s proceed to consider the case for when M is connected and G is a Hamil-

tonian group action with cocyle Σ. As λ is linear, for every p ∈ M there is a

one-form µ(p) ∈ g∗ for which

〈µ(p), X〉 = HX(p)

where we will now also write HX to denote the Hamiltonian function λ(X). This

defines a map µ : M → g∗ which we call the momentum map. A rather finnicky

calculation reveals that the momentum map is G-equivariant if and only if the

cocycle Σ vanishes, see for instance [MS17][5.16]. We will now present a few

classical examples of the momentum map.

Example 1.2.1 (Momentum map for a subgroup action). Suppose G has a

Hamiltonian action on M with a momentum map µG. For a subgroup K of
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G consider the restricted action of K on M . For X ∈ k the Hamiltonian HX

is equal to 〈µG(p), X〉 and so the momentum map µK : M → k∗ is given by re-

stricting the domain of the linear forms µG(p) ∈ g∗ to k ⊂ g. We therefore have

µK = ι∗ ◦ µG where ι : k ↪→ g is the inclusion.

Example 1.2.2 (Momentum map for a Coadjoint orbit). Following Remark 1.2.3

the Coadjoint action on a Coadjoint orbit O ⊂ g∗ is Hamiltonian. We also saw

that the vector field VX is the Hamiltonian vector field generated by the function

f(η) = −〈η,X〉 from which it immediately follows that the momentum map is

the negative of the inclusion µ : O ↪→ g∗.

Example 1.2.3 (Momentum map for a group acting on its cotangent bundle).

Consider a group action of G on some manifold Q and the cotangent-lift of this

action to T ∗Q. This cotangent-lift preserves the canonical one-form λ. If we let

VX denote the infinitesimal vector field on T ∗G generated by this action for X ∈ g

then by Cartan’s magic formula

0 = LVXλ = ιVXdλ+ d(ιVXλ)

we must have

ω(VX , ·) = d(〈λ, VX〉).

This tells us that the vector field VX is Hamiltonian with Hamiltonian function

HX(ηq) = 〈λ, VX(ηq)〉 = 〈ηq, X∗q〉 (1.18)

where X∗q is the vector at q ∈ Q generated by the infinitesimal group action of

X. The cotangent-lift is therefore a Hamiltonian group action. If we now suppose

Q is a Lie group G and that G is acting by left-multiplication on itself, then the

tangent vector X∗g is (Rg)∗X. It follows from (1.18) above that there exists an

equivariant momentum map µ : T ∗G→ g∗ given by

µ(ηg) = (Rg)
∗ηg.

In other words, after projection onto the g∗ component, the right-trivializationR∗
of T ∗G gives the momentum map for the left cotangent-lifted action. Conversely,

one can show that the negative of the left-trivialization is the momentum map

for the right cotangent-lifted action.
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Remark 1.2.6. It’s not a huge problem if a Hamiltonian action does not admit

a lift λ which is a homomorphism. One can redefine the Poisson structure on g∗

and the Coadjoint action to obtain a momentum map which is equivariant. One

first shows that the function

σ(g) = Ad∗g µ(p)− µ(gp)

does not depend onM and therefore defines a non-equivariant one-cocycle σ : G→
g∗. Then one can define the affine Coadjoint action

g · η = Ad∗g η + σ(g)

of G on g∗ and the altered Poisson bracket

{f, g}(η) = −〈η, [δf, δg]〉+ Σ(δf, δg).

This Poisson structure on g∗ can also be seen as the reduced Poisson structure on

T ∗G/G which arises when we alter the canonical symplectic form on T ∗G with a

magnetic term π∗Σ. With this new Poisson structure and group action µ becomes

an equivariant momentum map [OR13][4.5].

1.2.6 Ordinary symplectic reduction

Suppose we have a connected symplectic manifold M and a Hamiltonian group

action by G with an equivariant momentum map µ. We will now show how

this information allows us to describe (at least partially) the symplectic leaves

of M/G. These spaces coincide with the ordinary Marsden-Weinstein reduced

spaces found more often in the literature [MW74]. We begin with the important

result of Noether which states that the momentum of a Hamiltonian system with

a G-invariant Hamiltonian is conserved.

Theorem 1.2.5 (Noether’s Theorem). Let f be a G-invariant function on a

connected symplectic manifold M and suppose the action of G is Hamiltonian

with momentum map µ. The flow of the Hamiltonian vector field Vf preserves

the fibres of µ.

Proof. As f is G-invariant we have {f,HX} = 0 for all X ∈ g. As HX(p) =

〈µ(p), X〉 this implies that µ is constant along the flow of Vf .
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The symplectic leaves of the characteristic distribution in M/G are equiva-

lently defined as the accessible sets obtained by flowing along the composition

of a finite number of locally defined Hamiltonian vector fields. The result above

demonstrates that any of these corresponding flows of G-invariant functions on

M preserve the fibres of µ. If we consider the commutative diagram below

M g∗

M/G g∗/G

µ

π /G

µ̃

(1.19)

then this states that, for any Coadjoint orbit O in g∗ the pre-image µ−1(O) is

always an invariant set for the flows of G-invariant functions, and hence descends

under the projection to give a set

π(µ−1(O)) = µ̃−1([O])

in M/G which is always invariant under any Hamiltonian flow. This set, which

we shall denote by MO and refer to as the symplectic orbit-reduced space of M

at O is consequently a union of symplectic leaves in M/G. Although we will not

prove it here, if the action of G on µ−1(O) is free and proper, then MO is precisely

a single symplectic leaf in M/G and has the structure of a smooth symplectic

manifold [OR13][6.3.1].

If the action is not free then the space MO will not, in general, be a symplectic

manifold, but instead, a stratified symplectic space. The precise definition of these

objects belongs to the theory of singular reduction. More detail can be found in

the seminal work of [SL91] and also in [OR13] for a comprehensive introduction.

For our purposes we are content to state that this means MO is a union of

symplectic manifolds, called the strata of MO, and that these strata correspond

to the different isotropy types of points in µ−1(O). To shed some light on the

plausibility of this statement consider the subsets MH of M consisting of those

points for which the subgroup of G fixing each point is given exactly by the

subgroup H of G. We claim that for any G-invariant function f the flow of the

Hamiltonian vector field Vf must leave these sets MH invariant. Let x(t) be a

solution curve defined locally where x(0) ∈ MH . Then by (1.8) the curve hx(t)

is also a solution for any h ∈ H. As hx(0) = x(0) it follows that hx(t) = x(t) for

all t that x(t) is defined for. Therefore x(t) ∈ MH for all t as was claimed. The
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set

M(H) =
⋃
g∈G

gMH ,

which is equivalently defined to be the set of all points whose isotropy subgroup

is conjugate to H, is a G-invariant set in M . We may consider the corresponding

subset π(M(H)) in M/G. As the flows of G-invariant functions preserve every

MH and therefore M(H), it follows that π(M(H)) is invariant under all possible

Hamiltonian flows, and hence, is a union of symplectic leaves in M/G. We there-

fore obtain a finer decomposition of reduced spaces into symplectic leaves by

considering the stratum

MO ∩ π(M(H))

for any conjugacy class of subgroups (H). Curiously, it is apparently the case

that these strata do not necessarily give the finest possible stratification into

symplectic leaves [OR13][8.3.3].

Remark 1.2.7. The definition we have presented here is that of an orbit-reduced

space MO corresponding to a Coadjoint orbit in O⊂g∗. More frequently one

encounters point-reduced spaces. Given η ∈ g∗ one considers the preimage µ−1(η)

in M . As µ is equivariant the isotropy group Gη acts on this set, and so we

may define the point-reduced space Mη to be the quotient µ−1(η)/Gη. To make

things simpler, if we suppose η is a regular value of µ then µ−1(η) is a smooth

submanifold of M , and if moreover, we suppose G acts freely and properly then

we can safely talk of the reduced space Mη as a smooth manifold. The standard

theory of symplectic reduction establishes thatMη may be equipped with a unique

symplectic form which pulls back under the quotient map to give the restriction

of the symplectic form on M to µ−1(η). It turns out that the orbit- and point-

reduced spaces are equivalent [OR13][6.4.1]: if O is the Coadjoint orbit through

η then MO ∼= Mη.

Example 1.2.4 (A particle in a space with rotational symmetry). Consider the

standard action of O(3) on R3 and its cotangent lift to T ∗R3. By using the

standard inner product to identify cotangent spaces to points in R3 with R3 itself

we may identify T ∗R3 with the set of pairs (q, p) ∈ R3 × R3. The lifted action

of O(3) now becomes the standard diagonal action on R3 × R3. By (1.18) the

Hamiltonian for ξ ∈ so(3) is given by

Hξ(q, p) = p · ξq = Trace(pT ξq).
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This may be manipulated to equal

1

2
Trace((pqT − qpT )T ξ).

The pairing between so(3) and its dual given by the trace form in (1.1) allows us

to write this as 〈pqT−qpT , ξ〉. The equivariant momentum map µ : T ∗R3 → so(3)∗

is therefore

µ(p, q) = pqT − qpT .

Upon identifying so(3) with R3 as in Example 1.1.1 a quick calculation shows

that µ(p, q) is equal to the vector cross product q × p. This coincides with the

standard physical quantity of angular momentum, and hence, we have established

the familiar result that angular momentum is conserved in systems with rotational

symmetry. As the Adjoint orbits in so(3) ∼= R3 are given by spheres centred at

the origin, the sets µ−1(O) are therefore equal to the subsets of R3 × R3 with

|q × p|2 constant.

We highlight that the O(3)-action on R3×R3 is nowhere free. For generically

independent q and p the isotropy subgroup is Z2. If q and p are colinear but

not all zero, the isotropy subgroup is isomorphic to O(2), and if both are zero

then the entire group O(3) is the stabiliser. Due to this action not being free

we cannot expect the group quotient T ∗R3/O(3) to be a smooth manifold, and

indeed it isn’t. Nevertheless, it is a nice topological space. Following the theory

of universal reduction in [ACG91] and emulating the method of invariants used in

[CB97, LMS93] we may identify the group quotient with the image of the Hilbert

map which sends points to the values taken by generators of the ring of O(3)-

invariant functions on R3×R3. These generators may be taken to be the pairwise

inner products between the vectors q and p. Consequently, we may realise the

Hilbert map as the map sending (q, p) to

ξ =

(
q · p −|p|2
|q|2 −q · p

)
.

This might seem like an awkward way of expressing the quotient as a subset of

sl(2;R), however, we shall now explain our reasons. Observe that the determinant

of the matrix is equal to

|q|2|p|2 − (q · p)2 = |q × p|2.
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As the reduced spaces MO are the images of the invariant sets µ−1(O) under

the orbit map, and since these sets are those subsets of constant |q × p|2, we

see that these reduced spaces coincide with the surfaces of constant det ξ given

in (1.2). In fact, it turns out that the Poisson structure on the group quotient

coincides exactly with the Poisson structure on sl(2;R)∗ and hence, the connected

components of the Coadjoint orbits are the connected components of the reduced

spaces. In the commutative diagrams below we rewrite that given in (1.19) for

this specific example.

T ∗R3 so(3)∗ ∼= R3

sl(2;R)∗ R≥0

µ

π

(q, p) q × p

ξ det ξ = |q × p|2

The orbit quotient is not the whole of sl(2;R)∗. It is clear that det ξ = |q × p|2
must always be non-negative as well as the entries |q|2 and |p|2. The quotient is

therefore identified with the lower cone in Figure 1.1(b) and the union of all the

hyperboloids below it.

For |q × p|2 greater than zero these reduced spaces are the connected compo-

nents of the two-sheeted hyperboloid, and are thus diffeomorphic to the plane.

On the other hand, for when |q × p|2 is zero the reduced space π(µ−1(0)) is the

entire bottom cone together with its vertex. This is not a smooth manifold, and

is instead an example of a stratified symplectic space. The two strata in question

are the open conical surface, and the origin at the vertex. As we briefly explained

earlier, these strata correspond to the different isotropy types of the points in the

preimage µ−1(0). For points with q and p colinear but not all zero, the isotropy

subgroup is isomorphic to O(2) and the stratum corresponds to the open conical

surface. For the case when both q and p are zero, the isotropy group is the whole

of O(3) and the corresponding stratum is the origin. For the generic reduced

spaces q and p are not colinear and the isotropy type for all of these points is

conjugate to Z2, and thus, they consist of a single stratum.

1.3 Semidirect products

1.3.1 Definitions and split exact sequences

Suppose H and N are groups and ϕ : H → Aut(N) a homomorphism. The

automorphism group Aut(N) is the set of isomorphisms from N into itself. We
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define the semidirect product G = HnϕN to be the set H×N together with the

product

(h1, n1)(h2, n2) = (h1h2, n1ϕh1(n2))

whose inverses are then given by

(h, n)−1 =
(
h−1, ϕh−1(n−1)

)
.

Observe that H ∼= H×{e} is a subgroup of G and that N ∼= {e}×N is a normal

subgroup of G. This observation motivates a separate definition which will turn

out to be equivalent. We say that an exact sequence of groups

{e} −→ N
ι−→ G

π−→ H −→ {e}

is a split exact sequence if there exists a homorphism σ : H → G called a splitting

map with π ◦ σ = IdH . In such a situation we also have that H ∼= σ(H) is a

subgroup of G and that N ∼= ι(N) is a normal subgroup of G since it is the kernel

of the homomorphism π.

It is clear that the semidirect product H nϕ N defines a split exact sequence

in the obvious way. We now show that the converse is true.

Proposition 1.3.1 (The Splitting Lemma). Consider a split exact sequence

{e} −→ N −→ G −→ H −→ {e}.

For the sake of easing notation identify N with the normal subgroup of G given

by the inclusion above, and H with the subgroup of G given by the image of the

splitting map. The group G is isomorphic to the semidirect product HnϕN where

the automorphism ϕ is defined by

ϕh(n) = hnh−1 (1.20)

for all n ∈ N and each h ∈ H.

Proof. Define a map G → H × N which sends g to (h(g), n(g)) where h(g) is

the projection G→ H in the exact sequence above and where n(g) is the unique

element in N satisfying

n(g)h(g) = g, (1.21)
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which is well defined since the kernel of the projection G → H is N . Consider

the image (h(g1g2), n(g1g2)) of the product g1g2 between two elements g1 and g2

in G. As the projection map is a homomorphism we have h(g1g2) = h(g1)h(g2).

By the definition in (1.21) we have

n(g1g2) = g1g2h(g2)−1h(g1)−1 = g1n(g2)h(g1)−1 = n(g1)
[
h(g1)n(g2)h(g1)−1

]
from which it follows that g 7→ (h(g), n(g)) defines a homomorphism from G into

H nϕ N with ϕ as defined in (1.20). Injectivity and surjectivity of this map is

fairly clear, and thus, this map defines an isomorphism as desired.

The easiest example of a semidirect product is when the homomorphism ϕ is

trivial. In this case the semidirect product is the direct product between groups.

The most common semidirect products we encounter in this thesis are presented

in the next example.

Example 1.3.1 (Semidirect product with a vector space). Suppose H has a

representation ρ on a vector space V over a field F. This defines the semidirect

product G = H nρ V . This group has a natural action on V

(h, d) · v = ρ(h)v + d.

The group G can therefore be thought of as the affine version of H acting on

V . Specific examples of groups of this kind include the special Euclidean group

SE(n) = SO(n) n Rn of rigid motions of Rn, and the Poincaré group of affine

transformations preserving Minkowski space. We can define a representation of

G on V × F by sending (h, d) to the matrix(
ρ(h) d

0 1

)

in GL(V ×F). If the representation ρ is faithful then so too is this representation,

and so G may be identified with the matrix subgroup of elements above.

Remark 1.3.1. If we differentiate a split exact sequence at the identity we obtain

a split exact sequence of Lie algebras. In precisely the same way as we define a

semidirect product as the group in the middle of such a sequence, we also define

a semidirect product algebra to be the middle algebra in such a split sequence of
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Lie algebras. Any Lie algebra g fits into an exact sequence

0 −→ Rad(g) −→ g −→ g/Rad(g)︸ ︷︷ ︸
s

where Rad(g) denotes the radical of g which is the maximum solvable ideal in

g. The quotient algebra s is always semisimple. The Levi Decomposition states

that this sequence is a split exact sequence and therefore, that every Lie algebra

is isomorphic to the semidirect product algebra sn Rad(g) [FH13][9.1].

1.3.2 The Adjoint representation of a semidirect product

Semidirect products are not typically reductive Lie algebras and therefore there

is no reason to suspect that the Adjoint and Coadjoint representations might

be isomorphic. The purpose of this and the next subsection is to explicitly find

expressions for the Adjoint and Coadjoint actions of a semidirect product with a

vector space.

Let H be a Lie group and V a representation of H. We will not bother

to introduce notation for the representation and instead write rd to denote the

action of r ∈ H on d ∈ V . The group multiplication in G = H n V is

(r1, d1)(r2, d2) = (r1r2, d1 + r1d2)

and the inverses are

(r, d)−1 = (r−1,−r−1d).

For any (a, x) ∈ G the conjugation by (r, d) is then

(r, d)(a, x)(r, d)−1 =
(
rar−1, d+ rx− (rar−1)d

)
.

Recall that the Adjoint action is given by the infinitesimal conjugation evaluated

at the identity. By identifying the tangent space g with h×V in the obvious sense,

we may differentiate (a, x) in the expression above at the identity to obtain the

Adjoint action of a semidirect product

Ad(r,d)(ω, v) = (Adr ω, rv − (Adr ω)d) (1.22)

for (ω, v) ∈ g. By differentiating (r, d) in the Adjoint action at the identity we
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also obtain an expression for the adjoint action and Lie bracket of a semidirect

product

ad(ω1,v1)(ω2, v2) = [(ω1, v1), (ω2, v2)] = ([ω1, ω2], ω1v2 − ω2v1) . (1.23)

Again, we are being lazy with our notation and denoting the infinitesimal action

of ω ∈ h on v ∈ V by ωv.

We will now describe the isotropy subgroups Gω,v of the Adjoint action. Ob-

serve that for (r, d) to belong to Gω,v we require Adr to fix ω. It follows that r

must belong to the isotropy subgroup Hω of H. It now remains to check that

rv − ωd remains equal to v. The group Hω acts by restriction on V and since it

preserves the subspace Imω it descends to give an action on V/ Imω. It follows

that for rv−ωd to equal v we require exactly for r to fix [v] in V/ Imω. That is,

we require r ∈ H[v] which then determines d up to kerω. We can then define an

exact sequence

0 −→ kerω
ι−→ Gω,v

π−→ Hω ∩H[v] −→ {e}

where ι(d) = (e, d) and π(r, d) = r. In the language of groups we call the isotropy

subgroup Gω,v a group extension of Hω ∩H[v] by kerω. We note in passing that

this exact sequence is not necessarily a split exact sequence.

Example 1.3.2 (Adjoint orbits of the special Euclidean group SE(3)). Following

Example 1.1.1 we may identify so(3) with R3 which interwines both the adjoint

and vector representations. Furthermore, from Example 1.1.4 this identifies the

Lie bracket with the cross product, and so, upon identifying se(3) with R3 × R3

the Adjoint action in (1.22) becomes

Ad(r,d)(ω, v) = (rω, rv − (rω)× d) .

By observation one can see that the generic orbits are given by the sets

{
(ω, v) | |ω|2 = C2

1 , v · ω = C2

}
for constants C1, C2 ∈ R where C1 6= 0. These orbits are diffeomorphic to the

tangent bundle T ∗S2 of a sphere of radius |C1|. The degenerate Adjoint orbits

are not given by sets of the above form. These are the orbits through points of
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the form (0, v) and are diffeomorphic to spheres of radius |v|.

1.3.3 The Coadjoint representation of a semidirect prod-

uct

We may identify the dual of g with h∗ × V ∗ via the pairing

〈(L, p), (ω, v)〉 = 〈L, ω〉+ 〈p, v〉 (1.24)

where 〈 , 〉 denotes the pairing between a space and its dual. By using the

expression fo the Adjoint action in (1.22) we have

〈Ad∗(r,d)(L, p), (ω, v)〉 = 〈(L, p),Ad(r,d)−1(ω, v)〉
= 〈(L, p),

(
Adr−1 ω, r−1v + (Adr−1 ω)rd

)
〉

= 〈L,Adr−1 ω〉+ 〈p, r−1v〉+ 〈p, r−1ωd〉.

By the very definition of the Coadjoint action on h∗ the first term in the final

expression is equal to 〈Ad∗r L, ω〉 and the second term may be rewritten as 〈rp, v〉,
where once again we are being lazy and writing rp to denote the contragredient

action of H on V ∗. The final expression may then be written as 〈rp, ωd〉 which

we will rewrite as 〈µ(rp, d), ω〉 where we have introduced a map µ : V ∗× V → h∗

which satisfies

〈µ(p, v), ξ〉 = 〈p, ξv〉

for all ξ ∈ h. With reference to (1.18) one recognises that the map µ is actually the

equivariant momentum map for the cotangent-lifted action of H to T ∗V ∼= V ∗×V .

Putting this all together, the final line in the expression above may be arranged

to give

〈µ(rp, d), ω〉

from which we conclude that the Coadjoint action is given by

Ad∗(r,d)(L, p) = (Ad∗r L+ µ(rp, d), rp) . (1.25)

By differentiating this expression at (r, d) through the identity we obtain the

coadjoint action

ad∗(ω,v)(L, p) = (ad∗ω L+ µ(p, v), ωp) . (1.26)
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We now consider the isotropy subgroups GL,p of this Coadjoint action. Any

element (r, d) ∈ GL,p requires r to fix p and thus r ∈ Hp. Secondly, we require

Ad∗r L+µ(p, d) to be equal to L. Similarly to the Adjoint action from earlier, we

wish to consider the quotient action of Hp on h∗/µ(p, V ). It turns out that this

quotient has a very special structure which we will now pause to prove.

Lemma 1.3.2. The subspace µ(p, V ) in h∗ is equal to the annihilator

h◦p = {L ∈ h∗ | 〈L, ω〉 = 0, ∀ω ∈ hp}

for any p ∈ V ∗ where hp denotes the Lie algebra of the group Hp = {r ∈ H | rp =

p}.

Proof. Denote by τp the map µ(p, ·) : V → h∗ for a fixed p. The kernel ker τp

consists of all v ∈ V which satisfy

0 = 〈µ(p, v), ξ〉 = 〈p, ξv〉 = −〈ξp, v〉

for all ξ ∈ h. This is equivalent to v belonging to (h ·p)◦ where h ·p is the tangent

space to p at the H-orbit through p, which has dimension dim h − dim hp. We

therefore have dim(h · p)◦ = dimV + dim hp− dim h. By rank-nullity dim Im τp =

dimV − dim ker τp = dim h − dim hp = dim h◦p. Finally, it is clear that Im τp

belongs to h◦p since

〈µ(p, v), ξ〉 = 〈p, ξv〉 = −〈ξp, v〉 = 0

for all ξ ∈ hp from which it follows that Im τp = h◦p as desired.

By exactness of the sequence

h◦p −→ h∗
ι∗p−→ h∗p

we have that h∗/h◦p is isomorphic to h∗p. Moreover, as all of the maps in this

exact sequence are equivariant with respect to the action of Hp it follows that

the quotient action of Hp on h∗/h◦p is canonically isomorphic to the Coadjoint

action of Hp on h∗p. Returning to our discussion above and using the fact that

µ(p, V ) = h◦p it follows that for r to belong to GL,p we must have r ∈ (Hp)ι∗pL.

