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Abstract

In this paper the diameter of the commuting involution graph for
the Monster simple group on the 2B involution conjugacy class is

shown to be 3. As a consequence we deduce that the Monster graph
has diameter 5 or 6.

AMS Classification: 20D08, 20B25

1 Introduction

In seeking paradigms for the finite sporadic simple groups, not surprisingly,
eyes were cast toward the rich theory of buildings. Out of this arose geome-
tries for many of the sporadic simple groups modelled, in various ways, upon
buildings. Early harvests of these geometries are to be found in Buekenhout
[4],[5], Ronan and Smith [13] and Ronan and Stroth [14]. The Monster sim-
ple group M, so christened because it is the largest sporadic simple group,
possesses a number of p-local geometries for various primes p. Such geome-
tries are constructed making use of certain p-local subgroups which contain
a fixed Sylow p-subgroup of M. Here we look at one of these geometries -
the maximal 2-local geometry for M, which we denote by Γ. This geometry,
which has rank 5, made its debut in [13] and, by analogy with the Coxeter
diagram of a building, has the following diagram.
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21+24Co1 210+16O+
10(2)

Above the diagram nodes we give the types of the objects of Γ. The
objects of type 0 will be referred to as points (of Γ) and those of type 1 lines
(of Γ). Also indicated above are the stabilizers in M of a point and of an
object of type 4 (for stabilizers of the other objects see [13]). We let G denote
the point-line collinearity graph of Γ - the vertices of M are the points of
Γ with two (distinct) vertices of G adjacent in G if they are incident with a
common line in Γ. The number of vertices in G is

5, 791, 748, 068, 511, 982, 636, 944, 259, 375,

and, on account of its origin and size, call it the Monster graph.
As part of a long term programme, [15] and [16] accumulate intricate

details of the structure of a small part of G. This enterprise seems, at times,
to be like hacking through the dense undergrowth of a dark equatorial forest.
Here we fly high above the canopy and prove

Theorem 1.1. The diameter of G is either 5 or 6.

Recall that M has two involution conjugacy classes, 2AM and 2BM. We
shall use the Atlas[7] names for conjugacy classes of M and other groups
that we encounter, though often with the addition of a subscript. This extra
notational baggage is necessary as we will sometimes be dealing with several
groups at the same time.

An alternative description of G which doesn’t mention geometries is to
take 2BM as the vertex set and two (different) involutions x and y in 2BM
are adjacent whenever y ∈ O2(CM(x)). Interestingly G appears implicitly in
the computer construction by Holmes and Wilson [10] of M as a group of
matrices over GF (3).

Theorem 1.1 will be deduced from Theorem 1.2 in which we investigate
a particular commuting involution graph. So we next discuss such graphs.
Suppose G is a finite group and X a G-conjugacy class of involutions. The
commuting involution graph, C(G,X), is the graph whose vertex set is X and
two (distinct) vertices x and y are adjacent in C(G,X) if x and y commute in
G. Letting DiamC(G,X) denote the diameter of C(G,X), we establish the
following result.
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Theorem 1.2. DiamC(M, 2BM) = 3

Throughout this paper we let X denote the 2BM involution conjugacy
class of M and t a fixed involution in X. For C a conjugacy class of M we
define

XC = {x ∈ X | tx ∈ C}.

Clearly X is the union of the sets XC where C runs over all the conjugacy
classes of M. Moreover each (non-empty) XC will be a union of certain CG(t)-
orbits of X. Also, |XC | may be calculated using the well known formula

|XC | =
|M|

|CM(t)||CM(h)|

k∑
r=1

χr(h)χr(t)χr(t)

χr(1)
,

where h is a representative from C and χ1, . . . , χk the complex irreducible
characters of M. The sets XC make frequent appearances in the proof of
Theorem 1.2 and their sizes may be quickly calculated with the aid of Gap[8].

The well-known fact that two involutions in a group always generate a
dihedral group will be useful here. For g ∈M we define

C∗M(g) := { h ∈M | gh = g or gh = g−1}.

Clearly, [C∗M(g) : CM(g)] = 1 or 2. Observe that for x ∈ X and z = tx,
we have t, x ∈ C∗M(z) \ CM(z) if the order of z is greater than 2.

