
Solving Block Low-Rank Linear Systems by LU
Factorization is Numerically Stable

Higham, Nicholas J. and Mary, Theo

2019

MIMS EPrint: 2019.15

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

SOLVING BLOCK LOW-RANK LINEAR SYSTEMS BY
LU FACTORIZATION IS NUMERICALLY STABLE∗

NICHOLAS J. HIGHAM† AND THEO MARY‡

Abstract. Block low-rank (BLR) matrices possess a blockwise low-rank property that can be
exploited to reduce the complexity of numerical linear algebra algorithms. The impact of these low-
rank approximations on the numerical stability of the algorithms in floating-point arithmetic has not
previously been analyzed. We present rounding error analysis for the solution of a linear system by LU
factorization of BLR matrices. Assuming that a stable pivoting scheme is used, we prove backward
stability: the relative backward error is bounded by a modest constant times ε, where the low-rank
threshold ε is the parameter controlling the accuracy of the blockwise low-rank approximations. In
addition to this key result, our analysis offers three new insights into the numerical behavior of
BLR algorithms. First, we compare the use of a global or local low-rank threshold and find that a
global one should be preferred. Second, we show that performing intermediate recompressions during
the factorization can significantly reduce its cost without compromising numerical stability. Third,
we consider different BLR factorization variants and determine the compress–factor–update (CFU)
variant to be the best. Tests on a wide range of matrices from various real-life applications show
that the predictions from the analysis are realized in practice.

Key words. Block low-rank matrices, rounding error analysis, floating-point arithmetic, nu-
merical linear algebra.

AMS subject classifications. 65G50, 65Fxx

1. Introduction. In many applications requiring the solution of a linear system

Ax = v, (1.1)

the matrix A has been shown to have a blockwise low-rank property: most of its
off-diagonal blocks are of low numerical rank and can therefore be well approximated
by low-rank (LR) matrices.

Several formats have been proposed to exploit this property, differing in how the
matrix is partitioned into blocks. In this article, we focus on the block low-rank (BLR)
format [3], which is based on a flat, non-hierarchical partitioning allowing it to reduce
both the theoretical complexity [4] and the practical time and memory costs [5] of
key numerical linear algebra computations such as solving (1.1) by LU factorization.

Even though the BLR format has been extensively studied and widely used in
numerous applications [1,2,3,4,5,7,12,23,25,27,28,30,31,33], little is known about its
numerical behavior in floating-point arithmetic. Indeed, no rounding error analysis
has been published for BLR matrix algorithms. The difficulty of such an analysis lies
in the fact that, compared with classical algorithms without low-rank approximations,
there are two kinds of errors to analyze: the floating-point errors (which depend on the
unit roundoff u) and the low-rank truncation errors (which depend on the low-rank
threshold ε > u). Yet performing such an analysis is crucial to better understand the
effect of BLR approximations on the accuracy and stability of these algorithms and,
in particular, to shed light on the following four open problems.

• It has been experimentally observed that the solution to BLR linear systems
generally yields a backward error of the same order as the low-rank threshold

∗Version of September 4, 2019.
†Department of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/˜higham)
‡Department of Mathematics, The University of Manchester, Manchester M13 9PL, UK

(theo.mary@manchester.ac.uk)

1

ε. This is an important and valuable property that has, however, never been
formally proved. The dependence of the backward error on the unit roundoff
should also be investigated.

• In contrast to hierarchical matrices, the number of block-rows and block-
columns in BLR matrices usually grows with the matrix size and may thus
become very large. It is therefore important to determine how the error grows
as the matrix size increases and whether it depends on the number of blocks.

• The low-rank approximation Ãij to a block Aij is computed such that ‖Aij−
Ãij‖ ≤ εβij , where βij is a scalar that can be freely chosen and whose impact
on the numerical behavior of the algorithms is currently not well understood.
In particular, local (βij = ‖Aij‖) and global (βij = ‖A‖) low-rank thresholds
have both been proposed in the literature and should be compared.

• Several BLR LU factorization algorithms can be distinguished, depending on
when the compression is performed. These algorithms have been compared in
terms of asymptotic complexity, performance, and storage requirements [25].
However, it is not currently known how they compare in terms of numerical
stability.

In this article, we develop and present rounding error analyses of various BLR
matrix algorithms to answer these questions. We begin in section 2 with the prelimi-
nary material necessary for the analysis. Section 3 analyzes several kernels involving
LR matrices, such as LR matrix–vector and matrix–matrix products. Then, sec-
tion 4 builds upon these results to analyze several key BLR matrix algorithms, such
as BLR matrix–vector products, BLR LU factorizations, and the solution to BLR
linear systems. Throughout the article, numerical experiments are interlaced with
theoretical results to illustrate them. We provide additional experiments on a wide
range of matrices coming from various real-life applications in section 5. We gather
our conclusions in section 6.

2. Technical background and experimental setting.

2.1. Low-rank (LR) and block low-rank (BLR) matrices. Let A ∈ Rb×b
have the SVD UΣV T , where Σ = diag(σi) with σ1 ≥ · · · ≥ σb ≥ 0. Given a target

rank k ≤ b, the quantity ‖A− Ã‖ for any rank-k matrix Ã is known to be minimized
for any unitarily invariant norm by the truncated SVD

Ã = U:,1:kΣ1:k,1:kV
T
:,1:k. (2.1)

If the singular values of A decay rapidly, ‖A− Ã‖ can be small even for small k � b,

where the meaning of “small” is specified below. In this case, Ã is referred to as a
low-rank (LR) matrix, and the cost of storing and computing on Ã can be greatly

reduced. While Ã can directly be represented by the truncated SVD (2.1), in this

article we use the alternative form Ã = XY T , where X = U:,1:k and Y = V:,1:kΣ
T
1:k,1:k;

matrix X can thus be assumed to have orthonormal columns.
A block low-rank (BLR) representation Ã of a dense matrix A has the block p×p

form

Ã =


A11 Ã12 · · · Ã1p

Ã21 · · · · · ·
...

... · · · · · ·
...

Ãp1 · · · · · · App

 , (2.2)

2

where off-diagonal blocks Aij of size mi×nj are approximated by LR matrices Ãij =
XijY

T
ij of rank kij , where Xij ∈ Rmi×kij and Yij ∈ Rnj×kij .

We assume that the ranks kij are chosen as

kij = min
{
`ij : ‖Aij − Ãij‖ ≤ εβij , rank

(
Ãij
)

= `ij

}
, (2.3)

where ε > 0 is referred to as the low-rank threshold and controls the accuracy of
the approximations Ãij ≈ Aij , and where we have either βij = ‖Aij‖ or βij = ‖A‖.
The parameters βij therefore control whether the blocks are approximated relative to
their own norm ‖Aij‖ or the norm of the global matrix ‖A‖. We refer to the low-rank
threshold as local in the former case and as global in the latter case.

With a local threshold, kij corresponds to the usual definition of numerical rank.
Importantly, with a global threshold, blocks that do not have rapidly decaying singular
values may still be approximated by LR matrices if they are of small norm compared
to ‖A‖. Indeed, even though such blocks have high numerical rank relative to their
own norm, their contribution to the global computation can be considered to be
negligible compared with other blocks of larger norm. In the most extreme cases,
some blocks may be of norm smaller than ε: these blocks can then approximated
by zero-rank matrices, that is, they may be dropped entirely. Exploiting this fact
can drastically improve the compression, sometimes even leading to an improved
asymptotic complexity [4].

Throughout this article, we denote by r the largest of the ranks kij , and we
assume for simplicity that all blocks are of the same dimensions b× b, and so n = pb.

Note that in general, low-rank approximations only hold in a normwise sense: that
is, given a matrix A and a LR matrix Ã satisfying ‖Ã−A‖ ≤ ε‖A‖, the componentwise

inequality |Ã−A| ≤ ε|A| does not hold. For this reason we perform a normwise error
analysis.

Throughout this article, the unsubscripted norm ‖ ·‖ denotes the Frobenius norm

‖A‖ =

(∑
i,j

|aij |2
)1/2

,

which we use for all our error analysis. We choose to work with the Frobenius norm
for three of its useful properties. First, it is submultiplicative (also called consistent):
‖AB‖ ≤ ‖A‖‖B‖. Second, it is invariant under multiplication on the left by a matrix
with orthonormal columns X: ‖XA‖ = ‖A‖ (note that X is not necessarily unitary:
XTX = I must hold but XXT = I need not). Finally, unlike for the spectral norm,
it is easy to switch between blockwise and global bounds using the relation

‖A‖ =

(∑
i,j

‖Aij‖2
)1/2

for any block partitioning of A. We will use all these properties of the Frobenius
norm without comment. More specific examples of why the Frobenius norm is the
best choice for our analysis are given throughout sections 3 and 4.

2.2. Floating-point arithmetic and rounding error analysis. Throughout
the article, we use the standard model of floating-point arithmetic [19, sec. 2.2]

f l(x op y) = (x op y)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /}. (2.4)

3

We also define

γk =
ku

1− ku

for ku < 1. We will use without comment the relations jγk ≤ γjk and γj + γk ≤ γj+k
[19, Lem. 3.3], which hold for any j, k ≥ 1 (including non-integer j, k, which we will
sometimes use).

We recall normwise error bounds for some basic matrix computations.

Lemma 2.1 (Error bounds for matrix–vector and matrix–matrix products). Let
A ∈ Ra×b, v ∈ Rb, and w = Av. The computed ŵ satisfies

ŵ = (A+∆A)v, ‖∆A‖ ≤ γb‖A‖. (2.5)

Let B ∈ Rb×c and let C = AB. The computed Ĉ satisfies

Ĉ = AB +∆C, ‖∆C‖ ≤ γb‖A‖‖B‖. (2.6)

Proof. See [19, p. 71].

Lemma 2.2 (Backward error bound for triangular systems). Let T ∈ Rb×b be
nonsingular and triangular and let v ∈ Rb. The computed solution x̂ to the triangular
system Tx = v satisfies

(T +∆T)x̂ = v, ‖∆T‖ ≤ γb‖T‖. (2.7)

The computed solution X̂ to the multiple right-hand side triangular system TX = V ,
where V ∈ Rb×c, satisfies

TX̂ = B +∆B, ‖∆B‖ ≤ γb‖T‖‖X̂‖. (2.8)

Proof. See [19, Thm. 8.5].

Lemma 2.3 (Backward error bound for LU factorization). If the LU factorization

of A ∈ Rb×b runs to completion then the computed LU factors L̂ and Û satisfy

L̂Û = A+∆A, ‖∆A‖ ≤ γb‖L̂‖‖Û‖. (2.9)

Proof. See [19, Thm. 9.3].

Finally, we make the assumption that rounding errors can be ignored in the
computation of the LR approximation Ãij of any block Aij via its truncated SVD.

Assumption 2.4 (Error bound for the truncated SVD computation). Given a
block Aij ∈ Rb×b and two positive parameters ε (the low-rank threshold) and βij, the

LR block Ãij computed via the truncated SVD Ãij = X̂:,1:kij Σ̂1:kij ,1:kij Ŷ
T
:,1:kij

satisfies

Ãij = Aij +∆Aij , ‖∆Aij‖ ≤ εβij .

