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MIXED PRECISION BLOCK FUSED MULTIPLY-ADD: ERROR
ANALYSIS AND APPLICATION TO GPU TENSOR CORES∗

PIERRE BLANCHARD† , NICHOLAS J. HIGHAM‡ , FLORENT LOPEZ§ , THEO MARY¶,

AND SRIKARA PRANESH‖

Abstract. Computing units that carry out a fused multiply-add (FMA) operation with matrix
arguments, referred to as tensor units by some vendors, have great potential for use in scientific
computing. However, these units are inherently mixed precision and existing rounding error analyses
do not support them. We consider a mixed precision block FMA that generalizes both the usual
scalar FMA and existing tensor units. We describe how to exploit such a block FMA in the numerical
linear algebra kernels of matrix multiplication and LU factorization and give rounding error analyses
of both kernels. An important application is to GMRES-based iterative refinement with block FMAs,
for which our analysis provides new insight. Our framework is applicable to the tensor core units
in the NVIDIA Volta and Turing GPUs. For these we compare matrix multiplication and LU
factorization with TC16 and TC32 forms of FMA, which differ in the precision used for the output
of the tensor cores. Our experiments on an NVDIA V100 GPU confirm the predictions of the analysis
that the TC32 variant is much more accurate than the TC16 one, while achieving almost the same
performance.

Key words. fused multiply-add, tensor cores, floating-point arithmetic, rounding error analysis,
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AMS subject classifications. 65F05, 65G50

1. Introduction. A new development in high performance computing is the
emergence of hardware supporting low precision floating-point formats such as the
16-bit IEEE half precision format (fp16) and the 16-bit bfloat161 [14]. Examples
of such hardware include the NVIDIA P100 and V100 GPUs, the AMD Radeon
Instinct MI25 GPU, Google’s Tensor Processing Units (TPUs), and the ARM NEON
architecture [2]. Expected to join them in the near future are the Fujitsu A64FX
ARM processor [6] (supporting fp16), IBM’s next generation AI chips [7] (supporting
an 8-bit floating-point format in addition to fp16), and Intel’s upcoming Xeon Cooper
Lake [18] and Nervana Neural Network processors [17].

These new computing units execute low precision arithmetic faster than single
precision (fp32), typically by a factor 2. But in the NVIDIA V100 GPU, thanks to
special computing units called tensor cores, fp16 arithmetic executes up to 8 times
faster than fp32 arithmetic.

This faster low precision arithmetic can be exploited in numerical algorithms.
In [8], [9], [10] it is shown how on an NVIDIA V100, fp16 arithmetic can be used
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with mixed precision iterative refinement to solve a linear system Ax = b up to
4 times faster and with 80 percent less energy usage than by an optimized double
precision solver, with no loss of accuracy or stability. Moreover, the same iterative
refinement approach running on Summit [16], [19], the machine with 4608 nodes with
6 NVIDIA V100 GPUs per node that leads the June 2019 TOP 500 list,2 has achieved
a performance of 445 petaflops [3].

The tensor cores in the NVIDIA Volta and Turing architectures are able to carry
out the operation D = C +AB, where all matrices are 4× 4, in only one clock cycle
and with just one rounding error per element of the result [1]. Moreover, while they
require the matrices A and B to be in the fp16 format, C and the result can be in
fp16 or fp32. Pictorially, we have

D = C + A B.
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16 or fp32

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

Tensor cores can therefore be seen as a generalization of a fused multiply-add (FMA)
unit to 4× 4 matrices, and they are an instance of what we call a “block FMA.”

Multiprecision computing units called matrix units (MXU) are available on Google
TPUs [20]. They use bfloat16 rather than fp16 as the low precision format and they
operate on 128×128 matrices. However, Google TPUs are not commercially available,
and details of computation in MXUs has not been made publicly available.

Tensor cores are inherently mixed precision units. Existing rounding error analy-
ses will be pessimistic when applied to computations with tensor cores, as they reflect
neither the single rounding error per element nor the potential mixed precision nature
of the computation.