For x, y ∈ X, ∂(x, y) will denote the graph theoretical distance between
x and y in the graph C(M, X) while d(x, y) denotes the distance between x
and y in G.

We shall make extensive use of the Atlas[7] for information on M-
conjugacy classes, and will follow the Atlas notation and conventions with
a few perturbations. For n ∈ N, Sym(n) and Dih(n) will denote, repec-
tively, the symmetric group of degree n and the dihedral group of order n.
We also use BM (rather than B) to denote the Baby Monster simple group.
As mentioned earlier, we shall append a subscript G to an Atlas conjugacy
class name when the conjugacy class is a conjugacy class of the group G.

2 Preliminary Results

Lemma 2.1. Suppose that G is a finite group and g, h ∈ G. Set z = gh.
Then

CCG(g)(h) = CG(g) ∩ CG(h) = CCG(z)(g) = CCG(z)(h).
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Proof. Clearly CCG(g)(h) = CG(g) ∩ CG(h). If x ∈ CG(g) ∩ CG(h), then x
centralizes gh = z, and so x ∈ CCG(z)(g). And if x ∈ CCG(z)(g), then x
centralizes g−1z = h, whence x ∈ CG(g) ∩ CG(h). Thus CG(g) ∩ CG(h) =
CCG(z)(g).Similarly we see that CG(g) ∩ CG(h) = CCG(z)(h).

Lemma 2.2. Suppose that G is a finite group with x1, x2, y1, y2 involutions
in G. Set z = x1x2, w = y1y2. If 〈z〉 and 〈w〉 are G-conjugate and CG(z)
has odd order, then 〈x1, x2〉 and 〈y1, y2〉 are G-conjugate.

Proof. By conjugating we may suppose that 〈y1y2〉 = 〈z〉 and so 〈x1, x2〉, 〈y1, y2〉 6
C∗G(z) := { g ∈ G | zg = z or zg = z−1}. Since |CG(z)| is odd, the lemma
follows by Sylow’s theorems.

Lemma 2.3. Suppose that a ∈ 2AM, K = CM(a), K = K/〈a〉 and ξ ∈ K.
Set X = 2BM and E = 〈ξ, a〉.

(i) X ∩K = 2BK ∪ 2DK.

(ii) If ξ ∈ 2AK, then E is a 2AM-pure fours group.

(iii) If ξ ∈ 2BK, then |E ∩ 2AM| = 2 and |E ∩ 2BM| = 1.

(iv) If ξ ∈ 2DK, then |E ∩ 2AM| = 1 and |E ∩ 2BM| = 2.

Proof.

Lemma 2.4. Suppose G ∼= BM and Y = 2BG. Then Diam C(G, Y ) = 2.

Proof. See Theorem 1.1 in [2].

To avoid clutter, we suspend our subscripting convention in the next
result.

Lemma 2.5. Suppose that G ∼= BM and set Y = 2BG and Z = 2DG.

(i) For y1, y2 ∈ Y , y1y2 ∈ C where C is one of the following G-conjugacy
classes:-

1A, 2B, 2D, 3A, 4B, 4E, 4G, 5A, 6C.

(ii) For y ∈ Y and z ∈ Z, yz ∈ C where C is one of the following G-
conjugacy classes:-

2A, 2B, 2D, 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H, 6A, 6B, 6C, 6E, 6H, 8B,

8C, 8E, 8J, 10A, 10B, 10E, 12E, 12H, 12L.
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(iii) In part (ii), the unique involution in 〈yz〉 is either in Y ∪ Z or yz ∈ 2A ∪
6A ∪ 6B ∪ 10A.

Proof. Parts (i) and (ii) may be verified by calculating the appropriate struc-
ture constants with the aid of [8]. Consulting [7] yields (iii).

Lemma 2.6. Suppose that G ∼= BM .

(i) Let ξ ∈ 3AG and set F = CG(ξ)′. Then F ∼= Fi22 and 2BF j 2BG.

(ii) Let η ∈ 5AG and set H = CG(η)′. Then H ∼= HS and 2AH j 2BG.