We recall that βij = ‖Aij‖ or βij = ‖A‖ controls whether we use a local or global
threshold, as explained in the previous section.

Note that Assumption 2.4 is only satisfied if the unit roundoff u is safely smaller
than the low-rank threshold ε, which we assume to be the case throughout the analysis.

4

2.3. Experimental setting. All numerical experiments reported in this article
have been performed with MATLAB R2018b. Unless otherwise specified, we use
IEEE double precision floating-point arithmetic. In some experiments we also use
IEEE single and half precisions. The use of half precision has been simulated as
described in [21]. We have made all our codes used for the experiments available
online1.

One of the most common application domains where block low-rank matrices arise
is the solution of discretized partial differential equations. These matrices are then
sparse. In our analysis we however consider dense matrices, which serve as building
blocks for sparse direct solvers. Therefore, in our experiments, we use a set of dense
matrices obtained from the Schur complements of sparse matrices: these correspond
to the root separator in the context of a nested dissection [14] solver.

In section 4, we illustrate our analysis by interlacing it with experiments on ma-
trices coming from a Poisson problem

−∆u = f, (2.10)

discretized with a 7-point finite-difference scheme on a 3D domain of dimensions
k× k× k. This leads to a dense k2 × k2 matrix. We test variable sizes (from n = 322

to n = 1282) to explore how the error behaves as n = k2 increases. In section 5,
we complement these tests with some experiments on matrices from the SuiteSparse
collection [13] coming from various real-life applications.

Throughout sections 4.2 and 4.3 we present experiments on the BLR LU factor-
ization. Instead of measuring the backward error for LU factorization ‖A− L̃Ũ‖/‖A‖,
which is expensive to compute, we solve a linear system Ax = v by forward and back-
ward substitutions with the BLR LU factors (as described in section 4.4), where x is
the vector of all ones. We then measure the backward error

‖Ax̂− v‖
‖A‖‖x̂‖+ ‖v‖

(2.11)

of the computed x̂, which is much cheaper to compute.
For all experiments, the block size is set to b = 256 unless otherwise specified.

3. Rounding error analysis of LR matrix algorithms.

3.1. LR matrix times vector or full matrix. We begin by analyzing the
product of an LR matrix Ã with a vector v, for which we can establish a backward
error bound. We then generalize the analysis to the product of Ã with a full matrix B,
for which only a forward error bound can be derived. This key kernel is heavily used
in the BLR matrix algorithms considered in the subsequent sections, and its analysis
gives some insight into the behavior of LR matrix computations.

Lemma 3.1 (LR matrix times vector). Let A ∈ Rb×b, X ∈ Rb×r, Y ∈ Rb×r, and

v ∈ Rb, where X has orthonormal columns and Ã = XY T is an LR approximation
of A satisfying ‖A − Ã‖ ≤ εβ for some β > 0. If the matrix–vector product Av is
computed as z = X(Y T v), the computed ẑ satisfies

ẑ = (Ã+∆Ã)v, ‖∆Ã‖ ≤ γc‖Ã‖+O(u2), (3.1)

1https://gitlab.com/theo.andreas.mary/BLRstability

5

https://gitlab.com/theo.andreas.mary/BLRstability

where c = b+ r3/2, and therefore

ẑ = (A+∆A)v, ‖∆A‖ ≤ γc‖A‖+ ε(1 + γc)β +O(u2) (3.2)

= γc‖A‖+ εβ +O(uε).

Proof. Let w = Y T v; the computed ŵ satisfies

ŵ = (Y +∆Y)T v, ‖∆Y ‖ ≤ γb‖Y ‖ = γb‖Ã‖. (3.3)

Let z = Xŵ; the computed ẑ satisfies

ẑ = (X +∆X)ŵ, ‖∆X‖ ≤ γr‖X‖ = γr
√
r. (3.4)

Combining (3.3) and (3.4), we obtain ẑ = (X +∆X)(Y +∆Y)T v, which yields (3.1).

The bound (3.2) is obtained by replacing Ã by A+ E, where ‖E‖ ≤ εβ.

Note that for the particular choice β = ‖A‖, the bound (3.2) simplifies to

ẑ = (A+∆A)v, ‖∆A‖ ≤
(
ε+ γc + εγc

)
‖A‖+O(u2).

This is a backward error bound, from which the forward error bound

‖ẑ −Av‖ ≤
(
ε+ γc + εγc

)
‖A‖‖v‖+O(u2)

trivially follows.
Before commenting on its significance, we immediately generalize this result to

the case where v is a full matrix rather than a vector, in which case only a forward
error bound can be obtained.

Lemma 3.2 (LR matrix times full matrix). Let A ∈ Rb×b and V ∈ Rb×m,

and let Ã = XY T be defined as in Lemma 3.1. If the product AV is computed as
Z = X(Y TV), the computed Ẑ satisfies

‖Ẑ − ÃV ‖ ≤ γc‖Ã‖‖V ‖+O(u2) (3.5)

and therefore

‖Ẑ −AV ‖ ≤ γc‖A‖‖V ‖+ ε(1 + γc)β‖V ‖+O(u2), (3.6)

= γc‖A‖‖V ‖+ εβ‖V ‖+O(uε),

with c = b+ r3/2.

Proof. The result follows from the columnwise bounds

‖ẑj − Ãvj‖ ≤ γc‖Ã‖‖vj‖+O(u2), j = 1: m,

that are obtained from (3.1).

For β = ‖A‖, bound (3.6) simplifies to

‖Ẑ −AV ‖ ≤
(
ε+ γc + εγc

)
‖A‖‖V ‖+O(u2). (3.7)

The bounds (3.1) and (3.5) generalize the classical bounds (2.5) and (2.6) to the

case where Ã is an LR matrix rather than a full one. The bounds (3.2) and (3.6) have
a more informative form, as they measure not only the effect of floating-point errors

6

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

Fig. 3.1: Backward error (3.8) for computing z = Ãv, with β = ‖A‖, b = 1000,
A = gallery(’randsvd’,b,1e16,3), and v = rand(b,1), for varying low-rank
thresholds ε and floating-point precisions.

but also that of the low-rank truncation errors. They consist of three terms: the term
ε, corresponding to the low-rank truncation errors; the term γc, corresponding to the
floating-point errors; and their product εγc, which reflects the fact that the two types
of error accumulate, although this O(uε) term can be considered to be of lower order
and will not always be explicitly tracked in the rest of the analysis below.

Since u � ε, the main conclusion of Lemma 3.1 is that the bound (3.2) is dom-
inated by the low-rank truncation error term εβ and is almost independent of both
the unit roundoff and the constants b and r. This is a very positive result, since for
β = ‖A‖ we have ‖∆A‖ . ε‖A‖, meaning that the computation is backward stable
with respect to the precision ε. Another crucial consequence of the fact that u � ε
is that we can and should use the lowest floating-point precision such that u remains
safely smaller than ε. This is illustrated by Figure 3.1, which shows that the backward
error is not affected by the use of single rather than double precision arithmetic when
ε � 10−8. Similarly, half precision arithmetic can be used with no impact on the
error when ε � 10−4. In this experiment, the backward error is computed by the
formula

‖ẑ −Av‖
‖A‖‖v‖

, (3.8)

which is a consequence of the Rigal–Gaches theorem [19, Thm. 7.1], [29].
It is important to note that Lemma 3.1, as well as all other results in this paper,

provides only a normwise error bound. This is unavoidable because low-rank approx-
imations do not hold componentwise, as already mentioned. Interestingly, this means
that algorithms that sacrifice componentwise stability for speed, such as the 3M algo-
rithm to multiply complex matrices with only three real multiplications [18], or fast
matrix algorithms such as Strassen’s algorithm [32], are much more attractive when
used on LR matrices, since only normwise stability can be expected anyway. Another
possible drawback of Strassen’s algorithm is that the constants in the error bound are
much larger: for example, for matrix multiplication, the constant b in (2.6) increases

7

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Fig. 3.2: Forward error (3.9) for computing C = AV and C = ÃV in sin-
gle precision, with β = ‖A‖, b = 1024, A = gallery(’randsvd’,b,1e16,3), and
V = rand(b,128), for varying low-rank thresholds ε, with multiplications performed
classically and by Strassen’s algorithm.

to O(blog2 12) ≈ O(b3.6) [17], [19, sec. 23.2.2]. This larger constant is insignificant for
LR matrices because the low-rank errors dominate the floating-point ones, and so the
constant c in (3.2) has essentially no impact on the overall error. This is illustrated
in Figure 3.2, where we compare the error2

‖Ẑ −AV ‖
‖A‖‖V ‖

(3.9)

for computing the product of two full matrices, Z = AV , with that for computing
the product of an LR matrix with a full one, Z = ÃV , for multiplication performed
classically and by Strassen’s algorithm. While the use of Strassen’s algorithm leads
to an error larger by about an order of magnitude for the product Z = AV , the error
for the product Z = ÃV is unaffected as long as the threshold ε is large enough to
hide the larger constant of Strassen’s algorithm.

Even though the constant c = b + r3/2 has no significant impact on the overall
error, further insight can nevertheless be gained by analyzing its form. First, note
that c heavily depends on the choice of norm used for the analysis: the proof of
Lemma 3.1 repeatedly uses the fact that the Frobenius norm is both submultiplicative
and unitarily invariant, which helps us to obtain a relative small constant. With the
maximum norm ‖A‖M = maxi,j |aij | (for example) which satisfies neither of these
two properties, bound (3.5) holds with a much larger constant c = b3/2r(b + r).
Second, it may seem surprising that γc is larger than γb, the constant in the error
bound (2.5) for the classical matrix–vector product, since computing Ãv rather than
Av reduces the number of flops from 2b2 to 4br. However, not all flops are equal, as is
clearly illustrated by the case of inner and outer products xT y and xyT of two vectors
x, y ∈ Rn, which require O(n) and O(n2) flops, but yield error bounds proportional

2Note that the quantity (3.9) is not a backward error; it can be interpreted as a combination of
the columnwise backward errors (3.8) for each column vi of V .

8

to γn and γ1, respectively. In the case of Lemma 3.1, b rounding errors combine in
the first product w = Y T v, but r additional errors combine in the second product
Xw. The extra

√
r factor comes from the term ‖X‖, and could thus be avoided by

using the 2-norm rather than the Frobenius norm; however we need the Frobenius
norm when working on BLR matrices, as will become clear in section 4.

We also note the importance of assuming that X has orthonormal columns, as it
allows for replacing ‖Y ‖ by ‖Ã‖ in (3.3). Without that assumption, the bound would

be proportional to ‖X‖‖Y ‖ instead of ‖Ã‖, reflecting the fact that the computation

X(Y T v) would be subject to possibly severe cancellation when ‖X‖‖Y ‖ � ‖Ã‖. Note
that assuming the columns of Y , rather than X, to be orthonormal would lead to
the same bound. We also mention that using the alternative form Ã = XΣY T , with
Σ ∈ Rr×r and where both X and Y have orthonormal columns would not significantly
change the bound: we simply would need to account for the extra product with Σ,
slightly increasing the constant c.

3.2. LR matrix times LR matrix. Next we analyze the product of two LR
matrices Ã = XAY

T
A and B̃ = YBX

T
B , where XA and XB have orthonormal columns.