In this work we define a mixed precision block FMA that includes NVIDIA tensor
cores as a special case and should be general enough to include future units. We
present algorithms for matrix multiplication and LU factorization with a block FMA
and give detailed rounding error analyses of them. Our analysis provides more realistic
error bounds than standard analysis and can be used to determine the optimal tradeoff
between performance and accuracy. In particular, in the case of NVIDIA tensor cores
our analysis and experiments show that performing the block FMA with C and D
in fp32 rather than fp16 can significantly improve the accuracy and stability of the
algorithms, while not hindering too much their performance.

We define a block FMA in section 2. In section 3 we show how to exploit it
in matrix multiplication and give a rounding error analysis. We then test accuracy
and performance on an NVIDIA V100 for several matrix multiplication variants. In
section 4 we present an algorithm for LU factorization based on a block FMA and give
a rounding error analysis for the factorization and the solution of Ax = b. We show
that the analysis gives new insights into GMRES-based iterative refinement. Then
we give numerical experiments on an NVIDIA V100 to illustrate the error analysis
and test the performance of four LU factorization variants. Concluding remarks are
given in section 5.

2https://www.top500.org/lists/2019/06/
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We will denote by fl16 and fl32 the operations of rounding to the fp16 and fp32
formats, and note that u16 = 2−11 and u32 = 2−24 are the respective unit roundoffs.
The absolute value of a matrix is defined componentwise: |A| = (|aij |).

2. Block fused multiply-add.

2.1. General framework for mixed-precision block FMA. Let A ∈ Rb1×b,
B ∈ Rb×b2 , and C ∈ Rb1×b2 . We assume that A and B are provided in a given
precision ulow, whereas C can be provided either in precision ulow or in a higher
precision uhigh. A block FMA computes

D︸︷︷︸
ulow or uhigh

= flFMA

(
C︸︷︷︸

ulow or uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

)
,

where flFMA = fllow or flFMA = flhigh, where fllow and flhigh round their arguments
to arithmetics with precisions ulow and uhigh, respectively. Thus D is the correctly
rounded matrix at precision ulow or uhigh.

For b = b1 = b2 we will refer to the block FMA as a b × b FMA. For b = 1 and
just one precision, ulow = uhigh, a block FMA is the usual scalar FMA found on a
number of processors dating back to the 1990s.

2.2. GPU tensor cores. The tensor cores in the NVIDIA Volta and Turing
architectures perform a b×b FMA for b = 4. As noted in section 1, while they require
A and B to be fp16 matrices (that is, ulow = u16), C and D can be either fp16 or
fp32 (that is, uhigh = u32). The FMA can return its outputs at precision fp16 or fp32.
Therefore there are four cases:

(2.1) D̂ =


f l16(C(16) +AB), case 1, TC16,

f l16(C(32) +AB), case 2, TC16,

f l32(C(32) +AB), case 3, TC32,

f l32(C(16) +AB), case 4, TC32,

where C(16) and C(32) denote an fp16 matrix and an fp32 matrix, respectively. The
computed D̂ satisfies

(2.2) |D̂ −D| ≤ uFMA|D|,

where uFMA = u16 in cases 1 and 2 and uFMA = u32 in cases 3 and 4. For error
analysis purposes it is irrelevant whether C is an fp16 or fp32 matrix, in the sense
that it does not affect the constant uFMA in the error bound (2.2). It is therefore
useful to denote cases 1 and 2 as TC16 and cases 3 and 4 as TC32, as in (2.1).

3. Matrix multiplication with block FMA. In this section we describe an
algorithm to exploit a block FMA in matrix multiplication. We perform the rounding
error analysis of this algorithm and compare our error bounds with the results of
numerical experiments using tensor cores on an NVIDIA V100.

3.1. Description of the algorithm. Consider matrices A ∈ Rm×n and B ∈
Rn×t partitioned into b1 × b and b × b2 blocks, respectively, where for simplicity
we assume that p = m/b1, q = n/b, and r = t/b2 are integers. We describe in
Algorithm 3.1 how to multiply A and B in a way that can exploit a block FMA.