Proof. (i) From the [7] CG(ξ) ∼= 3×Fi22 : 2 and so F = Fi22. Suppose g ∈ G
with g of order 6, g2 ∈ 3AG and g3 ∈ 2BG. Then, using [?] again, we see
that g ∈ 6CG and |CG(g)| = 218.35.5. From [7] we have, for τ an involution
of Fi22 : 2, the following centralizer data.

Class of τ |CF (τ)|
2AF 216.36.5, 7, 11
2BF 217.34.5
2CF 216.33

2DF 213.36.52.7
2EF 213.34.5
2FF 210.34.5.7

Hence we deduce that g3 ∈ 2BF and therefore 2BF ⊆ 2BG.
(ii) Using [7] yet again gives CG(η) ∼= 5×HS : 2. So H ∼= HS. Let g ∈ G

with g of order 10, g2 ∈ 5AG and g5 ∈ 2BG. By [7] g ∈ 10G. Then from
|CHS(τ)| where τ is an involution in HS : 2 we infer that g5 ∈ 2AHS. Hence
2AH ⊆ 2BG.

Again, we temporarily, leave off the subscript from the conjugacy class
names. Let E denote the set of all M- conjugacy classes with exception of the
following:- 8C, 8F, 23A, 23B∗∗, 24F, 24G, 24H, 24J, 31A, 31B∗∗, 32A, 32B, 39C, 39D∗
∗, 40A, 40C, 40D∗∗, 44A, 44B∗∗, 46A, 46B∗∗, 46C, 46D∗∗, 47A, 47B∗∗, 48A, 56B, 56C∗
∗, 59A, 59B∗∗, 62A, 62B∗∗, 69A, 69B∗∗, 71A, 71B∗∗, 78B, 78C∗∗, 87A, 87B∗
∗, 88A, 88B∗∗, 92A, 92B∗∗, 93A, 93B∗∗, 94A, 94B∗∗, 95A, 95B∗∗, 104A, 104B∗
∗, 119A, 119B ∗ ∗.

We also define a further set of M-conjugacy classes

F = {27B, 29A, 39B, 41A, 45A, 51A, 57A, 105A},

which we observe is a subset of E .
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Lemma 2.7. We have XC 6= ∅ for M-conjugacy classes C if and only if
C ∈ E.

Proof. Using [8] we see which conjugacy classes C have |XC | 6= 0, so giving
the lemma.

Lemma 2.8. Suppose that C is an M-conjugacy class with XC 6= ∅, and let
z ∈ C. Then |CM(z)| is odd if and only if C ∈ F .

Proof. This follows from Lemma 2.7 and [7].

3 Proof of the Theorems

We begin this section examining the commuting involution graph C(M, X).
Recall that t is a fixed element of X.

Lemma 3.1. Suppose that t, x ∈ X and that CM(t)∩CM(x) has even order.
Then ∂(t, x) ≤ 3

Proof. Since CM(t) ∩ CM(x) has even order, we may select an involution a
which commutes with both t and x. If a ∈ X, then we have ∂(t, x) ≤ 2. So,
for the remainder of the proof of the lemma, we may assume that a ∈ 2AM.
Set K = CM(a) and K = K/〈a〉 ∼= BM . Appealing to Table 2 of Norton [12]
gives

(3.1) CM(t)∩K ∼ 21+23Co2 (if ta ∈ 2AM) or CM(t)∩K ∼ 22+8+16O+
8 (2) (if

ta ∈ 2BM).

(3.2) There exists b ∈ X ∩ CM(t) ∩K such that b̄ ∈ 2BK .

By 3.1 we have CM(t) ∩K ∼= 21+22Co2 or 21+8+16O+
8 (2) which are, re-

spectively, centralizers in K of a 2BK and a 2DK-involution and therefore
must contain a 2BK-involution. Hence, by Lemma 2.3(iii), 3.2 holds.

(3.3) Let x1, x2, x3 ∈ K ∩X.

(i) If E = 〈x1, x2〉 is a fours subgroup of K with E ∩ 2CK = ∅, then
∂(x1, x2) = 1.