That is, the Coadjoint action of r ∈ Hp on h∗p must fix ι∗pL. In order to ensure
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Ad∗r L + µ(p, d) remains equal to L the vector d is then uniquely defined up to

translates of ker τp. The isotropy subgroup fits into an exact sequence

0 −→ ker τp
ι−→ GL,p

π−→ (Hp)ι∗pL −→ {e}

where ι(d) = (e, d) and π(r, d) = r. Once again, as with the Adjoint action we

remark that this exact sequence is not necessarily a split exact sequence [Bag98].

This exact sequence expressing the isotropy group as an extension of the group

(Hp)ι∗pL by ker τp first appears in [Raw75].

Example 1.3.3 (Coadjoint orbits of the special Euclidean group SE(3)). For

the Coadjoint action we may identity so(3)∗ with so(3) using the invariant form

in (1.1) and then identify this again with R3. We noted earlier that the map µ is

the momentum map for the cotangent lifted action of SO(3) to R3×R3. We have

already calculated this momentum map in Example 1.2.4 and have seen that it

is µ(p, q) = q × p. The Coadjoint action in (1.25) may then be written as

Ad∗(r,d)(L, p) = (rL−(rp)× d, rp) . (1.27)

The generic orbits can also be seen to be equal to the sets

{
(L, p) | |p|2 = C2

1 , L · p = C2

}
for constants C1, C2 ∈ R with C1 6= 0. These orbits are diffeomorphic to tangent

bundles over spheres. The degenerate orbits which are not given by level sets of

the Casimirs are those through points of the form (L, 0) and are diffeomorphic to

spheres of radius |L|.

Remark 1.3.2. The Adjoint and Coadjoint orbits of SE(3) are quite unusual as

the orbit types for both coincide. See for example the case for SE(2) in Figure 1.2

where this is not the case. In general, the Adjoint and Coadjoint representations

for a semidirect product are not isomophic, however for SE(3) it turns out that

they are. Following Proposition 1.1.2 this fact may be deduced from the existence

of the invariant non-degenerate form

B((ω1, v1), (ω2, v2)) = ω1 · v2 + ω2 · v1

on se(3) which establishes an equivariant isomorphism between se(3) and its dual.
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Note that this form is not the Killing form as the algebra is not semisimple. More

generally this can be seen as a special instance of a semidirect product of the form

G nAd g. For groups of this kind there is always an isomorphism between the

Adjoint and Coadjoint representations.

For the Adjoint and Coadjoint orbits of SE(n) for general n we would like to

recommend our (unpublished) work in [AM18] together with J. Montaldi, where

we describe the geometry of the orbits as special kinds of affine flag manifolds.

Proposition 1.3.3. Let H be a Lie group with a representation V and consider

the semidirect product G = H n V with Lie algebra g = h × V . For functions f

and g on the dual g∗− the Poisson bracket is given by

{f, g}(L, p) = −
〈
L,

[
δf

δL
,
δg

δL

]〉
−
〈
p,
δf

δL

δg

δp
− δg

δL

δf

δp

〉
(1.28)

where the elements δf/δL ∈ h and δf/δp ∈ V are directional derivatives uniquely

defined by satisfying

〈df, (Ω, 0)〉 =

〈
Ω,

δf

δL

〉
and 〈df, (0, α)〉 =

〈
α,
δf

δp

〉
for all Ω ∈ h∗ and α ∈ V ∗.

Proof. From Theorem 1.2.2 we first need the directional derivatives of a function

f . As we are identifying g∗ with h∗×V ∗ as in (1.24) δf is equal to (δf/δL, δf/δp).

Substituting this into (1.14) and using the adjoint action of a semidirect product

given in (1.23) yields (1.28).

1.3.4 The Semidirect Product Reduction by Stages theo-

rem

As we have already seen, the reduced space obtained by reducing a cotangent

bundle of a Lie group T ∗H by the group acting on itself is the coalgebra h∗. In

this subsection we will show that if we reduce T ∗H by certain subgroups of H

acting once again by left- or right-multiplication, the reduced space is a subset of

the coalgebra of a larger group G which is a semidirect product of H with some

vector space. In order to best present this result we must first conduct a more

detailed analysis of the Coadjoint orbits of a semidirect product.
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⊆ h∗

⊆ h∗p

ι∗p O = Hp · ι∗p(L)

Hp · L

h◦p

L

ι∗p(L)

Figure 1.3: The Coadjoint orbit of G through (L, p) is a bundle over the orbit
of H through p ∈ V ∗. The fibre over p is illustrated in this diagram and shown
to be h◦p ×O where O is the Coadjoint orbit of Hp through ι∗p(L).

Let G = H n V be as before in the previous subsection and consider the

Coadjoint action (1.25). The orbits fibre over the H-orbit through p ∈ V ∗ but

what are the fibres? For a given p we have seen that the translation subgroup V

acts by adding h◦p to the h∗ component. We may factor out this subspace using

the Hp-equivariant projection ι∗p : h∗ → h∗p. It follows that once we factor out by

h◦p the fibre over p is a Coadjoint orbit of Hp. Figure 1.3 gives a schematic picture

of the fibres of such an orbit. For a given p and Coadjoint orbit O in h∗p we have

a corresponding Coadjoint orbit in g∗ equal to the set

{
(Ad∗r L, rp) | for all r ∈ H and L with ι∗pL ∈ O

}
. (1.29)

All Coadjoint orbits in g∗ are equal to sets of this form. Using this idea Rawnsley

establishes a one-to-one correspondence between Coadjoint orbits and bundles

over orbits in V ∗ whose fibres are Coadjoint orbits of the so-called little-group

orbits Hp [Raw75].

We now turn to consider the cotangent-lifted action of G on T ∗G by left/right

multiplication. Fix some p ∈ V ∗ and consider the diagram below where a map πK

denotes the projection from a space upon which K acts to the space of K-orbits.
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T ∗G

T ∗H × V ∗ T ∗G/G

T ∗H × {p}

πG
πV

πH

πHp

If we naturally identify T ∗V with V × V ∗ then the translation subgroup V =

{e}×V only acts on the base space of T ∗V in T ∗G = T ∗H×T ∗V . Consequently,

we have identified the orbit space T ∗G/V with T ∗H × V ∗ and πV with the map

which projects away the V component. The action of H = H × {0} on T ∗G

descends though πV to give the diagonal action of H on T ∗H×V ∗, and since any

G-orbit is an orbit of V -orbits under the action of H, the top triangle commutes.

The H-orbits through T ∗H ×{p} ⊂ T ∗H × V ∗ precisely correspond to Hp-orbits

through T ∗H and this gives commutativity of the bottom triangle.

Theorem 1.3.4 (Semidirect Product Reduction by Stages). Let Hp act on T ∗H

by cotangent lift on the left/right. There is a smooth Poisson map from T ∗H into

g∗∓ = h∗ × V ∗ whose fibres are precisely the Hp-orbits given by sending η ∈ T ∗rH
to (

L∗r−1η, r−1p
)
∈ g∗− or (R∗r−1η, rp) ∈ g∗+ (1.30)

for the left/right case respectively. Moreover, if we let O denote a Coadjoint orbit

in h∗p and µ : T ∗H → h∗p the equivariant momentum map for the action of Hp

on T ∗H, then µ−1(O) is sent to the Coadjoint orbit in g∗ through (L, p) with

ι∗pL ∈ O. As the fibres of this map are the Hp-orbits it follows that this Coadjoint

orbit in g∗∓ is symplectomorphic to the orbit-reduced space MO.

Proof. Equip T ∗H × V ∗ and T ∗G/G in the diagram with Poisson structures

induced by the maps πV and πG together with the canonical structure on T ∗G.

Translation invariant functions f and g are constant in the V -component in T ∗V .

Therefore, as the product T ∗G = T ∗H × T ∗V is symplectically orthogonal, the

Poisson bracket between two such functions restricts to the canonical Poisson

structure on T ∗H. If we identity T ∗H×{p} with T ∗H endowed with the canonical

Poisson structure this then implies the inclusion into T ∗H × V ∗ is Poisson, and

hence, πH restricted to T ∗H × {p} is a Poisson map πHp into T ∗G/G.

The projection πG may be taken to be left/right translation to the identity

and this identifies T ∗G/G with g∗∓ (where the ∓ indicates that the Poisson struc-

ture differs up to sign depending on whether we use left or right translation as
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explained in Remark 1.2.2). The map πHp must necessarily be that given in

(1.30) for the top triangle to commute. The map is clearly smooth and the fibres

are exactly the Hp-orbits. Note that group multiplication on the right is only a

group action if it is right-inverse multiplication; hence the difference in r−1p and

rp between the two expressions in (1.30).

From Example 1.2.3 the momentum map on T ∗H for left/right multiplication

by H is given by right/left translation to the identity. As the Hp-action is given

by restriction of this action, from Example 1.2.1 the momentum map is given by

µ(η) = ι∗p ◦ L∗r−1(η) for η ∈ T ∗rH (we are here dealing with the case of the right-

action for notative ease, although the left-case is entirely similar). The set µ−1(O)

is then equal to all such η with ι∗p ◦L∗r−1(η) ∈ O. By noting that Ad∗r = L∗r ◦R∗r−1

and writing L = L∗r−1(η) observe that the image of µ−1(O) under the Poisson

map in (1.30) is precisely the Coadjoint orbit described in (1.29).

Remark 1.3.3. Suppose one wishes to reduce T ∗H by the action of a subgroup

K of H. The theorem above tells us that we can realise the reduced spaces as

Coadjoint orbits of some semidirect product if we can find a representation of H

for which K is the isotropy subgroup of some vector. For an arbitrary subgroup

K it is not clear that such a representation should always exist. In this direction

we have the Mostow-Palais embedding theorem which states that, if a manifold

M admits a smooth transitive action by a compact group H then it can be

equivariantly embedded into a unitary representation V of H [Mos57, Pal57]. In

particular, a homogeneous space H/K which is a manifold may be equivariantly

embedded in V . This means that for some vector in V the isotropy subgroup will

be K. Therefore, as a corollary we see that for H compact and K any subgroup

for which H/K is a manifold, the reduced spaces of T ∗H/K are Coadjoint orbits

of the semidirect product H n V .

1.4 Applications to mechanics

1.4.1 The Legendre transform

In this section we consider Hamiltonian systems defined on cotangent bundles

which arise from problems in classical dynamics. The purpose of this subsection

is to explain the choices for the Hamiltonians given later. In order to understand

why a particular problem in classical dynamics has a particular Hamiltonian we
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must first review the passage from the Lagrangian to the Hamiltonian formulation

of mechanics; this is accomplished by way of the Legendre transform.

A mechanical system is described by a configuration manifold Q which is

the set of all possible instantaneous configurations of the system. Any solution

curve q(t) parametrised by time canonically lifts to a curve q̇(t) in the tangent

bundle TQ. An apparent feature of the universe is that all physical evolution

is second-order in time, meaning that any motion is uniquely determined by its

position and velocity at any instant. We therefore take the dynamical system

to be defined on TQ. The dynamics will be generated by a Lagrangian L which

is a smooth function on TQ. By the Principal of Least Action the dynamically

realisable paths q̇(t) in TQ are those extremals which are local minimums of the

action functional

A[q̇(t)] =

∫ t1

t0

L ◦ q̇ dt.

Taking the first variation of A and solving for when this is zero give the standard

Euler-Lagrange equations from Lagrangian dynamics.

Given a vector v ∈ TqQ we can define a tangent vector Fv in TQ to any point

w in the fibre TqQ by differentiating the curve w+ tv at t = 0. If we let π denote

the projection TQ→ Q then we may define a one-form θL on TQ by setting

〈θL, Y 〉 = 〈dL, Fπ∗Y 〉

for any tangent vector Y to TQ. One can then define a two-form ωL = −dθL
which, depending on some mild regularity condition on L which we shall call

regular, is non-degenerate. For any solution q̇(t) in TQ of the Euler-Lagrange

equations, one can show with a fairly lengthy calculation in a local coordinate

chart, see [Woo97][2.1], that the tangent vector X to q̇(t) is the unique vector

which satisfies

ωL(X, ·) = dĤ

where Ĥ is a smooth function on TQ which sends v ∈ TqQ to

Ĥ(v) = 〈dL, Fv〉 − L.

It follows that, provided L is regular, (TQ, ωL) is a symplectic manifold and so-

lutions in TQ are the Hamiltonian flows of the function Ĥ. An unsatisfactory

feature of this formulation is that the symplectic form on the tangent bundle
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depends on the choice of Lagrangian. This is the reason why we introduce the

Legendre transform I : TQ → T ∗Q which establishes a symplectomorphism be-

tween (TQ, ωL) and T ∗Q equipped with the canonical symplectic form. For any

v ∈ TqQ the element I(v) ∈ T ∗qQ is the unique one-form which satisfies

〈I(v), w〉 = 〈dL, Fw〉 (1.31)

for all w ∈ TqQ. This defines a smooth fibrewise-linear map, and thus a bundle

morphism, and it is a straightforward exercise to show that it pulls back the

canonical one-form on T ∗Q to θL. It follows immediately from the definition of I
and Ĥ that the Hamiltonian on TQ is pushed forward to the Hamiltonian

H(p) = 〈p, v〉 − L (1.32)

on T ∗Q for v ∈ TqQ and where we write p = I(v). The Hamiltonian formula-

tion of mechanics considers this Hamiltonian system defined on T ∗Q with the

Hamiltonian given above, defined by the Lagrangian L on TQ.

Example 1.4.1 (Geodesic flow as a Hamiltonian system). As an application we

will show how the geodesic flow on a manifold Q may be cast as a Hamiltonian

system on T ∗Q. Recall that a (pseudo-)Riemannian metric on Q is given by a

smoothly varying, non-degenerate, symmetric bilinear form Bq defined on the

fibres TqQ for each q ∈ Q. The geodesics are those curves q̇(t) in TQ which

minimise the length ∫ t1

t0

1

2
Bq(q̇, q̇) dt.

This is identical to the problem in Lagrangian mechanics whose Lagrangian L on

TQ is

L(v) =
1

2
Bq(v, v)

for v ∈ TqQ. For any vector w ∈ TqQ recall that Fw is the tangent vector to any

v ∈ TqQ given by differentiating the curve v+ tw at t = 0. The function 〈dL, Fw〉
evaluated at v is then

d

dt

∣∣∣∣∣
t=0

1

2
Bq(v + tw, v + tw) = Bq(v, w).

By definition of the Legendre transform we see that I(v) is the unique form in
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T ∗qQ which satisfies

〈I(v), w〉 = Bq(v, w). (1.33)

Finally, from (1.32) the Hamiltonian at p = I(v) ∈ T ∗qQ is given by

H(p) = 〈p, v〉 − L(v) = Bq(v, v)− 1

2
Bq(v, v) =

1

2
Bq(v, v) =

1

2
〈p, I−1(p)〉. (1.34)

1.4.2 Left-invariant geodesics on a Lie group

Consider a Lie group G equipped with a Riemannian metric. On each fibre of

TG there is a smoothly varying inner product

Bg(v, w) = 〈Ig(v), w〉 (1.35)

for any two vectors v, w ∈ TgG where I : TG→ T ∗G is a smooth fibrewise diffeo-

morphism which we know from the last subsection to be the Legendre transform.

The geodesic flows on G thus define a Hamiltonian system on T ∗G with Hamil-

tonian

H(η) =
1

2
〈η, I−1

g (η)〉 (1.36)

for η ∈ T ∗gG. Suppose that the metric is left-invariant on G, that is to say that

L∗gB = B for all g ∈ G. One can check that this is equivalent to

(Lg)∗ ◦ Ig ◦ (Lg)∗ = Ie (1.37)

for all g ∈ G. This implies that the Hamiltonian in (1.36) is also a left-invariant

function on T ∗G. As we have a left-invariant Hamiltonian on T ∗G we may apply

the methods of symplectic reduction introduced earlier. Before jumping into this

we pause to introduce some more terminology which will be useful later for the

example of the rigid body.

Given a tangent vector ġ ∈ TgG we will refer to the the resulting vectors in g

obtained by left and right trivializations as the body and spatial angular velocity,

ωs and ωb, respectively. To be specific

ωb = (Lg−1)∗ġ,

ωs = (Rg−1)∗ġ.

The Legendre transform sends ġ to a one-form η = Ig(ġ) ∈ T ∗gG which may
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g g∗

TG T ∗G

g g∗

Ie

Adg Ad∗
g

(L−1
g )∗

(Rg−1 )∗

Ig

(Lg)∗

(Rg)∗

ωb Lb

ġ η

ωs Ls

Figure 1.4: How left and right trivializations on the tangent and cotangent
bundles of G define the spatial and body angular momentum/velocity vectors.
As the metric is left-invariant we have from (1.37) that the top square commutes
and is independent of g.

also be sent to an element in g∗ by either the left or right trivialization. We

refer to these Ls and Lb as the body and spatial angular momentum, respectively.

Precisely these are

Lb = (Lg)∗η,
Ls = (Rg)

∗η.

The spatial and body vectors are related to each other by the Adjoint and Coad-

joint representations

ωs = Adg ωb, (1.38)

Ls = Ad∗g Lb.

All of this notation is more compactly illustrated in Figure 1.4. We now re-

turn to our discussion of the Hamiltonian system on T ∗G with the left-invariant

Hamiltonian (1.36). The following theorem is due to Arnold [Arn66].



1.4. APPLICATIONS TO MECHANICS 57

Theorem 1.4.1 (Euler-Arnold equations). Let G be a Lie group equipped with a

left-invariant Riemannian metric on G. The body and spatial angular momentum

vectors satisfy the following differential equations

L̇b = − ad∗ωb Lb, (1.39)

L̇s = 0.

Proof. From Example 1.2.3 the momentum map for the left action of G lifted to

T ∗G is right-translation to g∗. The momentum is therefore the spatial angular

momentum Ls which by Noether’s Theorem 1.2.5 is constant. Secondly, following

Theorem 1.2.2 the orbit quotient T ∗G/G is obtained by left trivialization and

may be identified with the space of body angular momentum vectors in g∗. The

left-invariant Hamiltonian in (1.36) descends to give

H(Lb) =
1

2
〈Lb, ωb〉.

From the proof of Theorem 1.2.3 the Hamiltonian vector field VH(Lb) is− ad∗δH Lb.

From the definition of the directional derivative in (1.15) and using the property

that I defines a symmetric form on g we see that δH is ωb from which (1.39)

follows.

1.4.3 The rigid body with a fixed point

Consider a rigid body in Rn free to move about a fixed point which we take to be

the origin. Fix the standard orthonormal frame in Rn and refer to this as the space

frame. For a given initial configuration of the body attach an orthonormal frame

fixed to the body, which we may suppose in this initial configuration coincides

with the space frame. This frame will be called the body frame, and relative to

an observer in the space frame will vary as the body moves. In this way we

may identify the space of all possible configurations of the body with the group

SO(n) where a given configuration of the body shall correspond to the unique

transformation r ∈ SO(n) which sends the space frame to the body frame.

Let x denote a point within the body at t = 0 when the body is in its initial

configuration. For a motion r(t) ∈ SO(n) of the body consider the corresponding

motion x(t) = r(t)x of this material point. Using the definitions of the body and

spatial angular velocities given earlier observe that the velocity of this point may
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be given by the following equivalent expressions

ẋ(t) = ṙ(t)x = r(t)ωbx = ωsx(t).

For an observer in the space frame, the velocity of any point at x(t) is therefore

given by multiplying the vector by the spatial angular velocity. Conversely, for

an observer in the body frame, the velocity of the point x, which to an observer

in the space frame is given by ẋ(t) and which therefore transforms to the vector

r(t)−1ẋ(t) as seen in the body frame, is given by multiplying the position by the

body angular velocity. This explains the choice of terminology for the angular

velocity vectors.

In the Lagrangian formulation this describes a mechanical problem defined

on TSO(n) whose Lagrangian is given purely by the kinetic energy. The kinetic

energy as a function of ṙ(t) ∈ Tr(t)SO(n) is

1

2

∫
B

ρ|ṙ(t)x|2 dx

where the integral is taken over the body B ⊂ Rn in its initial configuration,

and where ρ is the density of the body. This defines an inner product on each

of the fibres of TSO(n) and therefore we have a Riemannian metric on SO(n)

whose geodesics correspond to motions of the rigid body. Furthermore, the kinetic

energy above may be rewritten as

1

2
ρ

∫
B

|ωbx|2 dx (1.40)

which is manifestly left-invariant, and hence we have a left-invariant metric on

SO(n). We are now able to apply the results of Theorem 1.4.1 directly, but before

doing so we will express the Legendre transform I explicitly.

The kinetic energy above defines an inner product on the space of body angular

velocity vectors in g which may be written as

B(ω, ξ) =
1

2

∫
B

ρ(ωx · ξx) dx =
1

2

∫
B

ρTrace(xTωT ξx) dx =
1

2
Trace(MωT ξ)

where we have introduced the symmetric mass matrix

M =

∫
B

ρxxT dx.
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By the definition of the Legendre transform we must have that L = Ie(ω) satisfies

〈L, ξ〉 = B(ω, ξ) for all ξ ∈ so(n). Upon identifying so(n) with its dual using the

trace form in (1.1) we may rewrite B(ω, ξ) as

1

2
Trace(MωT ξ) =

1

4
Trace

(
(ωM +Mω)T ξ

)
=

1

2
〈ωM +Mω, ξ〉

from which we conclude that

L = ωM +Mω.

One may now directly apply (1.39) to obtain the standard equations of motion

for a free rigid body in Rn. As a specific example we will now present the most

familiar case for when n = 3.

Example 1.4.2 (The free rigid body in R3). The case in three dimensions is

particularly special as the adjoint and vector representations of SO(3) are, as we

have already seen, isomorphic. Upon identifying so(3)∗ ∼= so(3) with R3 we see

that in a suitable orthonormal basis the inner product defined by I corresponds to

a symmetrix matrix diag(I1, I2, I3) whose entries are referred to as the moments

of inertia. The angular momentum is then related to the angular velocity by

L = Iω. From Example 1.1.4 adω ξ is identified with ω × ξ. Equation (1.39)

becomes

L̇b = −ωb × Lb.

If we write the vectors Lb and ωb in components as (L1, L2, L3) and (ω1, ω2, ω3),

respectively, then using Lb = Iωb we may expand this equation into components

and express them in terms of the body-velocity components to give the familiar

standard set of Euler equations

I1ω̇1 = ω2ω3(I2 − I3),

I2ω̇2 = ω1ω3(I3 − I1),

I3ω̇3 = ω1ω2(I1 − I2).

Finally, as we have a Hamiltonian system defined on so(3)∗ with Hamiltonian

H(L) =
1

2
〈L, I−1L〉 =

1

2

(
L2

1

I1

+
L2

2

I2

+
L2

3

I3

)
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L3

L2L1

Figure 1.5: Solution curves on a Coadjoint orbit in so(3)∗ for the three-
dimensional rigid body with a fixed point.

the solution curves are given by the intersections of level sets of H with Coad-

joint orbits in so(3)∗. Recall that these orbits are spheres centred at the origin.

A sphere of radius |L| corresponds to a motion whose angular momentum has

magnitude |L|. The solutions curves on this sphere for |L| > 0 are given in Fig-

ure 1.5 by intersecting the orbit with the ellipsoids of constant H, where we have

taken I1 > I2 > I3 > 0.