Note that the algorithm does not assume that A and B are given in precision ulow.
In the context of mixed precision LU factorization [9], for example, they may be given
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Algorithm 3.1 Let A = (Aij) ∈ Rm×n and B = (Bij) ∈ Rn×t be partitioned into
b1 × b and b × b2 blocks, respectively, where p = m/b1, q = n/b, and r = t/b2 are
assumed to be integers. This algorithm performs the matrix multiplication C = AB
using a block FMA. The output C is in precision uhigh or ulow depending on the type
of FMA.

1: Convert A and B to precision ulow if necessary.
2: for i = 1: p do
3: for j = 1: r do
4: Cij = 0
5: for ` = 1: q do
6: Compute Cij = Cij +Ai`B`j using a block FMA.
7: end for
8: end for
9: end for

in uhigh. We use the term “convert” on line 1 rather than “round” because in practice
it might be necessary to do some kind of scaling to avoid overflow or underflow; see
[13] for such considerations. However, in our analysis we will assume that underflow
and overflow do not occur.

3.2. Rounding error analysis. We now give a rounding error analysis for Algo-
rithm 3.1. Our strategy is to start with an existing analysis for matrix multiplication
and observe that many of the rounding errors are zero because of the block FMA.

We will use the standard model of floating-point arithmetic [11, sec. 2.2]

(3.1) f l(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}

and the alternative form

(3.2) f l(a op b) =
a op b

1 + δ
, |δ| ≤ u, op ∈ {+,−,×, /}.

Suppose we compute the inner product sn = xT y of x, y ∈ Rn by left to right evalua-
tion of x1y1 + · · ·+ xnyn. The computed value ŝn satisfies [11, eq. (3.2)]

(3.3) ŝn = x1y1(1 + δ)n + x2y2(1 + δ)n + x3y3(1 + δ)n−1 + · · ·+ xnyn(1 + δ)2,

where each occurrence of 1 + δ denotes a possibly different 1 + δi with |δi| ≤ u.
Assuming that nu < 1, this leads to the error bound [11, eq. (3.5)]

(3.4) |sn − ŝn| ≤ γn|x|T |y|,

where

(3.5) γn =
nu

1− nu
.

Thinking of x as a row aTi of A and y a column bj of B, and writing sn = aTi bj as

sn = (x1y1+ · · ·+xbyb)+(xb+1yb+1+ · · ·+x2by2b)+ · · ·+(xn−b+1yn−b+1+ · · ·+xnyn),

we see that the block FMA in Algorithm 3.1 ensures that each term in parentheses
is computed exactly and added to the previous partial sum exactly before a final
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rounding. Therefore by (3.3) we have

ŝn = (x1y1 + · · ·+ xbyb)(1 + δ)q + (xb+1yb+1 + · · ·+ x2by2b)(1 + δ)q−1 + · · ·(3.6)

+ (xn−b+1yn−b+1 + · · ·+ xnyn)(1 + δ),

where q = n/b and |δi| ≤ uFMA. Instead of a product of up to n 1 + δ terms, as in
(3.3), we have up to q such terms, which means that (3.4) holds with n replaced by
q. Hence

(3.7) |sn − ŝn| ≤ γFMA
q |ai|T |bj |,

where

(3.8) γFMA
q =

quFMA

1− quFMA

.

If the input matrices A and B are given in precision ulow then we can directly
apply the above analysis to obtain the following bound for Algorithm 3.1.

Theorem 3.1. Let the product C = AB of A ∈ Rm×n and B ∈ Rn×t given in
precision ulow be evaluated by Algorithm 3.1, where p = m/b1, q = n/b, and r = t/b2
are assumed to be integers. The computed Ĉ satisfies

(3.9) |C − Ĉ| ≤ γFMA
q |A||B|.

If A and B are not given in precision ulow then we must account for the initial
conversion to precision ulow. Assuming rounding with no underflow or overflow, we
have

Ã = fllow(A) = A+∆A, |∆A| ≤ ulow|A|,

B̃ = fllow(B) = B +∆B, |∆B| ≤ ulow|B|.

Applying (3.7) to the computation of C = ÃB̃ yields

Ĉ = ÃB̃ +∆C, |∆C| ≤ γFMA
q |Ã||B̃|,

so
Ĉ = AB +∆AB +A∆B +∆A∆B +∆C =: AB + E.