(ii) Assume that E = 〈x1, x2〉 and F = 〈x2, x3〉 are fours subgroups of K
with E ∩ 2CK = ∅ = F ∩ 2CK . Then ∂(x1, x3) ≤ 2.
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For (i), let E be the inverse image in K of E. Since E ∩ 2CK = ∅, all
cosets of 〈a〉 in E contain an involution by Lemma 2.3 (ii), (iii), (iv) and so
E is elementary abelian. Hence [x1, x2] = 1 and therefore ∂(x1, x2) = 1.

Using part (i) gives ∂(x1, x2) = 1 = ∂(x2, x3) and thus ∂(x1, x3) ≤ 2, so
proving (ii).

Now let b be as in 3.2. So b, x ∈ K ∩X.

(3.4) If x ∈ 2BK , then ∂(b, x) ≤ 2.

Let x1, x2 ∈ K ∩ X be such that x1, x2 ∈ 2BK and 〈x1, x2〉 is a fours
group. Applying Lemma 2.5(i) gives 〈x1, x2〉 ∩ 2CK = ∅. From Lemma 2.4
Diam

(
C(K, 2BK

)
) = 2 and so, as x ∈ 2BK by assumption, ∂(b, x) ≤ 2 by

3.2.

(3.5) If x ∈ 2DK , then ∂(b, x) ≤ 2.

Let y be the unique involution in 〈bx〉. Observe that bx and xy are both
involutions in 〈b, x〉 \ 〈bx〉. Also, as 〈b, x〉 \ 〈bx〉 consists of two 〈b, x〉-classes
of involutions, an involution in 〈b, x〉 \ 〈bx〉 is either in 2BK or 2DK by
Lemma 2.3(i). Suppose that y ∈ 2BK ∪ 2DK . Then 〈b, y〉 ∩ 2CK = ∅ =
〈y, x〉 ∩ 2CK and, as a consequence, ∂(b, x) ≤ 2 by 3.3(ii). Therefore, by
Lemma 2.3(iii), ∂(b, x) ≤ 2 if bx /∈ 2AK ∪ 6AK ∪ 6BK ∪ 10AK . If bx ∈ 2AK ,
then ∂(b, x) = 1 by 3.3(i). So to complete the proof of 3.5 it remains to
consider bx ∈ 6AK ∪ 6BK ∪ 10AK .

First we consider the case when bx ∈ 6AK ∪ 6BK . Then ξ = (bx)2 ∈ 3AK

and NK(〈ξ〉) = D × F where D ∼= Sym(3) and F ∼= Fi22 : 2. Also CK(ξ) =
〈ξ〉×F . We have bx = ξτ where τ is an involution in F . Now x = αβ where
α ∈ D, β ∈ F and α, β have order 1 or 2. Observe that

CCK(bx)(x) = CF (〈τ, β〉)

and 〈τ, β〉 is elementary abelian of order 2 or 4. Let S ∈ Syl2(F ) be such that
〈τ, β〉 ≤ S. Then 〈τ, β〉 acts upon Z(S ∩F ′) and therefore CZ(S∩F ′)(〈τ, β〉) 6=
1. Because, by [7], the involutions in Z(S ∩ F ′) are in 2BF ′ , Lemma 2.6(i)
implies that CCK(bx)(x)∩ 2BK 6= ∅. Hence, by Lemmas 2.1 and 2.3(iii), there

exists y ∈ K ∩X such that y ∈ CK(b) ∩CK(x) ∩ 2BK . Using Lemma 2.5(i),
(ii) gives 〈b, y〉∩ 2CK = ∅ = 〈y, x〉∩ 2CK and therefore ∂(b, x) ≤ 2 by 3.3(ii),
as required.

Finally suppose bx ∈ 10AK , and set η = (bx)2. By [7] η ∈ 5AK and
NK(〈η〉) = D ×H where D ∼= Dih(10) and H ∼= HS : 2. We have bx = ητ
where τ is an involution in H. Also x = αβ where α ∈ D, β ∈ H and α, β
have order 1 or 2. Now arguing as in the 6AK ∪ 6BK case, but using Lemma
2.6(ii), we also deduce that ∂(b, x) ≤ 2.
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This completes the proof of 3.5.
Since K ∩X = 2BK ∪ 2DK by Lemma 2.3(i) and ∂(t, b) ≤ 1, 3.4 and 3.5

together prove Lemma 3.1.

