
Error Analysis For Standard and GMRES-Based
Iterative Refinement in Two and Three-Precisions

Nicholas, Higham

2019

MIMS EPrint: 2019.19

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Error Analysis For Standard and GMRES-Based
Iterative Refinement in Two and Three-Precisions

Nicholas J. Higham∗

November 5, 2019

Abstract

We give a concise summary of conditions for the convergence of iterative
refinement and GMRES-based iterative refinement in three precisions, as well as
the limiting forward errors and backward errors. All combinations of precisions
of practical interest are included. As well as known results, we include new
results for GMRES-based iterative refinement with the preconditioner applied
at the working precision and the residual computed at the working precision.

1 Introduction

The purpose of this note is twofold: to summarize in an easy-to-assimilate form
the conditions from Carson and Higham [2] for convergence of iterative refinement
in three precisions and GMRES-based iterative refinement (GMRES-IR) in three pre-
cisions and also to derive conditions for the convergence of GMRES-IR when the
residual is computed, and the preconditioned operator applied, at the working pre-
cision.

We assume the availability of floating-point arithmetics in three precisions, with
unit roundoffs u`, u, and ur satisfying ur ≤ u ≤ u`. Unless otherwise stated, two
of the precisions, or all three of them, may be equal.

We concentrate on normwise backward errors and forward errors, though the
analysis that we summarize also applies to componentwise backward errors and
forward errors.

As well as the normwise condition number κ(A) = ‖A‖‖A−1‖, we will need the
componentwise condition number

cond(A,x) = ‖ |A
−1||A||x| ‖∞
‖x‖∞

≤ κ∞(A), (1.1)

where |A| = (|aij|).
The arithmetics of current interest are IEEE half, single, double, and quadruple

precision arithmetics [5] along with bfloat16 [6]. Key parameters for these arith-
metics are given in Table 1.1.

∗Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
(nick.higham@manchester.ac.uk).

1

Table 1.1: Parameters for floating-point arithmetics: number of bits in significand
(mantissa), including the implicit most significant bit; number of bits in exponent;
the unit roundoff u to three significant figures; and an approximation to u−1 used
in later tables.

Significand Exponent u u−1

bfloat16 8 8 3.91× 10−3 2× 102

fp16 11 5 4.88× 10−4 2× 103

fp32 24 8 5.96× 10−8 107

fp64 53 11 1.11× 10−16 1016

fp128 113 15 9.63× 10−35 1034

2 Iterative Refinement

We first consider iterative refinement in traditional form, albeit with three precisions,
which is described in Algorithm 2.1. The algorithm uses LU factorization for the
solver, which we assume is combined with whatever form of pivoting is necessary for
stability; for simplicity, permutations are omitted from our equations. The results we
state below hold with LU factorization replaced by any backward stable factorization,
such as Cholesky factorization for a symmetric positive definite system.

Algorithm 2.1. Let the nonsingular matrixA ∈ Rn×n and b ∈ Rn be given in precision
u. This algorithm uses iterative refinement to generate a sequence of approximations
xi, all stored in precision u, to the solution of Ax = b.

1 Compute an LU factorization A = LU in precision u`.
2 Solve Ax0 = b in precision u` using the LU factors and store x0 at precision u.
3 for i = 0:∞
4 Compute ri = b −Axi at precision ur and round ri to precision u`.
5 Solve Adi = ri at precision u` using the LU factors and store di

at precision u.
6 xi+1 = xi + di at precision u.
7 end

Table 2.1 summarizes sufficient conditions from [2, Table 5.1, secs 3, 4, 7] for
Algorithm 2.1 to converge and the limiting forward and backward errors. To be
precise, what Table 2.1 and later tables say is that if the convergence condition is
satisfied then the forward error or backward error will decrease until it reaches the
level of the limiting error. The constant p is the maximum number of nonzeros in
any row of [A b]; thus p = n+ 1 for a dense problem.

Note that if ur = u2 then ur cond(A,x) ≤ u2κ∞(A) ≤ uu`κ∞(A) < u if the
convergence condition holds, so in this case we obtain a forward error of order u.

In this table, and later tables, the bounds for κ∞(A) are approximate, for two
main reasons. First, in the analysis they are multiplied by f(n) terms that depend
on the solver and are low degree polynomials in n, and we ignore these terms. Sec-
ond, the exact bounds include other terms and we report only the dominant term.