Note that we consider B̃ of the form YBX
T
B rather than XBY

T
B , for reasons which

will be made clear below.

Lemma 3.3 (LR matrix times LR matrix). Let A,B ∈ Rb×b and

Ã = XA︸︷︷︸
b×r

Y TA︸︷︷︸
r×b

, B̃ = YB︸︷︷︸
b×r

XT
B︸︷︷︸

r×b

,

where XA and XB have orthonormal columns and

‖A− Ã‖ ≤ εβA, ‖B − B̃‖ ≤ εβB .

If the product C = ÃB̃ is computed as either C = (XA(Y TA YB))XT
B or C = XA((Y TA YB)XT

B),
where the parentheses indicate the order in which the intermediate products are per-
formed, then the computed Ĉ satisfies

‖Ĉ − ÃB̃‖ ≤ γc‖Ã‖‖B̃‖+O(u2), (3.10)

where c = b+ 2r3/2, and therefore

‖Ĉ −AB‖ ≤ γc‖A‖‖B‖+ ε(1 + γc)
(
βA‖B‖+ ‖A‖βB + εβAβB

)
+O(u2). (3.11)

Proof. We consider the case where the product is computed as (ÃYB)XT
B =

(XA(Y TA YB))XT
B , the other case being analogous. Let W = ÃYB ; by Lemma 3.2,

the computed W satisfies

Ŵ = ÃYB +∆W, ‖∆W‖ ≤ γb+r3/2‖Ã‖‖YB‖+O(u2) = γb+r3/2‖Ã‖‖B̃‖+O(u2).

Let C = ŴXT
B ; the computed Ĉ satisfies

Ĉ = ŴXT
B +∆C, ‖∆C‖ ≤ γr‖Ŵ‖‖XB‖ ≤ γr3/2‖Ã‖‖B̃‖+O(u2),

= ÃB̃ +∆WXT
B +∆C = ÃB̃ + F.

Bounding ‖F‖ ≤ γc‖Ã‖‖B̃‖, with c = b+ 2r3/2, proves (3.10). We then replace Ã by

A+ EA and B̃ by B + EB to obtain

Ĉ = AB + F +G, ‖F‖ ≤ γc‖A‖‖B‖+ γcε
(
βA‖B‖+ ‖A‖βB + εβAβB

)
+O(u2),

‖G‖ = ‖EAB +AEB + EAEB‖ ≤ ε
(
βA‖B‖+ ‖A‖βB + εβAβB

)
,

9

which yields (3.11).

In the case βA = ‖A‖, βB = ‖B‖, the bound (3.11) simplifies to

‖Ĉ −AB‖ ≤
(
2ε+ ε2 + γc(1 + ε)2

)
‖A‖‖B‖+O(u2), (3.12)

which is similar to bound (3.7) from Lemma 3.2 for an LR matrix times a full matrix.
In the context of the BLR matrix LU factorization, computing products of LR

matrices asymptotically represents the dominant cost. This has generated interest
in strategies seeking to reduce this cost. For instance, in [4] it is proposed that the
middle product M = Y TA YB should be recompressed, that is, we should compute an

LR approximation M̃ = XMY
T
M ≈M . Indeed, matrix M often has a lower numerical

rank than A and B, because even though σmin(Ã) and σmin(B̃) are both larger than

ε, σmin(M) = σmin(ÃB̃) can potentially be as small as ε2. Note that this is only

true when Ã = XAY
T
A and B̃ = YBX

T
B , that is, when the matrices with orthonormal

columns XA and XB are on the outside of the product ÃB̃.
The cost of computing the product C = ÃB̃ can thus be reduced by replacing M

by an LR matrix. The following lemma bounds the additional errors introduced in
doing so.

Lemma 3.4 (LR matrix times LR matrix with intermediate recompression). Let

A,B, Ã, B̃ be defined as in Lemma 3.3 and let M = Y TA YB. If the product C =

ÃB̃ is computed as (XAXM)(Y TMX
T
B), where XM , YM ∈ Rr×r, XM has orthonormal

columns, and M̃ = XMY
T
M satisfies ‖M − M̃‖ ≤ εβM , then the computed Ĉ satisfies

‖Ĉ − ÃB̃‖ ≤ ε(1 + γc)βM + γc‖Ã‖‖B̃‖+O(u2), (3.13)

where c = b+ r2 + 2r3/2, and therefore

‖Ĉ−AB‖ ≤ γc‖A‖‖B‖+ ε(1 +γc)
(
βM +βA‖B‖+‖A‖βB + εβAβB

)
+O(u2). (3.14)

Proof. In order to do the compression, we first compute M = Y TA YB , obtaining

M̂ satisfying

M̂ = M +∆M, ‖∆M‖ ≤ γb‖YA‖‖YB‖ = γb‖Ã‖‖B̃‖.

Then, we compute an LR approximation to M̂ satisfying M̃ = M̂+EM , ‖EM‖ ≤ εβM .

Let W = XAXM and Z = Y TMX
T
B ; the computed Ŵ and Ẑ satisfy

Ŵ = XAXM +∆W, ‖∆W‖ ≤ γr‖XA‖‖XM‖ ≤ γr2 , (3.15)

Ẑ = Y TMX
T
B +∆Z, ‖∆Z‖ ≤ γr‖XB‖‖YM‖ ≤ γr3/2‖M̃‖. (3.16)

Finally, let C = Ŵ Ẑ; the computed Ĉ satisfies

Ĉ = Ŵ Ẑ + F, ‖F‖ ≤ γr‖Ŵ‖‖Ẑ‖ ≤ γr3/2‖M̃‖+O(u2),

= XAXMY
T
MX

T
B +∆WY TMX

T
B +XAXM∆Z +∆W∆Z + F

= XA

(
M̂ + EM

)
XT
B +∆WY TMX

T
B +XAXM∆Z +∆W∆Z + F

= ÃB̃ +XA

(
∆M + EM

)
XT
B +∆WY TMX

T
B +XAXM∆Z +∆W∆Z + F

= ÃB̃ +∆C, ‖∆C‖ ≤ ε(1 + γr2+2r3/2)βM + γc‖Ã‖‖B̃‖+O(u2),

10

where c = b + r2 + 2r3/2. We obtain the slightly weaker bound (3.13) by bounding

γr2+2r3/2 by γc. Replacing Ã by A+EA and B̃ by B+EB yields (3.14) and concludes
the proof.

The introduction of an intermediate low-rank approximation has two consequences.
First, the constant c is slightly larger in Lemma 3.4 than in Lemma 3.3, a consequence
of computing one more product than previously (four instead of three products). Sec-
ond, and more importantly, a new low-rank truncation term εβM is introduced and is
dominant in the bound (3.13) on ‖Ĉ − ÃB̃‖. However, in the overall bound (3.14) on

‖Ĉ−AB‖, εβM is just one more term that adds to ε
(
βA‖B‖+‖A‖βA

)
. For instance,

in the case βA = ‖A‖, βB = ‖B‖, and βM = ‖A‖‖B‖, the bound (3.14) simplifies to

‖Ĉ −AB‖ ≤
(
3ε+ ε2 + γc(1 + 3ε+ ε2)

)
‖A‖‖B‖+O(u2),

which is roughly 3ε‖A‖‖B‖, compared with roughly 2ε‖A‖‖B‖ in the bound (3.12).

3.3. Triangular system with LR right-hand side. We now consider the
solution of a triangular system where the right-hand side is an LR matrix B̃ = Y XT ,
which will be useful to analyze the CFU factorization in section 4.3. Note that we
consider B̃ of the form Y XT rather than XY T , where X has orthonormal columns,
because this is the form that arises in the CFU factorization.

Lemma 3.5 (Triangular system with LR right-hand side). Let T ∈ Rb×b be a

triangular matrix and let B ∈ Rb×m such that the LR matrix B̃ = Y XT , where X
has orthonormal columns, satisfies ‖B − B̃‖ ≤ εβ for some β > 0. If the solution to

the triangular system T Z̃ = B̃ is obtained as the LR matrix Z̃ = ŴXT , where Ŵ is
the computed solution ot the system TW = Y , then Z̃ satisfies

TZ̃ = B̃ +∆B̃, ‖∆B̃‖ ≤ γb‖T‖‖Z̃‖ (3.17)

and therefore
T Z̃ = B +∆B, ‖∆B‖ ≤ γb‖T‖‖Z̃‖+ εβ. (3.18)

Proof. By Lemma 2.2, the computed solution Ŵ to the triangular system TW =
Y satisfies

TŴ = Y +∆Y, ‖∆Y ‖ ≤ γb‖T‖‖Ŵ‖.

Defining Z̃ = ŴXT , we obtain T Z̃ = B̃ +∆B̃, with

‖∆B̃‖ = ‖∆Y ‖ ≤ γb‖T‖‖Z̃‖,

proving (3.17). Replacing B̃ by B + E, with ‖E‖ ≤ εβ, yields (3.18) and concludes
the proof.

Note that the assumption that X has orthonormal columns is important, as oth-
erwise we could only prove that ‖∆B̃‖ ≤ γb‖T‖‖Ŵ‖‖X‖, reflecting the possibility of

cancellation if ‖Z̃‖ � ‖Ŵ‖‖X‖.
Also note that the solution Z̃ is given in LR form. If it is needed as a full matrix

instead, we must compute the product ŴXT and the analysis must therefore be
adapted to take into account the errors introduced by this additional computation.

4. Rounding error analysis of BLR matrix algorithms. We now turn to
BLR matrices, building on the results on LR matrices obtained in the previous section.
We analyze several key algorithms, starting with the BLR matrix–vector product in
section 4.1, then two LU factorization algorithms in sections 4.2 and 4.3, and finally
the solution to BLR linear systems in section 4.4.

11

4.1. BLR matrix–vector product. We begin with the product of a BLR ma-
trix Ã with a vector v, which is a kernel that arises in the iterative solution of linear
systems based on matrix–vector products [26].

Computing Ãv requires performing p2 LR matrix–vector products, which have
been analyzed in Lemma 3.1. In the following theorem, we assume for simplicity that
every block of Ã is represented as an LR matrix. In practice, some blocks (in particular
the diagonal ones) would be kept as full matrices, but since the error bound (3.2) for
LR matrices is larger than the bound (2.5) for full matrices, the bound derived below
is still valid.

Theorem 4.1 (BLR matrix–vector product). Let Ã ∈ Rn×n be a pb × pb BLR

matrix partitioned into p2 LR blocks Ãij satisfying ‖Aij − Ãij‖ ≤ εβij, and let v ∈
Rn. If the ith block zi = z((i − 1)b + 1: ib) of the product z = Av is computed as

zi =
∑p
j=1 Ãijvj, the computed ẑ satisfies

ẑ = (Ã+∆Ã)v, ‖∆Ã‖ ≤ γc‖Ã‖+O(u2) (4.1)

and therefore ẑ = (A+∆A)v, with

‖∆A‖ ≤
(
ε+ γc + εγc

)
‖A‖+O(u2) if βij = ‖Aij‖, (4.2)

‖∆A‖ ≤
(
pε+ γc + pεγc

)
‖A‖+O(u2) if βij = ‖A‖, (4.3)

where c = b+ r3/2 + p.