Bounding E yields the following result.

Theorem 3.2. Let the product C = AB of A ∈ Rm×n and B ∈ Rn×t (not nec-
essarily given in precision ulow) be evaluated by Algorithm 3.1, where p = m/b1,

q = n/b, and r = t/b2 are assumed to be integers. The computed Ĉ satisfies

(3.10) |C − Ĉ| ≤
(
2ulow + u2low + γFMA

q (1 + ulow)2
)
|A||B|.

The bounds (3.9) and (3.10) should be compared with [11, eq. (3.13)]

(3.11) |C − Ĉ| ≤ γn|A||B|

for a standard matrix product that does not use a block FMA.
We gather in Table 3.1 the dominant terms in the error bounds for four matrix

multiplication implementations, with A and B given in precisions uhigh or ulow: stan-
dard multiplication in precision uhigh or ulow (error bound (3.11)) and multiplication
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Table 3.1: Dominant terms in the error constant multiplying |A||B| for standard
matrix multiplication and for Algorithm 3.1, from (3.9) and (3.10). Here, q = n/b.

Precision Standard in Block FMA Block FMA Standard in
of A and B precision ulow uFMA = ulow uFMA = uhigh precision uhigh

ulow nulow qulow quhigh nuhigh
uhigh (n+ 2)ulow (q + 2)ulow 2ulow + quhigh nuhigh

Table 3.2: Specialization of the bounds in Table 3.1 for NVIDIA tensor cores, for
which b = 4 and where ulow = u16 (TC16) or uhigh = u32 (TC32).

Precision Standard Tensor core Tensor core Standard
of A and B fp16 TC16 TC32 fp32

u16 nu16 nu16/4 nu32/4 nu32
u32 (n+ 2)u16 (n/4 + 2)u16 2u16 + nu32/4 nu32

with a block FMA with uFMA = uhigh or uFMA = ulow (error bounds (3.9) and (3.10),
respectively). For the sake of readability, in the bounds in Table 3.1 we have assumed
that uhigh � ulow.

Compared with the standard multiplication in precision ulow, the block FMA
multiplication with uFMA = ulow has a smaller error bound by a factor approximately
b. Importantly, the bound in (3.9) is about a factor ulow/uhigh smaller when the block
FMA is returned at the higher precision rather than the lower precision. Moreover,
when uFMA = uhigh the bound (3.10) does not grow with n as long as n < 2bulow/uhigh
and, for larger n, the bound remains roughly a factor b smaller than the bound for
standard multiplication in precision uhigh.

The bounds above are worst-case and so may be pessimistic, especially for large
dimensions (see the numerical results in the next subsection). To derive more realistic
bounds, we can use a probabilistic model of the rounding errors [12]. A probabilistic
analogue of Theorem 3.2 directly follows from [12, Thm. 3.1]. It contains a modified
version of (3.10) with γFMA

q replaced by a relaxed constant γFMA
q (λ) proportional to

λq1/2uhigh, and it holds with a probability at least a given quantity that is very close
to 1 for λ of order 10 or so. In particular, this means that the block FMA bound with
uFMA = uhigh may only start growing with n for much larger n than the worst-case
bound suggests (perhaps for n larger than 4b(ulow/uhigh)2).

We now apply these bounds to NVIDIA tensor cores. This amounts to taking
b = 4, uhigh = u32, and ulow = u16 in the bounds of Table 3.1. We gather the
resulting bounds in Table 3.2, where we consider standard half and single precision
multiplication (fp16 and fp32), and tensor core multiplication in either TC16 (uFMA =
u16) or TC32 (uFMA = u32) mode. We see clearly that the tensor cores bring two
benefits: TC16 reduces the constant n multiplying u16 to n/4, while TC32 remove n
entirely from the u16 term and relegates it to the u32 term. Perhaps surprisingly, for
n & 8u16/3u32 = 21845 the analysis suggests that TC32 may be more accurate than
fp32.