Lemma 3.2. Suppose that C is an M-conjugacy class which is not in F .
Then for x ∈ XC, ∂(t, x) ≤ 3.

Proof. Set z = tx. Since C /∈ F , |CM(z)| is even by Lemma 2.8, whence, by
Lemmas 2.1 and 3.1, ∂(t, x) ≤ 3 .

Lemma 3.3. Suppose that L = H×K 6 M with t, x ∈ L∩X. Let t = tHtK
and x = xHxK where tH , xH ∈ H and tK , xK ∈ K. If there exists x1, x2 ∈
K ∩X such that [tK , x1] = [x1, x2] = [x2, xK ] = 1, then ∂(t, x) ≤ 3.

Proof. Since x1, x2 ∈ K, x1 centralizes tH and x2 centralizes xH . So, as
[tK , x1] = 1 = [x2, xK ], [t, x1] = 1 = [x, x2] and hence {t, x1, x2, x} is a path
in C(M, X). Thus ∂(t, x) ≤ 3.

Lemma 3.4. Suppose that C ∈ F\{27BM, 41AM}. If x ∈ XC, then ∂(t, x) ≤
3.

Proof. Let n be the order of z = tx. By Lemma 2.2, as CM(z) has odd order,
there is a unique M-conjugacy class of subgroups isomorphic to Dih(2n).
Put D = 〈t, x〉.

(3.6) There exists a subgroup L = H ×K of M which contains D with C,
H and K as follows:-

(i) C = 39BM, H ∼= Sym(3) and K = Th.

(ii) C = 45AM, H ∼= Dih(10) and K ∼= HN .

(iii) C = 51AM, H ∼= Sym(4)) and K ∼= L2(17).

(iv) C = 57AM, H ∼= Sym(3) and K ∼= Th.

(v) C = 105AM, H ∼= Dih(10) and K ∼= HN .

For (i) and (iv) we have, repectively, z13 ∈ 3AM and z19 ∈ 3AM. Since, for
ξ ∈ 3AM, C∗M(ξ) ∼= Sym(3)×Th by [7] and any subgroup of M is conjugate to
D, we have D ≤ H ×K with H ∼= Sym(3) and K ∼= Th. Also, for ξ ∈ 5AM,
C∗M(ξ) ∼= Dih(10) × HN by [7]. Using [7], if C = 45AM, then z9 ∈ 5AM
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and if C = 105AM, then z21 ∈ 5AM. Hence D ≤ H ×K with H ∼= Dih(10)
and K ∼= HN when C = 45AM or 105AM. Finally for C = 51AM, surveying
the Monstralizer pairs in Table 1 of [12] we see a subgroup of M isomorphic
to Sym(4) × Sp8(2). Now, by [7], Sp8(2) contains subgroups isomorphic to
L2(17) which themselves contain subgroups isomorphic to Dih(34). Thus we
have obtained a subgroup H×K containing D ∼= Dih(51) with H ∼= Sym(4),
K ∼= L2(17), so establishing 3.6.

From [1] Diam(C(K,W )) = 3 if K ∼= L2(17) and W is a K-conjugacy
class of involutions of K. While from [2] we see that Diam(C(K,W )) ≤ 3 if
K ∼= HN or Th andW is aK-conjugacy class of involutions ofK. Combining
Lemma 3.3 and 3.6 yields that ∂(t, x) ≤ 3 when C ∈ {39BM, 45AM, 51AM, 57AM, 105AM}.
So to complete the proof of the lemma we need to examine the case C =
29AM. By [9] M contains a subgroup isomorphic to L2(29) inside of which
there are subgroups isomorphic to Dih(58) and therefore we get D ≤ L ≤M
with L ∼= L2(29). Hence, using [1] again, we deduce that ∂(t, x) ≤ 3, and the
proof of Lemma 3.4 is complete.

Lemma 3.5. Let C = 41AM. Then for x ∈ XC, ∂(t, x) = 3.