2

Table 2.1: Summary of the results from [2] (see Table 5.1 therein): conditions for
convergence and the limiting size of the forward error and normwise backward error.

Convergence condition Bound on limiting value

Forward error u`κ∞(A) < 1 4pur cond(A,x)+u
Backward error u`κ∞(A) < 1 pu

Table 2.2: Bounds on κ∞(A) such that Algorithm 2.1 using IEEE arithmetic preci-
sions given in the first three columns is guaranteed to converge with the limiting
backward and forward errors shown in the final two columns, where “half”, “single”,
and “double” denote quantities of the order of the unit roundoffs for half precision,
single precision, and double precision, respectively. In the u` column, half can be
replaced by bfloat16, in which case the bound on κ∞(A)must be replaced by 2×102.

u` u ur κ∞(A) Backward error Forward error

half half half 2× 103 half cond(A,x)× half
half half single 2× 103 half half
half single single 2× 103 single cond(A,x)× single
half single double 2× 103 single single
half double double 2× 103 double cond(A,x)× double
half double quad 2× 103 double double

single single single 107 single cond(A,x)× single
single single double 107 single single
single double double 107 double cond(A,x)× double
single double quad 107 double double

double double double 1016 double cond(A,x)× double
double double quad 1016 double double

Nevertheless, numerical experiments reported in [2], [3], [4] show that these bounds
are indicative of the behavior in practice.

Here, and in later tables, there is a further approximation: we approximate the
bounds for κ∞(A) for specific precisions using the values for u−1 given in the last
column of Table 1.1. Note that in [2] the cruder approximations u−1 ≈ 104 for half
precision and u−1 ≈ 108 for single precision were used.

Table 2.2 specializes Table 2.1 to specific precisions.

3 GMRES-Based Iterative Refinement

Now we consider GMRES-IR, which is described in Algorithm 3.1.

Algorithm 3.1 (GMRES-IR). Let the nonsingular matrix A ∈ Rn×n and b ∈ Rn be given
in precisionu. This algorithm uses GMRES-based iterative refinement using LU factors
as preconditioners to generate a sequence of approximations xi, all stored in precision

3

Table 3.1: Bounds on κ∞(A) such that GMRES-IR (Algorithm 3.1) using IEEE arith-
metic precisions given in the first three columns is guaranteed to converge with the
indicated limiting backward or forward errors, where “half”, “single”, and “double”
denote quantities of the order of the unit roundoffs for half precision, single preci-
sion, and double precision, respectively. In the u` column, half can be replaced by
bfloat16, in which case the bound on κ∞(A) must be replaced by 2× 102.

Backward error Forward error

u` u ur κ∞(A) Limit κ∞(A) Limit

half half single 2× 103 half 105 half
half single single 103 single 104 cond(A,x)× single
half single double 107 single 107 single
half double double 106 double 107 cond(A,x)× double
half double quad 1016 double 1011 double

single single double 107 single 1011 single
single double double 107 double 1010 cond(A,x)× double
single double quad 1016 double 1015 double

double double quad 1016 double 1016 double

u, to the solution of Ax = b.

1 Compute an LU factorization A = LU in precision u`.
2 Solve Ax0 = b in precision u` using the LU factors and store x0 at precision u.
3 for i = 0:∞
4 Compute ri = b −Axi at precision ur and round ri to precision u.

5 Solve Ãdi ≡ Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision u, with

matrix–vector products with Ã computed at precision ur , and
store di at precision u.

6 xi+1 = xi + di at precision u.
7 end

Table 3.1 summarizes sufficient conditions for Algorithm 3.1 to converge and the
limiting forward and backward errors. Most of the conditions in the table are from
[2, sec. 8], which makes use of [1].

The bound on κ∞(A) for the forward error column in the table is

κ∞(A) < u−1/2u−1
` (3.1)

[2, line 3 of p. A832]. The lines of the table where u = ur are not covered by [1] or
[2]. We derive the bounds for these cases in the next subsection.

3.1 GMRES-IR in Two Precisions

The analysis in [1, sec. 3] assumes that the matrix–vector products with the precon-
ditioned matrix Ã = Û−1L̂−1A in Algorithm 3.1 are carried out at twice the working

4

precision, that is, ur = u2. Here we are interested in running Algorithm 3.1 entirely
in hardware-supported floating-point arithmetic, so in order to support a working
precision of double precision we do not want to use extra precision in applying Ã.