Proof. Consider the computation of the block-row zi for some i ≤ p. Let z
(j)
i =

Ãijvj . By Lemma 3.1, the computed ẑ
(j)
i satisfies, by the error analysis for recursive

summation in [19, Chap. 4],

ẑ
(j)
i =

(
Ãij + Fij

)
vj , ‖Fij‖ ≤ γb+r3/2‖Ãij‖+O(u2).

Since zi =
∑p
j=1 ẑ

(j)
i , the computed ẑi satisfies

ẑi =

p∑
j=1

ẑ
(j)
i (1 + θj), |θj | ≤ γp,

=

p∑
j=1

(
Ãij + Ãijθj + Fij(1 + θj)

)
vj ,

=
(
Ãi +∆Ãi

)
v,

where Ãi denotes the ith block-row of Ã. We therefore have ẑ = (A + ∆Ã)v, where

the (i, j) block of ∆Ã is given by ∆Ãij = Ãijθj + Fij(1 + θj). From the blockwise

bounds ‖∆Ãij‖ ≤ γb+r3/2+p+O(u)‖Ãij‖, we obtain

‖∆Ã‖ =

(p∑
i=1

p∑
j=1

‖∆Ãij‖2
)1/2

≤ γc+O(u)

(p∑
i=1

p∑
j=1

‖Ãij‖2
)1/2

= γc‖Ã‖+O(u2),

with c = b+r3/2 +p, which proves (4.1). All that is left now is to replace Ã by A+E,
where ‖Eij‖ ≤ εβij , so we obtain

ẑ =
(
A+ E +∆Ã

)
v =

(
A+∆A

)
v, ‖∆A‖ ≤ γc‖A‖+ (1 + γc)‖E‖+O(u2).

12

1024 2304 4096 6400 12544 16384

10
-15

10
-10

10
-5

(a) Backward error (3.8) for an increasing
n and for three values of ε. The numbers
indicate the ratio between the errors with
global and local thresholds.

4 6 8 10 12 14 16

10
6

10
-15

10
-10

10
-5

(b) Flops–accuracy tradeoff (n = 4096).
The backward error (3.8) is plotted on
the y-axis as a function of the flops for
computing Ãv on the x-axis. Each point
corresponds to a different ε threshold: the
number printed next to each point is equal
to − log10 ε.

Fig. 4.1: Comparison of local and global thresholds ε for computing the product Ãv,
where Ã is a Poisson BLR matrix (see (2.10)) and where v = rand(n,1).

If βij = ‖Aij‖, then

‖E‖ =

(p∑
i=1

p∑
j=1

‖Eij‖2
)1/2

≤ ε
(p∑
i=1

p∑
j=1

‖Aij‖2
)1/2

= ε‖A‖,

which yields (4.2). However, if βij = ‖A‖, then ‖E‖ ≤ pε‖A‖ which yields (4.3).

Bounds (4.1)–(4.3) are backward error bounds that have obvious analogues bound-
ing the forward error ‖Av − ẑ‖.

The comments made about Lemma 3.1 on LR matrix–vector products still ap-
ply to Theorem 4.1. Most notably, the backward error bounds (4.2) and (4.3) are
dominated by the low-rank truncation errors; the floating-point errors have almost no
effect when u� ε.

The main novelty compared with Lemma 3.2 is that we now have BLR matrices
in play, and therefore the distinction between a local or global low-rank threshold ε
becomes relevant, that is: should we approximate the blocks Aij relative to their own
“local” norm or to the norm of the global matrix? Theorem 4.1 provides part of the
answer by determining that the type of threshold mainly affects the low-rank error
term, which increases from ε for a local threshold to pε for a global threshold. This
is confirmed by numerical experiments in Figure 4.1a, which show that the backward
error (3.8) is larger for a global threshold than a local one, and that this gap increases
with n (and hence with p = n/b).

The question is then whether this increased error allows for a better compression
and thus pays off by reducing the number of flops for the computation. To answer
this question we must assess which type of threshold achieves the best flops–accuracy

13

tradeoff. To do so, we perform the following experiment in Figure 4.1b: taking several
values of ε, we plot the error (3.8) as a function of the corresponding number of flops
required to compute the product. This experiment shows that a global threshold
achieves the best tradeoff, since it is always closer to the bottom left corner of the
plot: that is, for the same accuracy as a local threshold, a global threshold performs
fewer flops or, equivalently, for the same number of flops as a local threshold, a global
threshold delivers a more accurate result. A global threshold is therefore the best
choice for this matrix and algorithm. We will show in section 5 this remains the case
for LU factorization of a wide range of BLR matrices.

We finally mention that Theorem 4.1 can be easily adapted to the product of a
BLR matrix Ã with a matrix V (instead of a vector), yielding the following forward
error result.

Theorem 4.2 (BLR matrix–matrix product). Let Ã ∈ Rn×n be a pb× pb BLR

matrix partitioned into p2 LR blocks Ãij satisfying ‖Aij − Ãij‖ ≤ εβij, and let V ∈
Rn×m. If the columns zj of Z of the product Z = AV are computed as zj = Ãvj then

the computed Ẑ satisfies

‖Ẑ − ÃV ‖ ≤ γc‖Ã‖‖V ‖+O(u2), (4.4)

where c = b+ r3/2 + p, and therefore

‖Ẑ −AV ‖ ≤
(
ε+ γc + εγc

)
‖A‖‖V ‖+O(u2) if βij = ‖Aij‖, (4.5)

‖Ẑ −AV ‖ ≤
(
pε+ γc + pεγc

)
‖A‖‖V ‖+O(u2) if βij = ‖A‖. (4.6)

Proof. The result directly follows from the columnwise bounds, from Theorem 4.1,

‖ẑj − Ãvj‖ ≤ γc‖Ã‖‖vj‖+O(u2), j = 1: m.

4.2. BLR matrix LU factorization: FCU algorithm. We now turn to the
LU factorization of BLR matrices. To compute such factorizations, the classical par-
titioned LU factorization of full matrices must be adapted by incorporating the com-
pressions of the blocks into LR matrices. Several algorithms have been distinguished
depending on when this compression step is performed. Algorithm 4.1 describes the
FCU algorithm (standing for factor, compress, update). The algorithm is written in
a left-looking fashion: at step k of the FCU algorithm, the kth block-row and block-
column are first factored (lines 4–7) before being compressed (lines 9–12), and finally
the next block-row and block-column are updated (lines 14–17) using the BLR LU
factors “to the left”. Note that at step k = 1, the update step does not do anything.

Another algorithm, referred to as CFU (compress, factor, update), is analyzed in
section 4.3.

We recall that, for all the experiments on the BLR LU factorization, we measure
the backward error by solving a linear system as explained in section 2.3.

The next theorem analyzes the FCU algorithm.

Theorem 4.3 (BLR LU factorization: FCU algorithm). Let A ∈ Rn×n be a
nonsingular matrix partitioned into p2 blocks of order b. If Algorithm 4.1 runs to
completion it produces computed BLR LU factors L̃ and Ũ of A satisfying

A = L̃Ũ +∆A+ F +G,

14

Algorithm 4.1 BLR LU factorization: FCU algorithm

1: {Input: a p× p block matrix A. Output: its BLR LU factors L̃ and Ũ .}
2: for k = 1 to p do
3: Factor:
4: Compute the LU factorization LkkUkk = Akk.
5: for i = k + 1 to p do
6: Solve LikUkk = Aik for Lik and LkkUki = Aki for Uki.
7: end for
8: Compress:
9: Set L̃kk = Lkk and Ũkk = Ukk.

10: for i = k + 1 to p do
11: Compute LR approximations L̃ik ≈ Lik and Ũki ≈ Uki.
12: end for
13: Update:
14: Akk ← Akk −

∑k−1
j=1 L̃kjŨjk.

15: for i = k + 1 to p do
16: Aik ← Aik −

∑k−1
j=1 L̃ijŨjk and Aki ← Aki −

∑k−1
j=1 L̃kjŨji.

17: end for
18: end for

with ‖∆A‖ ≤ γp‖A‖ and ‖F‖ ≤ γc‖L̃‖‖Ũ‖+O(uε), where c = b+ 2r3/2 + p and

Gik =


EikŨkk i > k,

0 i = k,

L̃iiEik i < k,

‖Eik‖ ≤ εβik.

Proof. The (i, k) block of the L factor is computed by solving

LikŨkk = Rik, Rik = Aik −
k−1∑
j=1

L̃ijŨjk, i > k, (4.7)

where L̃ and Ũ are the partial BLR LU factors computed in the previous k − 1 steps

(line 11 of Algorithm 4.1). Let R
(j)
ik = L̃ijŨjk; by (3.10), the computed R̂

(j)
ik satisfies

R̂
(j)
ik = L̃ijŨjk +∆R

(j)
ik , ‖∆R(j)

ik ‖ ≤ γd‖L̃ij‖‖Ũjk‖+O(u2) (4.8)

with d = b+ 2r3/2. The computed R̂ik then satisfies

R̂ik = Aik(1 + θk)−
k−1∑
j=1

R̂
(j)
ik (1 + θj), |θj | ≤ γp. (4.9)

By (2.8) we have

L̂ikŨkk = R̂ik +∆R
(k)
ik , ‖∆R(k)

ik ‖ ≤ γb‖L̂ik‖‖Ũkk‖. (4.10)

After compression, we finally obtain the BLR factor L̃ik = L̂ik + Eik, with ‖Eik‖ ≤
εβik. Combining (4.8), (4.9), and (4.10) gives

Aik(1 + θk)−
k∑
j=1

L̃ijŨjk =

k−1∑
j=1

∆R
(j)
ik (1 + θj)−∆R(k)

ik − EikŨkk.

15

We therefore obtain

Aik −
k∑
j=1

L̃ijŨjk = ∆Aik + Fik +Gik, ‖∆Aik‖ ≤ γp‖Aik‖, (4.11)

‖Fik‖ ≤ γd+p+O(u)

(k−1∑
j=1

‖L̃ij‖‖Ũjk‖
)

+ γb‖L̂ik‖‖Ũkk‖

≤ γd+p+O(ε)

(k∑
j=1

‖L̃ij‖‖Ũjk‖
)
, (4.12)

‖Gik‖ ≤ ‖EikŨkk‖ ≤ εβik‖Ũkk‖, i > k. (4.13)

This concludes the blocks for i > k. For i = k, Lkk is determined together with
Ukk on line 4 of Algorithm 4.1, and by Lemma 2.3 we have ‖L̃kkŨkk − R̂kk‖ ≤
γb‖L̃kk‖‖Ũkk‖. Therefore (4.10) holds for i = k, too, and hence so does (4.11), with
the same bound (4.12) on ‖Fkk‖ and with Gkk = 0, because diagonal blocks are not
compressed. Finally, the case i < k is analogous to the case i > k and yields (4.11)
where the bound (4.12) becomes

‖Fik‖ ≤ γd+p+O(ε)

(i∑
j=1

‖L̃ij‖‖Ũjk‖
)

(4.14)

and with
‖Gik‖ ≤ εβik‖L̃ii‖, i < k. (4.15)

We have therefore proved that A− L̃Ũ = ∆A+F +G, where Gkk = 0 and blockwise
bounds on ‖∆A‖, ‖F‖, and ‖G‖ are given by (4.11)–(4.15). It thus remains to derive
global bounds. Bounding ‖G‖ is delayed to section 4.2.1, as it depends on the choice
of the βik parameters. The bound ‖∆A‖ ≤ γp‖A‖ trivially holds. Finally, for matrix
F , the Cauchy–Schwarz inequality gives

‖F‖ ≤ γd+p+O(ε)

(p∑
i=1

p∑
k=1

(min(i,k)∑
j=1

‖L̃ij‖‖Ũjk‖
)2)1/2

≤ γd+p+O(ε)

(p∑
i=1

i∑
j=1

‖L̃ij‖2
p∑
k=1

k∑
j=1

‖Ũjk‖2
)1/2

≤ γd+p+O(ε)

((p∑
i=1

‖L̃i‖2
p∑
k=1

‖Ũk‖2
))1/2

≤ γd+p‖L̃‖‖Ũ‖+O(uε), (4.16)

where L̃i and Ũk denote the ith block-row of L̃ and kth block-column of Ũ , respec-
tively.