6
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Matrix size: n

fp16

TC16
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fp32

Fig. 3.1: Forward errors for four matrix multiplication variants on NVIDIA V100
GPU (fp16, TC16, TC32, and fp32) where matrix entries are sampled uniformly in
[0, 10−3]. Solid lines represent errors while dashed lines represent error bounds.

3.3. Numerical experiments with tensor core matrix multiplication. We
now present numerical experiments to investigate whether the error bounds correctly
predict the relative accuracy of the different methods and to assess the performance
of the methods. We use the implementation of the four matrix multiplication variants
provided in the cuBLAS library v10.1. The matrices A and B are random, with
entries sampled uniformly from [0, 10−3] or [−1, 1]. We set the upper bound to 10−3

in the former case to avoid overflow in the multiplication for large sizes. Matrices
are generated in single precision in order to compare the accuracy of the fp16, TC16,
and TC32 computations with those for fp32. As a result, for the first three methods
matrices A and B will be converted to half precision prior to multiplication. To
assess the sharpness of the bounds we consider A ∈ Rm×n and B ∈ Rn×t with n
varying from 1024 to approximately 2 × 106, and in order that the matrices fit on a
single GPU we take m = t = 8. Figures 3.1 and 3.2 plot the forward error measure
‖Ĉ − C‖F /(‖A‖F ‖B‖F ) for increasing values of n, where C is an approximation of
the exact result obtained with a standard double precision multiplication computed
with cuBLAS. This error measure is not the true relative forward error but is what
the analysis bounds when norms are taken in the bounds. Bounds associated with
each variant are represented in dashed lines. Once a bound reaches the value 1, we
set it to 1 as it provides no useful information.

As expected almost all errors are relatively far from their worst-case bounds.
Moreover, the errors in Figure 3.2 are generally much smaller than their counterparts
in Figure 3.1. For matrices with positive entries (Figure 3.1) the errors for fp16 and
TC16 range from 10−3 to 1 and exceed 0.1 for n ≈ 106. By contrast, the errors for
TC32 and fp32 are much smaller: between 10−5 and 10−2 for TC32 and between
10−7 and 10−5 for fp32. We observe that the error bound for TC32 is rather loose (a
constant two orders of magnitude gap) but still insightful, as it captures the growth
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Fig. 3.2: Forward errors for four matrix multiplication variants on NVIDIA V100
GPU (fp16, TC16, TC32, and fp32) where matrix entries are sampled uniformly in
[−1, 1]. Solid lines represent errors while dashed lines represent error bounds.

of the error with n. On the other hand, error growth is not observed before n = 106

with fp32. Consequently, the possibility suggested by the analysis that at n ≈ 2×104

TC32 could become more accurate than fp32 is not realized with this dataset. A
probabilistic bound, as mentioned in the previous section, would predict crossover at
the square of this value of n, which is beyond our range of n.

In order to give a baseline for the performance of each matrix multiplication
method we run additional simulations for square matrices. Figure 3.3 shows the
maximum flop rate out of five runs (in TFlops/s) for each multiplication method and
each matrix size. We see that although the TC16 variant performs slightly better
than the TC32 variant for matrix sizes up to n = 8000, the two variants have similar
asymptotic performance for n > 8000. In that range of sizes the flop rates associated
with tensor core-enabled multiplication are about 3.5× larger than fp16 multiplication
(3.3 to 3.6) and about 7× larger than single precision multiplication (6.8 to 7.3), both
executed on CUDA cores. The flop rate of TC16 multiplication reaches a maximum
of 101.2 TFlops/s (about 90% of the theoretical performance, namely 112.7TFlops/s)
for n = 8000. Our performance results are in good agreement with other existing
benchmarks, e.g., [15].

4. Solution of linear systems with block FMA. Now we consider the solu-
tion of linear systems Ax = b by LU factorization, where A is a dense n× n matrix.
Since LU factorization can be formulated to exploit matrix multiplication it can ben-
efit from using a block FMA.

Algorithm 4.1 computes an LU factorization using a block FMA. The algorithm
employs three precisions: the working precision u and the precisions ulow and uhigh
used by the block FMA employed within the call to Algorithm 3.1 on line 9. We
assume that A is given in precision u and that precision u is used on lines 2 and 4.
Other versions of the algorithm can be defined by varying these precisions.
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Fig. 3.3: Performance results (in TFlops/s) for matrix multiplication variants on
NVIDIA V100 GPU (fp16, TC16, TC32 and fp32) with square matrices.