What can be said about the behavior of Algorithm 2.1 with ur = u?
The analysis in [1, sec. 3] is parametrized: it denotes byu the unit roundoff for the

precision at which Ã is applied. However, at some stages of the analysis κ(A)u Ü u
is used (since u = u2 is assumed). so we cannot simply set u = u in the final result.

We note, first, that the analysis in [1] invokes the backward error analysis in [7]
for the modified Gram–Schmidt variant of GMRES and, in order to do so, shows that

[b, f l(AV̂k−1)] = [b,AVk−1]+ [0, ∆Vk−1]

after k−1 steps of GMRES, where Vk−1 is an n×(k−1)matrix of unit 2-norm Arnoldi
basis vectors, with

‖∆Vk−1‖F Ü k1/2nu‖Ã‖F , (3.2)

the latter equation being [1, eq. (3.5)]. The backward error for the computed solution
of Ãdi = si, where si = Û−1L̂−1r̂i and r̂i is the computed residual b −Ax̂i, is shown
to be of order kn2u.

Inspecting the analysis, we see that for u = u [1, eq. (3.7)] leads to

‖∆Vk−1‖F Ü k1/2nuκF(A)‖Ã‖F

in place of (3.2).
The question now is whether the GMRES backward error analysis implies a back-

ward error bounded by kn2uκ(A) for the GMRES solve, instead of kn2u when (3.2)
holds. Strictly speaking, we cannot draw this conclusion from what is in [1, sec. 3]
without carefully checking the details of [7], which is not an easy task. However, if
we assume that all the computations in the GMRES solve (products with Ã and the
GMRES computations) are done at a precision with unit roundoff κ(A)u, which is
a more pessimistic scenario than we actually have, then we can directly draw the
desired conclusion about the backward error of the GMRES solve.

Following through the rest of the analysis in [1, bottom two equations of page
A2844], we find that the backward error of the computed solution d̂i of Ãdi satisfies

ω(Ã, d̂i, si) := ‖si − Ãd̂i‖∞
‖Ã‖∞‖d̂i‖∞ + ‖si‖∞

Ü kn2κ∞(A)u (3.3)

and therefore the relative error of d̂i is bounded by

‖di − d̂i‖∞
‖di‖∞

Ü kn2uκ∞(A)κ∞(Ã), (3.4)

which has an extra factor κ∞(A) in the bound compared with [1, last displayed equa-
tion on p. A2844]. This is the price we pay for not using extra precision in applying Ã.

An important point to note is that u` has not appeared in these equations.
Though the LU factorization is computed at precision u`, we obtain a solution to
the update equation whose accuracy is independent of u`. In the analysis of [2],
which carries a fourth precision us (which is essentially the precision of the solve
for the update equation), Carson and Higham are therefore able to set us = u.

5

We will need a bound on the backward error for the original update equation
Ad̂i = r̂i. One can be obtained by noting that r̂i−Ad̂i = L̂Û(si− Ãd̂i), so that, using
a bound for ‖Ã‖∞ from [1, eq. (3.2)],

‖r̂i −Ad̂i‖∞ ≤ ‖L̂Û‖∞ω(Ã, d̂i, si)(‖Ã‖∞‖d̂i‖∞ + ‖si‖∞)
Ü ‖A‖∞ω(Ã, d̂i, si)

(
(1+nu`κ∞(A))‖d̂i‖∞ + ‖A−1‖∞‖r̂i‖∞

)
≈ ‖A‖∞ω(Ã, d̂i, si)

(
nu`κ∞(A)‖d̂i‖∞ + ‖A−1‖∞‖r̂i‖∞

)
Üω(Ã, d̂i, si)

(
nu`κ∞(A)‖A‖∞‖d̂i‖∞ + κ∞(A)‖r̂i‖∞

)
. (3.5)

We now consider separately the convergence analyses based on backward error and
forward error.

3.1.1 Backward Error

The backward error analysis in [2, sec. 4] assumes that the computed solution of the
update equation Adi = ri satisfies [2, eq. (2.4)]

‖r̂i −Ad̂i‖∞ ≤ us(c1‖A‖∞‖d̂i‖∞ + c2‖r̂i‖∞).

