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Abstract

The governing equations of the stochastic Galerkin method can be formulated as a general-
ized Sylvester equation. Therefore developing solvers for it is attracting a lot of attention
from the uncertainty quantification community. In this regard Krylov subspace based iter-
ative solvers, which are used for standard linear systems are being used for the generalized
Sylvester equations as well. This is achieved by converting the generalized Sylvester equa-
tion to a standard linear system using the Kronecker product. Accordingly the residual is
used as a stopping criterion for the iterations, and the condition number of linear systems
is used for the generalized Sylvester equations as well. For a linear system a small residual
implies a small backward error, and hence using residual as a stopping criterion is justified.
In this work we prove that this need not be the case for the generalized Sylvester equation.
We introduce two definitions for the backward error, and then derive an upperbound on
each of them. We also verify the predictions of the analysis using numerical experiments.
For the special case of the stochastic Galerkin method we show that the upper bound on the
backward error can be computed with minimal computational overhead, and hence it can
be used as a stopping criterion in the iterative solvers. For the matrices from the stochastic
Galerkin method we numerically demonstrate that the actual backward error can be upto
2 orders of magnitude higher than the relative residual. Finally by taking into account the
structure of the equation we derive an expression for the condition number, and discuss an
algorithm for their computation in the special case of the stochastic Galerkin method.
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1. Introduction

The equation

p∑
i=1

AiXBi = C, (1.1)

where {Ai}pi=1 ∈ Rn×n, {Bi}pi=1 ∈ Rm×m, and X,C ∈ Rn×m is called as the generalized
Sylvester equation. Using the Kronecker product notation, this can also be written as[

p∑
i=1

(BT
i ⊗ Ai)

]
Vec(X) = Vec(C), (1.2)

where A⊗B = (aijB) is the Kronecker product, and the Vec(·) stacks the columns of a ma-
trix one above the other forming a vector. Until recently this equation was thought to be of
only theoretical interest [1, Sec 16.5], and now it is known that the governing equation in the
stochastic Galerkin method can be reformulated as the generalized Sylvester equation [2].
This development has initiated a great interest in the uncertainty quantification community
to develop efficient algorithms, which exploits its matrix structure. Several attempts in this
directions have already been made, for example [2], [3], [4], [5], and they are based on the
Krylov subspace based iterative methods. All these Krylov subspace based algorithms share
the following common features.

1. The norm of the residual is used to measure the stability of the computed solution.

2. If A ∈ Rn×n and M ∈ Rn×n is a preconditioner for A, then κ2(M
−1A) =

‖ (M−1A)
−1 ‖2‖M−1A‖2 — 2-norm condition number — is used to measure the effec-

tiveness of the preconditioner.

The above two criterions are standard procedures adopted in the solution of linear systems,
but (1.1) is a matrix equation, that is unknown is a matrix rather than a vector. Therefore
in this work we examine the suitability of the above two criterions for the solution of (1.1)
in the context of the stochastic Galerkin method. The main contribution of this work is to
demonstrate that the tools for the analysis of a standard linear system do not carry over in
a straightforward manner to the generalized Sylvester equation, and it should be analysed
separately considering the matrix structure of the equation.

The residual is usually used as a stopping criterion for the solution of linear systems
by iterative methods, because a small residual implies a small backward error [6, Sec 4.2].
However this need not be true for (1.1) since the unknown is a matrix. If it is the case
then the computed solution would be an exact solution to a problem which is a much
larger perturbation of the original problem than stipulated. This is indeed the case for the
Sylvester and the Lyapunov equations, as shown by Higham in [7]. Similar result for a two
term generalized Sylvester equation was proved by K̊agström in [8]. In this work we will
prove a similar result for a generalized Sylvester equation with p terms. One unique feature of
the backward error analysis of the generalized Sylvester equation is that, unlike Sylvester or
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Lyapunov equations, the perturbations appear non-linearly. To address this issue we consider
two alternative definitions of the backward error, and derive an upper bound on each of them.
All the predictions made by the theory are verified using numerical experiments. We simplify
the results for the special case of the stochastic Galerkin method, and demonstrate that the
bound on the backward error can be derived with minimal computational overhead. Using
numerical experiments we will compare the actual backward error and the relative residual
and demonstrate that the former can be upto 2 order of magnitude higher. For a complete
discussion on the perturbation theory of the generalized Sylvester equation we refer to [9,
Ch 8], however they do not discuss the backward error analysis.