Remark 1.4.1. The theory we have presented concerning geodesics of a left-

invariant metric on G can be altered with a few changes to give a description

for right-invariant metrics. It was Arnold who originally showed that just as the

rigid body can be described by left-invariant geodesics on SO(3), the motion of

an incompressible fluid on some manifold can be described as geodesics on the

infinite-dimensional group of volume-preserving diffeomorphisms equipped with a

right-invariant metric [Arn66, Arn13, AK99]. It is quite remarkable that both sets

of corresponding reduced equations were known to Euler, and now both referred

to as Euler’s equations.

1.4.4 The Kirchhoff equations

If the rigid body is not fixed at a point and is instead free to move around

in Rn by any rigid motion we obtain Euler-Arnold equations for the semidirect
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product SE(n) = SO(n) n Rn. If the motion is free then the results are not

too interesting as the motion can be decomposed into the independent motions

of the centre of mass together with the motion of the body about this point.

This decomposition is a consequence of the Galilean invariance of the problem.

Therefore, in this subsection we will instead consider the problem of the motion

of a rigid body which is immersed in an incompressible fluid. This system lacks

Galilean invariance and consequently the motion of the body about its centre of

mass and the motion of the centre of mass itself are inextricably coupled.

By introducing a fluid into the problem we have seemingly increased the com-

plexity enormously. After all, a fluid’s motion is specified by a vector field defined

at every point which has infinitely many degrees of freedom. Rather surprisingly,

it turns out, as we will show shortly, that the state of the fluid is completely de-

termined by the position and velocity of the body, therefore allowing us to retain

SE(n) as the configuration space.

As before, we identify a configuration of the body with an element g = (r, d)

in SE(n) which is the transformation sending the body from some initial config-

uration to its current one. The Lagrangian on the tangent bundle is equal to the

total kinetic energy of both the body and the fluid

L(ġ) = KEB(ġ) +KEF (ġ). (1.41)

We describe the kinetic energy of the body first. For a point x initially within

the body at t = 0 its position at time t is r(t)x+ d(t) where g(t) = (r(t), d(t)) is

a curve in SE(n). The velocity is obtained by differentiating this expression and

hence one may write

KEB(ġ) =
1

2

∫
B

ρ|ṙx+ ḋ|2 dx

=
1

2

∫
B

ρ|ṙx|2 dx+M(ṙc0 · ḋ) +
M

2
|ḋ|2.

Here we have introduced the total mass M =
∫
B
ρdx of the body and its initial

centre of mass c0 = M−1
∫
B
ρxdx. One may show that the left-invariant body-

velocity vector g(t)−1ġ(t) obtained by left translation to the identity is

(ω, v) =
(
r(t)−1ṙ(t), r(t)−1ḋ(t)

)
.
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To remove some clutter we are dropping the letter ‘b’ and denoting the body

angular-velocity by ω and the body linear-velocity by v. The kinetic energy of the

body may now be written as

1

2
ρ

∫
B

|ωx|2 dx+M(ωc0 · v) +
M

2
|v|2 (1.42)

which manifestly defines a left-invariant metric on SE(n). This Hamiltonian may

be simplified by choosing the initial position of the body to be such that its centre

of mass coincides with the origin. In this way the vector c0 becomes zero and the

second term above vanishes. This decision to alter the initial position of the body

deserves more comment. The following discussion concerning the representation

of Sym2g∗ might seem unnecessarily complicated compared to our reasoning to

simply move the origin, however, the material developed here is interesting and

will be useful later on.

Imagine that we fix a frame in Rn and define this to be both the fixed space

frame and the initial body frame, but leave the initial position of the body unde-

termined. As soon as we choose an initial position of the body we determine the

location of the body frame fixed relative to the body. Note that the origin of the

body frame does not need to be inside the body. Suppose that one choice of initial

body position is given by B ⊂ Rn. The configuration space of the body is then

identified with transformations g : B ↪→ Rn for g ∈ SE(n). If B′ is an alternative

initial position of the body then there exists a unique a ∈ SE(n) with B = aB′.

The configuration g : B ↪→ Rn corresponds to the configuration ga relative to B′.

Therefore, altering the initial body position corresponds to the transformation

Ra on the group. As right and left multiplications commute, this pulls back the

left-invariant metric to another left-invariant metric. If we evaluate this at the

identity we have

(R∗a−1B)e(X, Y ) = Ba−1 ((Ra−1)∗X, (Ra−1)∗Y )

= Be(AdaX,Ada Y )

where in the last line we have used the left-invariance of B and Ada = (La ◦Ra)∗.

As the metric B is determined by a map I : se(n) → se(n)∗ as in (1.35), we see

that the new metric is defined by the altered inertia operator

Ad∗a−1 ◦I ◦ Ada . (1.43)



1.4. APPLICATIONS TO MECHANICS 63

For a any Lie group G this action is the canonical representation of G on the

space Sym2g∗ of symmetric bilinear forms on g, or equivalently, of left-invariant

symmetric bilinear forms on G. In summary, the effect of changing the initial

body position corresponds to a right-multiplication on the configuration group,

and that the resulting effect on the metric I is via the standard representation on

Sym2g∗.

This is all a very long way of saying what was said earlier: that we may

eliminate the term involving c0 by changing the initial body position so that its

centre of mass is at the origin. The quadratic form on se(n) = so(n) × Rn in

(1.42) contains a cross-term coupling the so(n) and Rn components for when c0 is

non-zero. Equivalently then, we can state that the representation of SE(n) on the

space of such quadratic forms removes this coupling and separates the form into

two independent forms on so(n) and Rn corresponding to the rotational energy

of the body and the energy from its linear velocity, respectively. It is because

of this decoupling that the motion decomposes into the independent motions of

the body about its centre of mass, and the centre of mass itself. For when we

introduce new terms into the quadratic form corresponding to the energy of the

fluid the representation of SE(n) cannot separate the form into angular and linear

components. It is because of this irremovable coupling that linear motions may

induce rotational motions and vice versa. This however should not be surprising

as it is precisely due to this coupling that a rotating propeller propels a ship and

that wind though a turbine induces it to spin.

We now turn our attention to the kinetic energy of the fluid. To avoid the

misery of having to talk about Hodge stars and using the metric to alternate

between forms and vectors, we will focus on the case n = 3 so that we may use

the familiar operators of vector calculus to describe the fluid dynamics.

The motion of the fluid at time t is specified by a velocity vector field u defined

on the complement Bc
t ⊂ R3 of the body’s position. We shall suppose that the

fluid flow is potential and incompressible. Therefore, there exists a function ψ

defined on Bc
t with ∇ψ = u and ∇2ψ = 0. The fluid must always surround the

body, it cannot enter it (penetration), and it cannot separate from the surface of

the body creating a vacuum (cavitation). Let x be a point on the boundary of the

body and nx the normal vector. If v is the velocity of the point x then relative

to this point the relative fluid velocity is u − v. The no penetration/cavitation
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condition is then expressed as

(n− v) · nx = 0

or equivalently as

∇ψ · nx = v · nx. (1.44)

Let x0 denote the initial position of the point on the boundary at t = 0. The

transformation g ∈ SE(3) preserves the standard inner product on R3 and so

∇ψ(gx0) = g∇ψ(x0). Furthermore, as nx = gnx0 the left hand side in the

expression above may be written in terms of the initial body position x0 as

∇ψ(x0) · nx0 .

Similarly, if we consider the right hand side in (1.44) we may write the velocity

v = ẋ(t) = ṙ(t)x0 + ḋ(t) of the point on the boundary as (r, d) · (ωx0 + v) where

(ω, v) are the left-invariant body-velocity vectors as before. We may therefore

write v · nx as

(ωx0 + v) · nx0 .

Since this expression is linear in (ω, v) there exists a map β : ∂B → se(3)∗ defined

on the boundary of the body given in its initial configuration which satisfies

〈β(x0), (ω, v)〉 = (ωx0 + v) · nx0 (1.45)

for all (ω, v) ∈ se(3). Equation (1.44) defines a Neumann initial value problem on

Bc. It is known that the solution ψ is unique up to a constant. If we suppose that

|∇ψ| decays sufficiently quickly at infinity, then we may suppose that the integral

of ψ taken over Bc is finite, and hence may solve for ψ uniquely by insisting that

this integral is zero. Furthermore, as the right hand side in (1.44) is linear in

(ω, v) it follows that there exists a unique map Ψ: ∂B → se(3)∗ which satisfies

〈Ψ(x0), (ω, v)〉 = ψ(x0) (1.46)

for all (ω, v) ∈ se(3) and where ψ is the unique solution to (1.44) for the initial

configuration of the body.
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The total kinetic energy of the fluid is given by

KEF (ġ) =
1

2

∫
Bct

|u|2 dV =
1

2

∫
Bct

|∇ψ(x)|2 dV.

Using the fact that ∇ψ(gx0) = g∇ψ(x0) we may rewrite this as an integral over

the complement of body in its initial configuration and then use the divergence

theorem to write this as an integral over its boundary

1

2

∫
Bct

|∇ψ(x0)|2 dV =
1

2

∫
∂B

ψ(x0)∇ψ(x0) · nx0 dA.

From (1.44) and the definitions of β and Ψ we thus have

KEF (ġ) =
1

2

∫
∂B

〈Ψ(x0), (ω, v)〉〈β(x0), (ω, v)〉 dA.

This expression only depends on the left-invariant velocity vectors (ω, v) and

clearly defines a quadratic form on se(3). By combining the kinetic energy of the

body and fluid in (1.41) we obtain a left-invariant metric on SE(3). The reduced

equations on the coalgebra were first found by Kirchhoff in [KH83].

Theorem 1.4.2 (Kirchhoff equations). Consider a non-degenerate quadratic form

on (ω, v) ∈ se(3) ∼= R3 × R3 given by

1

2
(ω · Aω) + (ω ·Bv) +

1

2
(v · Cv)

where A,B and C are symmetric 3×3 matrices. Let I : se(3)→ se(3)∗ denote the

corresponding non-degenerate symmetric tensor in Sym2se(3)∗. For the Hamilto-

nian

H(L, p) =
1

2
〈(L, p), I−1(L, p)〉

on se(3)∗ the equations of motion are given by

L̇ = L× ω + p× v
ṗ = p× ω

where L = Aω +Bv and p = Bω + Cv.

Proof. This is a straightforward implementation of Theorem 1.4.1. We use the

expression for the coadjoint action of a semidirect product in (1.26) and substitute
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it into (1.39). It is assumed that we are identifying se(3) with its dual as in

Example 1.3.3.

Example 1.4.3 (The motion of a rigid body in a two-dimensional fluid). The

case for when n = 2 is peculiar for a few reasons. Firstly, as the vector calculus on

R2 is different to that on R3 the solution ψ is unique up to a choice of circulation

of the fluid around the body [Lam93, Cha56]. Secondly, as we will now show,

unlike the case for n > 2, the representation of SE(2) is able to diagonalise any

inner product on se(2). The angular and linear velocities can therefore always be

decoupled by choosing an appropriate body frame. In a sense, one can imagine

that this statement shows that there cannot exist propellers in a two-dimensional

fluid.

Write elements in se(2) = so(2) × R2 as vectors (ω, v) and identify se(2)

with its dual as in (1.6). Any quadratic form on se(2) determined by a map

I : se(2)→ se(2)∗ may then be identified with a symmetric matrix

I =

(
a bT

b C

)

for a ∈ R, b ∈ R2, and C a 2 × 2 symmetric matrix. Using the expressions in

(1.3) and (1.7) one can write the action of (r, d) ∈ SE(2) on I given in (1.43)

using matrix multiplication(
1 dT rJr
0 rT

)
︸ ︷︷ ︸

Ad∗
(r,d)−1

(
a bT

b C

)
︸ ︷︷ ︸

I

(
1 0

−Jd r

)
︸ ︷︷ ︸

Ad(r,d)

=

(
a+ dTJb− dTJCJd bT r + dTJCr

rT b− rTCJd rTCr

)

(1.47)

As the form I is non-degenerate, so too is C. Therefore there exists a unique

d ∈ R2 with

b = CJd.

It follows from (1.47) that transforming the initial body frame by (I, d) re-

moves the coupling term b. Furthermore, we can also act by an appropriate

r to diagonalise C and put I into a purely diagonal form. We have thus shown

that for an appropriate choice of body frame the inertia tensor is diagonal, say
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L

p1
p2

L

p1
p2

Figure 1.6: Solution curves in se(2)∗ for a two-dimensional rigid body. On the
left we have a free rigid body and on the right a rigid body immersed in a fluid.
Notice that for the free rigid body with zero angular momentum the fixed point
solutions correspond to the body moving uniformly along a straight line without
rotating. On the other hand, for the body in a fluid there are only two principal
directions along which the body moves in this way, one stable, and one unstable.
Any linear motion not aligned along these principal directions induces the body
to spin.

I = diag(Ω,m1,m2). From (1.36) the Hamiltonian on se(2)∗ is

H(L, p1, p2) =
1

2

(
L2

Ω
+
p2

1

m1

+
p2

2

m2

)
.

The intersection of the Coadjoint orbits with these ellipsoids of constant H give

the solution curves in se(2)∗ and are illustrated in Figure 1.6. We also include

the degenerate case for m1 = m2 which describes the situation for when the fluid

is absent. Differentiating (1.7) to find the coadjoint action and substituting this

into the Euler-Arnold equations in (1.39) yields the equations of motion

L̇ = p1p2(m−1
2 −m−1

1 )

ṗ1 = +Lp2/Ω

ṗ2 = −Lp1/Ω
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1.4.5 The heavy top

We now return to consider a rigid body in Rn with a fixed point at the origin but

shall no longer assume that the body is free. Instead, we shall suppose that the

body moves under the influence of a constant gravitational field. We shall take

the acceleration due to gravity to be the vector −γv0 for γ > 0 a constant and

v0 a fixed unit-vector in Rn which we shall call the vertical. The configuration

space is once again SO(n) and the problem defines a mechanical system on the

tangent bundle with Lagrangian

L(ṙ) =
1

2

∫
B

ρ|ṙ(t)x|2 dx− γ
∫
B

ρ(r(t)x · v0) dx

where we are taking the integral over the initial body configuration B. We may

rewrite this as
1

2

∫
B

ρ|ωx|2 dx− γM(c0 · r(t)−1v0)

where ω is an abbreviation for the body angular velocity ωb from earlier. This

Lagrangian coincides with that for the free rigid body in (1.40) except for the final

term involving r(t). It is due to the presence of this term that the Lagrangian is

no longer left-invariant and now depends additionally on the configuration r(t)

in the group. The tangent vector Fw involved in the definition of the Legendre

transform in (1.31) is tangent to the fibres of the tangent bundle. The Legendre

transform is therefore unaffected when the Lagrangian is altered by a function

constant along these fibres. Consequently, the Legendre transform I on TSO(n)

for the heavy top is identical to that for the free rigid body as before. The

resulting Hamiltonian on the cotangent bundle is then

H(η) =
1

2
〈η, I−1(η)〉+ γM(c0 · r−1v0) (1.48)

for η ∈ T ∗r SO(n).

Although this Hamiltonian is no longer left-invariant it is invariant under the

left-multiplication of the subgroup SO(n)v0
∼= SO(n− 1). We are therefore in a

position to apply the Semidirect Product Reduction by Stages Theorem 1.3.4. To

apply the theorem we takeH to be SO(n) and V to be the standard representation

on Rn. As this representation is self dual we shall proceed to identify V with V ∗.

We then take p to be the unit vertical v0 and hence, Hp is SO(n)v0 . Implementing
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the theorem shows that the map sending η ∈ T ∗r SO(n) to the element

(L∗rη, r−1v0)

in se(n)∗ is the orbit quotient T ∗SO(n)/SO(n)v0 . We recognise L∗rη to be equal

to the body angular momentum L and r−1v0 to be the vertical vector viewed from

within the body frame, which we shall denote by p. The Hamiltonian in (1.48)

descends through this quotient to

H(L, p) =
1

2
〈L, ω〉+ γM(c0 · p). (1.49)

We may use the expression in (1.28) for the Poisson structure on a semidirect

product to find Hamilton’s equations of motion. To do this we must first find the

directional derivatives

δH

δL
= ω and

δH

δp
= γMc0.

It is then a straightforward calculation to derive the following reduced equations

in se(n)∗ for the heavy top in Rn

L̇ = − ad∗ω L− γMµ(p, c0) (1.50)

ṗ = −ωp

Example 1.4.4. [The heavy top in three dimensions] Upon identifying se(3)∗

with R3 × R3 the set of equations in (1.50) becomes

L̇ = L× ω +Mγ(p× c0) (1.51)

ṗ = p× ω

Recall that L is the body angular momentum and p is the location of the vertical

viewed from within the body frame. From Example 1.3.3 the Coadjoint orbits are

the level sets of the functions |p|2 and L·p. These functions are therefore constants

of motion which, as we now explain, correspond to classical conserved quantities.

If we resurrect our old notation from (1.38) we have Lb = Ad∗r−1 Ls ≡ r−1Ls.

The conserved quantity L · p = (r−1Ls) · (r−1v0) therefore corresponds to Ls · v0,

the component of angular momentum along the vertical in the space frame. The
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conserved quantity |p|2 = |v0|2 is equal to 1 since we assumed the vertical vector

to be normal.

1.4.6 The Lagrange top

The Lagrange top is the three-dimensional heavy top introduced in the last sub-

section but with an additional symmetry. Suppose there exists an axis within

the body which passes through the origin about which the body is invariant with

respect to rotations. This additional symmetry corresponds to the action of an

SO(2)-subgroup acting on SO(3) by right-multiplication. This extra symmetry

occurs when two of the diagonal entries in the inertia matrix are equal. Therefore,

without any loss of generality we shall suppose that I = diag(1, 1, I3). Further-

more, we shall write {ex, ey, ez} as the standard basis on R3 and suppose that

the vertical vector is v = ez. We shall also suppose that the initial centre of mass

vector c0 is aligned along the vertical c0 = |c0|ez.
As we are identifying so(3) ∼= so(3)∗ with R3 we may write the body angular

momentum as the vector L = (L1, L2, L3) and the body angular velocity as

ω = (ω1, ω2, ω3). They are related to each other by L = Iω. The Hamiltonian

(1.49) on se(3)∗ ∼= R3 × R3 becomes

H(L, p) =
1

2

(
L2

1 + L2
2 +

L2
3

I3

)
+M |c0|γp3.

Recall the Coadjoint action given in (1.27) and notice that this Hamiltonian is

invariant under the action of the subgroup SO(3)ez
∼= SO(2). This extra SO(2)-

symmetry is descended from the original right SO(2)-symmetry on T ∗SO(3).

Combining the results from Examples 1.2.1 and 1.2.2, the momentum map

µ : se(3)∗ → so(2)∗ ∼= R for the action of SO(2) on the Coadjoint orbits of se(3)∗

projects (L, p) onto the component −L3. Since this action is not free we do not

expect the quotient se(3)∗/SO(2) to be a smooth manifold, and so we realise this

quotient via the Hilbert map as before in Example 1.2.4 by taking generators of

the SO(2)-invariant ring on se(3)∗. This ring has 6 generators

L3, p3, L
2
1 + L2

2︸ ︷︷ ︸
k11

, L1p2 + L2p2︸ ︷︷ ︸
k12

, p2
1 + p2

2︸ ︷︷ ︸
k22

, L1p2 − L2p1︸ ︷︷ ︸
δ

.

which satisfy the algebraic relation δ2 = k11k22 − k2
12. We may therefore identify



1.4. APPLICATIONS TO MECHANICS 71

se(3)∗/SO(2) with the 5-dimensional semialgebraic variety of points

(L3, P3, k11, k12, k22, δ) ∈ R6

which satisfy δ2 = k11k22 − k2
12 along with the inequalities k11, k22 ≥ 0. In this

reduced space the Hamiltonian descends to

H =
1

2

(
k11 +

L2
3

I3

)
+M |c0|γp3. (1.52)

As we mentioned in Example 1.4.4, the functions L · p and |p|2 are constant

along any Hamiltonian flow in se(3)∗. By Noether’s theorem the momentum

L3 is also constant along the flow of any SO(2)-invariant function. It follows

that the symplectic leaves in this reduced space are contained to the connected

components defined by the level sets of three Casimirs:

angular momentum about the body axis, L3

angular momentum about the vertical, Lz = k12 + L3p3

modulus of p, k22 + p2
3

The modulus of p is set to 1 since v0 is a unit vector. The reduced spaces are

then parametrised by selecting values for the angular momentum L3 about the

body axis, and Lz about the vertical. For such a selection we may eliminate the

variables k22 and k12 and write the resulting space as the variety

δ2 = k11(1− p2
3)− (Lz − L3p3)2 (1.53)

for fixed values of Lz and L3.

The reduced spaces µ−1(O)/G are smooth symplectic manifolds when the

action of G on µ−1(O) is free. Otherwise, we expect a stratified space with

symplectic strata. The action of SO(2) on (L, p) ∈ se(3)∗ is free everywhere

except for when L and p are both colinear to the e3-axis. In this case one sees from

the definitions above that this must imply Lz = ±L3. Therefore, for when Lz 6=
±L3 we expect smooth 2-dimensional manifolds, and indeed, in such instances

the variety given in (1.53) is the graph of the function

(δ, p3) 7−→ k11 =
δ2 + (Lz − L3p3)2

1− p2
3
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which is diffeomorphic to R2 and illustrated in Figure 1.7(a). For Lz = +L3 6= 0

we obtain a singular variety as shown in Figure 1.7(b), and similarly in Fig-

ure 1.7(c) we have the corresponding picture for Lz = −L3 6= 0. Observe that

these stratified spaces both consist of the the point-strata at p3 = ±1 correspond-

ing to the non-free situation we described earlier where L and p are non-zero and

colinear to the e3-axis. In the most singular situation possible we have L = 0 and

consequently L3 = Lz = 0. The corresponding variety is given in Figure 1.7(d).

Once again, the singular stratum are the two points p3 = ±1.

Finally, by substituting the equations of motion from (1.51) into the definitions

for the algebraic invariants, we may derive the equations of motion on this full

reduced space.

L̇3 = 0 k̇11 = 2M |c0|γδ

ṗ3 = −δ k̇12 = L3δ

δ̇ = M |c0|γk22 + p3k11 − L3k12 k̇22 = 2p3δ

(1.54)

One may use these equations to verify that the three Casimirs and algebraic

relation are constant, as expected.
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k11

p3

δ

(a) L3 6= Lz

k11

p3

δ

(b) L3 = +Lz 6= 0

k11

p3

δ

(c) L3 = −Lz 6= 0

k11

p3

δ

(d) L3 = Lz = 0

Figure 1.7: Reduced spaces for the Lagrange top with respect to the left and
right SO(2)-symmetry about the vertical and body axes. The reduced spaces are
parametrised by the angular momentum of the body about its body axis L3, and
the angular momentum in space about the vertical Lz. The contours are the level
sets of the Hamiltonian H given in (1.52).
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1.5 The next two chapters

In the next chapter we will use the expressions in (1.22) and (1.25) for the Adjoint

and Coadjoint actions of a semidirect product to classify the orbits. From hereon

we will no longer use the upper and lowercase letters to distinguish between the

group action and its infinitesimal action as it shall be clear from the context. From

the example of SE(2) in Figure 1.2 we saw that although the orbits are different,

there appears to be a bijection between them which also preserves the homotopy

type. In [AM18] together with J. Montaldi we prove that this property holds in

SE(n) for all n. In the next chapter we obtain a stronger result by showing that

it holds for a much larger class of semidirect products, and exhibit the Poincaré

group as a particular example.