Algorithm 4.1 Let A = (Aij) ∈ Rn×n be given in precision u and partitioned into
b× b blocks, where q = n/b is assumed to be an integer. This algorithm performs the
right-looking LU factorization A = LU (with L and U partitioned into b × b blocks)
exploiting a b× b FMA.

1: for k = 1: q do
2: Factorize LkkUkk = Akk.
3: for i = k + 1: q do
4: Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki.
5: end for
6: for i = k + 1: q do
7: for j = k + 1: q do
8: L̃ik ← f llow(Lik) and Ũki ← f llow(Uki).

9: Aij ← Aij − L̃ikŨkj using Algorithm 3.1.
10: end for
11: end for
12: end for

4.1. Rounding error analysis. We now perform a rounding error analysis of
Algorithm 4.1. and its use to solve linear systems Ax = b. We begin with a simple
application of Theorem 3.1.

Corollary 4.1. Let B = A −
∑q

i=1XiYi, where A,B,Xi, Yi ∈ Rb×b are given

in precision uhigh, be computed with a b× b FMA. The computed B̂ satisfies

|B̂ −B| ≤ γFMA
q

(
|A|+

q∑
k=1

|Xk||Yk|)
)
.

9



Proof. Write B = A− [X1 X2 . . . Xq][Y T
1 Y T

2 . . . Y T
q ]T , and apply Theorem 3.1,

noting that A partakes in the first block FMA and so has no effect on the constant
in the bound.

Theorem 4.2. Let A ∈ Rn×n be partitioned in b × b blocks, with q = n/b an

integer. If Algorithm 4.1 runs to completion then the computed LU factors L̂ and Û
satisfy A+∆A = L̂Û , where

|∆A| ≤
(

2ulow + u2low + max(γFMA
q−1 , γb)(1 + ulow)2

)
(|A|+ |L̂||Û |).

Proof. The (i, k) block of the L factor is computed by solving

LikÛkk = Rik, Rik = Aik −
k−1∑
j=1

L̃ijŨjk, i > k,

where L̃ and Ũ denote the computed factors that have been converted to precision
ulow (line 8 of Algorithm 4.1) and satisfy L̃ij = L̂ij +Eij and Ũjk = Ûjk +Fjk, where

|Eij | ≤ ulow|L̂ij | and |Fjk| ≤ ulow|Ûjk|. By Corollary 4.1, the computed R̂ik satisfies

|Rik − R̂ik| ≤ γFMA
q−1

(
|Aik|+

k−1∑
j=1

|L̃ij ||Ũjk|
)

and by [11, Thm. 8.5] we have

|L̂ikÛkk − R̂ik| ≤ γb|L̂ik||Ûkk|.(4.1)

Combining these two inequalities gives∣∣∣∣Aik −
k−1∑
j=1

L̃ijŨjk − L̂ikÛkk

∣∣∣∣ ≤ max(γFMA
q−1 , γb)

(
|Aik|+

k−1∑
j=1

|L̃ij ||Ũjk|+ |L̂ik||Ûkk|
)
.

Replacing L̃ij by L̂ij + Eij and Ũjk by Ûjk + Fjk, we obtain∣∣∣∣Aik −
k∑

j=1

L̂ijÛjk −G
∣∣∣∣ ≤ max(γFMA

q−1 , γb)(1 + ulow)2
(
|Aik|+

k∑
j=1

|L̂ij ||Ûjk|
)
,

where

G =

k−1∑
j=1

(
EijÛjk + L̂ijFjk + EijFjk

)
and thus |G| ≤ (2ulow + u2low)

∑k−1
j=1 |L̂ij ||Ûjk|. We conclude that for i > k,

|Aik −
k∑

j=1

L̂ijÛjk| ≤
(

2ulow + u2low + max(γFMA
q−1 , γb)(1 + ulow)2

)
×
(
|Aij |+

k∑
j=1

|L̂ij ||Ûjk|
)
.(4.2)