The condition number of a function is its sensitivity to the change in its output with
respect to the input. Therefore the condition number depends on the structure of the
function under consideration. Since (1.1) can be represented as a standard linear system,
condition number of a linear system is used for it as well. A major drawback of this approach
is that it completely ignores the structure of the equation. In this work we derive the
Frobenius norm condition number of the generalized Sylvester equation by considering its
structure. Again for the special case of the matrices from stochastic Galerkin method we
discuss an efficient way to estimate the condition number.

Only recently the p term generalized Sylvester equation is being considered by the numer-
ical linear algebra community, and work in this regard is very sparse. Fundamental results
such as the existence and uniqueness of the solution of a generalized Sylvester equation for a
general Ai and Bi are not available. However for the specific case of the stochastic Galerkin
application this result is available [2, Sec 2], and therefore in the perturbation analysis we
will assume that (1.2) is nonsingular. A discussion regarding the general case is beyond the
scope of this work.

The rest of the paper is organised as follows. In the next section we will briefly describe
the stochastic Galerkin method. In section 3 we introduce two definitions for the backward
error of a generalized Sylvester equation and derive an upper bound on both of them, and
in section 4 we derive an expression for the condition number of the generalized Sylvester
equation. Next in section 5 we specialise the results of sections 3 and 4 for the stochastic
Galerkin application, and discuss algorithms for their computation. In Section 6 we perform
numerical experiments to verify the predictions made by the analysis of sections 3 and 4.
Further in this section we consider matrices from the stochastic Galerkin discretisation of
an elliptic stochastic partial differential equation. We summarise and enumerate a few open
problems in Section 7.

2. Stochastic Galerkin formulation

To clarify the context of the problem, and for the sake of completeness, in this section
we provide a very brief introduction to the stochastic Galerkin formulation. Specifically we
consider an elliptic stochastic partial differential equation (spde). If x ∈ D ⊂ Rd, where
usually d = 1, 2, 3, then an elliptic spde is given as

−∇ · [κ(x, θ)∇u(x, θ)] = f(x, θ) a.s. (2.1)

with u(x) = 0 on ∂D ,
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where a.s means almost surely, ∂D is the boundary of D. Let (Ω,F ,P) be the probability
space, then θ ∈ Ω, where Ω is the sample space. Further the input coefficients κ(x, θ) and
f(x, θ) are modelled as real valued random fields and are assumed to be positive and finite.
This assumption guarantees the positive definiteness of the final matrix [2, Sec 2]. Now
using the finite element method to discretise (2.1) we obtain

A(θ)x(θ) = b(θ), (2.2)

where A(θ) ∈ Rn×n, c(θ), x(θ) ∈ Rn, and n is the dimension of the finite element space. At
this point there are various possible ways to solve (2.2), and the stochastic Galerkin method
is one of them, which consists of the following two steps.

1. The matrix A(θ) and the vector b(θ) are discretised as

A(θ) = A1 +

p∑
i=2

Aiξi, and (2.3)

b(θ) = b1 +

p1∑
i=p+1

biξi. (2.4)

where ξi are bounded, zero mean, unit variance, and uncorrelated random variables.
Furthermore Ai are sparse, symmetric and positive definite. (2.3) and (2.4) are called
as the finite-noise assumption and can be computed using the Karhunen-Löeve expan-
sion [10].

2. The solution x(θ) is discretised using orthogonal polynomials, which are function of
the random variables ξi in (2.3) and (2.4). Orthogonality is defined with respect to
the probability measure P , and they are called as the generalised polynomial chaos
(gPC) functions2. Accordingly we obtain

x(θ) =
m∑
i=1

xiψi(θ), (2.5)

where ψi-s are the gPC bases functions.

m = (p1 + q − 3)!/(p1 − 3)!q! (2.6)

and q is the maximum degree of the polynomials ψi(θ).

Now substituting (2.3), (2.4), (2.5) in (2.2), and applying Galerkin projection we obtain
(1.1), where {Ai}pi=1 is given by (2.3), and X = [x1, x2, · · · , xm] , where xi ∈ Rn are from
(2.5). Further C = [c1, c2, · · · cm], where

ci = b1E(ψi) +

p1∑
j=p+1

bjE(ξjψi), for i = 1, 2, · · · ,m,

(Bi)jk = E(ξiψjψk), for i = 1, 2, · · · , p, j, k = 1, 2, · · · ,m, (2.7)

2These gPC function are the bases of a subspace of L2(Ω) [11]
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and E(·) denotes the expectation operator. For a detailed description of the formulation
we refer interested reader to [12, Ch 1] and references therein. In the next section we will
consider a generalized Sylvester equation— no structure is assumed on Ai, Bi — and derive
an upper bound on a backward error. However we will return to the special case of the
generalized Sylvester equation arising from the stochastic Galerkin method in section 5. In
this work we consider only matrices with real entries, as the stochastic Galerkin method
results in real matrices. However results for the complex case follows directly from the
analysis in the next section.