Proof. Put z = tx. From [7] CM(z) = 〈z〉 and so, by Lemma 2.2, there is a
unique M-conjugacy class of subgroups isomorphic to Dih(82). Also, clearly
∂(t, x) > 3. Again using [7], M has a subgroup H of shape 38O−8 (3)2. Put
H = H/O3(H). Since O−8 (3) contains a subgroup isomorphic to L2(81) we
can find a subgroup L of H with O3(H) 6 L and L ∼= L2(81). Now L2(81)
contains a subgroup isomorphic to Dih(82), which must split over O3(H).
Thus, without loss of generality, we may suppose 〈t, x〉 6 L. We further
note, as L has one involution conjugacy class and z has order 41 that all
involutions in L are in X. Moreover, |XC | = |CM(t)| by [8] and, using Lemma
2.1, CCM(t)(x) = 1. So XC is a CM(t)-orbit. Appealing to [1] gives x1, x2 ∈ X
such that [t, x1] = [x1, x2] = [x2, x] = 1. Hence t normalizes O3(H)〈x1〉
and therefore [t, y1] = 1 for some y1 ∈ X ∩ O3(H)〈x1〉. Also y1 normalizes
O3(H)〈x2〉 and so [y1, y2] = 1 for some y2 ∈ X ∩ O3(H)〈x2〉. Likewise y2
normalizes O3(H)〈x〉 and so [y2, y] = 1 for some y ∈ X ∩ O3(H)〈x〉. Thus
∂(t, y) 6 3. Since y = x and the largest element order in M is 119, the
order of ty must be 41. Because XC is a CM(t)-orbit we then conclude that
∂(t, x) 6 3.

Lemma 3.6. Let C = 27BM. Then for x ∈ XC, ∂(t, x) = 3.

Proof. Let x ∈ XC and put z = tx. From |CM(z)| = 243, we note that
∂(t, x) = 3. We shall calculate in a subgroup H of M of shape 3235310(M11×

9



2Sym(4)+) using Magma[6]. First we obtain an isomorphic copy of H
from http://brauer.maths.qmul.ac.uk/Atlas/ as a permutation group of de-
gree 34, 992. Sometimes, in what follows, we shall regard this copy of H as
a subgroup of M. Next we calculated all the conjugacy classes of H and
then discovered that H has only two conjugacy classes C1, C2 of elements
of order 27. Let z1 ∈ C1 and z2 ∈ C2. Note that, as H contains a Sy-
low 3-subgroup of M, if z1 and z2 were M-conjugate, then M would have
only one conjugacy class of elements of order 27, which is not the case.
We next find that |CH(z1 | = 486 and |CH(z2)| = 243. Consequently, con-
sulting [7], C1 ⊆ 27AM and C2 ⊆ 27BM. Further calculation reveals that
|NH(〈z2〉)| = 4374 and that NH(〈z2〉) contains 81 involutions which invert z2
(and they must all be in X). Let t2 denote one of these involutions. Using
[8] gives |XC | = |CM(T )|/3. After seeing that |CCH(z2)(t2)| = 3 and observ-
ing by orders that CH(z2) = CM(z2), we deduce that XC is a CM(t)- orbit
by Lemma 2.1. Let x2 ∈ X ∩ NH(〈z2〉) with t2x2 = z2. We check that an
involution τ of H is in X by choosing random elements h of H and seeing if
the order of ττh is greater than 6. By these means we find y1 ∈ X ∩ CH(t2)
and y2 ∈ X ∩ CH(x2) with [y1, y2] = 1. As a consequence we deduce that
∂(t2, x2) 6 3, which as XC is a CM(t)-orbit, proves Lemma 3.6.

Combining Lemmas 3.2, 3.4, 3.5 and 3.6 yields Theorem 1.2.
Moving onto the proof of Theorem 1.1, we establish the following lemma.

Lemma 3.7. Let x, y ∈ X. If ∂(x, y) = 1, then d(x, y) ≤ 2.

Proof. The set of x ∈ X for which ∂(t, x) = 1 is equal to ∆1(t) ∪ ∆1
2(t) ∪

∆2
2 ∪∆4

2 (using the notation of [15]). Hence Lemma 3.7 holds.

Now Theorem 1.1 is a consequence of Theorem 1.2 and Lemma 3.7.
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