For i = k, Lkk is determined with Ukk on line 2 of Algorithm 4.1, and by [11, Thm. 9.3]

we have |L̂kkÛkk−R̂kk| ≤ γb|L̂kk||Ûkk|. Therefore (4.1) holds for i = k, too, and hence
so does (4.2). In a similar way, the inequality (4.2) can be shown to hold for i > k.
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Table 4.1: Dominant terms in the error constant c(n, u16, u32) in the backward error

bound |∆A| ≤ c(n, u16, u32)(|A| + |L̃||Ũ |) in (4.3) for the solution of Ax = b using
tensor cores. We have taken u = u16 for fp16 and TC16, and u = u32 for fp32 and
TC32.

fp16 TC16 TC32 fp32

c(n, u16, u32) (3n+ 1)u16 (9n/4 + 1)u16 2u16 + (9n/4− 1)u32 3nu32

Theorem 4.3. Let A ∈ Rn×n be partitioned in b × b blocks, with q = n/b an

integer. If Algorithm 4.1 produces computed LU factors L̂ and Û and substitution
yields a computed solution x̂ to Ax = b then (A+∆A)x̂ = b, where

(4.3) |∆A| ≤
(
2ulow + u2low + max(γFMA

q−1 , γb)(1 + ulow)2 + 2γn + γ2n
)
(|A|+ |L̂||Û |).

Proof. The result is obtained by combining Theorem 4.2 with the error analysis
for the solution of triangular systems [11, Thm. 8.5] and is analogous to the proof of
[11, Thm. 9.4].

We gather in Table 4.1 the dominant terms in the error bound for the solution of
linear systems using NVIDIA tensor cores. We distinguish the same four variants of
matrix multiplication as in Table 3.2. In the fp16 and fp32 cases, we naturally take
the working precision to be u = u16 and u = u32, respectively. In the TC16 case, both
u = u16 and u = u32 are possible, but since the FMA uses u16 precision, we might as
well take the working precision to be u = u16. Finally, in the TC32 case, in order to
preserve the accuracy benefit of using an FMA and avoid the error growing with n to
first order, we must take u = u32.

Overall, these bounds lead to the same conclusions as in the matrix multiplication
case: the TC16 bound is smaller than the fp16 one by about a factor b/3 = 4/3, while
the TC32 variant leads to a much smaller bound, which only starts growing with n
when n & 8

9u16/u32 ≈ 7.3 × 103 (at which point it is slightly smaller than the fp32
bound).

4.2. Application to GMRES-based iterative refinement. Our analysis is
applicable to the work in Haidar et al. [9], in which an implementation of Algorithm 4.1
on an NVIDIA V100 was used with single precision as the working precision and fp16
or TC32 for the matrix multiplications. The resulting LU factorization was used as
a preconditioner in GMRES-based iterative refinement [4], [5]. In the experiments
reported in [9], the total number of GMRES iterations (a good measure of the cost
of refinement) for TC32 was at most half that for fp16 (with a significant increase in
performance too). This is what would be expected from Table 4.1, where the error
constant for TC32 is a factor ranging from 2.9 × 103 to 3.5 × 104 smaller than that
for fp16 for the matrix sizes n ∈ [2000, 34000] used in those experiments.

4.3. Numerical experiments with tensor core LU factorization. We now
present experiments testing the accuracy and performance of the LU factorization
computed by Algorithm 4.1 for solving Ax = b on an NVIDIA V100 GPU. Our
implementation does not use pivoting in the LU factorization and it performs all the
operations (factor, solve, and update) solely on the GPU. We use our own CUDA
kernels for the factor and solve operations and use the cublasGemmEx routine from
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Fig. 4.1: Performance in Tflop/s of the LU factorization computed by Algorithm 4.1
on an NVIDIA V100 GPU for the four variants fp16, TC16, TC32, and fp32.

the cuBLAS library, which is the same as the routine tested in Section 3 for the matrix
multiplication, for performing the update operation. In the following experiments, we
use fp32 as working precision and compare the four variants fp16, TC16, TC32, and
fp32 listed in Table 4.1.