Theorem 4.3 yields a backward error bound that is comparable to the other results
obtained so far: we obtain a term ‖∆A‖ + ‖F‖ proportional to the unit roundoff u,
and a term ‖G‖ depending on the low-rank threshold ε, the latter likely dominating
the former. However, before further commenting on the significance of this bound, we
must compute a global bound on ‖G‖ by examining several possible choices for the
βik parameters.

16

4.2.1. Bounding ‖G‖ and choice of βik. The blockwise bounds on ‖Gik‖
given in Theorem 4.3 yield the global bound

‖G‖2 ≤ ε2
p∑
k=1

(
‖L̃kk‖2

k−1∑
i=1

β2
ik + ‖Ũkk‖2

p∑
i=k+1

β2
ik

)
.

With a local threshold βik = ‖Aik‖, we have

‖G‖ ≤ ε
(p∑
k=1

max
(
‖L̃kk‖, ‖Ũkk‖

)2 p∑
i 6=k

‖Aik‖2
)1/2

≤ ε max
k=1:p

(
max

(
‖L̃kk‖, ‖Ũkk‖

))
‖A‖. (4.17)

On the other hand, a global threshold βik = ‖A‖ yields

‖G‖ ≤ ε
(p∑
k=1

max
(
‖L̃kk‖, ‖Ũkk‖

)2 p∑
i 6=k

‖A‖2
)1/2

≤ (p− 1)1/2ε‖D‖‖A‖, (4.18)

where D is the diagonal matrix defined by Dkk = max
(
‖L̃kk‖, ‖Ũkk‖

)
. Bound (4.18)

is thus up to a factor
(
p(p− 1)

)1/2 ≈ p times larger than (4.17).
Two main observations can be made. First, the use of a global threshold leads

again to a bound about p times larger than with a local threshold, just as for The-
orem 4.1. This is only a modest loss of accuracy, and indeed Figure 4.2b illustrates
that on a Poisson BLR matrix (see (2.10)) a global threshold achieves the best flops–
accuracy tradeoff. We will compare global and local thresholds on a wider range of
matrices in section 5.

The second important observation is that the error depends on the norm of the
diagonal blocks of the LU factors (max(‖L̃kk‖, ‖Ũkk‖) in (4.17) and ‖D‖ in (4.18)).
This is due to the compress step (lines 9–12 of Algorithm 4.1) being performed after
the factor step (lines 4–7). Indeed, the blocks that are compressed are equal to
AikU

−1
kk and L−1kkAki and so their norms depend on those of the diagonal blocks. This

property of the FCU factorization is undesirable because the L and U factors are
often not scaled comparably: the entries of L are bounded by 1 with partial pivoting,
whereas those of U are scaled similarly to those of A. As a consequence, the average
ranks of the blocks differ depending on whether they belong to the L or U factors,
even for symmetric matrices where U = LT . This is illustrated in Figure 4.2a, where
both the local and global threshold strategies lead to a U factor with lower ranks than
the L factor.

There exist several solutions to avoid the dependence of the ranks of the BLR
LU factors and the backward error on the norms of the diagonal blocks. One solution
consists in scaling the βik differently for the L and U factors: specifically, setting
βik = ‖Aik‖/‖Ũkk‖ (if i > k) and βik = ‖Aik‖/‖L̃ii‖ (if i < k) changes bound (4.17)
to

‖G‖ ≤ ε‖A‖ (4.19)

and setting βik = ‖A‖/‖Ũkk‖ (if i > k) and βik = ‖A‖/‖L̃ii‖ (if i < k) changes
bound (4.18) to

‖G‖ ≤ pε‖A‖. (4.20)

17

10
-12

10
-10

10
-8

10
-6

10
-4

1

1.05

1.1

1.15

(a) Ratio between the storage for the BLR

L̃ and Ũ factors.

0.6 0.8 1 1.2 1.4 1.6 1.8

10
10

10
-15

10
-10

10
-5

(b) Flops–accuracy tradeoff. The back-
ward error (2.11) is plotted on the y-axis
as a function of the flops for comput-
ing the factorization on the x-axis. Each
point corresponds to a different ε thresh-
old.

Fig. 4.2: Comparison of several choices for βik in the BLR FCU factorization (Algo-
rithm 4.1) of a Poisson matrix (see (2.10)), of order n = 4096. Local: βik = ‖Aik‖;
local scaled: βik = ‖Aik‖/‖Ũkk‖ (i > k) and βik = ‖Aik‖/‖L̃ii‖ (i < k); global:

βik = ‖A‖; global scaled: βik = ‖A‖/‖Ũkk‖ (i > k) and βik = ‖A‖/‖L̃ii‖ (i < k).

This scaling of the threshold yields similar ranks in both L and U , as shown in
Figure 4.2a. Even though this strategy does not achieve a visibly better flops–accuracy
tradeoff, as illustrated in Figure 4.2b, in the following we consider scaled thresholds
since they simplify the bounds.

Note that there are alternative strategies to scaling the threshold. For example
computing an LDU rather than LU factorization, where both the L and U factors have
entries bounded by one. Interestingly, as we show in section 4.3, another solution is
to perform a CFU factorization, which avoids this issue by compressing the blocks
before factorizing them.

4.2.2. General comments on Theorem 4.3. Outside the technical discus-
sion of the previous section on how to choose the βik parameters, some higher level
conclusions can be drawn from Theorem 4.3, which we summarize in the following
result.

Corollary 4.4. Let A ∈ Rn×n be a nonsingular matrix partitioned into p2 blocks
of order b. If Algorithm 4.1 runs to completion, it produces BLR LU factors L̃ and
Ũ of A satisfying

A = L̃Ũ +∆A, ‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.21)

where c = b + 2r3/2 + p, and ξp = 1 or ξp = p for a scaled local or global threshold,
respectively.

Proof. Directly follows from Theorem 4.3, (4.16), (4.19), and (4.20).

18

Corollary 4.4 states that the backward error ‖A − L̃Ũ‖ is of order O(ε‖A‖ +

u‖L̃‖‖Ũ‖). The first term corresponds to the low-rank truncations errors and the
second term to the floating-point errors. If we set ε = 0, we recover the backward
error bound (2.9) for classical LU factorization (with a slightly higher constant). If
we set u = 0, we obtain a bound on the error introduced by BLR approximations in
exact arithmetic. In the general case, since u� ε, the low-rank error term dominates
if ‖L̃‖‖Ũ‖ is not too large compared with ‖A‖. For a stable LU factorization, using

for example partial pivoting, ‖L̃‖‖Ũ‖ is bounded and therefore the BLR factorization
is also stable. This is the main conclusion drawn from Corollary 4.4: it proves the
long conjectured rule of thumb that the backward error for the BLR LU factoriza-
tion is proportional to the low-rank threshold ε. This is a very desirable theoretical
guarantee that can now be given to the users of BLR solvers. This is illustrated by
the numerical experiments on a Poisson matrix (see (2.10)) reported in Figure 4.3a,
which additionally show that the unit roundoff u has no impact on the error as long
as u� ε. We will verify experimentally that this crucial result holds for a wide range
of matrices in section 5.

The low-rank error term ξpε‖A‖ grows at most linearly with the number of blocks
p. Figure 4.3b illustrates that a roughly linear growth (indicated by the dashed lines)
is indeed observed in practice when using a global threshold (except for the largest
of the tested thresholds, ε = 10−4, for which the error growth is sublinear). This
seems quite acceptable, especially considering that the constant in the error bound
for traditional LU factorization is usually of order n3 [19, Thm. 9.5].

Finally, we briefly comment on the use of fast matrix operations, such as Strassen’s
algorithm [32]. Similarly to the LR matrix algorithms analyzed in section 3.1, fast
matrix algorithms are especially attractive with BLR matrices since only normwise
stability is expected, and because they only affect the floating-point error term, which
is negligible compared with the low-rank error term for large enough ε. Our analysis
therefore theoretically explains why the stability of the BLR factorization is much
less sensitive to the use of fast matrix arithmetic, as experimentally observed in [24].
We mention that the algorithm proposed in [24] recasts the operations so as to work
on matrices of larger dimensions, which allows for exploiting fast matrix arithmetic
more efficiently. The error analysis of this new algorithm is outside our scope, but we
expect it to retain the same backward stability as the algorithms analyzed here.

4.2.3. Impact of intermediate recompressions. We now discuss the impact
on the accuracy of performing intermediate recompressions during the update step,
as described and analyzed in Lemma 3.4.

Adapting the proof of Theorem 4.3 to the use of intermediate recompressions is
straightforward. It suffices to invoke Lemma 3.4 instead of Lemma 3.3, which changes
the expression for Rik in (4.7) to

Rik = Aik −
k−1∑
j=1

(
L̃ijŨjk +H

(j)
ik

)
,

which has an extra term H
(j)
ik satisfying ‖H(j)

ik ‖ ≤ εβ
(j)
ik . For simplicity, let us consider

the same choice β
(j)
ik = βHik for all j. The rest of the proof carries over and we obtain

19

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

(a) Error for varying low-rank thresholds
ε and floating-point precisions.

4096 6400 9216 12544 16384

10
-14

10
-12

10
-10

10
-8

10
-6

(b) Error for increasing n. Dashed lines
indicate a linear growth.

Fig. 4.3: Backward error (2.11) for computing the BLR LU factorization of a Poisson
matrix (see (2.10)) of order n = 4096 with the FCU algorithm (Algorithm 4.1) and
with a global threshold.

A = L̃Ũ +∆A+ F +G, where we now have

Gik =


EikŨkk +Hik, i > k,

0, i = k,

L̃iiEik +Hik, i < k,

‖Eik‖ ≤ εβik, ‖Hik‖ ≤ (min(i, k)− 1)εβHik .

To proceed further we must consider specific choices for the βik and βHik parameters,
as in section 4.2.1. For a scaled local threshold (4.19) and for βHik = ε‖Aik‖, we have
‖Gik‖ ≤ min(i, k)ε‖Aik‖, whereas for a scaled global threshold (4.20) and βHik = ε‖A‖,
we obtain instead ‖Gik‖ ≤ min(i, k)ε‖A‖.