The final chapter has much more in common with the previous background

chapter. We will connect with the material developed earlier concerning the heavy

top to show that the phase space for two bodies on the 3-sphere is a double cover

over the phase space of a 4-dimensional heavy top. We can therefore apply

the Semidirect Product Reduction by Stages Theorem 1.3.4 just as we did for

the heavy top and show that the reduced spaces are coadjoint orbits of SE(4).

Analogously to the ordinary 3-dimensional Lagrange top, we then reduce the

space se(4)∗ once again by the action of SO(3). In exactly the same way as

before, we shall use the method of invariants to express these reduced spaces as

semialgebraic varieties and explicitly exhibit the reduced spaces and the equations

of motion.



Chapter 2

A Bijection Between the Adjoint

and Coadjoint Orbits of a

Semidirect Product

We prove that there exists a geometric bijection between the sets of adjoint and

coadjoint orbits of a semidirect product, provided a similar bijection holds for

particular subgroups. We also show that under certain conditions the homotopy

types of any two orbits in bijection with each other are the same. We apply our

theory to the examples of the affine group and the Poincaré group, and discuss

the limitations and extent of this result to other groups.

2.1 Background and outline

For a reductive Lie algebra the adjoint and coadjoint representations are isomor-

phic; consequently, the orbits are identical. In [BC77] a method is devised to

obtain normal forms for the adjoint orbits of any semisimple Lie algebra, real or

complex. These methods are then extended in [CVDK06a] and applied to the

Poincaré group. The Poincaré group is an example of a non-reductive group, and

consequently there is no reason, in general, to expect any relation between the

adjoint and coadjoint representations. Nevertheless, in [CVDK06a] a “curious

bijection” is found between the normal forms of both representations.

Before proceeding any further with the details, it might be pertinent to exhibit

a hands-on example of what we mean by such a bijection. In Figure 2.1 we

illustrate the orbits of the group Aff(1) of affine isomorphisms of the real line.

75
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The adjoint and coadjoint representations are not isomorphic, indeed, the orbits

are different; and yet, there seems to be some sort of bijection between the two.

In our work in [AM18] we explore in detail the orbits of the Euclidean group and

prove such a bijection result. However, for other semidirect products, such as the

Poincaré group, our methods no longer apply. Thus, the purpose of this chapter

is to prove a bijection result for a wider class of semidirect products.

The study of coadjoint orbits, particularly those of a semidirect product, is a

large and venerable subject; and one which we will mostly be able to sidestep.

For a greater insight into the physical significance and applications of this study,

consult [Bag98, MMO+07, CVDK06b, MRW84a, GS90], to name but a few.

In the first section we prove our central result: that their exists a geometric

bijection between the sets of adjoint and coadjoint orbits of a semidirect product

provided a similar bijection holds for particular subgroups. To be precise, for a

semidirect product G = H n V the particular subgroups in question are: the

Wigner little groups Hp ⊂ H which are the stabilisers of a vector p ∈ V ∗; and the

centralizer subgroups Hω ⊂ H which are the stabilisers of an element ω in the

Lie algebra of H. We prove that the bijection result holds if: there is a bijection

between the sets of adjoint and coadjoint orbits of the groups Hp; and a bijection

between the sets of orbits of Hω with respect to a particular representation and

its contragredient. Thus, the task of establishing an orbit bijection is reduced to

a similar task, albeit for a collection of ‘smaller’ groups.

In the second and third sections we demonstrate this bijection for the examples

of the affine group of isomorphims of affine space, and the Poincaré group of affine

linear maps preserving Minkowski space. The methods used in both examples

are the same, however the exposition is more straightforward for the affine group.

Therefore, the affine group is presented first and the Poincaré group second,

following closely the template laid out by the affine group’s example. In both

cases the hardest part of the proof is proving the bijection result for the centralizer

subgroups.

Our fourth section demonstrates a method for proving that two orbits in bi-

jection with each other are homotopy equivalent. This relies on showing that the

bijected orbits corresponding to the little subgroups and centralizer group orbits

satisfy a property which we call being zigzag related. This is an equivalence rela-

tion defined on homogeneous spaces which is stronger than that of being homo-

topy equivalent. Using this method we show that an adjoint and coadjoint orbit
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of the Poincaré group corresponding under the bijection are homotopy equivalent

to each other.

We end with some remarks concerning the wider applicability of our methods.

2.2 A bijection between orbits

2.2.1 The coadjoint orbits

Let H be some Lie group, V a representation of this group, and G the semidirect

product HnV . The dual g∗ is canonically isomorphic to h∗×V ∗ and the coadjoint

action given by [Raw75]

Ad∗(r,d)(L, p) = (Ad∗r L+ µ(r∗p, d), r∗p) . (2.1)

Here (r, d) ∈ G and (L, p) ∈ h∗× V ∗ = g∗. The map µ : V ∗× V −→ h∗ is defined

by

〈µ(p, v), ω〉 = 〈p, ωv〉

for all ω ∈ h. The subgroup Hp = {r | r∗p = p} is referred to in the literature as

the little group. The Lie algebra hp of this group satisfies µ(p, V ) = h◦p, where h◦p

denotes the annihilator of the subalgebra. We now reproduce the result given in

[Raw75] which effectively parametrises the orbits in g∗ by an orbit, say through

p in V ∗, together with a little-group orbit in h∗p.

Consider the set

Π =
{

(l, p) | l ∈ h∗p, p ∈ V ∗
}
, (2.2)

and a coadjoint orbit O∗ in g∗. There is a map g∗ −→ Π given by sending (L, p)

to (ι∗pL, p), where ι∗p is the canonical projection of h∗ onto h∗p. Let Y denote the

image of O∗ under this map. We may define an action of H on Π by setting

r(l, p) = (rl, r∗p), where rl is the form in h∗rp given by satisfying

〈rl, ω〉 = 〈l,Adr−1 ω〉

for all ω ∈ hrp. Since ι∗p : h∗ −→ h∗p commutes with the action of Hp and has kernel

ker ι∗p = h◦p, the space Y is an orbit of H in Π, and the map O∗ −→ Y becomes an

H-equivariant bundle with affine fibres h◦p. The space Y is also an H-equivariant

bundle over an orbit in V ∗ given by projecting (l, p) onto the second factor. The
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fibre of this projection above p is the coadjoint orbit through l ∈ h∗p, the so-called

little-group orbit. Conversely, given an orbit Y in Π there exists a coadjoint orbit

O∗ ⊂ g∗ which is mapped to Y . For (l, p) ∈ Y the corresponding coadjoint orbit

is that through (L, p), where L is any element with ι∗pL = l. In the literature the

orbits of Π are referred to as bundles of little-group orbits.

Theorem 2.2.1 ([Raw75]). There is a bijection between the set of coadjoint orbits

of G and the set of orbits of Π. Given an orbit O∗ and corresponding bundle Y ,

there is a G-equivariant affine bundle O∗ → Y .

2.2.2 The adjoint orbits

We can adapt the bundle-of-little-group-orbits construction to the adjoint action,

and obtain an analogous classification of orbits in g. For (ω, v) ∈ g the adjoint

action is [GS90, Section 19]

Ad(r,d)(ω, v) = (Adr ω, rv − (Adr ω) d) . (2.3)

The isotropy subgroup Hω = {r | Adr ω = ω} is called the centralizer group.

Lemma 2.2.2. There is a canonical isomorphism between the quotient space

V/ Imω and (kerω∗)∗ (here ω∗ denotes the adjoint of the linear map ω). Further-

more, this is an intertwining map for the representations of Hω on these spaces.

Proof. The result follows by dualizing the exact sequence, kerω∗ ↪→ V ∗
ω∗
−→ V ∗,

whose arrows all commute with Hω.

Consider the set

Σ = {(ω, x) | ω ∈ h, x ∈ (kerω∗)∗} . (2.4)

There is a map g −→ Σ which sends (ω, v) to (ω, x), where x is the element

mapped from [v] ∈ V/ Imω under the isomorphism in Lemma 2.2.2. Now let O
be an adjoint orbit and let X denote the image of this orbit under the map into

Σ. In the same way as we did for the coadjoint orbits, we can equip Σ with an

H-action and establish O −→ X as an H-equivariant bundle with fibres Imω.

Specifically, we define r · (ω, x) to be (Adr ω, r · x) where r · x is the element in

(ker Adr ω
∗)∗ = (r kerω∗)∗ which satisfies

〈r · x, p〉 = 〈x, r−1p〉
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for all p ∈ ker Adr ω
∗ = r kerω∗. The space X is itself an H-equivariant bundle

over an adjoint orbit through, say ω in h, with fibre above ω equal to an orbit

of Hω in (kerω∗)∗, what we shall call a centralizer group orbit. In the same way

that Theorem 2.2.1 is proven, we can establish an analogous theorem.

Theorem 2.2.3. There is a bijection between the set of adjoint orbits of G and

the set of orbits of Σ. Given an orbit O and corresponding bundle X, there is a

G-equivariant affine bundle O → X.

2.2.3 Constructing the bijection

Suppose we have an action of a group G on X, and of H on Y . We will not give a

precise meaning to the existence of a ‘geometric orbit bijection’ between the two

actions. For us an orbit bijection will merely mean a bijection between the sets

of orbits in X with orbits in Y . This is a weak notion and does not capture the

‘geometric’ sense of an orbit bijection as that given in the example from Figure 2.1.

To justify more rigorously what a ‘geometric’ orbit bijection might mean would

be a digressive and ultimately unnecessary exercise; the geometric nature of our

bijections (whatever that may mean) will be clear from the construction we now

give and from the examples to follow.

As we have seen, there is a bijection between the set of adjoint orbits of G

with the set of H-orbits in Σ, and a bijection between the coadjoint orbits of G

with the H-orbits in Π. Our strategy for showing an adjoint and coadjoint orbit

bijection will be to exhibit a space ∆ equipped with an action of H for which

there is an orbit bijection with both Π and Σ.

Consider the diagonal action of H on the product h× V ∗. We introduce the

H-invariant subset ∆ ⊂ h× V ∗ given by the three equivalent definitions

∆: = {(ω, p) | ω∗p = 0} = {(ω, p) | ω ∈ hp} = {(ω, p) | p ∈ kerω∗} . (2.5)

Observe that any orbit in ∆ is two different H-equivariant bundles given by

projecting onto either the first or second factor. On the one hand, an orbit is a

bundle over an orbit through p ∈ V ∗ with fibre equal to the adjoint orbit through

ω ∈ hp. On the other hand, it is also a bundle over the adjoint orbit through

ω ∈ h with fibre equal to the Hω-orbit through p ∈ kerω∗.

Theorem 2.2.4 (Orbit bijection). Suppose that for any p ∈ V ∗ there exists

a bijection between the set of adjoint and coadjoint orbits of Hp. Additionally,
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suppose there is a bijection between the set of Hω-orbits on kerω∗ with the set

of Hω-orbits of the contragredient representation on (kerω∗)∗. Then there exists

a bijection between the set of orbits in ∆ with each of the sets of adjoint and

coadjoint orbits of G.

Proof. Any coadjoint orbit of G uniquely determines an orbit Y through, say

(l, p) in Π. The space Y is a bundle over the orbit through p ∈ V ∗ whose fibre

over p is the coadjoint orbit through l ∈ h∗p. Contrast this with an orbit through

(ω, p) in ∆: a bundle over the orbit through p ∈ V ∗ whose fibre over p is an

adjoint orbit in hp. Since there is a bijection between adjoint and coadjoint orbits

of Hp, let ω be any element belonging to the adjoint orbit which is in bijection

with the coadjoint orbit through l. We designate the orbit Z through (ω, p) to

correspond to the coadjoint orbit we selected at the beginning.

This correspondence currently depends on which point p we select in the orbit

through V ∗. For instance, had we taken the point (rl, rp) ∈ Y instead, then the

bijection between adjoint and coadjoint orbits of Hrp may not result in the same

choice of designated orbit in ∆ as it did for Hp. To ward against this we make an

additional assumption about our bijections. For a given p ∈ V ∗ let O and O∗ be

orbits in hp and h∗p respectively which are in bijection with each other. We insist

that for any r ∈ H the bijection between adjoint and coadjoint orbits of Hrp

is given by bijecting the adjoint orbit AdrO with the coadjoint orbit Ad∗r−1 O∗
(note that Adr : hp −→ hrp is an isomorphism).

With this assumption on the ‘consistency’ of the Hp-orbit bijections, the cor-

respondence we described above no longer depends on the point (l, p) ∈ Y , but

instead only depends on the orbit Y itself. In this way we define a bijection

between the orbits of Π with the orbits of ∆.

The proof for the adjoint orbits is analogous so we will merely sketch it. It

suffices to define a bijection between orbits in Σ with those in ∆. Orbits in both

these spaces are bundles over adjoint orbits in h but whose fibres are either Hω-

orbits in kerω∗ or its dual. Making similar assumptions about the Hω-bijections

being ‘consistent’ we may replicate the construction given for the coadjoint orbits

to define an orbit-to-orbit bijection between Σ and ∆.



2.3. THE AFFINE GROUP 81

2.3 The affine group

2.3.1 Preliminaries

The affine group Aff(V ) of a vector space V is the group of affine linear trans-

formations of V . It is a semidirect product

Aff(V ) = GL(V ) n V

with respect to the defining representation of GL(V ). If we choose a basis for V

then this group is isomorphic to the matrix group{(
r d

0 1

) ∣∣∣ r ∈ GL(V ), d ∈ V
}
. (2.6)

If we identify V with its dual using the standard inner product corresponding to

our choice of basis, then the group Aff(V ∗) is isomorphic to{(
r−1 0

dT 1

) ∣∣∣ r ∈ GL(V ), d ∈ V
}
. (2.7)

For when V = Rn we write Aff(V ) = Aff(n) and Aff(V ∗) = Aff(n∗). Observe

that the Lie algebra aff(n) is isomorphic to the set of (n + 1) square matrices

whose final row consists of zeros, and aff(n∗) to the set of (n+ 1) square matrices

whose final column consists of zeros.

Proposition 2.3.1. For v ∈ Rn+1 non-zero we have that the isotropy subgroup

GL(n+1)v is isomorphic to Aff(n∗). Similarly, for p a non-zero linear functional

on Rn+1, the subgroup GL(n+ 1)p is isomorphic to Aff(n).

Proof. Since GL(n + 1) acts transitively on non-zero vectors we may suppose

without loss of generality that v is equal to the final basis vector for our choice

of basis. The subgroup which preserves this vector is then precisely that given in

Equation (2.7). The dual action on Rn+1 is given by right multiplication on row

vectors. The stabiliser of the final basis element now corresponds to matrices as

in Equation (2.6).

Example 2.3.1 (Orbits of Aff(1)). Denote group elements by (r, d) ∈ GL(1) n
R1 = Aff(1) and Lie algebra elements by (ω, v) ∈ gl(1) × R1 = R × R. We will
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v

ω

(a) Adjoint orbits

p

L

(b) Coadjoint orbits

Figure 2.1: Adjoint and coadjoint orbits of Aff(1).

identify aff(1) with its dual by setting 〈(L, p), (ω, v)〉 = Lω+pv. It can be shown

that the adjoint action (see (2.3)) is given by

Ad(r,d)(ω, v) = (ω, rv − ωd)

and the coadjoint action (see (2.1)) by

Ad∗(r,d)(L, p) =
(
L+ r−1pd, r−1p

)
.

In Figure 2.1 we illustrate these orbits. Observe that there is indeed a ‘geometric’

bijection between the orbits: both origins to each other, the full-line adjoint orbits

to the remaining coadjoint point orbits, and the two-half-line adjoint orbit to the

open, dense coadjoint orbit.

2.3.2 The centralizer group representation

For Theorem 2.2.4 to hold we require a bijection result for the Hp- and Hω-orbits.

We will begin with the representation of Hω on kerω∗ and its dual.

Let Φ denote the representation

Φ: Hω −→ GL(kerω∗)
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given by restriction of r ∈ Hω to kerω∗. The group Hω = GL(n)ω is the sub-

group of all isomorphisms of V which commute with ω. Equivalently, it is the

subgroup of all isomorphisms of V ∗ which commute with ω∗. Observe that Hω

must therefore preserve the flag

Fω∗ =
(
kerω∗ ⊃ Imω∗ ∩ kerω∗ ⊃ Imω∗2 ∩ kerω∗ ⊃ . . .

)
. (2.8)

Proposition 2.3.2. The group Φ(Hω) is the group of all isomorphisms of kerω∗

which preserve the flag Fω∗.

Proof. Define the length l = l(Fω∗) of the flag Fω∗ to be the least positive integer

with Imω∗l ∩ kerω∗ = {0} . The length of Fω∗ is finite and the proposition is

trivially true for when l = 0. For when l = 1 we have the direct sum decom-

position V ∗ = Imω∗ ⊕ kerω∗ as Imω∗ ∩ kerω∗ = {0}. The proposition is true

for this case as we may set r to be the identity on Imω∗ and equal to any iso-

morphism on kerω∗. Suppose for induction that the result is true for all ω∗ with

l(Fω∗) < l(Fω∗). For a given isomorphism r of kerω∗ preserving Fω∗ it suffices to

show that it may be extended to an isomorphism of V ∗ which commutes with ω∗.

Let ω∗ denote the restriction of ω∗ to Imω∗. The flag Fω∗ is equal to the

subflag

Imω∗ ∩ kerω∗ ⊃ Imω∗2 ∩ kerω∗ ⊃ . . .

of Fω∗ , and therefore l(Fω∗) < l(Fω∗). By the induction hypothesis, we may

extend the definition of r to an isomorphism of Imω∗ in such a way that it

commutes with ω∗.

Now that we have defined r on Imω∗+ kerω∗, let y1, . . . , ym be vectors in V ∗

such that {[y1], . . . , [ym]} is a basis of V ∗/(Imω∗ + kerω∗). We define each ryi

to be equal to any element of V ∗ which satisfies ω∗ryi = rω∗yi, and extend the

definition linearly over the yis. Observe that r commutes with the isomorphism

V ∗/(Imω∗ + kerω∗)
∼=−→ Imω∗/ Imω∗2 (2.9)

given by sending the class [v] to [ω∗v]. We therefore have extended r to an

isomorphism over all of V ∗ which commutes with ω∗ as desired.
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2.3.3 Establishing the orbit bijection

We are now in a position to show that there is a bijection between the set of orbits

of Hω on kerω∗ with the set of Hω-orbits on (kerω∗)∗. We begin by rewriting

the flag Fω∗ in (2.8) as a strictly descending sequence of subspaces starting at

kerω∗ ⊂ V ∗ and terminating at {0}

Fω∗ = (kerω∗ = E0 ) E1 ) E2 ) · · · ) Ek+1 = {0}) .

The previous proposition tells us that Hω acts on kerω∗ by all isomorphisms

preserving this flag. Therefore, there are precisely (k+ 2) orbits given by the sets

E0 \ E1, E1 \ E2, . . . , Ek \ Ek+1, Ek+1 = {0}. (2.10)

The contragredient representation ofHω on (kerω∗)∗ must act by all isomorphisms

which preserve the dual flag F ◦ω∗ given by the ascending sequence of annihilators

F ◦ω∗ =
(
{0} ( E◦1 ( E◦2 , . . . , E

◦
k ( E◦k+1 = (kerω∗)∗

)
. (2.11)

There are thus (k + 2) orbits in (kerω∗)∗ given by the sets

E◦0 = {0}, E◦1 \ E◦0 , , E◦2 \ E◦1 , . . . , E◦k+1 \ E◦k . (2.12)

We define the bijection between the sets of orbits in (2.10) and (2.12) to be given

by

Ek+1 ←→ E◦0 , and (Ej \ Ej+1)←→ (E◦j+1 \ E◦j ) for 0 ≤ j ≤ k. (2.13)

Theorem 2.3.3 (Affine-group orbit bijection). There is a bijection between the

set of GL(n)-orbits through ∆ with each of the sets of adjoint and coadjoint orbits

of Aff(n).

Proof. The groups Hp are isomorphic to either GL(n) if p = 0 or Aff(n−1) for p 6=
0 (see Proposition 2.3.1). For GL(n) the adjoint and coadjoint representations

are isomorphic, therefore there is trivially a bijection between the two sets of

orbits. For Aff(n − 1) we suppose for induction that the result is true, noting

from Figure 2.1 that this is true for Aff(1). The Hω-orbit bijection is given in

(2.13) and thus the theorem follows by a direct application of Theorem 2.2.4
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∆n

gl(n) ∆n−1

gl(n− 1) ∆2

gl(2) ∆1

Figure 2.2: Hierarchy of orbit types for Aff(n).

together with induction on n.

2.3.4 An iterative method for obtaining orbit types

Consider the set of orbits in ∆ = ∆n for G = Aff(n). The set of orbits through

(ω, 0) ∈ ∆ is in bijection with the set of adjoint orbits of h = gl(n). Since the

action of H on non-zero vectors in V ∗ is transitive, the remaining orbits are those

through the points (ω, p), for some fixed non-zero p. The set of all such orbits

is in bijection with the set of adjoint orbits of hp, which by Proposition 2.3.1 is

isomorphic to aff(n−1). By Theorem 2.3.3, the set of adjoint orbits in aff(n−1)

is itself in bijection with the set of GL(n−1)-orbits through ∆n−1. We may apply

the same argument iteratively to obtain a hierarchy of orbit types as demonstrated

in Figure 2.2

Theorem 2.3.4. The set of orbits in ∆ for G = Aff(n) with n > 1 is in bijection

with the union of the sets of adjoint orbits for the groups GL(k) for 2 ≤ k ≤ n

and Aff(1).

2.4 The Poincaré group

2.4.1 Preliminaries

Let V be a real n-dimensional vector space equipped with a non-degenerate,

symmetric bilinear form Q of signature (m,n). Vectors v are partitioned into

three sets depending on the value of Q(v, v): if it is positive v is said to be timelike,

spacelike if negative, and null if it is zero. All such vectors spaces are isomorphic
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to Minkowski space Rm+n. Letting {e1, . . . , em, f1, . . . , fn} denote the standard

basis of Rm+n the bilinear form is given by Q(ei, fj) = 0, Q(ei, ej) = +δij, and

Q(fi, fj) = −δij.
The indefinite orthogonal group or Lorentz group O(V ;Q) is the group of

isomorphisms of V which preserve Q. The Poincaré group is the semidirect

product E(V ;Q) = O(V ;Q)nV . For Minkowski space we write the Lorentz and

Poincaré groups as O(m,n) and E(m,n), and their Lie algebras by so(m,n) and

se(m,n) respectively.

Proposition 2.4.1. Let τ, σ and ν be non-zero vectors in Rm+n which are time-

like, spacelike and null respectively. Then we have isomorphisms: O(m,n)τ ∼=
O(m− 1, n), O(m,n)σ ∼= O(m,n− 1) and O(m,n)ν ∼= E(m− 1, n− 1).

Proof. The case for the timelike and spacelike vectors follows from the fact that

the orthogonal complement to these vectors has signature (m−1, n) and (m,n−1)

respectively and is an invariant subspace. For the non-zero null vector, this is

proven in [CVDK06a, Section 2].

Example 2.4.1 (Orbits of E(1, 1)). The group O(1, 1) is the group of Lorentz

boosts, which we write as rψ (where ψ denotes the rapidity). Elements in E(1, 1)

will be denoted by (rψ, d) ∈ O(1, 1) n R1+1 and in the Lie algebra by (ω, v) ∈
so(1, 1)× R1+1. The adjoint action can be shown to be (see (2.3))

Ad(rψ ,d)(ω, v) = (ω, rψv − ωd) .