The test matrices are randomly generated as Q1DQ2, where Q1 and Q2 are
random orthogonal matrices and D is diagonal, with dii = 10−c(i−1)/(n−1). The
resulting matrix has singular values lying between 1 and 10−c and thus a condition
number equal to 10c. In our experiments we set c = 3.

In Figure 4.1 we show the performance for the fp16, TC16, TC32, and fp32 vari-
ants for square matrices with n ranging between 1000 and 45000. Note that we do not
include the times for the forward and backward substitution in these results because
the cost of the factorization largely dominates the total cost for solving the linear sys-
tem. In this figure we see that the fp32 variant asymptotically reaches 10 TFlop/s and
that, as expected, the fp16 variant achieves twice the performance of that variant with
around 20 TFlop/s. Note that the cuSOLVER library, as part of the CUDA toolkit,
provides a single-precision LU factorization routine called cusolverDnSgetrf corre-
sponding to our fp32 variant. For the sake of clarity, we do not include experimental
results for the cusolverDnSgetrf routine but we observed that our implementation
achieves similar performance to this routine. The TC16 and TC32 variants achieve
much higher asymptotic performance, respectively around 36 and 32 TFlop/s, due to
the use of the tensor cores. Although the TC16 and TC32 variants show similar per-
formance behavior, the TC16 variant is slightly less efficient on the smaller matrices.
On the largest matrix, though, the TC16 variants offer slightly better performance
than TC32 which is consistent with the performance results obtained with the matrix
multiply operation shown in Figure 3.3.
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Fig. 4.2: Componentwise backward error for the solution of Ax = b using an LU
factorization on an NVIDIA V100 GPU for the four variants fp16, TC16, TC32, and
fp32.

A comparison of the componentwise backward errors

max
i

|Ax̂− b|i
((|A|+ |L̂||Û |)|x|)i

is given in Figure 4.2. The TC16 variant gives a smaller backward error than the
fp16 one. This is due to the use of a block FMA operation in the tensor cores and
is consistent with the error bounds shown in Table 4.1. The TC32 variant gives a
backward error between one and two orders of magnitude smaller than the fp16 and
TC16 variants. The fp32 variant gives the smallest backward error but it is up to 3
times slower than the TC32 variant, as shown by Figure 4.1.

We conclude from these results that the TC32 variant offers the best performance
versus accuracy tradeoff, as it exploits the performance capabilities of the tensor cores
and has similar performance to TC16 variant, while giving much smaller backward
errors than the fp16 and TC16 variants and backward errors only 1 to 1.5 orders of
magnitude larger than for fp32.

5. Conclusion. We have considered a general mixed precision block FMA unit
that carries out a mixed-precision fused multiply-add operation D ← C + AB on
b × b matrices. This block FMA generalizes the usual scalar FMA in two ways.
First, it works on matrices (for b > 1) instead of scalars. Second, it takes A and B
stored in precision ulow and C stored in precision ulow or uhigh, computes D with a
single rounding error per element, and returns D in precision ulow or uhigh. Here,
uhigh < ulow.

We have proposed matrix multiplication and LU factorization algorithms that
exploit such units and given detailed rounding error analyses of the algorithms, dis-
tinguishing several variants depending on which precisions are used to store each
matrix.

13



If only one precision, ulow = uhigh is used, a b × b block FMA leads to error
bounds a factor b smaller than those for conventional algorithms. More significantly,
by storing C and D in precision uhigh, the error bounds are reduced from O(nulow) to
culow + O(nuhigh), where c is independent of the problem size n. Assuming uhigh �
ulow, we obtain bounds that are independent of n to first order, which suggests we
can obtain more accurate results than for algorithms with only one precision, ulow.

We applied our analysis to the tensor core units available in the NVIDIA Volta and
Turing GPUs, which are specific block FMA units with b = 4 and with fp16 and fp32
precisions. We compared two variants, TC16 and TC32, which differ in the precision
used by the FMA to accumulate the operations. Our analysis predicts the TC32
variant to be much more accurate than the TC16 one; our numerical experiments
confirm this prediction and moreover show that the accuracy boost is achieved with
almost no performance loss.
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