By (3.3) and (3.5) we have us = u, c1 = kn3κ∞(A)2u`, and c2 = kn2κ∞(A)2. The
condition for convergence of the backward error is [2, Cor. 4.2] (c1κ∞(A)+c2)us < 1,
that is,

kn2(nκ∞(A)3u` + κ∞(A)2)u < 1,

so that we certainly need

κ∞(A)2(κ∞(A)u` + 1)u < 1, (3.6)

and hence in particular we need κ∞(A)2u < 1. The κ∞(A) bounds for ur = u in
the backward error column of Table 3.1 are based on (3.6). Condition (3.6) is much
more stringent than the condition κ∞(A)u < 1 for convergence of the backward
error when ur = u2. In fact, condition (3.6) is clearly pessimistic. This is not too
surprising given that, as we have already mentioned, the argument based on “unit
roundoff κ(A)u” is pessimistic.

3.1.2 Forward Error

In the forward error analysis of [2], in the underlying assumption [2, eq. (2.3)] we can
take us = u and us‖Ei‖∞ ≡ kn2uκ∞(A)κ∞(Ã), in view of (3.4). For convergence of
the forward error in iterative refinement we therefore need [2, Cor. 3.3]

kn2uκ∞(A)κ∞(Ã) < 1. (3.7)

(Here, we are ignoring the first term in the convergence condition [2, eq. (3.9)], be-
cause it is known usually not to be dominant.) The condition (3.7) will be satisfied
for problems not too ill conditioned with respect to the working precision, as long
as Ã is not too ill conditioned, so in such cases GMRES-IR will still work well.

6

We note that by [1, eq. (3.2)],

κ∞(Ã) Ü (1+nu`κ∞(A))2 ≈max(1, n2u2
`κ∞(A)

2).

For (3.7) to hold we therefore need, ignoring the constants, κ∞(A)3uu2
` < 1, that is,

κ∞(A) < u−1/3u−2/3
` (3.8)

for convergence of the forward error. The limiting forward error is of order cond(A,x)u
by [2, Cor. 3.3]. The κ∞(A) bounds for ur = u in the forward error column of Ta-
ble 3.1 are based on (3.8).

3.1.3 Discussion

The analysis for ur = u leads to more complicated convergence conditions than for
ur = u. The bounds for convergence of the backward error in Table 3.1 are mostly
more stringent than those for convergence of the forward error. Furthermore, the
bound for κ∞(A) forur = u is equal to or smaller than foru the next lower precision
with the same u and u`, although the limiting backward errors and forward errors
are in general smaller.

These differences appear to be caused by weakness of the analysis for u = ur ,
but at present we do not have any other way to analyze the ur = u case.

For the forward error the limiting value is cond(A,x)u for u` = u instead of u
when ur = u2. This is quite acceptable in most cases, since a standard solve with
LU factorization at precision u only guarantees a forward error of cond(A,x)u.

We note that in the experiments of [2], [3], and [4] GMRES is terminated when the
backward error (or relative residual) for the update equation is of order a quantity
much larger than u, whereas the analysis on which Table 3.1 is based assumes a
backward error of order us = u. Yet GMRES-IR converges when the bounds predict
it should, which implies that there is some slack in the analysis.

In conclusion, we expect GMRES-IR to be useful for ur = u, though it might not
converge for as wide a range of problems as when ur = u2.

References

[1] Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement and
its application to accurate solution of ill-conditioned sparse linear systems. SIAM
J. Sci. Comput., 39(6):A2834–A2856, 2017.

[2] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear systems
by iterative refinement in three precisions. SIAM J. Sci. Comput., 40(2):A817–
A847, 2018.

[3] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Har-
nessing GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision
iterative refinement solvers. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, SC ’18 (Dallas,
TX), Piscataway, NJ, USA, 2018, pages 47:1–47:11. IEEE Press.

7

https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050
https://doi.org/10.1109/SC.2018.00050

[4] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a matrix
into half precision, with an application to solving linear systems. SIAM J. Sci.
Comput., 41(4):A2536–A2551, 2019.

[5] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE
Std 754-1985). IEEE Computer Society, New York, 2008. 58 pp. ISBN 978-0-7381-
5752-8.

[6] Intel Corporation. BFLOAT16—hardware numerics definition, November 2018.
White paper. Document number 338302-001US.

[7] Christopher C. Paige, Miro Rozložník, and Zdeněk Strakoš. Modified Gram-
Schmidt (MGS), least squares, and backward stability of MGS-GMRES. SIAM J.
Matrix Anal. Appl., 28(1):264–284, 2006.

8

https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://doi.org/10.1137/050630416
https://doi.org/10.1137/050630416