Identify se(1, 1) with its dual by setting 〈(L, p), (ω, v)〉 = Trace(LTω) + pTQv

where now Q denotes the matrix diag(1,−1). The coadjoint action may be shown

to be (see (2.1))

Ad∗(rψ ,d)(L, p) = (L+ µ(rψp, d), rψp) ,

where µ(p, v) = (pvT − vpT )Q. Here there exists the following orbit bijection:

both origins to each other; adjoint orbits through (ω, v) for ω 6= 0 to coadjoint

orbits through (L, p) = (ω, 0); and coadjoint orbits through (L, p) for p 6= 0 to

adjoint orbits through (ω, v) = (0, p).

2.4.2 The centralizer group representation

As with the affine group, the hardest part of our method will be finding an orbit

bijection for the centralizer orbits of Hω on kerω∗ and its dual. From now on, a
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form on a vector space will mean a symmetric or skew-symmetric bilinear form.

Let H be the group O(V ;Q) of all isomorphisms of V which preserve a given

non-degenerate form Q. For a given element ω in the Lie algebra h of H we

consider the centralizer subgroup Hω = {r ∈ H | rω = ωr} and the representation

Φ: Hω −→ GL(kerω∗)

given by restricting r to kerω∗. As ω is a skew-self-adjoint operator with respect

to Q we may identify V with V ∗ and ω with −ω∗ and from now on consider

the action of Hω on kerω. The group Hω is the subgroup of all isomorphisms

preserving Q which commute with ω and therefore the following flag is preserved.

Fω =
(
kerω ⊃ Imω ∩ kerω ⊃ Imω2 ∩ kerω ⊃ . . .

)
. (2.14)

Proposition 2.4.2. In addition to preserving the flag Fω the group Φ(Hω) also

preserves non-degenerate forms defined on the quotient spaces

Imωm ∩ kerω/ Imωm+1 ∩ kerω (2.15)

for m ≥ 0 and where ω0 is the identity. For ωmx and ωmy belonging to Imωm ∩
kerω, the form is given on the quotient space in Equation (2.15) by

〈[ωmx], [ωmy]〉 := Q(ωmx, y). (2.16)

Proof. Suppose for induction that V = Imωk is equipped with a non-degenerate

form given by Q(ωkx, ωky) = Q(ωkx, y); this is true for k = 0. Let ω denote the

restriction of ω to V .

Observe that ω is skew-self-adjoint with respect to Q and so (kerω)⊥ = Imω.

Therefore Imω ∩ kerω is the null space for kerω. It follows that the quotient

kerω/ Imω ∩ kerω inherits a non-degenerate form by restriction of Q. By noting

that Imω = Imωk+1 and kerω = Imωk ∩ kerω, we see that we have proved the

result for m = k + 1.

The image Imω is also equipped with a non-degenerate form given by

Q(ωa, ωb) = Q(ωa, b).

Recalling that Imω = Imωk+1 and writing a = ωkx and b = ωky, we therefore see
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that Imωk+1 is equipped with a non-degenerate form given by Q(ωk+1x, ωk+1y) =

Q(ωk+1x, y), and thus the result is proven by induction on k.

Theorem 2.4.3. The subgroup Φ(Hω) ⊂ GL(kerω) is precisely equal to the group

of all isomorphisms of kerω which preserve the flag Fω together with all the forms

given in Equation (2.16) on the quotient spaces.

Proof. For when l(Fω) = 1 we have Imω ∩ kerω = {0} and thus we have the

orthogonal, direct sum decomposition V = Imω ⊕ kerω. The theorem is true in

this case as we may define r to be the identity on Imω, and any isomorphism

on kerω which preserves Q. Suppose for induction that the theorem is true for

all triples (V ,Q, ω) with l(Fω) < l(Fω). We begin by fixing an isomorphism r of

kerω which preserves Fω together with all of its forms. It suffices to show that r

may be extended to an isomorphism of V which preserves Q and commutes with

ω.

Let ω denote the restriction of ω to V = Imω and recall that this is equipped

with the non-degenerate form Q(ωx, ωy) = Q(ωx, y). We leave it as an exercise

to show that the flag Fω is equal to the subflag

Imω ∩ kerω ⊃ Imω2 ∩ kerω ⊃ . . .

of Fω and that moreover, the forms on the quotient spaces coincide. By the

induction hypothesis, since l(Fω) < l(Fω), we can extend r to an isomorphism of

Imω which commutes with ω and preserves Q.

Now that we have defined r on Imω + kerω, let y1, . . . , ym be vectors in V

such that {[y1], . . . , [ym]} is a basis of V/ Imω + kerω. We define each ryi to be

equal to any element of V which satisfies ωryi = rωyi, and extend the definition

linearly over the yis. Observe that r then commutes with the isomorphism

V/(Imω + kerω)
∼=−→ Imω/ Imω2 (2.17)

given by sending the class [v] to [ωv]. We therefore have extended r to an iso-

morphism over all of V which additionally preserves the form Q on Imω, and

commutes with ω. This implies that Q(rωx, ry) = Q(ωx, y) for all ωx ∈ Imω

and y ∈ V .

It remains then to show that Q(rx, ry) = Q(x, y) for x and y not in Imω. We

will apply a Gram-Schmidt style procedure to alter the definition of each ryi to
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force this to hold. Let x1, . . . , xm be vectors in kerω such that {[x1], . . . , [xl]} is

a basis of kerω/ Imω ∩ kerω. Observe that {[x1], . . . , [xl], [y1], . . . , [ym]} is then a

basis of V/ Imω. It therefore suffices to show that r preserves Q when restricted

to the elements x1, . . . , xl, y1, . . . , ym.

We begin by claiming that Q(rxi, rxj) = Q(xi, xj); this follows from the fact

that r preserves the form Q restricted to the quotient kerω/ Imω ∩ kerω. As the

pairing between kerω and V/ Imω is non-degenerate, it follows that there exist

ki ∈ kerω for each 1 ≤ i ≤ m which satisfy

Q(ki, rxj) = Q(yi, xj)−Q(ryi, rxj)

for all 1 ≤ j ≤ l. Redefine each ryi to now equal ryi +ki and extend linearly over

the yis. Verify that Q(ryi, rxj) = Q(yi, xj) and ωryi = rωyi for all pairs of i and

j.

As the isomorphism in Equation (2.17) commutes with r it follows that the

elements [ωry1], . . . , [ωrym] form a basis of Imω/ Imω2 = V / Imω. As the pairing

between kerω = Imω∩kerω and V / Imω is non-degenerate, we may sequentially

construct ωzi ∈ kerω, for each 1 ≤ i ≤ m, which satisfy

Q(ωzi, ωryj) = Q(yi, yj)−Q(ryi, ryj)−Q(ryi, ωzj)

for all j < i; and, if Q is symmetric, 2Q(ωzi, ωryi) = Q(yi, yi) − Q(ryi, ryi). We

once again alter the definition of ryi and change it to equal ryi + ωzi. One can

now verify that Q(ryi, rxj) = Q(yi, xj), Q(ryi, ryj) = Q(yi, yj), Q(ryi, rωx) =

Q(yi, ωx), and that rωyi = ωryi for all pairs of i and j, and all ωx ∈ Imω. By

extending the definition of r linearly over the yis we thus obtain an isomorphism

of V which commutes with ω and preserves Q as desired.

2.4.3 Establishing the orbit bijection

To apply Theorem 2.2.4 and prove an orbit bijection result for the Poincaré

group we need to demonstrate an orbit bijection for the little subgroups Hp and

the centralizer groups Hω. We begin by considering the representation of Hω on

kerω for where H = O(m,n). Rewrite the flag in Equation (2.14) as a strictly

descending sequence of subspaces

Fω = (kerω = E0 ) E1 ) E2 ) · · · ) Ek+1 = {0}) . (2.18)
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Let Qj denote the non-degenerate form defined on each quotient Ej/Ej+1 given

by Equation (2.16) in Proposition 2.4.2. From Theorem 2.4.3, the representation

of Hω acts on kerω by all isomorphisms which preserve Fω together with all of the

forms Qj. We therefore see that any orbit which is not Ek = {0} is contained to

a set of the form Ej \Ej+1 for 0 ≤ j ≤ k. Suppose the element p belongs to such

an orbit. We remark that any other element p̃ belonging to the same non-zero

equivalence class of [p] ∈ Ej/Ej+1 also belongs to the same orbit. As Hω must

preserve the form Qj it follows that the orbit through p uniquely defines an orbit

through [p] of O(Ej/Ej+1;Qj). In summary then, the Hω-orbits correspond to

the origin {0}, and an integer 0 ≤ j ≤ k together with an orbit of O(Ej/Ej+1;Qj)

in Ej/Ej+1.

The contragredient representation of Hω on (kerω)∗ must act by the group of

all isomorphisms which preserve the dual flag

F ◦ω =
(
{0} ( E◦1 ( E◦2 ( · · · ( E◦k+1 = (kerω)∗

)
together with the non-degenerate co-formsQ∗j defined on each quotient E◦j+1/E

◦
j
∼=

(Ej/Ej+1)∗. Repeating the argument in the previous paragraph, we see that the

orbits are either the origin, or contained to the sets of the form E◦j+1 \ E◦j for

each 0 ≤ j ≤ k, and that such an orbit determines an orbit of O(E◦j+1/E
◦
j ;Q

∗
j) in

E◦j+1/E
◦
j .

For any j with 0 ≤ j ≤ k consider the map ϕ : Ej → E◦j+1 given by satisfying

〈ϕ(p), q〉 = Qj([p], [q]) (2.19)

for all p, q ∈ Ej. The map ϕ descends to the quotient spaces to give an isomor-

phism ϕ : Ej/Ej+1 → E◦j+1/E
◦
j which preserves the forms; that is ϕ∗Q∗j = Qj.

This map therefore establishes the bijection.

Proposition 2.4.4. There is a bijection between the set of Hω-orbits in kerω

with the set of Hω-orbits in (kerω)∗. Any orbit through a non-zero p ∈ kerω is

contained to a set Ej \ Ej+1 with respect to the flag Fω given in (2.18) and for

0 ≤ j ≤ k. The corresponding bijected orbit is that through ϕ(p) ∈ E◦j+1 \ E◦j
where ϕ is given in (2.19). The orbits equal to the origin are both bijected with

each other.

Theorem 2.4.5 (Poincaré-group orbit bijection). There is a bijection between
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the set of O(m,n)-orbits through ∆ with each of the sets of adjoint and coadjoint

orbits of E(m,n).

Proof. To begin with, theHω-orbit bijection follows from Proposition 2.4.4. There-

fore, in order to apply Theorem 2.2.4 it remains to show that there is a bijection

between the adjoint and coadjoint orbits of the Hp little groups.

Since the vector representation of O(m,n) is isomorphic to its dual, the sub-

groups Hp for p ∈ V ∗ are isomorphic to the stabiliser subgroups for different

vectors in V . From Proposition 2.4.1 these groups are isomorphic to O(m,n),

O(m − 1, n), O(m,n − 1) and E(m − 1, n − 1) for when p is zero, timelike,

spacelike, and non-zero and null respectively (and for whenever these groups are

defined). For the first three cases, these groups are semisimple, and thus the

adjoint and coadjoint representations are isomorphic; consequently they trivially

exhibit an orbit bijection. Therefore the theorem is true for when G is a Eu-

clidean group E(m, 0) or E(0, n). For when Hp
∼= E(m − 1, n − 1) we proceed

by induction, assuming that the orbit bijection is already true for this group; our

base cases being the groups E(m, 0) and E(0, n), and E(1, 1) which we verified

in Example 2.4.1.

2.4.4 An iterative method for obtaining orbit types

Consider the set of orbits in ∆ = ∆m,n for G = E(m,n). Identify V with its

dual using the form Q and recall that the orbits of V correspond to the sets:

Q(v, v) equal to a non-zero constant, v = 0, and the set of non-zero null vectors.

It follows that every orbit of ∆m,n contains a point of the form: (ω, 0), (ω, tτ),

(ω, sσ), and (ω, ν); for τ , σ, and ν fixed timelike, spacelike, and non-zero and

null vectors respectively, and scalars t, s > 0. From Proposition 2.4.1, it follows

that the set of orbits through these points is in bijection with the set of adjoint

orbits of so(m,n), so(m− 1, n)× R>0
t , so(m,n− 1)× R>0

s , and se(m− 1, n− 1)

respectively. By Theorem 2.4.5, the set of adjoint orbits of se(m − 1, n − 1) is

itself also in bijection with the set of O(m − 1, n − 1)-orbits through ∆m−1,n−1.

We may apply the same argument iteratively to obtain a hierarchy of orbit types,

as demonstrated in Figure 2.3.

Theorem 2.4.6. The set of orbits in ∆ for G = E(m,n) is in bijection with the

union of the sets of adjoint orbits of O(m − k, n − k) for 0 ≤ k ≤ min{m,n},
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∆m,n

so(m,n) so(m− 1, n)× R>0
t so(m,n− 1)× R>0

s

∆m−1,n−1

∆m−n,0

so(m− n)∗ so(m− n− 1)∗ × R>0
t

Figure 2.3: Hierarchy of orbit types for E(m,n) with m > n.

O(m−k−1, n−k)×R>0
t for 0 ≤ k ≤ min{m−1, n}, and O(m−k, n−k−1)×R>0

s

for 0 ≤ k ≤ min{m,n− 1}.

Example 2.4.2 (Orbit types for E(1, 3)). The set of orbits in ∆1,3 forG = E(1, 3)

is in bijection with the set of adjoint orbits of O(1, 3), O(0, 3)×R>0
t , O(1, 2)×R>0

s ,

O(0, 2), and O(0, 1)× R>0
s . We may find explicit normal forms for these orbits.

– The group O(1, 3) is isomorphic to SL(2;C) viewed as a real Lie group.

The adjoint orbits of this group are equal to the sets of 2 × 2 traceless,

complex matrices ξ with a fixed non-zero determinant ζ = det ξ, along with

the origin ξ = 0, and the nilpotent orbit through the nilpotent Jordan block

ξ = N2.

– The adjoint orbits of O(3) are spheres parametrised by their radius ρ ≥ 0.

– The adjoint representation of O(1, 2) is isomorphic to the vector representa-

tion on R1+2. The orbits are equal to the sets of v ∈ R1+2 with Q(v, v) = c

for c 6= 0, along with the origin v = 0, and the set of non-zero null vectors.

– The adjoint orbit of O(2) through x ∈ so(2) ∼= R is equal to the set {x,−x}.
The orbits are therefore parametrised by x ≥ 0.

– The group O(1) has a single point orbit.
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We enumerate a list of orbit types for E(1, 3) demonstrated in Table 2.1. We

count fourteen orbit types collected into five groups. This coincides with that

given in [CVDK06a] in Tables 3 and 6.

Adjoint orbit normal forms

O(1, 3) ζ = x+ iy = det ξ ∈ C \ {0}
ζ = 0

ξ = N2

O(3)× R>0
t (t, ρ), t > 0, ρ > 0

(t, 0), t > 0, ρ = 0

O(1, 2)× R>0
s (s, c), s > 0, c = Q(v, v) ∈ R \ {0}

(s, 0), s > 0, c = 0

s > 0, for v a non-zero null vector in R1+2

O(2) x > 0

x = 0

O(1)× R>0
s s > 0

Table 2.1: Orbit types for E(1, 3).

2.5 A homotopy equivalence between orbits

2.5.1 Showing bijected orbits are homotopy equivalent

Consider two bijected orbits O ⊂ g and O∗ ⊂ g∗. Recall that they are both affine

bundles over their corresponding orbits X ⊂ Σ and Y ⊂ Π respectively and

hence each share the same homotopy type as them. In Theorem 2.2.4 the orbit

bijection is established using an intermediate orbit Z in ∆ to which both X and

Y correspond. Our strategy will be to show that both X and Y are homotopy

equivalent to Z and therefore so too are O and O∗.
For a group H suppose we have a finite collection of H-spaces together with

H-equivariant bundle maps connecting them in the sense below.

E1 E2 En+1

F1 Fn

(2.20)

If the fibres of all these bundles are contractible then we will say that any two
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of these spaces are zigzag related. There are now two things to note: that being

zigzag-related is an equivalence relation on H-spaces; and, that being zigzag

related also means that the two spaces have the same homotopy type.

Now let B be a G-space and for some b ∈ B let H denote the isotropy subgroup

Gb. The map G→ B given by sending g to gb defines a principal H-bundle over

B. Now suppose that E is some H-space and recall the definition of the associated

fibre bundle BE := (G×E)/H; a bundle over B with fibre E. This is given by the

group quotient of G× E with respect to the H-action h(g, x) = (gh, h−1x). The

space BE also inherits a transitive G-action given by g̃[(g, x)] = [(g̃g, x)] which

commutes with the bundle projection BE → B.

Proposition 2.5.1. Let X be a G-space together with a G-equivariant bundle

map X → B with fibre F above b. Suppose there is an H-equivariant bundle map

φ : E −→ F with fibre D. Then there is a G-equivariant bundle map BE → X

with fibre D such that the following diagram commutes:

BE

X B

(2.21)

Proof. Fix some x0 ∈ E and observe that any point in BE may be represented

by a class of the form [(g, x0)]. The bundle map in question is given by sending

[(g, x0)] to gφ(x0). This is readily seen to be well defined and G-equivariant.

Corollary 2.5.2. Any G-space X with equivariant fibre bundle X −→ B and

fibres H-equivariantly diffeomorphic to E is itself G-equivariantly diffeomorphic

to the associated bundle BE.

Lemma 2.5.3 (Zigzag Lemma). Consider a collection of H-spaces as in Equa-

tion (2.20) which are zigzag related. Then the corresponding associated fibre bun-

dles over B are also zigzag related.

Proof. A direct application of Proposition 2.5.1 shows that we may lift the zigzag

of bundle maps in Equation (2.20) to

BE1 BE2 BEn+1

BF1 BFn

(2.22)
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whose fibres are all contractible.

Theorem 2.5.4 (Homotopy-type preserving bijection). In addition to the hy-

potheses in Theorem 2.2.4, suppose further that the bijected Hω- and Hp-orbits

are zigzag related. Then the adjoint and coadjoint orbits of G which are in bi-

jection with each other are also zigzag related; in particular, they are homotopy

equivalent.

Proof. Let Z be an orbit in ∆ through some (ω, p), and X and Y the correspond-

ing orbits in Σ and Π which are both in bijection with Z. Both X and Z are

H-equivariant bundles over the adjoint orbit H ·ω through ω ∈ h whose fibres are

respectively given by bijected orbits in kerω∗ and its dual. By Corollary 2.5.2,

both X and Y are associated fibre bundles to the principal bundle H → H ·ω. As

the fibres are assumed to be zigzag related, it follows from the Zigzag Lemma that

X and Z are also zigzag related; let’s write this as X ∼ Z. A similar argument

with Y also establishes that Y ∼ Z. Now let O and O∗ denote the adjoint and

coadjoint orbits corresponding to X and Y respectively. As we have shown, O is

an equivariant bundle over X with affine fibre Imω, and O∗ an equivariant bundle

over Y with affine fibre h◦p. Therefore O ∼ X, O∗ ∼ Y and thus O ∼ O∗.

2.5.2 The case for the Poincaré group

Proposition 2.5.5. For H = O(m,n) and some ω ∈ so(n,m), the Hω-orbit

bijection given in Proposition 2.4.4 has the property that two orbits in bijection

with each other are zigzag related.

Proof. For when the orbit in question is the origin, this is clear. Consider then

the orbit through a non-zero p ∈ kerω contained to a set Ej \ Ej+1 with respect

to the flag given in (2.18) for 0 ≤ j ≤ k, and the corresponding bijected orbit

through ϕ(p) ∈ E◦j+1 \ E◦j . There is an equivariant bundle map from the orbit

through p to the orbit of O(Ej/Ej+1;Qj) through [p] whose fibres are translates of

Ej+1; thus the fibres are contractible. The orbit through ϕ(p) is likewise a bundle

over the O(E◦j+1/E
◦
j ;Q

∗
j)-orbit through [ϕ(p)] with contractible fibres equal to

translates of E◦j . Since the group Hω preserves the form Qj, the isomorphism

ϕ : Ej/Ej+1 → E◦j+1/E
◦
j is equivariant with respect to Hω, and therefore the

orbits through [p] and [ϕ(p)] are Hω-equivariantly diffeomorphic via the map ϕ.

Thus the orbits through p and ϕ(p) are zigzag related.
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Theorem 2.5.6. For G = E(m,n), consider the orbit bijection given in Theo-

rem 2.4.5. Take an adjoint and coadjoint orbit both in bijection with each other

(via a bijected orbit in ∆). These two orbits are zigzag related; in particular,

bijected adjoint and coadjoint orbits are homotopy equivalent.

Proof. To apply Theorem 2.5.4 we need to show that bijected Hp- and Hω-orbits

are zig-zag related. The proposition above demonstrates that this is true for the

centralizer group orbits. It remains to show that it is true for the orbits of Hp.

From Proposition 2.4.1, these groups are isomorphic to O(m,n), O(m − 1, n),

O(m,n− 1) and E(m− 1, n− 1) for when p is zero, timelike, spacelike, and non-

zero and null respectively. For the first three cases, these groups are semisimple,

and thus the adjoint and coadjoint representations are isomorphic; consequently

the trivial orbit bijection is equivariant and bijected orbits are zigzag related.

Therefore the theorem is true for when G is a Euclidean group E(m, 0) or E(0, n).

For when Hp
∼= E(m− 1, n− 1) we proceed by induction, assuming that bijected

orbits are zigzag related; our base cases being the groups E(m, 0) and E(0, n),

and E(1, 1) which is verified from Example 2.4.1.

2.5.3 The case for the affine group

Frustratingly, Theorem 2.5.4 cannot be directly applied to the affine group with-

out some modification. We will here explain the problem and briefly sketch its

resolution. It can indeed be shown that bijected orbits are homotopic, however

we shall be consciously light on the details, leaving a rigorous proof as an exercise

for the interested reader.

The attempted proof proceeds analogously to the case of the Poincaré group.

Consider the Hω-orbit Ej \Ej+1 together with the corresponding orbit E◦j+1 \E◦j
as given in (2.13). Each of these orbits is an equivariant bundle with contractible

fibres over the non-zero vector orbits of GL(Ej/Ej+1) and GL(E◦j+1/E
◦
j ) respec-

tively. The problem now lies with the fact that, with respect to the canonical

isomorphism E◦j+1/E
◦
j
∼= (Ej/Ej+1)∗, these two orbits, although identical, are not

equivariantly isomorphic. In particular, the bijected Hω-orbits are not in general

zig-zag related.

A remedy to this problem is to define a notion of being ‘pseudo-equivariant’,

whereby a map ϕ satisfies ϕ(rp) = r−Tϕ(p) for all r ∈ GL(n). One then weakens

the definition of being zigzag related in (2.20) to allow pseudo-equivariant bundle
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maps between the spaces. After proving the zigzag lemma for this new weakened

definition, the proof of Theorem 2.5.4 follows verbatim and may be applied to

the affine group.

2.6 Conclusions

To what extent we have found a geometric explanation for the orbit bijection

found in [CVDK06a] is debatable. Although we have demonstrated a framework

and strategy for proving such a result, the problem has now shifted into a similar

bijection question concerning the little-groups and centralizer subgroups.

In practice, a key step in establishing the orbit bijections for the affine and

Poincaré groups was an induction argument which took advantage of the fact

that the subgroups Hp were either reductive, or equal to an affine or Poincaré

group defined on a space of lower dimension. Using the same idea, it is possible

to prove the orbit bijection for other semidirect products, including the special

and connected versions of the affine and Poincaré groups, and even the Galilean

group. It is worth noting the limitations however of this inductive argument.