Tedious but straightforward computations lead to the bound

‖G‖ ≤ ξpε‖A‖, (4.22)

where ξp = p and ξp = 1√
6
p2 for a local and global threshold, respectively. The

low-rank error is therefore a factor roughly p times larger when intermediate recom-
pressions are performed than when they are not, for both local and global thresholds.

Theorem 4.5. Let A ∈ Rn×n be a nonsingular matrix partitioned into p2 blocks
of order b. If Algorithm 4.1 runs to completion, it produces BLR LU factors L̃ and
Ũ of A satisfying

A = L̃Ũ +∆A, ‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.23)

where c = b+ 2r3/2 + p, and where ξp is given in Table 4.1.

We illustrate the above analysis with some numerical experiments in Figure 4.4,
using a scaled global threshold (results with a local threshold are similar and omitted).
In Figure 4.4a, we compare the error growth with and without recompressions. Re-
compression increases the error by a noticeable factor; however, this factor increases

20

Table 4.1: Expression of ξp in Theorems 4.5, 4.6, and 4.8, depending on whether
a local or global threshold is used, and on whether intermediate recompressions are
performed during the LU factorization.

Local threshold Global threshold

Without recompressions 1 p

With recompressions p p2/
√

6

4096 6400 9216 12544 16384

10
-10

10
-5

(a) Backward error (2.11) for increasing n,
depending on whether recompressions are
“off” or “on”. The numbers indicate the
ratio between the corresponding errors.

0.5 1 1.5

10
10

10
-15

10
-10

10
-5

(b) Flops–accuracy tradeoff. The back-
ward error (2.11) is plotted on the y-axis
as a function of the flops for comput-
ing the factorization on the x-axis. Each
point corresponds to a different ε thresh-
old.

Fig. 4.4: Impact of intermediate recompressions on the backward error for a Poisson
matrix (see (2.10)) of order n = 4096 with the FCU algorithm (Algorithm 4.1) and
with a global threshold.

relatively slowly with n. The error growth of the factorization with recompression
therefore remains contained. To determine whether this increased error pays off in
terms of flops, we plot in Figure 4.4b the error as a function of the flop count for
the factorization for several values of ε. Clearly, for this Poisson matrix (see (2.10)),
the strategy using recompressions achieves a better tradeoff. We will show that this
remains true for a wide range of matrices in section 5.

4.3. BLR matrix LU factorization: CFU algorithm. In the FCU algorithm
(Algorithm 4.1), the compress step is performed after the factor step and thus the
latter does not exploit the LR property of the blocks. The CFU algorithm, described
in Algorithm 4.2, is based on the idea of performing the compress step earlier, before
the factor step, so that the off-diagonal blocks may be factored in LR form, as shown
on line 10 and as analyzed in Lemma 3.5. This reduces the number of flops needed
for the factor step, which is especially important because this step is asymptotically
dominant in the FCU algorithm. The CFU algorithm is thus necessary to achieve an

21

Algorithm 4.2 BLR LU factorization: CFU algorithm

1: {Input: a p× p block matrix A. Output: its BLR LU factors L̃ and Ũ .}
2: for k = 1 to p do
3: Compress:
4: for i = k + 1 to p do
5: Compute LR approximations Ãik ≈ Aik and Ãki ≈ Aki.
6: end for
7: Factor:
8: Compute the LU factorization L̃kkŨkk = Akk.
9: for i = k + 1 to p do

10: Solve L̃ikUkk = Ãik for L̃ik and LkkŨki = Ãki for Ũki.
11: end for
12: Update:
13: Akk ← Akk −

∑k−1
j=1 L̃kjŨjk.

14: for i = k + 1 to p do
15: Aik ← Aik −

∑k−1
j=1 L̃ijŨjk and Aki ← Aki −

∑k−1
j=1 L̃kjŨji.

16: end for
17: end for

optimal complexity [4].
However, the CFU algorithm has not yet been widely accepted as the method

of choice, and some BLR solvers still use the FCU algorithm by default, such as
MUMPS [5]. There are two reasons for this. The first is that the impact on the
accuracy of switching from FCU to CFU was not fully understood and quantified.
The next theorem provides an answer to this open question. The second reason is
related to numerical pivoting. Performing pivoting requires access to the entries of
the entire row or column being factored; however, in the CFU algorithm, the blocks
have already been compressed and so the entries of the original block are no longer
available. Strategies estimating these entries based on the entries of the LR blocks
have been proposed [4,5,25] and appear to deliver satisfying results. This is however
the object of ongoing research and is outside our scope.

Theorem 4.6 (BLR LU factorization: CFU algorithm). Let A ∈ Rn×n be a
nonsingular matrix partitioned into p2 blocks of order b. If Algorithm 4.2 runs to
completion, it produces BLR LU factors of A satisfying

A = L̃Ũ +∆A, ‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.24)

where c = b+ 2r3/2 + p, and where ξp is given in Table 4.1.

Proof. In contrast with (4.7) in the proof of Theorem 4.3, the (i, k) block of the
L factor is now computed by solving instead

LikŨkk = R̃ik, i > k, (4.25)

where R̃ik is a LR approximation to R̂ik satisfying R̃ik = R̂ik+Eik, with ‖Eik‖ ≤ εβik,

and where R̂ik still satisfies (4.9). (4.25) takes the form of a triangular solve with an
LR right-hand side, and thus by (3.17) we have

L̃ikŨkk = R̃ik +∆R
(k)
ik , ‖∆R(k)

ik ‖ ≤ γb‖L̃ik‖‖Ũkk‖. (4.26)

22

4096 6400 9216 12544 16384

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

(a) Backward error (2.11) for increasing
n (without intermediate recompression).
The numbers indicate the ratio between
the errors for the CFU and FCU algo-
rithms.

2 4 6 8 10 12 14

10
9

10
-15

10
-10

10
-5

(b) Flops–accuracy tradeoff (n = 4096).
The backward error (2.11) is plotted on
the y-axis as a function of the flops for
computing the factorization on the x-axis.
Each point corresponds to a different ε
threshold.

Fig. 4.5: Comparison between FCU (Algorithm 4.1) and CFU (Algorithm 4.2) BLR
LU factorizations for Poisson matrices (see (2.10)).

We therefore obtain

Aik(1 + θk)−
k∑
j=1

L̃ijŨjk =

k−1∑
j=1

∆R
(j)
ik −∆R

(k)
ik − Eik = Fik +Gik, (4.27)

with the same bound (4.12) on ‖Fik‖ as for the FCU algorithm, but a different bound

‖Gik‖ ≤ εβik instead of (4.13), without the term ‖Ũkk‖. This concludes the proof
for the case i > k. The cases i = k and i < k are similar and overall we have
A− L̃Ũ = ∆A+F +G, where the blockwise bounds on ‖∆A‖ and ‖F‖ are the same
as those for the FCU algorithm, whereas ‖Gik‖ ≤ εβik for all i (with βkk = 0). The
bound ‖G‖ ≤ ξp‖A‖ trivially follows with ξp = 1 or ξp = p depending on whether
βik = ‖Aik‖ or βik = ‖A‖, respectively.

A notable difference of the CFU algorithm is that, unlike the FCU algorithm,
it does not depend on the norm of the diagonal blocks of the LU factors. The CFU
algorithm thus avoids the issue of having different compression in the L and U factors,
as discussed in section 4.2.1, and hence there is no reason to scale the threshold as
suggested for the FCU algorithm (see (4.20)). The main conclusion to draw from
Theorem 4.6 is therefore that the CFU algorithm satisfies the same error bound as
the FCU one when the latter algorithm uses a scaled threshold (as in Theorem 4.5).

This conclusion is supported by numerical experiments in Figure 4.5. Figure 4.5a
shows that the FCU and CFU algorithms yield similar errors on Poisson matrices,
regardless of the matrix size n. Indeed, even though the CFU algorithm yields a
backward error larger by a noticeable factor, this factor does not increase with n.
Therefore, since the CFU algorithm achieves a lower flop count, it achieves a much
better tradeoff than the FCU one, and this is illustrated in Figure 4.5b. These obser-

23

vations will be extended to a wider range of matrices in section 5.
Finally, we briefly comment on some other BLR LU factorization variants, for

which we have performed similar analyses that we omit for the sake of conciseness.
The FUC algorithm [25] performs the compression step only after the completion

of the LU factorization. This variant therefore only reduces the storage, not the flops,
for performing the LU factorization. Its main advantage is to avoid the low-rank
and the floating-point errors accumulating together, replacing the O(uε) term in the
bounds of Theorems 4.3 and 4.6 by O(u2). This is however a negligible reduction of
the error, and therefore the FUC variant is not competitive with the other variants.

Another widely used algorithm is the CUF variant (see, for example, [4, 28]),
which compresses the entire matrix A and then computes its BLR LU factorization.
The CUF algorithm is very similar to the CFU one, only differing in that, at line 15
of Algorithm 4.2, the blocks Aik (and Aki) are already in LR form. Therefore the

result of the product of the LR factors L̃ijŨjk may be obtained directly as an LR
matrix, avoiding the last product in Lemma 3.3: this just affects the constant in the
error bound and we therefore conclude that the CFU and CUF algorithms achieve
similar error bounds. Note that one particularity of the CUF algorithm is that the
use of intermediate recompressions (section 4.2.3) is mandatory to contain the growth
of the ranks of the BLR LU factors throughout the factorization.

4.4. BLR linear systems. We first analyze the solution of a triangular system
T̃ x = v, where T̃ is a BLR matrix.

Theorem 4.7 (BLR triangular system). Let T̃ ∈ Rn×n be a triangular BLR

matrix partitioned into p2 LR blocks T̃ij ∈ Rb×b and let v ∈ Rn. If the solution to the

system T̃ x = v is computed by solving the triangular system Tiixi = vi −
∑i−1
j=1 T̃ijxj

for each block xi = x((i− 1)b+ 1 : ib), the computed solution x̂ satisfies(
T̃ +∆T̃

)
x̂ = v +∆v, ‖∆T̃‖ ≤ γc‖T̃‖, ‖∆v‖ ≤ γp‖v‖, (4.28)

where c = b+ r3/2 + p.

Proof. Let w
(j)
i = T̃ij x̂j , where x̂j is the jth block-row of the computed x̂ in the

previous i− 1 steps. By Lemma 3.1, the computed ŵ
(j)
i satisfies

ŵ
(j)
i =

(
T̃ij + Fij

)
x̂j , ‖Fij‖ ≤ γd‖T̃ij‖,

with d = b+ r3/2. Let wi = vi −
∑i−1
j=1 w

(j)
i ; the computed ŵi satisfies

ŵi = vi(1 + θi)−
i−1∑
j=1

ŵ
(j)
i (1 + θj), |θj | ≤ γp.

By Lemma 2.2, the computed solution x̂i to Tiixi = ŵi satisfies(
Tii + Fii

)
x̂i = ŵi, ‖Fii‖ ≤ γb‖Tii‖.