Consider for example the semidirect product

Symp(2n;R) nR2n

of the symplectic group with its defining vector representation. The little sub-

group Symp(2n;R)p fixing a non-zero p is called the odd symplectic group, and for

n > 1 is isomorphic to the semidirect product Symp(2n− 2;R) nH2n−2 [Cus07].

Here H2n−2 is the Heisenberg group corresponding to the symplectic vector space

R2n−2. For this example, our inductive argument no longer applies. However, for-

tunately the bijection result may still be rescued by realising that this odd sym-

plectic group (which may be found in the literature alternatively by the names

affine extended symplectic group or Schrödinger group) is a one-dimensional cen-

tral extension of the original semidirect product defined for a smaller dimension.

As central elements are unaffected by the adjoint representation, the bijection

result still holds for this example.

The obvious question is to ask: to what extent does such an orbit bijection

result hold for other groups? This author, at the time of writing, has not encoun-

tered a single example of a group which does not exhibit a geometric bijection
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between the sets of adjoint and coadjoint orbits, together with the property that

bijected orbits share the same homotopy type. It is tempting then to conjecture

that perhaps this result is true, if not for all groups, but for a large class of groups.

A next step could be to consider the general case of a Lie algebra g con-

taining some ideal. In [Myk12], they generalise the bundle-of-little-group-orbits

construction given in [Raw75] to any g, and obtain an analogous classification of

the coadjoint orbits of g with respect to a given ideal. It might then be possible

to expand on this work, and derive a set analogous to our set ∆; the set of orbits

through which might be shown to be in bijection with each of the sets of adjoint

and coadjoint orbits of g.



Chapter 3

Singular Reduction of the 2-Body

Problem on the 3-Sphere and the

4-Dimensional Spinning Top

We consider the dynamics and symplectic reduction of the 2-body problem on

a sphere of arbitrary dimension. It suffices to consider the case for when the

sphere is 3-dimensional. As the 3-sphere is a group it acts on itself by left and

right multiplication, which together generate the action of the SO(4) symmetry.

This gives rise to a notion of left and right momenta for the problem, and allows

for a reduction in stages, first by the left and then the right, or vice versa. The

intermediate reduced spaces obtained by left or right reduction are shown to be

coadjoint orbits of the special Euclidean group SE(4). The full reduced spaces are

generically 4-dimensional and we describe these spaces and their singular strata.

The dynamics of the 2-body problem descend through a double cover to give a

dynamical system on SO(4) which, after reduction and for a particular choice of

Hamiltonian, coincides with that of a 4-dimensional spinning top with symmetry.

This connection allows us to ‘hit two birds with one stone’ and derive results

about both the spinning top and the 2-body problem simultaneously. We provide

the equations of motion on the reduced spaces and fully classify the relative

equilibria and discuss their stability.

99
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3.1 Background and outline

The 2-body problem in ordinary flat Euclidean space enjoys not only the sym-

metries of rotation and translation, but also the larger group of Galilean trans-

formations. It is through such a transformation into a centre of mass frame that

the problem reduces to the ordinary Kepler problem. For quite some time now

people have been interested in the generalisation of the 2-body problem to spaces

of constant non-zero curvature, where it is no longer the case that it reduces to

the problem of one body. Principal contributions in this area include, but are not

limited to, the numerous works of Diacu, see in particular the book [Dia12], the

papers of Borisov, Mamaev and others in [BMK04, BM06, BMB16], and the work

of Shchepetilov in [Shc98]. Recently the case for the 2-dimensional surfaces of

constant non-zero curvature, the sphere and the hyperbolic/Lobachevsky plane,

has been comprehensively treated in [BGNMM18]. Therein they perform Poisson

reduction restricted to the subset where the action is free, and fully classify the

relative equilibria. This paper is written in response to open problems presented

at the end of that work, in particular we aim to address the generalisation of

their results to the 3-sphere.

Typically, when discussing the 2-body problem in spaces with non-zero curva-

ture one begins by highlighting that, unlike in the Euclidean case, the symmetry

of the problem no longer includes translations. For positive curvatures this is

indeed true for all but two cases for when the sphere is itself a group; that is,

for when it is the circle or the 3-sphere. Consequently, for this very special case

translations do exist, and in a sense there are more than in the flat case. As the

group is non-abelian, there is a difference between translations given by group

multiplication on the left and right. The entire group SO(4) of symmetries is

generated in this way. This establishes the well-known double cover of SO(4)

and allows us to identify both the configuration space for the 2-body problem

on the 3-sphere with its group of symmetries. It is this curious aspect of the

problem which underlies the work contained in this paper, an outline of which

we now provide.

We begin by casting the problem entirely in terms of quaternions. This is a

natural setting for the 3-sphere which may be taken to be the set of elements

of unit-length, and where group multiplication is simply given by multiplication

of quaternions. As left and right multiplications commute, we set out a plan to

reduce the problem in stages: first reducing by either the left or right translations
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to obtain an intermediate reduced space, and then by the other to obtain the full

reduced space. We conclude the introduction by demonstrating how, for a partic-

ular choice of Hamiltonian, the dynamics project under the SO(4) double cover to

give the symmetric heavy top in 4-dimensional space. To be precise, the Hamil-

tonian is that for two particles of equal mass, and for a potential proportional to

cos θ where θ is the angle subtended by the two particles.

By drawing an analogy with the reduction of the Lagrange top, where reduc-

tion is also done in stages by first reducing in the body frame and then in the space

frame about the axes of symmetry, we invoke the Semidirect Product Reduction

by Stages Theorem to express the left and right reduced spaces as coadjoint orbits

of SE(4). This is entirely analogous to the situation for the Lagrange top, whose

intermediate reduced spaces are coadjoint orbits of SE(3). As the actions of

left and right translation are free, these reduced spaces are well-behaved smooth

manifolds. However, to complete the full reduction by the residual left or right

action we necessarily have to handle non-free and singular points of the momen-

tum. We employ the methods of singular and universal reduction through the use

of some invariant theory to describe these reduced spaces, which are generically

4-dimensional. We give the corresponding equations of motion on the full reduced

space for both the 2-body problem and the spinning top, and explicitly exhibit

an additional integral for the symmetric spinning top demonstrating complete

integrability.

We then turn our attention to the relative equilibria. Instead of classifying

these by finding fixed points in the reduced space directly, we instead find so-

lutions in the intermediate left and right reduced spaces which are the orbits of

one-parameter subgroups. This pleasantly turns out to be comparatively easy,

amounting to an entirely linear problem in Euclidean geometry. Having classified

the solutions in the left reduced space, it is then only a matter of reconstruction

to obtain the full classification of relative equilibria on the original space. We

then explore the stability of the corresponding fixed points in the full reduced

space by linearising the flow at these points. In this way, for the Hamiltonians

corresponding to the 2-body problem and the Lagrange top, we derive the linear

stability results for the relative equilibria. We also provide the images of the

energy-momentum map, and in doing so, obtain a picture for the bifurcations of

the relative equilibria. Finally, in an effort to strengthen the stability results, we

give the signature of the Hessian at the fixed points for the relative equilibria
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for the 2-body problem, and obtain the strongest possible stability result, that of

Lyapunov stability, for linearly stable points of the Lagrange top.

3.2 Introduction

3.2.1 The problem setting

Consider the motion of two interacting particles of mass m1 and m2 constrained

to move on the unit sphere Sn ⊂ Rn+1. The interaction is governed by a potential

V which is a function of the distance between the two particle positions, where

Rn+1 is equipped with the standard Euclidean metric.

The initial position and velocity vectors of the two particles span at most

a 4-dimensional linear subspace (for n > 2). The intersection of this with the

sphere is an equatorial 3-sphere. Reflection in this subspace is a symmetry of the

dynamics and therefore, the motion must be forever contained to this 3-sphere.

Consequently, it suffices to consider the case n = 3. This case also encompasses

those for n = 1 and n = 2.

The space R4 may be identified with the algebra H = Span{1, i, j, k} of real

quaternions. The standard inner product is written in terms of quaternionic

multiplication by

〈p, q〉 =
1

2

(
pq† + qp†

)
(3.1)

where q† is the complex conjugate of the quaternion q. We will denote the unit

sphere by the letter G to highlight that it forms a group with respect to quater-

nionic multiplication. The Hamiltonian formulation of the problem has phase

space T ∗(G1 × G2). Strictly speaking one should subtract the collision set from

this space, but we will not concern ourselves with this for now. By identifying

tangent spaces with their duals using the inner product in H, the phase space

may be identified with the set

M =
{

(g1, p1, g2, p2) ∈ H4 | g1, g2 ∈ G, 〈p1, g1〉 = 〈p2, g2〉 = 0
}
. (3.2)

The position vectors for both particles are g1 and g2, and the linear momenta p1

and p2 are dynamically given by m1ġ1 and m2ġ2 respectively. The dynamics are
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determined by the Hamiltonian

H(g1, p1, g2, p2) =
|p1|2
2m1

+
|p2|2
2m2

+ V (g1, g2). (3.3)

Here |p|2 = 〈p, p〉, and V (g1, g2) is a function of the distance |g2 − g1|.

3.2.2 Symmetries and one-parameter subgroups

Owing to the reformulation of the problem in terms of quaternions, the SO(4)-

symmetry on the configuration space may be realised by the action of its well-

known double cover, G × G. Explicitly this is given by Φ: G × G → SO(4),

where

Φ(l, r) · q = lqr−1 (3.4)

for q ∈ H ∼= R4. The cotangent lift of this action to M acts diagonally on each

component, and a quick check confirms that it indeed preserves the Hamiltonian.

We will from now on write the symmetry group as GL×GR to distinguish it from

the configuration space G1 ×G2.

The Lie algebra g of G is the space ImH of purely imaginary quaternions. The

adjoint action is given by Φ(g, g), and the infinitesimal adjoint action obtained

by differentiating g is

adω q = ωq − qω = [ω, q] (3.5)

for q, ω ∈ ImH. By identifying ImH with R3 in the obvious sense, the adjoint

action is related to the cross-product by [ω, q] = 2(ω × q).
The adjoint action of G acts transitively on each sphere of imaginary quater-

nions of a given length. It follows that every one-parameter subgroup of GL×GR

is conjugate to one of the form {(eitη, eitξ), t ∈ R} for some η, ξ ≥ 0. With the

aid of (3.4) one sees that the action of this subgroup on H preserves the mutually

orthogonal, oriented planes C = Span{1, i} and Cj = Span{j, k}. This action

rotates C and Cj through an angle of ξ− η and ξ+ η respectively with each unit

of time.

Given any one-parameter subgroup conjugate to that given above, we cate-

gorise it into one of the following four types: trivial for when ξ = η = 0; a simple

rotation for ξ = η 6= 0; an isoclinic rotation for when precisely one of either ξ or

η is equal to zero; and finally, the generic subgroup is called a double rotation for

when ξ, η 6= 0 and ξ 6= η.
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3.2.3 Reduction and relative equilibria

It is curious that the symmetry group and configuration space are both the same.

This is identical to the familiar situation of cotangent bundle reduction of a

group under left or right multiplication. However, for our example the essential

difference is that the group action is given by simultaneous left and right diagonal

multiplication. This complicates the picture somewhat; in particular, this group

action is not free. The points at which the action is not free may be characterised

with the following argument: g1 and g2 belong to some plane and thus, the

isotropy group fixing these two points includes rotations in the orthogonal plane.

The action therefore fails to be free if and only if the momenta p1 and p2 have no

component in this orthogonal plane, and thus, all vectors are coplanar. We will

call such points cocircular as the resulting motion remains inside a great circle

on the sphere.

Nonetheless, the actions of left and right multiplication, given by restriction

to one of the GL or GR subgroups is free. For a group acting on its cotangent

bundle by left or right cotangent lift, the momentum map is given by right or left

translation back to the origin respectively [Arn13]. As the GL- and GR-actions

are the product of two copies of left and right multiplication respectively, the left

momentum map is given by

JL(g1, p1, g2, p2) = p1g
−1
1︸ ︷︷ ︸

L1

+ p2g
−1
2︸ ︷︷ ︸

L2

= λ ∈ g∗L, (3.6)

and the right momentum map by

JR(g1, p1, g2, p2) = g−1
1 p1︸ ︷︷ ︸
R1

+ g−1
2 p2︸ ︷︷ ︸
R2

= ρ ∈ g∗R. (3.7)

We write Li = pig
−1
i and Ri = g−1

i pi to denote the left and right momentum of

the ith-particle respectively. The total left and total right momenta λ and ρ are

both first integrals. As the actions of left and right multiplication are each free

and proper, we may safely define the symplectic left and right reduced spaces Mλ

and Mρ respectively.

The left and right reduced spaces both inherit a group action from the residual

right and left symmetry. These reduced spaces can therefore be reduced again.

From the Commuting Reduction Theorem [MMO+07], the momentum map for
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the full symmetry group is JL,R = JL × JR, and for when the action is free and

proper, the staged reduced spaces (Mλ)ρ and (Mρ)λ are both symplectomorphic

to the ‘one-shot’ full reduced space Mλ,ρ. We would therefore like to understand

the set of critical values and points of JL,R.

Proposition 3.2.1. The set of critical values of JL,R are those (λ, ρ) with |λ| =
|ρ|. The pre-image of this set consists of all (g1, p1, g2, p2) belonging to a common

3-dimensional subspace, and thus correspond to solutions contained within an

equatorial 2-sphere. For this reason we will refer to such critical points as being

cospherical.

Proof. The momentum map has critical values on points at which the action is

not locally free [AMM81]. As we have seen, these are the cocircular points. One

may suppose the momenta and positions of such a point are contained to the

complex plane in H, from which it follows from the definitions that λ = ρ. As

the momentum map is equivariant, taking the orbit through these values gives us

the desired set of critical values.

From the definition of λ and ρ, we may write

|λ|2 − |ρ|2 = 2〈L1, L2〉 − 2〈R1, R2〉. (3.8)

We may suppose g1 = 1 and p1 is purely imaginary. By writing the imaginary

part of g2 as g2 the expression above may be rewritten as

4〈p1, g2 × p2〉.

This is equal to zero if and only if p1, p2 and g2 span a common plane in

ImH. However, this is equivalent to g1, p1, g2 and p2 belonging to a common

3-dimensional subspace given by the span of this plane together with the real

line. Hence, by equivariance, the set of cospherical points is exactly the set of

critical points of the momentum map.

A relative equilibria (RE) in a symplectic manifold with a Hamiltonian group

action is a solution which is also the orbit under the action of a one-parameter

subgroup of the group of symmetries [Mar92]. Equivalently, it is a solution which

projects to a point in the reduced space. For our problem, the right and left

multiplication naturally descend to give well-defined actions on the left and right
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M

M/GL M/GR

M/(GL ×GR)

πGL×GR

πGRπGL

πGR πGL

Figure 3.1: Commuting reduction

reduced spaces respectively. It follows that RE in M with respect to the GL×GR-

action project into RE in both the left and right reduced spaces. In fact, the

converse is also true.

Proposition 3.2.2. Any RE in M projects to RE in both the left and right

reduced spaces. Conversely, any RE in any of the left or right reduced spaces is

the projection of a RE in M .

Proof. The proof follows from commutativity of the diagram in Figure 3.1 which

consists of canonical projection maps onto orbit quotients, and the definition of

a RE as a fixed point in a reduced space.

The task of classifying RE in M is therefore equivalent to that of finding all

RE in any one of the left or right reduced spaces. This will turn out to be more

tractable than trying to equivalently classify all of the fixed points on the full

reduced space.

3.2.4 The Lagrange top

The double cover in (3.4) is a local diffeomorphism and so lifts to a double cover

of cotangent bundles which is a local symplectomorphism. Furthermore, as the

Hamiltonian factors through this double cover, the dynamics factor through as

well. One may also see from (3.4) that the left and right G-symmetry descends

through the double cover to give the left and right multiplication of SO(3) on

SO(4), where SO(3) is the subgroup fixing the real line in H ∼= R4. We thus have a

dynamical system on SO(4) with a left and right SO(3)-symmetry. This situation

should feel familiar: it is the exact same situation we have for a symmetric

spinning top in 4 dimensions, as we now recall.
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The configuration of a rigid body fixed to move about the origin in R4 may

be determined by an element in SO(4), that element being the transformation

which sends the body from a given initial state to its current one. For when the

body is under the influence of a potential which is a function of ‘height’ in R4, for

which the direction of increasing height we will call the vertical, the dynamical

system is that of the heavy top. This system is invariant under left multiplication

of the SO(3) subgroup which fixes the vertical. If the body is also invariant about

rotations through a line within the body and through the origin, which we shall

call the body axis, then we have the 4-dimensional generalisation of the Lagrange

top. We may suppose that the body axis and the vertical are aligned when the

body is in its initial identity configuration. In this way, the full symmetry of

the system is both left and right multiplication of the SO(3) subgroup fixing the

vertical.

The study of the ordinary Lagrange top in 3 dimensions is old and well un-

derstood. We recommend the modern accounts of the problem given in [CB97,

Rv82, LRSM92]. There has been some attention given to the higher dimensional

generalisations of the spinning top [DG16]. The higher dimensional version of the

Lagrange top, as we have defined it, was studied by Beljaev in [Bel81] and shown

to be integrable. We note that an alternative generalisation is given in [Rat82]

which is also shown to be integrable.

The aim now is to find the Hamiltonian on M whose dynamics project through

the double cover to give the Lagrange top dynamics on SO(4). To do this, we

describe the Hamiltonian on T ∗SO(4) and pull it back under the double cover.

When the potential is linear in height the Hamiltonian is given by

1

2
〈L, I−1(L)〉+ γ〈ac0, v0〉. (3.9)

Here a ∈ SO(4) is the configuration of the body, c0 and v0 are the initial centre of

mass and vertical vectors, γ > 0 a constant, and I : so(4)→ so(4)∗ is the inertia

tensor of the body, where L is the angular momentum in the body frame. Identify

R4 with H by associating the vector (x, y, z, t) with the quaternion t+ix+yj+zk.

We will suppose that both the initial vertical and centre of mass vectors coincide

with the real unit 1. By identifying so(4) with its dual using the standard trace

form allows us to write the inertia tensor as

I(ω) = Aω + ωA (3.10)
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for A a diagonal matrix which, in an appropriate choice of units, has the form

diag(1, 1, 1, I4). Differentiating Φ in (3.4) at the identify gives the well-known

isomorphism g1 × g2 → so(4). The identification of R4 with H allows us to write

the pullback of this isomorphism as

Φ∗;L =

(
Ω̂ η

−ηT 0

)
7−→ (Ω + η,Ω− η). (3.11)

Here Ω̂ denotes the element of so(3) with Ω̂v = Ω×v for all v ∈ R3. It is a routine

exercise to show that the right momenta (R1, R2) and the body angular momen-

tum L, both obtained by left translation to the identity, are related through the

double cover by (R1, R2) = Φ∗(L). Using this identity along with a = Φ(g1, g2)

allows us to pull back the Hamiltonian in (3.9) to obtain

1 + α

4
(|p1|2 + |p2|2) +

1− α
2
〈R1, R2〉+ γ〈g1, g2〉 (3.12)

where α = 2(1 + I4)−1. Note that this is in the same form of the 2-body Hamilto-

nian in (3.3) except for the presence of the 〈R1, R2〉 term. We will see later that,

although these Hamiltonians are different, on the full reduced space they differ

by a Casimir, and thus, give the same flow.

3.3 Reduction

3.3.1 The left and right reduced spaces

Motivated by the connection between the symmetry of the problem with that

of the Lagrange top, we will emulate a method used for reducing the Lagrange

top by the left or right symmetry by using the Semidirect Product Reduction by

Stages Theorem as demonstrated in [MRW84b]. In standard treatments of the

Lagrange top this theorem identifies the reduced spaces with coadjoint orbits of

the special Euclidean group.

Theorem 3.3.1 (Semidirect Product Reduction by Stages, [MRW84b]). Let V

be a representation of H and consider the semidirect product S = H n V with

Lie algebra s. For a given p ∈ V ∗ let Hp denote the stabiliser of this element

with respect to the contragredient representation and consider the action of Hp

on T ∗H by cotangent-lift on the left or right. There is a Poisson immersion of
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T ∗H/Hp into s∗∓ = h∗ × V ∗ given by sending the orbit through η ∈ T ∗aH to

(
L∗a−1η, a−1p

)
∈ s∗− or (R∗a−1η, ap) ∈ s∗+ (3.13)

for the left and right case respectively. Here the ∓ sign indicates that the Pois-

son structure differs by a sign between the spaces, and the L and R denote the

left and right cotangent lifts on T ∗H. Moreover, if we let O denote a coadjoint

orbit through µ ∈ h∗p and J : T ∗H → h∗p the momentum map for the action of

Hp on T ∗H, then the immersion restricted to J−1(O)/Hp establishes a symplec-

tomorphism between this symplectic orbit-reduced space and a coadjoint orbit in

s∗.

We apply this theorem directly to the task of reducing T ∗(G1 × G2) by the

diagonal subgroup G acting on either the left or right. To do this, we set H in the

theorem to G1 ×G2 with the representation in (3.4) on V = H. This semidirect

product S is the simply-connected double cover over the special Euclidean group

SE(4). Thanks to the inner product on H we are free to identify spaces with

their duals, and verify that the isotropy subgroup of 1 ∈ H∗ is indeed the diagonal

subgroup G. Implementing (3.13) demonstrates that the left and right Poisson

reduced spaces consist of the elements

(R1, R2, gL) and (L1, L2, gR) (3.14)

inside s∗− and s∗+ respectively. Here we have introduced the respective left- and

right-invariant quantities gL = g−1
1 g2 and gR = g1g

−1
2 . The left reduced space Mλ

written as an orbit-reduced space is J−1
L (O)/GL, where O is the coadjoint orbit

in g∗L through λ. Therefore, this reduced space is equal to the set of (R1, R2, gL)

in s∗− with |L1 +L2|2 = |λ|2. This may be rewritten in terms of the left-invariant

variables as

|L1+L2|2 = |p1g
−1
1 +p2g

−1
2 |2 = |(g−1

1 p1)(g−1
1 g2)+(g−1

1 g2)(g−1
2 p2)|2 = |R1gL+gLR2|2.

(3.15)

The symplectic reduced space Mλ is thus the subset of (R1, R2, gL) in s∗− with

|gL|2 = 1 and |R1gL + gLR2|2 = |λ|2. These two functions are the only Casimirs

of s∗−. The geometry of the orbits is made clearer by applying the following
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transformation on s∗− for gL 6= 0

(R1, R2, gL) 7−→
(
(R1gL + gLR2)g−1

L ,−R1 + gLR2g
−1
L , gL

)
. (3.16)

One may now see that the reduced space is diffeomorphic to O × g∗ × G. An

entirely similar argument can be made for the right reduced space as that above.

Proposition 3.3.2. Let typical elements in s∗∓ = g∗1 × g∗2 × H∗ be denoted by

(A1, A2, gD). There are two Casimir functions given by

C1 = |gD|2,
C2 = |A1gD + gDA2|2.

The left and right reduced spaces Mλ and Mρ are symplectomorphic to the coad-

joint orbits in s∗∓ given by setting C1 to 1, and C2 to |λ|2 and |ρ|2 respectively.

In each case, the typical elements of the orbit may be identified with the left- or

right-invariant dynamic variables by setting the ambidextrous dummy variables

(A,D) to either (R,L) or (L,R) for the left and right reduced spaces respectively.

The coadjoint orbits in question are generically diffeomorphic to S2×R3×S3 for

C2 6= 0, and to R3 × S3 for C2 = 0.

In both the left and right reduced spaces the Hamiltonian in (3.3) descends

through the reduction procedure to give the reduced Hamiltonian on s∗∓

H(A1, A2, gD) =
|A1|2
2m1

+
|A2|2
2m2

+ V (gD). (3.17)

The function V (gD) is the reduced potential defined by V (gD) = V (1, gD), which

for both the left and right-reduced spaces is equal to V (1, gL) = V (gR, 1) =

V (g1, g2) using the left- and right-invariance of V . This function is currently only

defined on G, and so for the reduced Hamiltonian above to make sense we must

extend its definition to all of H. For gD ∈ G, the potential V (1, gD) is a function

of the distance from 1 to gD, and so it is only a function of the real part r of gD.

We will therefore choose an extension of V to H such that it remains a function

V (r) of the real part alone.

We wish to highlight an interesting feature for when one of the left or right

momenta is zero. The corresponding reduced space R3 × S3 is in fact symplec-

tomorphic to T ∗S3 with the canonical symplectic form [MMO+07][Chapter 4].
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Furthermore, for when the masses are equal, the reduced Hamiltonian on T ∗S3

gives the same dynamical system as the Kepler one-body problem with the sec-

ond body fixed at 1 ∈ S3. This should be contrasted with what was said at

the beginning: in Euclidean space the 2-body problem may be reduced to the

Kepler problem by transforming into a centre of mass frame. Here we have a

kind of analogue to this, that when one of the left or right momenta is zero, the

corresponding reduced space gives the standard Kepler problem on the sphere.

3.3.2 The full reduced space

Now we consider the task of reducing the left/right reduced space by the residual

right/left symmetry. Without any loss of generality, we focus on reducing the left

Poisson reduced space M/GL by the group GR of right translations. From the

definitions of the left-invariant variables this group action descends to s∗− as

a · (R1, R2, gL) = (aR1a
−1, aR2a

−1, agLa
−1) (3.18)

for r ∈ GR. From the Commuting Reduction Theorem the momentum map for

this action is also given by the total right momentum ρ = R1 +R2.

We must now confront the issue that this action is not free. By writing an

element as (R1, R2, gL, r), where we have decomposed gL into its imaginary and

real parts, the GR-action on s∗− decomposes into the irreducible pieces g1 × g2 ×
g3 × R; that is, three copies of the adjoint representation of G, and the trivial

representation. The adjoint representation of G factors through the double cover

G → SO(3) to give the standard vector representation of SO(3) on g = ImH ∼=
R3. It follows that this action fails to be free whenever R1, R2 and gL are

colinear. In order to handle these singular cases we will employ the method of

universal reduction from [ACG91] via the use of invariant theory to obtain the

orbit quotient as a semialgebraic variety. This technique is demonstrated in, for

example [LMS93], and similarly in [CB97] for the second stage of reduction for

the ordinary Lagrange top.

Temporarily denote elements in g1 × g2 × g3 by (v1, v2, v3). The First Funda-

mental Theorem of Invariant Theory for the special orthogonal group [KP00] tells

us that the invariant ring is generated by the pairwise inner products kij = 〈vi, vj〉
for i ≤ j, and the determinant δ = 〈v1 × v2, v3〉. These are not independent as

they satisfy the algebraic relation δ2 = det(kij). As the group GR is compact, the
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orbits are separated by the values taken by the generators of the invariant ring,

and hence, the quotient s∗−/GR may be identified with the image of the Hilbert

map

σ : s∗− −→ R8; (v1, v2, v3, r) 7−→ ({kij}i≤j, δ, r) .

The image of this map is the semialgebraic variety defined by those points sat-

isfying δ2 = det(kij), and the inequalities kii ≥ 0, and k2
ij ≤ kiikjj for each

(i, j)-pair.

Since the momentum ρ = R1 +R2 is conserved, the GR-invariant quantity |ρ|2
descends to s∗−/GR to give an additional Casimir

C3 = |R1 +R2|2 = k11 + 2k12 + k22.

The two Casimirs C1 and C2 in Proposition 3.3.2 also descend to the full reduced

space. The first of these is easily seen to be

C1 = |gL|2 = k33 + r2.

The second however, requires a special effort to express in terms of the invariant

generators.

Lemma 3.3.3. The Casimir C2 = |R1gL + gLR2|2 may be expressed in terms of

the generators of the GR-invariant ring on s∗− as

C2 = (k33 + r2)(k11 + k22) + 2k12(r2 − k33) + 4k13k23 − 4rδ.

Proof. Expanding C2 gives

|R1gL|2 + |gLR2|2 + 2〈R1gL, gLR2〉 = (k33 + r2)(k11 + k22) + 2〈R1gL, gLR2〉.

Rewriting gL as r + gL, the final term above may be written as

2r2〈R1, R2〉+ 2r (〈R1gL, R2〉+ 〈R1, gLR2〉) + 2〈R1gL, gLR2〉
= 2r2k12 − 4rδ + 2〈R1gL, gLR2〉.

By multiplying out the cross-product terms, it is possible to establish the following
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identity

2〈R1gL, gLR2〉 = 4〈R1 × gL, gL ×R2〉+ 2〈gL, gL〉〈R1, R2〉.

Finally, using the vector quadruple product 〈a×b, c×d〉 = 〈a, c〉〈b, d〉−〈a, d〉〈b, c〉
in the expression above gives the desired result.

Theorem 3.3.4. The Poisson reduced space s∗−/GR is the semialgebraic variety

given by coordinates ({kij}i≤j, δ, r) in R8 satisfying δ2 = det(kij), kii ≥ 0, and

k2
ij ≤ kiikjj. There are three Casimirs,

C1 = k33 + r2,

C2 = (k33 + r2)(k11 + k22) + 2k12(r2 − k33) + 4k13k23 − 4rδ,

C3 = k11 + k22 + 2k12.

The full reduced space (Mλ)ρ is obtained by setting C1 = 1, C2 = |λ|2, and

C3 = |ρ|2.

For |λ|, |ρ| 6= 0, these typical reduced spaces are 4-dimensional. The algebraic

awkwardness of the Casimir C2 together with the relation δ2 = det(kij) makes it

difficult to grasp the geometry of these reduced spaces. Indeed, it would be of

considerable interest to be able to say more about them. Nonetheless, below we

describe the degenerate 2-dimensional reduced spaces.

Consider the full reduced space (Mλ)ρ for ρ = 0. By applying the algebraic

inequalities in Theorem 3.3.4 for C3 = 0 we obtain an additional two constraints:

k11 = k22 and k13 = −k23. After eliminating variables the reduced space is found

to be homeomorphic to the set of points (k11, k13, θ) satisfying

4k11 =
|λ|2 + 4k2

13

sin2 θ
, (3.19)

where we write k33 = sin2 θ. When |λ| is non-zero this leaf is homeomorphic to

R2. On the other hand, if λ = 0 this leaf degenerates into the singular canoe

shown in Figure 3.2. As we have previously remarked, the reduced spaces M0

are symplectomorphic to T ∗S3, and for when the masses are equal the resulting

dynamical system is the Kepler problem on the sphere. These reduced spaces we

have described therefore coincide with those for the Kepler problem.
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k11

θ

k13

k11

θ

k13

Figure 3.2: The full reduced spaces (Mλ)ρ when ρ = 0. These spaces are 2-
dimensional and homeomorphic to the plane for λ 6= 0 as shown in the figure on
the left. The leaf degenerates at λ = 0 into the canoe as shown on the right. The
contours are the level sets of the altered Hamiltonian in (3.25) for the Lagrange
top.

3.3.3 The singular strata

An advantage of using invariants to describe the reduced space as a semialgebraic

variety is that it includes those points at which the action is not free. Conse-

quently, these reduced spaces are not smooth in general, but stratified symplectic

spaces. The theory of such stratified spaces is detailed in [SL91]. It is shown that

the strata of a reduced space, which are invariant under the dynamics, corre-

spond to the different possible isotropy subgroups of the action. We now discuss

each of the possible isotropy subgroups for the GR-action in (3.18) and their

corresponding strata in turn.

From Proposition 3.2.1, the action is free whenever |λ| 6= |ρ| and not free

precisely on those points which are cocircular. It follows that the reduced spaces

Mλ,ρ for |λ| 6= |ρ| consist of a single stratum and are thus bonafide smooth

manifolds. For when |λ| = |ρ|, the reduced space contains an open dense stratum

corresponding to the non-cocircular points at which the action is free.

The stratum corresponding to when the isotropy subgroup is all of GR is for

when R1 = R2 = gL = 0, and thus consists solely of the two points r = ±1,

where the other generators are zero. These two points are the corners of the

canoe in M0,0 in Figure 3.2, and correspond to the states where the two particles

are motionless and either antipodal, or in the same position.

The strata corresponding to when the isotropy subgroup is SO(2) are for

those points where (R1, R2, gL) are colinear and not all zero. It follows that the

generators of the invariant ring satisfy three further relations, given by changing
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the inequalities in Theorem 3.3.4 into equalities. In fact, as δ = 0, and since

|λ| = |ρ| at this point, the relation k11k33 = k2
13 is not independent and so we

have 6 constraints in total. Indeed, after eliminating variables one may show that

there are two degrees of freedom given by k11 + k22 and θ, where we are writing

r = cos θ. For when |λ| = |ρ| 6= 0 this stratum is homeomorphic to a cylinder

and degenerates into the canoe, minus the corners, when the momentum is zero.

These strata correspond to the cocircular configurations of the particles.

3.3.4 The equations of motion and the Poisson structure

We will now derive Hamilton’s equations, first on the left and right reduced

spaces, and then on the full reduced space. To begin with, we need the Poisson

structure between two functions f and g on s∗∓. The definition of the Lie-Poisson

structure, {f, g} evaluated at (A1, A2, gD) in s∗∓ is given in [HMR98] by

∓ 〈A1, [∇1f,∇1g]〉 ∓ 〈A2, [∇2f,∇2g]〉
∓ 〈gD, (∇1f∇3g −∇3g∇2f)− (∇1g∇3f −∇3f∇2g)〉. (3.20)

Here we have written ∇i for i = 1, 2, 3 to mean the gradient of a function on

s∗ = g∗1 × g∗2 ×H∗ with respect to the three component spaces. The equations of

motion may be derived from the Poisson bracket, where the convention we use

is ϕ̇ = {ϕ,H}. Before doing this, we pause to consider the term ∇3V from the

Hamiltonian in (3.17). In the definition for the reduced potential we chose an

extension of the function V (1, gL) from G to H which remained a function of the

real part alone. The gradient ∇3V is therefore the purely real quaternion dV/dr.

Armed with this foresight, we may proceed to write down Hamilton’s equations

on each of s∗− and s∗+.

Ṙ1 = +f(r)gL L̇1 = −f(r)gR

Ṙ2 = −f(r)gL L̇2 = +f(r)gR

ġL = −R1

m1

gL + gL
R2

m2

ġR = +
L1

m1

gR − gR
L2

m2

(3.21)

Here we are writing gD to mean the imaginary part of gD, and suggestively

abbreviating −dV/dr with f(r) for force. Using these equations together with
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the definitions of the generators of the invariant ring, we can write the full reduced

equations of motion in s∗−/GR, which are given below.

k̇11 = 2fk13

k̇12 = f(k23 − k13)

k̇13 = fk33 − r
(
k11

m1

− k12

m2

)
− δ

m2

k̇22 = −2fk23

k̇23 = −fk33 − r
(
k12

m1

− k22

m2

)
+

δ

m1

k̇33 = 2r

(
k23

m2

− k13

m1

)
ṙ =

k13

m1

− k23

m2

δ̇ =

(
k12k13 − k11k23

m1

)
+

(
k13k22 − k12k23

m2

)

(3.22)

These equations give the flow generated by the Hamiltonian in (3.17), which

descends to s∗−/GR as
k11

2m1

+
k22

2m2

+ V (r). (3.23)

It is important to appreciate that although these reduced spaces are considerably

smaller than the original phase space, the dimension dropping from 12 to 4, there

is a trade-off: the Poisson bracket on s∗−/GR between the generators is extremely

cumbersome. By definition, this Poisson bracket descends from the bracket on s∗−

as given in (3.20). The difficulty lies in the fact that the invariants are typically

quadratic in s∗− and thus the bracket between them is cubic. This makes deriving

a general formula for the Poisson bracket on s∗−/GR a rather Herculean task, and

one that this author has failed to complete. As consolation, we offer instead the

structure matrix in Table 3.1 listing the Poisson bracket between the generators

of the invariant ring. It should be emphasised that this Poisson bracket should

only be expected to satisfy the Jacobi identity and form a Lie algebra when the

generators satisfy the algebraic relations in Theorem 3.3.4.
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{ , } k11 k12 k13 k22 k23 k33

k11 · 0 2rk11 0 2rk12 − 2δ 4rk13

k12 · · r(k12 − k11) 0 r(k22 − k12) 2r(k23 − k13)

k13 · · · 2rk12 − 2δ r(k13 + k23) 2rk33

k22 · · · · −2rk22 −4rk23

k23 · · · · · −2rk33

k23 · · · · · ·

{kij, r} 1 2 3

1 −2k13 k13 − k23 −k33

2 · 2k23 k33

3 · · 0

{kij, δ} 1 2 3

1 2(k11k23 − k12k13) (k12 + k22)k13 − (k11 + k12)k23 (k13 + k23)k13 − (k11 + k12)k33

2 · 2(k12k23 − k13k22) (k12 + k22)k33 − (k13 + k23)k23

3 · · 0

{ , } δ

r 0

Table 3.1: The Poisson bracket between generators of the GR-invariant ring on
s∗− and thus the Poisson structure on the full reduced space s∗−/GR.
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3.3.5 A reprise of the Lagrange top

The Hamiltonian given in (3.12) for the Lagrange top, descends through this

whole reduction procedure to give

H =
1 + α

4
(k11 + k22) +

1− α
2

k12 + γr. (3.24)

This is of course, as we have already remarked, different to the 2-body Hamilto-

nian in (3.23). However, the two Hamiltonians differ by a constant multiple of

C3. Since a Casimir trivially generates a stationary flow, the flow on the full re-

duced space for the Lagrange top is equivalently the flow generated by the altered

Hamiltonian

H̃ = H +
(α− 1)

4
C3 =

α

2
(k11 + k22) + γr. (3.25)

Rather remarkably, one sees that although the flows on the left and right re-

duced spaces for the Lagrange top and the 2-body problem are different, they

are identical on the full reduced space for when m1 = m2 = α−1, and V (r) = γr.

We can therefore continue in generality to consider a Hamiltonian of the form in

(3.23), and in doing so, will simultaneously treat both the 2-body problem and

the Lagrange top.

Finally we highlight one further remarkable feature of the Lagrange top: that

it is completely integrable. Indeed, in [Bel81] it is shown that the n-dimensional

generalisation of the Lagrange top admits a complete set of independent integrals

which commute with the left and right SO(n− 1) symmetry. For the case n = 4,

this single extra integral is defined on the left reduced space s∗− by

ηT Ω̂2η +

(
2γ

α

)
gTLΩ̂η. (3.26)

Here we are using the isomorphism in (3.4) to identify s∗− with se(4)∗ and using

the notation for the body angular momentum in (3.11). After a scaling, this may

be expressed in terms of the invariant generators as

I = α(k2
12 − k11k22)− 2γδ. (3.27)

One may verify directly from the reduced equations in (3.22) that this is constant

for the flow generated by the altered Hamiltonian in (3.25). Conversely, for the

2-body problem on a sphere, in the case of equal masses and for a potential
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proportional to cos θ, the function I is an additional first integral.

3.4 Relative equilibria

3.4.1 A classification of the relative equilibria on the left

reduced space

To classify the RE we could of course find the fixed points of the system of

full reduced equations in (3.22). However, this is easier said than done, and

following Proposition 3.2.2 we may equivalently classify the solutions in, say the

left reduced space M/GL which are the orbits under a one-parameter subgroup

of GR. From the GR-action in (3.18) we see that such an orbit in g∗ is of the

form q(t) = etηq(0)e−tη for the generator η ∈ gR. By differentiating this to find

the velocity vector, and comparing with the left reduced equations in (3.21), one

sees that a solution through (R1, R2, gL) in s∗− is the orbit of a one-parameter

subgroup etη of GR if and only if the following holds

2(η ×R1) = +f(r)gL, (3.28)

2(η ×R2) = −f(r)gL, (3.29)

2(η × gL) = −R1gL/m1 + gLR2/m2. (3.30)

We suppose without any loss of generality that η is of the form |η|j, recalling

that j is an imaginary quaternion in ImH = g. The real part of gL is fixed by

the action of GR. We write this real part as r = cos θ for θ ∈ [0, π] and classify

the solutions of the form above according to the angle θ. Furthermore, from now

on we will suppose that the potential is such that the force f(r) is never zero.

Case 1: θ = 0, π

In this case, gL is equal to ±1, and consequently gL = 0. It follows from the

equations above that |η| ≥ 0 is arbitrary, and that R1 and R2 are scalar multiples

of j which satisfy m2R1 = m1R2.

Case 2: 0 < θ < π, θ 6= π/2

Equations (3.28) and (3.29) imply that R1, R2 and η are orthogonal to gL. We

may also suppose without any loss of generality that gL = i sin θ, and thus, that
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gL = eiθ. It then follows that R1 and R2 must be of the form

R1 = x1j + yk and R2 = x2j − yk (3.31)

for x1 and x2 to be determined, and

y =
f sin θ

2|η| . (3.32)

It now remains to solve Equation (3.30), which can be expanded using quater-

nionic multiplication to give

−2|η| sin θ k = − 1

m1

(x1j + yk)eiθ +
1

m2

eiθ(x2j − yk),

= − 1

m1

x1e
−iθj − 1

m1

ye−iθk +
1

m2

x2e
iθj − 1

m2

yeiθk.

Multiplying both sides of this equation on the right by k gives an equation purely

in terms of complex numbers. Separating this into real and imaginary parts

results in a linear equation in x1 and x2 which may be written as

− 1

m1m2

(
sin θ sin θ

cos θ − cos θ

)(
x1

x2

)
=

2|η| sin θ − y
(

1
m1

+ 1
m2

)
cos θ

y
(

1
m1
− 1

m2

)
sin θ

 . (3.33)

This linear system is non-degenerate for θ 6= π/2 and has unique solutions

x1 = y
(

cot 2θ + m1

m2
csc 2θ

)
−m1|η|,

x2 = y
(

cot 2θ + m2

m1
csc 2θ

)
−m2|η|.

(3.34)

Case 3: θ = π/2

For θ = π/2 the linear system in (3.33) becomes degenerate. Solutions of the

system can only exist when m1 and m2 are both equal to say m. There is then

an entire line’s worth of solutions given by

x1 + x2 = −2m2|η|. (3.35)
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3.4.2 Reconstruction and the full relative equilibria clas-

sification

In accordance with Proposition 3.2.2, having classified all RE solutions in M/GL,

it remains to reconstruct the corresponding solutions in M . Clearly, the action of

GL on M/GL is trivial, and thus we may safely suppose that the corresponding

one-parameter subgroup of GL is generated by ξ = |ξ|j ∈ gL.

From the definitions, the real part of gL and gR must each be equal to r = cos θ,

where θ is the angular separation between the two particles

cos θ = 〈g1, g2〉 = 〈g1g
−1
2 , 1〉 = 〈1, g−1

1 g2〉 = r.

A similar set of equations to (3.28), (3.29) and (3.30) also hold in the right reduced

space, and it follows from these that gR must also be orthogonal to ξ and hence

j. Therefore, we may suppose that gR = −i sin θ, and hence, that gR = e−iθ and

gL = eiθ. The definitions of gL and gR give g2 = g1e
iθ = eiθg1. For when θ is not

equal to 0 or π, this implies that g1 commutes with i. This is only the case for

when g1 belongs to the complex plane C ⊂ H. This forces g1 and g2 to be of the

form

g1 = e−iφ1 , and g2 = eiφ2 (3.36)

where φ1 +φ2 = θ. We may additionally suppose that φ2 ∈ [0, π], since (g1, g2) 7→
(−g1,−g2) is an element of SO(4). The orbit of a point q in H under the one-

parameter subgroup of GL × GR is etξqe−tη. For each particle gi we can differ-

entiate this motion to obtain the momentum pi = miġi, and then find the right

momentum Ri = g−1
i pi as below

R1 = m1(|ξ| cos 2φ1 − |η|)j +m1(|ξ| sin 2φ1)k, (3.37)

R2 = m2(|ξ| cos 2φ2 − |η|)j −m2(|ξ| sin 2φ2)k.

These expressions must agree with those in (3.31) for the forms of R1 and R2,

and therefore the following must hold

m1 sin 2φ1 = m2 sin 2φ2 =
y

|ξ| .

For when θ 6= π/2, this equation uniquely determines φ1 and φ2. For when

θ = π/2, and therefore m1 = m2, the angles are not unique: for when y is
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positive the solutions are for all φ1 ∈ (0, π/2), and all φ1 ∈ (−π/2, 0) for y

negative. Finally, for the exceptional cases, we have g1 = g2 for θ = 0, and

g1 = −g2 for θ = π. As θ is constant, it follows from consideration of Case 1

above, that these motions correspond to the two particles moving together around

a great circle arbitrarily quickly, either occupying the same position, or antipodal

to each other.

Theorem 3.4.1. For the 2-body problem on the 3-sphere with an either strictly

attractive or repulsive potential, all relative equilibria solutions are completely

classified, up to conjugacy, according to the angle θ ∈ [0, π] subtended by both

particles in the sense listed below. In each of these cases we suppose, without

loss of generality, that the corresponding one-parameter subgroup of GL × GR is

generated by (|ξ|j, |η|j) ∈ gL × gR.

– For θ = 0 and π, we will call these solutions singular. For θ = 0 we may

take the initial positions to be g1 = g2 = 1, and g1 = −g2 = 1 for θ = π.

Both |ξ| and |η| are arbitrary.

– For θ < π/2 we will call the solutions acute, and obtuse when π/2 < θ < π.

In both cases we may take the initial positions of the particles to be at

g1 = e−iφ1 and g2 = eiφ2 where the angles φ1 and φ2 are determined by

φ1 + φ2 = θ and by

m1 sin 2φ1 = m2 sin 2φ2. (3.38)

– Solutions for θ = π/2 will be called right-angled and only exist for m1 = m2.

In this case, φ1 and φ2 are not uniquely determined by (3.38) and may be any

angles satisfying φ1 + φ2 = π/2 where φ1 ∈ (0, π/2) for a strictly attractive

potential (f > 0), or φ1 ∈ (−π/2, 0) for a strictly repulsive potential (f <

0). In the case of equal masses, we will call the RE for any θ isosceles if

φ1 = φ2.

For all of the non-singular cases, the angular velocities satisfy

2|ξ||η| = f(θ) sin θ/ζ (3.39)

where ζ = m1 sin 2φ1 = m2 sin 2φ2, and where f(θ) = −dV/dr for V = V (1, eiθ)

and r = cos θ.
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To understand these rigid motions, one can show that a one-parameter sub-

group generated by (|ξ|j, |η|j) in gL × gR acts by rotating the oriented planes

Span{1, j} and Span{k, i} through the angle |ξ| − |η| and |ξ|+ |η| with each unit

of time respectively. For when |ξ| = |η| this gives a simple rotation, and the two

particles carry out a cospherical motion contained to the 2-sphere in Span{1, i, k}
rotated about the real line with angular velocity ω = 2|ξ| = 2|η|. In this case,

the theorem above coincides with the RE classification given in [BGNMM18] for

the situation on the 2-sphere.