Therefore, recalling that T̃ii = Tii, we have

i∑
j=1

(
T̃ij +∆T̃ij

)
x̂j = vi(1 + θi), (4.29)

24

with ∆T̃ij = θj T̃ij +Fij(1 + θj) and thus ‖∆T̃ij‖ ≤ γd+p+O(u)‖T̃ij‖. Gathering (4.29)

over all block-rows i, we obtain (T̃ +∆T̃)x̂ = v +∆v, with ‖∆v‖ ≤ γp‖v‖ and

‖∆T̃‖ ≤ γd+p+O(u)

(p∑
i=1

i∑
j=1

‖T̃ij‖2
)1/2

≤ γd+p‖T̃‖+O(u2),

as required.

We are ready for our final theorem, which builds upon all our previous analyses to
prove the backward stability of the solution to linear systems by BLR LU factorization.

Theorem 4.8 (BLR linear system). Let Ã ∈ Rn×n be a pb × pb BLR matrix

and let v ∈ Rn. If the linear system Ãx = v is solved by solving the triangular
systems L̃y = v, Ũx = y, where L̃ and Ũ are the BLR LU factors computed by either
Algorithm 4.1 or 4.2, then the computed solution x̂ satisfies(

A+∆A
)
x̂ = v +∆v, (4.30)

‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γ3c‖L̃‖‖Ũ‖+O(uε), (4.31)

‖∆v‖ ≤ γp
(
‖v‖+ ‖L̃‖‖Ũ‖‖x̂‖

)
+O(u2), (4.32)

where c = b+ 2r3/2 + p, and where ξp is given in Table 4.1.

Proof. By Theorems 4.5 and 4.6, the BLR LU factors computed by the FCU
algorithm or the CFU algorithm satisfy A+∆A = L̃Ũ , with

‖∆A‖ ≤
(
ξpε+ γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε).

By Theorem 4.7, the computed ŷ satisfies(
L̃+∆L̃

)
ŷ = v +∆v, ‖∆L̃‖ ≤ γc‖L̃‖, ‖∆v‖ ≤ γp‖v‖.

Similarly the computed x̂ satisfies(
Ũ +∆Ũ

)
x̂ = ŷ +∆ŷ, ‖∆Ũ‖ ≤ γc‖Ũ‖, ‖∆ŷ‖ ≤ γp‖ŷ‖.

We therefore obtain on the one hand(
L̃+∆L̃

)(
Ũ +∆Ũ

)
x̂ =

(
A+∆A+∆L̃Ũ + L̃∆Ũ +∆L̃∆Ũ

)
x̂ =

(
A+∆A′

)
x̂

and on the other hand(
L̃+∆L̃

)(
Ũ +∆Ũ

)
x̂ = v +∆v + L̃∆ŷ +∆L̃∆ŷ = v +∆v′,

yielding
(
A+∆A′

)
x̂ = v +∆v′, with

‖∆A′‖ = ‖∆A+∆L̃Ũ + L̃∆Ũ +∆L̃∆Ũ‖

≤
(
ξpε+ γp

)
‖A‖+ γ3c‖L̃‖‖Ũ‖+O(uε),

‖∆v′‖ = ‖∆v + L̃∆ŷ +∆L̃∆ŷ‖ ≤ γp
(
‖v‖+ ‖L̃‖‖Ũ‖‖x̂‖

)
+O(u2).

25

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Fig. 5.1: Backward error (2.11) for solving a linear system by BLR LU factorization
for the matrices from Table 5.1. We use the CFU algorithm (Algorithm 4.2) with a
global threshold and with intermediate recompressions.

5. Additional experiments and discussion. In the previous sections we have
illustrated our analysis with numerical experiments performed on Poisson matrices
(see (2.10)). In this final section, we provide some additional experiments to demon-
strate that the conclusions drawn in the previous sections extend to many other kind
of problems coming from various real-life applications. We use 26 root separators
(Schur complements of sparse matrices) obtained from matrices from the SuiteSparse
collection [13] listed in Table 5.1.

The main conclusions drawn from our analysis and experiments in the previous
sections were the following.

• As predicted by our analysis, we have observed a tight correlation between
the low-rank threshold ε and the backward error. We show that this crucial
result remains true for a wide range of matrices in section 5.1.

• We experimentally determined using a Poisson matrix of relatively small order
n = 4096 that the use of a global threshold, the CFU algorithm, and interme-
diate recompressions achieves a better flops–accuracy tradeoff than the use
of a local threshold, the FCU algorithm, and no recompressions, respectively.
In section 5.2, we first analyze using Poisson matrices how this comparison
evolves as n increases. Then, in section 5.3, we extend these conclusions to a
wide range of matrices.

5.1. Impact of ε for a wide range of matrices. For each matrix A listed in
Table 5.1, we solve a linear system Ax = v via BLR LU factorization, using the CFU
algorithm with a global threshold and intermediate recompressions. We report the
backward error (2.11) in Figure 5.1, which shows that for all these matrices there is a
good and often even excellent correlation between the threshold ε and the measured
backward error.

The main conclusion of our analysis, which is that the backward error is directly
determined by ε, is therefore confirmed experimentally for a wide range of matrices.

5.2. Flops–accuracy tradeoff for increasing n. On the one hand, the use of
a global threshold and intermediate recompressions both lead to a constant ξp larger
by about a factor p = n/b, as shown in Table 4.1. On the other hand, intermediate

26

Table 5.1: List of matrices from the SuiteSparse collection [13]; n and p denote the
order and the number of block-rows and block-columns of the root separator on which
we perform the experiments.

Matrix n p Application

thermomech dM 388 2 Thermal
shallow water1 543 2 Computational fluid dynamics
Dubcova3 607 2 2D/3D
oilpan 644 3 Structural
hood 763 3 Structural
ship 003 990 4 Structural
pwtk 1080 4 Structural
af shell3 1455 6 Structural
cfd2 1772 7 Computational fluid dynamics
x104 1992 8 Structural
Flan 1565 2916 11 Structural
ML Geer 3006 12 Structural
2cubes sphere 3325 13 Electromagnetics
audikw 1 3768 15 Structural
Transport 4991 19 Structural
Hook 1498 6414 25 Structural
nd24k 7785 30 2D/3D
Fault 639 7983 31 Structural
atmosmodd 8584 34 Computational fluid dynamics
Emilia 923 9843 38 Structural
Geo 1438 13254 52 Structural
nlpkkt80 14080 55 Optimization
Long Coup dt0 15448 60 Structural
Serena 15552 61 Structural
Cube Coup dt0 21072 82 Structural
cage13 21478 79 DNA electrophoresis

recompressions and the CFU algorithm both reduce the asymptotic complexity of the
LU factorization [4]. Even a global threshold may provide an asymptotic improve-
ment, because the proportion of blocks of small norm with respect to the norm of the
global matrix increases with n.

It is therefore important to investigate whether the strategy achieving the best
flops–accuracy tradeoff depends on n. Figure 5.2 compares the tradeoff achieved by
two strategies: the first uses the FCU algorithm with a local threshold and without
recompressions, whereas the second uses the CFU algorithm with a global threshold
and with recompressions. We compare these strategies for two Poisson matrices of
order n = 4096 and n = 16384. Not only is the second strategy the best choice for
both matrices, but the gap between the two is larger for n = 16384 than for n = 4096.
Indeed, for five different values of ε (from 10−13 to 10−3, indicated by the dashed
lines on the figure), we measure the flops required by each strategy and plot the ratio
between the two. The figure shows that, except for ε = 10−3, this ratio is larger for
the larger matrix. Additional experiments (not shown) on matrices of intermediate

27

2 4 6 8 10 12 14

10
9

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

(a) n = 4096.

1 2 3 4

10
11

10
-14

10
-12

10
-10

10
-8

10
-6

(b) n = 16384.

Fig. 5.2: Flops–accuracy tradeoff for two opposite strategies for the solution of a BLR
linear system, using two Poisson matrices of different orders. The numbers indicate
the ratio between the flops required by the two strategies for a given cutoff value of ε
(corresponding to the dashed lines).

order between 4096 and 16384 show that this ratio gradually increases with n. We
conclude that the second strategy becomes more and more beneficial with respect to
the first strategy as n increases.

This experimental observation may in fact be justified theoretically for some
classes of matrices. For instance, for Poisson matrices, the ranks of the blocks are
known to be logarithmically dependent on the threshold ε, that is, r = O(log 1/ε) [8,9].
The impact of a larger ξp on the error can be compensated by simply using a smaller
threshold ε′ = ε/ξp, which in turn yields a larger rank r′ = O(log ξp/ε). Therefore,
as p = n/b increases, compensating for the error increase due to a larger ξp only
increases the cost of the factorization by logarithmic factors of n. Since a global
threshold, intermediate recompressions, and the CFU algorithm all reduce this cost
by factors O(nα), with α > 0, we conclude that the use of these strategies must
eventually become beneficial for large enough n.

5.3. Flops–accuracy tradeoff for a wide range of matrices. We finally
compare the flops–accuracy tradeoff achieved by global and local thresholds, the FCU
and CFU algorithms, and the use of intermediate recompressions on the set of ma-
trices listed in Table 5.1. We compare the eight possible strategies depending on the
combination of parameters.

For each matrix, we run each strategy multiple times with slightly different values
of ε between 10−7 and 10−9. We then select a cutoff value and choose for each strategy
the largest ε producing a backward error smaller than this cutoff. This is done to
guarantee that all eight strategies achieve roughly the same backward error. We can
then measure the number of flops required by each strategy and plot the result as a
performance profile in Figure 5.3.

As the figure shows, the strategy using the CFU algorithm with a global thresh-
old and with recompressions achieves the best tradeoff for all 26 matrices, thereby
confirming our previous observations that this is the best parameter setting. This

28

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

Fig. 5.3: Performance profile of the eight possible strategies to solve a BLR linear
system over the matrices listed in Table 5.1. ρ (y-axis) indicates the percentage
of matrices for which a given strategy requires less than α (x-axis) times the flops
required by the best strategy. For any given matrix, all eight strategies achieve roughly
the same backward error.

strategy can reduce the number of flops by a factor up to 10 with no loss of accuracy.
The performance of the remaining seven strategies gives some indication of the rela-
tive importance of each parameter: using a global threshold has the greatest impact,
followed by the CFU algorithm, and finally the intermediate recompressions.

6. Conclusions. We have analyzed the errors introduced in various matrix al-
gorithms by the use of block low-rank (BLR) approximations. Our analysis provides
important new theoretical guarantees, as well as some new insights into the numerical
behavior of BLR matrix algorithms in floating-point arithmetic. We now gather and
summarize our main conclusions.

6.1. Summary. We have derived a set of normwise error bounds that share a
common point: they are expressed as the sum of two terms: one term is associated
with the low-rank truncation errors, whose magnitude can be controlled via the low-
rank threshold ε; the other term is associated with the floating-point errors, whose
magnitude depends on the unit roundoff u.

Usually, we have u � ε, and therefore the error is mainly determined by ε. In
particular, we have proved in Theorem 4.8 that BLR linear systems Ax = v can be
solved with a backward error proportional to ξpε‖A‖, where ξp is a small constant
growing at most quadratically with the number of block-rows and block-columns p =
n/b. Our analysis therefore proves for the first time the backward stability of the
solution of BLR linear systems and provides a theoretical justification for the empirical
observation that the backward error is closely related to the low-rank threshold. Users
can therefore control the numerical behavior of BLR solvers simply by setting ε to
the target accuracy.

When u � ε, the unit roundoff has only a limited impact. This remark is of
particular relevance in the context where BLR solvers are used as preconditioners
for iterative methods [20], for which the low-rank threshold may be set to very large
values (such as ε = 0.01 or even 0.1). In this setting, our analysis indicates that the
use of low precisions, such as half precision, should be very attractive; see [22] and the
references therein for details of half precision and how it can be exploited in standard

29

LU factorization.
We have analyzed several key parameters in the BLR LU factorization and as-

sessed how to choose them to obtain the best possible tradeoff between flops and
accuracy. First, we have shown that the use of a global threshold (block Aij is

compressed such that ‖Aij − Ãij‖ ≤ ε‖A‖) should be preferred to that of a local one

(‖Aij−Ãij‖ ≤ ε‖Aij‖). Second, the use of intermediate recompressions in the update
step (so-called LUAR strategy in [4]) only impacts the constant in the error bound
and is therefore recommended. Finally, we have compared two different factorization
variants, the FCU and CFU algorithms, which differ in when the BLR compression
is incorporated in the LU algorithm, and we have shown that they yield similar error
bounds; the CFU algorithm, which achieves the best complexity, should therefore be
preferred.

We have supported all of these conclusions with numerical experiments on a wide
range of matrices from various real-life applications.

6.2. Perspectives. There exist numerous structured matrix representations other
than BLR, such as multilevel [6] and hierarchical [16] representations, block-separable
matrices [15], HSS matrices [35], and so on. Our analysis could be extended to these
other type of matrices (we note the existing work regarding HSS matrices [34]), al-
though we expect that the resulting analyses would yield similar results.

If the threshold ε is chosen too close to the unit roundoff u, Assumption 2.4 no
longer holds and we are unable to accurately detect the numerical rank of the blocks,
which dramatically increases the cost of the factorization. In order to avoid this issue,
which will become of growing importance with the rise of low precisions, we are forced
to use a higher precision. In this context, recent advances that reduce rounding error
accumulation [10, 11] can help decrease the threshold of ε at which we are forced to
switch to a higher precision.

30

REFERENCES

[1] Kadir Akbudak, Hatem Ltaief, Aleksandr Mikhalev, and David Keyes. Tile low rank Cholesky
factorization for climate/weather modeling applications on manycore architectures. In High
Performance Computing, Julian M. Kunkel, Rio Yokota, Pavan Balaji, and David Keyes,
editors, Cham, 2017, pages 22–40. Springer International Publishing.

[2] P. R. Amestoy, R. Brossier, A. Buttari, J.-Y. L’Excellent, T. Mary, L. Métivier, A. Miniussi, and
S. Operto. Fast 3D frequency-domain full waveform inversion with a parallel Block Low-
Rank multifrontal direct solver: application to OBC data from the North Sea. Geophysics,
81(6):R363–R383, 2016.

[3] Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent,
and Clément Weisbecker. Improving multifrontal methods by means of block low-rank
representations. SIAM J. Sci. Comput., 37(3):A1451–A1474, 2015.

[4] Patrick Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. On the complexity of
the block low-rank multifrontal factorization. SIAM J. Sci. Comput., 39(4):A1710–A1740,
2017.

[5] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Performance
and scalability of the block low-rank multifrontal factorization on multicore architectures.
ACM Trans. Math. Software, 2018. Accepted for publication.

[6] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Bridging the
gap between flat and hierarchical low-rank matrix formats: The multilevel block low-rank
format. SIAM J. Sci. Comput., 41(3):A1414–A1442, 2019.

[7] Julie Anton, Cleve Ashcraft, and Clément Weisbecker. A Block Low-Rank multithreaded
factorization for dense BEM operators. In SIAM Conference on Parallel Processing (SIAM
PP16), Paris, France, April 2016.

[8] Mario Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary
Value Problems, volume 63 of Lecture Notes in Computational Science and Engineering
(LNCSE). Springer-Verlag, 2008. ISBN ISBN 978-3-540-77146-3.

[9] Mario Bebendorf and Wolfgang Hackbusch. Existence of H-matrix approximants to the inverse
FE-matrix of elliptic operators with L∞-coefficients. Numerische Mathematik, 95(1):1–28,
2003.

[10] Pierre Blanchard, Nicholas J. Higham, Florent Lopez, Theo Mary, and Srikara Pranesh. Mixed
precision block fused multiply-add: Error analysis and application to GPU tensor cores.
2019. In preparation.

[11] Pierre Blanchard, Nicholas J. Higham, and Theo Mary. A class of fast and accurate summation
algorithms. MIMS EPrint 2019.6, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK, April 2019. 16 pp.

[12] Ali Charara, David Keyes, and Hatem Ltaief. Tile low-rank GEMM using batched operations
on GPUs. In Euro-Par 2018: Parallel Processing, Marco Aldinucci, Luca Padovani, and
Massimo Torquati, editors, Cham, 2018, pages 811–825. Springer International Publishing.

[13] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1):1:1–1:25, 2011.

[14] J. A. George. Nested dissection of a regular finite-element mesh. SIAM J. Numer. Anal., 10
(2):345–363, 1973.

[15] Adrianna Gillman, Patrick M. Young, and Per-Gunnar Martinsson. A direct solver with O(N)
complexity for integral equations on one-dimensional domains. Frontiers of Mathematics
in China, 7(2):217–247, 2012.

[16] Wolfgang Hackbusch. Hierarchical Matrices : Algorithms and Analysis, volume 49 of Springer
series in computational mathematics. Springer, Berlin, 2015. xxv, 511 pp.

[17] Nicholas J. Higham. Exploiting fast matrix multiplication within the level 3 BLAS. ACM
Trans. Math. Software, 16(4):352–368, 1990.

[18] Nicholas J. Higham. Stability of a method for multiplying complex matrices with three real
matrix multiplications. SIAM J. Matrix Anal. Appl., 13(3):681–687, 1992.

[19] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[20] Nicholas J. Higham and Theo Mary. A new preconditioner that exploits low-rank approxima-
tions to factorization error. SIAM J. Sci. Comput., 41(1):A59–A82, 2019.

[21] Nicholas J. Higham and Srikara Pranesh. Simulating low precision floating-point arithmetic.
MIMS EPrint 2019.4, Manchester Institute for Mathematical Sciences, The University of
Manchester, UK, March 2019. 18 pp. Revised July 2019. To appear in SIAM J. Sci.
Comput.

31

http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GEO16.pdf
https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
https://hal.archives-ouvertes.fr/hal-01505070
https://hal.archives-ouvertes.fr/hal-01505070
https://doi.org/10.1137/18M1182760
https://doi.org/10.1137/18M1182760
https://doi.org/10.1137/18M1182760
http://eprints.maths.manchester.ac.uk/2704/
http://eprints.maths.manchester.ac.uk/2704/
https://doi.org/10.1007/978-3-319-96983-1_57
https://doi.org/10.1007/978-3-319-96983-1_57
http://doi.acm.org/10.1145/2049662.2049663
https://doi.org/10.1007/s11464-012-0188-3
https://doi.org/10.1007/s11464-012-0188-3
http://dx.doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1145/98267.98290
https://doi.org/10.1137/0613043
https://doi.org/10.1137/0613043
http://dx.doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
http://eprints.maths.manchester.ac.uk/2723/

[22] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a matrix into half
precision, with an application to solving linear systems. SIAM J. Sci. Comput., 41(4):
A2536–A2551, 2019.

[23] Akihiro Ida, Hiroshi Nakashima, and Masatoshi Kawai. Parallel hierarchical matrices with
block low-rank representation on distributed memory computer systems. In Proceedings
of the International Conference on High Performance Computing in Asia-Pacific Region,
ACM, 2018, pages 232–240.

[24] C.-P. Jeannerod, T. Mary, C. Pernet, and D. Roche. Exploiting fast matrix arithmetic in block
low-rank factorizations. SIAM J. Matrix Anal. Appl., 2019. Submitted.

[25] Théo Mary. Block Low-Rank Multifrontal Solvers: Complexity, Performance, and Scalability.
PhD thesis, Université de Toulouse, Toulouse, France, November 2017.

[26] Satoshi Ohshima, Ichitaro Yamazaki, Akihiro Ida, and Rio Yokota. Optimization of hierarchical
matrix computation on GPU. In Supercomputing Frontiers, Rio Yokota and Weigang Wu,
editors, Springer International Publishing, Cham, 2018, pages 274–292.

[27] G. Pichon. On the use of low-rank arithmetic to reduce the complexity of parallel sparse linear
solvers based on direct factorization techniques. Ph.D. thesis, Université de Bordeaux,
November 2018.

[28] Grégoire Pichon, Eric Darve, Mathieu Faverge, Pierre Ramet, and Jean Roman. Sparse supern-
odal solver using block low-rank compression: Design, performance and analysis. Journal
of Computational Science, 27:255–270, 2018.

[29] J. L. Rigal and J. Gaches. On the compatibility of a given solution with the data of a linear
system. J. Assoc. Comput. Mach., 14(3):543–548, 1967.

[30] M. Sergent, D. Goudin, S. Thibault, and O. Aumage. Controlling the memory subscription of
distributed applications with a task-based runtime system. In 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), volume 00, May
2016, pages 318–327.

[31] D. V. Shantsev, P. Jaysaval, S. de la Kethulle de Ryhove, P. R. Amestoy, A. Buttari, J.-Y.
L’Excellent, and T. Mary. Large-scale 3D EM modeling with a Block Low-Rank multi-
frontal direct solver. Geophys. J. Int., 209(3):1558–1571, 2017.

[32] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–356,
1969.

[33] Clément Weisbecker. Improving multifrontal solvers by means of algebraic block low-rank rep-
resentations. PhD thesis, Institut National Polytechnique de Toulouse, October 2013.

[34] Y. Xi and J. Xia. On the stability of some hierarchical rank structured matrix algorithms.
SIAM J. Matrix Anal. Appl., 37(3):1279–1303, 2016.

[35] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li. Fast algorithms for
hierarchically semiseparable matrices. Numer. Linear Algebra Appl., 17(6):953–976, 2010.

32

https://doi.org/10.1137/18M1229511
https://doi.org/10.1137/18M1229511
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/FMA_BLR.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/FMA_BLR.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/thesis.pdf
https://doi.org/10.1007/978-3-319-69953-0_16
https://doi.org/10.1007/978-3-319-69953-0_16
https://hal.inria.fr/tel-01953908/
https://hal.inria.fr/tel-01953908/
http://www.sciencedirect.com/science/article/pii/S1877750317314497
http://www.sciencedirect.com/science/article/pii/S1877750317314497
http://doi.acm.org/10.1145/321406.321416
http://doi.acm.org/10.1145/321406.321416
https://doi.org/10.1109/IPDPSW.2016.105
https://doi.org/10.1109/IPDPSW.2016.105
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GJI17.pdf
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/GJI17.pdf
https://doi.org/10.1007/BF02165411
http://ethesis.inp-toulouse.fr/archive/00002471/
http://ethesis.inp-toulouse.fr/archive/00002471/
https://doi.org/10.1137/15M1026195
https://doi.org/10.1002/nla.691
https://doi.org/10.1002/nla.691