We conclude this classification by remarking that, if we use the expressions

in (3.34) and (3.35) for x1 and x2, one can express (although this is a fairly

unremitting calculation) the explicit values of the generators of the invariant ring

in s∗−/GR at the given RE. It is then possible to verify that the full reduced

equations in (3.22) do indeed yield a fixed point for these values, as expected.

3.4.3 Linearisation and the energy-momentum map

Although the RE were classified by first finding the solutions in the left reduced

space, the stability results will be derived by directly working in the full reduced

space. As a RE is precisely a fixed point of the full reduced equations of motion,

we may linearise the system in (3.22) at such a point. Noting that R1 and R2

are orthogonal with gL at a RE, and thus, that k13 = k23 = 0, this linear system

may be written as the following 8 × 8 matrix in R8 with coordinates ordered as

(k11, k12, k13, k22, k23, k33, r, δ),

0 0 2f 0 0 0 0 0

0 0 −f 0 f 0 0 0

−r/m1 r/m2 2f 0 0 f A1 −1/m2

0 0 0 0 −2f 0 0 0

0 −r/m1 0 r/m2 0 −f A2 1/m1

0 0 −2r/m1 0 2r/m2 0 0 0

0 0 1/m1 0 −1/m2 0 0 0

0 0 A3 0 A4 0 0 0


. (3.40)
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We have used the abbreviations

A1 = +
df

dr
k33 −

(
k11

m1

− k12

m2

)
,

A2 = −df
dr
k33 −

(
k12

m1

− k22

m2

)
,

A3 = +
k12

m1

+
k22

m2

,

A4 = −k11

m1

− k12

m2

.

As one might expect, the characteristic polynomial of such a large symbolic matrix

is fairly horrendous. For this reason, we are forced to make a choice for the force

f . The two potentials we will consider are the gravitational potential

V = −m1m2 cot θ with f = m1m2 csc3 θ (3.41)

for the planetary 2-body problem, and

V = γ cos θ with f = −γ (3.42)

for the potential of the 4-dimensional Lagrange top as in (3.24). With these

choices of f computing the characteristic polynomial becomes feasible, although

we have enjoyed the aid of software which can handle such symbolic calculations.

Before presenting these polynomials, we remark that we should expect at least

four of the eigenvalues to be zero. This is because the generic symplectic leaves

are 4-dimensional, and the fixed points of the flow should vary continuously as

we move through the leaves.

For the 2-body potential the characteristic polynomial in the variable t is

given by

t4(c0 + c2t
2 + t4) (3.43)

where

c2 = 2

(
k11

m2
1

+
k22

m2
2

+ (m1 +m2) cot θ csc2 θ

)
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and

c0 =

(
k11

m2
1

− k22

m2
2

)2

+ 2 cot θ csc2 θ

[
k11

m1

(
1 +

m2

m1

)
+
k22

m2

(
1 +

m1

m2

)]
+
[
(m1 +m2) cot θ csc2 θ

]2
.

Before proceeding to give the characteristic polynomial for the Lagrange top,

we note that it follows from (3.34) that |R1| = |R2| for when θ 6= π/2. We

will therefore first give the polynomial for when θ 6= π/2 and where we set

k11 = k22 = |R|2. This characteristic polynomial is then

t4
(
t2 − 2αγ cos(θ)

) (
t2 + 4α2|R|2 − 8αγ cos(θ)

)
. (3.44)

For when θ = π/2 it is no longer the case that k11 = k22. The resulting polynomial

is then

t4
(
t4 + 2α2(k11 + k22)t2 + α4(k11 − k22)2

)
. (3.45)

In the next two subsections we analyse the roots of these characteristic poly-

nomials accompanied by images of the energy-momentum map. The RE are

equivalently defined to be critical points of this map, and the set of critical values

helps illuminate the study of the RE by understanding how they bifurcate and

change in nature.

We have opted to omit the full details of how the images of the energy-

momentum (actually the energy-Casimir) map are obtained. Ultimately this

task is pure calculation, but it does deserve some comments on how to obtain

it in practice. Following Theorem 3.4.1 one can parameterise the families of RE

by θ and |η| alone, or φ1 and |η| for the right-angled RE. One can then acquire

explicit formulae for H, |λ|2 and |ρ|2 in terms of these. This statement conceals an

implicit exercise in elementary geometry to express ζ and relate the angles φ1, φ2

to θ in (3.39). The energy-Casimir map simplifies considerably upon introducing

the reparameterisation

2eτ |η|2 = f sin θ/ζ. (3.46)

For our purposes it will be enough to state that the image of each family of RE

under the energy-Casimir map can be parameterised by θ and τ alone, or φ1 and

τ for the right-angled RE.
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H

|ρ|2

|λ|2

(a) 0 < θ < π, isosceles RE

H

|ρ|2

|λ|2

(b) θ = π/2, right-angled RE

Figure 3.3: The energy-Casimir bifurcation diagram for the case of equal masses.
The axes for both diagrams are to the same scale. For the isosceles component, the
coordinate lines running from left to right are of constant θ, and those transversal
to them are for constant τ . The line θ = π/2 is thickened, and it is along this
line that the component for the right-angled RE is attached.

3.4.4 Stability of relative equilibria for the 2-body prob-

lem

Surprisingly, despite the complicated appearance of the coefficients in (3.43), all

four roots may be solved and compactly written as

z1,2 = ±
√
−
(√

k11

m1

+

√
k22

m2

)2

− (m1 +m2) cot θ csc2 θ, (3.47)

w1,2 = ±
√
−
(√

k11

m1

−
√
k22

m2

)2

− (m1 +m2) cot θ csc2 θ. (3.48)

It is clear that these eigenvalues are all purely imaginary when θ is acute. Fur-

thermore, by writing k11 and k22 in terms of θ and |η| using the forms in (3.31)

and (3.34), one can show that

k11

m2
1

+
k22

m2
2

+ (m1 +m2) cot θ csc θ

=
1

8|η|2
(
16|η|4 cos2 θ sin6 θ + (m2

1 +m2
2 + 2m1m2 cos 2θ)

)
.
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This expression is always greater than zero, and so the eigenvalue pair z1,2 is

always purely imaginary and non-zero. On the other hand, the eigenvalue pair

w1,2 does undergo a transition from imaginary to real. For when the masses are

equal, it follows from (3.34) that k11 = k22 for the isosceles RE, and therefore,

that w1,2 is a non-zero real pair for θ obtuse, and zero for θ = π/2. For the

remaining right-angled RE which are not isosceles, as k11 6= k22 the w1,2 roots are

a non-zero imaginary pair.

For non-equal masses it becomes more difficult to describe the transition in

reality of the w1,2 pair. Unlike the case for motion on the 2-sphere in [BGNMM18],

this transition is not determined solely by a critical angle. With reference to the

energy-Casimir diagram in Figure 3.4, we argue that this transition occurs along

the fold in the obtuse component. A rigorous proof of this requires extremely

lengthy calculations and so we will merely sketch it here. The image of the energy-

Casimir map is given as a surface parameterised by θ and τ . As this surface is

folded, the curves of constant |λ|2 and |ρ|2 in (θ, τ)-space generically intersect in

two points. Along the fold where such a pair of |λ|2 and |ρ|2 occurs only once,

these two curves must intersect tangentially at a point. The fold may then be

characterised by the condition that the Jacobian of |λ|2 and |ρ|2 with respect to

θ and τ vanishes. This condition turns out to give a quadratic in cosh τ . As the

pair z1,2 is always imaginary, the reality of w1,2 is determined by the sign of c0 in

(3.43): the pair is imaginary when c0 ≥ 0, and real for c ≤ 0. The expression for

c0 may be written in terms of θ and τ using (3.34) and the reparameterisation in

(3.46). Setting c0 to zero then gives an expression for cosh τ in terms of θ, and

upon substituting this into the Jacobian, yields zero as desired. It is the portion

of the surface above the fold for which w1,2 is imaginary, and after crossing the

fold, the portion below for which w1,2 is real.

Now that we have a picture for the eigenvalues of the linearisation at the RE,

we have sufficient conditions for instability but not stability. A helpful result

in this direction would be the signature of the Hessian for the Hamiltonian at

the RE restricted to a leaf. A definite Hessian implies Lyapunov stability, how-

ever we should be pessimistic about this prospect since the Hessian obtained in

[BGNMM18] for the linearly stable RE on the 2-sphere have mixed signature. In

this situation, stability is again ambiguous. We encourage the reader to observe

that the energy-momentum diagrams given in [BGNMM18] coincide with our fig-

ures for when |λ| = |ρ|. This is not a coincidence, but instead a consequence



128 CHAPTER 3. THE 2-BODY PROBLEM ON THE 3-SPHERE

of Sjamaar’s Principle [SL91] which, roughly speaking, establishes a symplecto-

morphism between the reduced spaces with the reduced spaces of isotropy sub-

manifolds equipped with the isotropy action. We can be more explicit about the

implementation of this principle for our example.

Proposition 3.4.2. Let the 2-sphere be given by the unit imaginary quaternions

S2 ⊂ ImH and consider the action of G on N = T ∗S2 × T ∗S2 with momentum

map J . For any Ω ∈ g∗ the reduced space NΩ is symplectomorphic to MΩ,−Ω.

Proof. For (g1, p1, g2, p2) in N the value of J is the angular momentum

Ω = (g1 × p1) + (g2 × p2).

As these quaternions are imaginary, we have g−1
i = −gi. By expanding the

cross product as multiplication between quaternions and taking the complex

conjugate of the Ri, one can show that 2Ω = λ − ρ and λ = −ρ. As the

isotropy subgroup fixing a 2-sphere in H is trivial, the symplectic submanifold

N ↪→M descends to the orbit spaces to give an inclusion N/G ↪→M/(GL×GR).

From Proposition 3.2.1, any point with |λ| = |ρ| is cospherical, and thus, at

the level of orbit spaces there is a bijection between the orbit reduced spaces

J−1(OΩ)/G→ J−1
L,R(OΩ×O−Ω)/GL×GR induced by the canonical inclusion. As

all of the maps here are Poisson, it follows that this bijection between symplectic

leaves is a symplectomorphism.

One sees from this proof that the reduced Hamiltonian on MΩ,−Ω pulls back

to give the Hamiltonian on NΩ. It follows that the Hessian at the RE must be the

same, and therefore, that the Hessian of the RE in the energy-Casimir diagrams

in Figures 3.3 and 3.4 agrees with that in [BGNMM18] for when |λ| = |ρ|. As the

Hessian varies continuously with the relative equilibria, and that the signature

can only change when it crosses a zero eigenvalue, we may apply a continuity

argument to extend the Hessian over all of the RE with non-zero eigenvalues.

This observation, combined with the above discussion concerning the linearisation

provides the proof to the following theorem.

Theorem 3.4.3. For the 2-body problem on the 3-sphere with the gravitational

potential, we have the following stability results for the RE:

– All acute RE are linearly stable, with the signature of the Hessian of the

Hamiltonian being (+,+,−,−).
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H

|ρ|2

|λ|2

(a) 0 < θ < π/2, acute RE

H

|ρ|2

|λ|2

(b) π/2 < θ < π, obtuse RE

Figure 3.4: The energy-Casimir bifurcation diagram for non-equal masses, specif-
ically for m1 = 3 and m2 = 2. The axes for both diagrams are to the same
scale. The coordinate lines running from left to right are of constant θ, and those
transversal to them are for constant τ . We have deliberately removed an upper
section of the obtuse component to demonstrate that the surface is folded along
a cusp. The lines of constant θ above the fold are for θ smaller than those lines
below.

– For when the masses are equal, all right-angled RE which are not isosceles

are linearly stable with signature (+,+,−,−).

– Obtuse RE which are above the fold in Figure 3.4(b) are linearly stable with

signature (+,+,−,−). Obtuse RE under the fold are linearly unstable with

signature (+,+,+,−). For when the masses are equal there is no such fold,

and all obtuse RE are linearly unstable with signature (+,+,+,−).

3.4.5 Stability of the relative equilibria for the Lagrange

top

Before jumping straight into a stability analysis, we pause to review some of our

terminology for the Lagrange top RE. As the angle θ corresponds to the angle the

body axis makes with the vertical, we will alternatively refer to acute and obtuse

RE by upright and downward respectively. Furthermore, right-angled RE with

θ = π/2 might more fittingly be described as being horizontal. Alternatively of

course, the potential in (3.42) applies equally well to the case of two particles on

a sphere which are repelled by each other. In this case, the old terminology is

perfectly applicable.
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From the characteristic polynomial in (3.44), one can immediately see from

the root t2 = 2αγ cos θ that RE which are upright are unstable. This is in marked

contrast to the ordinary Lagrange top where a sufficiently quickly spinning top

is stable when standing vertical (the sleeping top). The second pair of roots may

be analysed by again using (3.34) to write |R|2 = |R1|2 = |R2|2 in terms of θ and

|η| which gives

4α2|R|2 − 8αγ cos θ = 4|η|2 +
α2γ2

|η|2 − 4αγ cos θ. (3.49)

This is always strictly positive for θ greater than zero, and therefore always

corresponds to imaginary eigenvalues. For the right-angled RE we have the char-

acteristic polynomial in (3.45), for which the roots of the quartic factor are equal

to

±
√
−α2(

√
k11 ±

√
k22)2. (3.50)

Consequently, we see that these eigenvalues are all non-zero and imaginary away

from the isosceles k11 = k22 branch.

Unlike for the 2-body problem, where we ignored the singular RE since the

Hamiltonian is not defined for θ = 0 or π, the energy-Casimir diagram for the

Lagrange top contains two ‘threads’ corresponding to these families of RE. From

Figure 3.5 for the ‘isosceles’ RE, one sees that the lines of constant θ converge to

a single thread on top of the surface as θ → 0. This thread corresponds to those

configurations of the top held vertically upright and spinning about its axis. As

the spin decreases, that is, as k11 = k22 = |R|2 decreases below 2γ/α, the second

root pair in (3.44) transitions from imaginary to real, and the thread detaches

from the surface and extends outwards as an isolated thread until |R| = 0, where

the top is motionless. This is entirely analogous to the case for the ordinary

Lagrange top as shown in [CB97] and is a mathematical realisation of ‘gyroscopic

stabilisation’. It cannot be seen in our picture, however as θ tends to π, the

lines of constant θ converge underneath the surface to a thread which is not

isolated, corresponding to those motions for when the body is hanging vertically

downwards.

As with the 2-body problem, we remark that taking the slice through the

energy-Casimir diagram for |ρ| = |λ| in Figure 3.5 gives the same diagram as in

[BMK04], where they also consider the 2-body problem on the 2-sphere for the

same potential.
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H

|ρ|2

|λ|2

(a) 0 < θ < π, ‘isosceles’

H

|ρ|2

|λ|2

(b) θ = π/2, horizontal RE

Figure 3.5: The energy-Casimir bifurcation diagram for the 4-dimensional La-
grange top, specifically for α = 2. The axes for both diagrams are to the same
scale. For the component on the left, the coordinate lines emanating away from
the origin are of constant τ , and those transversal to them are of constant θ. The
thickened line is that for θ = π/2, and it is along this branch that the additional
component of horizontal RE is attached.

A linearised stability analysis is sufficient for deducing instability, but not

conclusive for stability. Fortunately, the existence of the additional integral I

in (3.27) on the full reduced space will allow us to obtain the strongest possible

results for stability. We begin by claiming that all downward RE are not only

critical points of the Hamiltonian, but also of I. To see this, observe that for

θ > π/2, the linearisation admits two distinct non-zero imaginary eigenvalue

pairs. If such a point were not a critical point of I, then in a neighbourhood

of this point we could introduce coordinates which include I as a coordinate

function. As {H, I} = 0, the Hamiltonian in these coordinates is independent of

I, and therefore a change in the I coordinate away from a RE would also give a

RE. This is not compatible with the non-zero eigenvalues.

Therefore, at such RE the differentials dH and dI are both zero. We also claim

that their Hessians d2H and d2I are linearly independent. This is equivalent to

showing that the linearisations of the flows generated by H and I at the fixed

point are independent. With help from Table 3.1 one can find the flow generated
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by the integral I. In particular, one can show

k̇11 = {k11, I} = 4γ(k13k12 − k11k23),

k̇22 = {k22, I} = 4γ(k13k22 − k12k23).

By linearising these at a RE, and comparing with the first and fourth rows of the

matrix in (3.40), we see that the two linearisations are indeed linearly independent

for when k11, k12, k22 6= 0, and therefore so too are d2H and d2I.

The quadratic forms d2H and d2I are both well defined on the tangent space

of the symplectic leaf at a RE since it is a critical point for each of them. The

Lie algebra of such quadratic forms with respect to the Poisson bracket is iso-

morphic to the symplectic Lie algebra Symp(4;R). Furthermore, as {H, I} = 0,

the quadratic forms also commute, and as d2H has distinct eigenvalues, and is

linearly independent from d2I, it follows that they span a Cartan subalgebra of

Symp(4;R). Up to conjugacy by canonical transformations there are only four

such Cartan subalgebras: center-center, saddle-centre, saddle-saddle, and focus-

focus [BM99]. As the eigenvalues of the linearisation are all purely imaginary,

this forces it to be of center-center type. It follows from a normal-form result in

[LU94] that there exist Darboux coordinates (q1, p1, q2, p2) in a neighbourhood of

the RE (which may be taken to be the origin) where

H = a(q2
1 + p2

1) + b(q2
2 + p2

2) + . . .

I = c(q2
1 + p2

1) + d(q2
2 + p2

2) + . . .

Here the dots denote terms of cubic order in the coordinates, and where we have

further supposed that I and H are zero at the origin. As the quadratic forms are

linearly independent, we can find x, y ∈ R such that the function F = xH + yI

has d2F positive definite at the RE. The function F therefore has a minimum

at this point and thus, for any small δ > 0 there exists an ε for which F−1(ε) is

contained to a ball of radius δ. It follows then from

H−1(ε1) ∩ I−1(ε2) ⊂ F−1(xε1 + yε2)

that the level sets of H and I are also contained to arbitrarily small neighbour-

hoods around the RE. As the flow is contained to these level sets, small perturba-

tions away from these RE result in motions contained to tori which remain close
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to the RE.

To be completely watertight, the single RE which has evaded our argument

so far is the one corresponding to the body hanging vertically downward and

motionless as k11 = k12 = k22 = 0, and thus the two Hessians may not be

independent. For this point, Lyapunov stability is a consequence of it being a

global minimum of the Hamiltonian. We can now pull all of this together into a

theorem.

Theorem 3.4.4. For the 4-dimensional Lagrange top the following stability re-

sults apply to the relative equilibria in the full reduced space.

– All upright relative equilibria, that is, those with θ < π/2, are linearly

unstable.

– All hanging relative equilibria with θ > π/2, and all horizontal relative

equilibria with θ = π/2, excluding those which are isosceles, are Lyapunov

stable.

3.5 Conclusions

It is natural to ask how we might extend these results. In this regard it is crucial

to note that the fundamental idea upon which this work rests is the ‘accidental’

isomorphism between g×g and so(4). It is thanks to this that we have the double

cover over SO(4) and the connection with the Lagrange top, and the commuting

left and right actions which allow us to reduce in stages. It is because of this

‘accident’ that our work does not generalise to more bodies, or to the negative

curvature case of the 2-body problem on hyperbolic 3-space. For this space,

the symmetry group SO(1, 3) is double covered by SL(2;C). It is clear that a

different approach must be taken to resolve this case. It is however true that

hyperbolic space may be equipped with a group structure which is compatible

with the metric with respect to left translations alone [GNMPCRO16]. In light

of this, it would still be possible to obtain an analogous left reduced space for the

case of negative curvature.

We do however obtain a fairly straightforward generalisation of our work by

replacing the algebra of real quaternions with the split quaternions. This alter-

ation results in the 2-body problem on SL(2;R) which is the unit ‘sphere’ in this

algebra. Everything then proceeds almost exactly the same, the full symmetry
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group is SO(2, 2) and this is double covered by two ‘spheres’ and we have again

two commuting left and right actions. This alteration is entirely due to another

‘accidental’ isomorphism between sl(2;R) × sl(2;R) and so(2, 2). In a similar

fashion we could even push this idea further and replace the quaternions with the

biquaternions and consider the 2-body problem on SL(2;C).

Another route of study concerns the more general problem of dynamics on a

cotangent bundle of a group G which is symmetric with respect to both the left

and right translations by a given subgroup H. In addition to the example we

have dealt with, a famous example of such a system are the Riemannian ellip-

soids [Rie61]. This system concerns the motion of a self-gravitating distribution

of mass whose configuration is given by an element of G = SL(3;R) which is

symmetric by the left and right actions of H = SO(3). This system is compre-

hensively treated in the work of Chandrasekhar in [Cha67], and a more modern

Hamiltonian account may be found in [RS99]. The famous work of Riemann

concerns the classification of the relative equilibria, and one wonders whether our

use of reduction by stages could be applied as a possible alternative approach.

It would be interesting to study the limit as one particle’s mass dominates the

other. This should be expected to approach what is referred to as the restricted

2-body problem on the sphere [CM99]. In particular, it would be interesting to

see what the flow on the full reduced space limits to. Furthermore, given that we

have the Poisson structure on the full reduced space, it would be nice to see if this

offers any use in demonstrating the non-integrability for the 2-body problem (see

[Shc06] and [MP03]) or whether additional integrable systems can be found for

different potentials. One might hope that this would connect with the substantial

literature that exists for integrable systems on SO(4).

Finally, our work concerning the 2-body problem on the sphere cannot be

considered complete, and there remain interesting unresolved questions. The

nature of the full reduced spaces is one such question. One would like to say

more about their geometry, to describe the fibres of the energy-momentum map,

and the invariant integral manifolds. Moreover, as the Lagrange top is integrable,

one can also ask questions about the foliation of the reduced spaces into invariant

tori, the image of the momentum map, and the monodromy of these tori. The

stability of the RE for the 2-body problem also remains an open question, and

as in [BGNMM18], we leave the door open for the use of sophisticated KAM

methods to strengthen the stability results.
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fluides parfaits. In Annales de l’institut Fourier, volume 16,

pages 319–361, 1966.

[Arn13] V. I. Arnold. Mathematical methods of classical mechanics, vol-

ume 60. Springer Science & Business Media, 2013.

135



136 BIBLIOGRAPHY

[Bag98] P. Baguis. Semidirect products and the Pukanszky condition.

Journal of Geometry and Physics, 25(3-4):245–270, 1998.

[BC77] N. Burgoyne and R. Cushman. Conjugacy classes in linear

groups. Journal of algebra, 44(2):339–362, 1977.

[Bel81] A. V. Belyaev. On the motion of a multidimensional body with

fixed point in a gravitational field. Matematicheskii Sbornik,

156(3):465–470, 1981.
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M. Rodŕıguez-Olmos. Classification and stability of relative

equilibria for the two-body problem in the hyperbolic space of di-

mension 2. Journal of Differential Equations, 260(7):6375–6404,

2016.

[GS80] V. Guillemin and S. Sternberg. The moment map and collective

motion. Annals of Physics, 127(1):220–253, 1980.



138 BIBLIOGRAPHY

[GS90] V. Guillemin and S. Sternberg. Symplectic techniques in physics.

Cambridge University Press, 1990.

[HMR98] D. D. Holm, J. E. Marsden, and T. S. Ratiu. The Euler–Poincaré
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