3. Backward error

For the Sylvester equation, which is AX − XB = C with appropriate matrix dimen-
sions, Higham in [1, Ch 16] showed that the backward error can be written in terms of the
perturbation in the component matrices. That is, if we define the normwise backward error
as

η
′
(Y ) = min

{
ε : (A+ ∆A)Y − Y (B + ∆B) = C + ∆C, ‖∆A‖F ≤ εα,

‖∆B‖F ≤ εβ, ‖∆C‖F ≤ εγ
}
,

where ‖ · ‖F is the Frobenius norm, α, β, γ > 0, and Y is an approximate solution. Then it
was shown that

η
′
(Y ) ≤ µ

‖R′‖F
(α + β)‖Y ‖F + γ

,

where R′ = C − AY + Y B is the residual,

µ :=
(α + β)‖Y ‖F + γ

(α2σ2
m + β2σ2

n + γ2)1/2
, (3.1)

and σn, σm are the n-th and m-th singular values of Y. Similar idea was used in [8] for a two
term generalized Sylvester equation.

Adopting a similar strategy, again if Y is an approximate solution of a generalized
Sylvester equation, then we define

η(Y ) = min
{
ε :

p∑
i=1

(Ai + ∆Ai)Y (Bi + ∆Bi) = C + ∆C, ‖∆Ai‖F ≤ εαi,

‖∆Bi‖F ≤ εβi, for i ∈ {1, 2, 3, · · · , p}, and ‖∆C‖F ≤ εγ
}
,

(3.2)

where αi, βi and γ are positive and indicators of the extent of perturbation. The choice
αi = ‖Ai‖F , βi = ‖Bi‖F , and γ = ‖C‖F are of practical interest, and in such cases we refer
to η(Y ) as the normwise relative backward error. Now the perturbed generalized Sylvester
equation

p∑
i=1

(Ai + ∆Ai)Y (Bi + ∆Bi) = C + ∆C
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can be written as

p∑
i=1

(∆AiY Bi + AiY∆Bi + ∆AiY∆Bi)−∆C = R, (3.3)

where R = C−
∑p

i=1AiY Bi. Note that, to determine ∆Ai, ∆Bi and ∆C from (3.3) involves
solution of a non-linear least square problem. This aspect poses a major difficulty in the
analysis unlike Sylvester or Lyapunov equations, where the perturbations appear linearly. A
similar situation also arises in the backward error analysis of a matrix-matrix multiplication,
and this is the reason for the absence of a unique expression for its backward error. For
various alternative definitions for the backward error of a matrix-matrix multiplication we
refer to [1, p 77]. In this work we consider the following two definitions for the backward
error.

ηA(Y ) = min
{
ε :

p∑
i=1

(Ai + ∆Ai)Y Bi = C + ∆C, ‖∆Ai‖F ≤ εαi,

for i ∈ {1, 2, 3, · · · , p}, and ‖∆C‖F ≤ εγ
}
, (3.4)

ηB(Y ) = min
{
ε :

p∑
i=1

AiY (Bi + ∆Bi) = C + ∆C, ‖∆Bi‖F ≤ εβi,

for i ∈ {1, 2, 3, · · · , p}, and ‖∆C‖F ≤ εγ
}
, (3.5)

Perturbations appears linearly in (3.4) and (3.5), and therefore the analysis will simplify
greatly. Now instead of deriving a bound on ηA(Y ) and ηB(Y ) separately, we analyse
the linear part of (3.3), and at the end of the section demonstrate that bounds for (3.4)
and (3.5) can be obtained as a special case. Before we begin with the analysis, we would
like to emphasize that we are interested in estimating the error incurred by the floating-
point computation, and they are modest compared to truncation error3 in (2.3), (2.4), and
discretization error. Therefore it is very unlikely that the second order terms in (3.3) will
be important. However for the sake of rigour we use the definitions (3.4) and (3.5).

Accordingly (3.3) is linearized by neglecting the second order perturbation terms, and
can be written as,

[
H1 H2 −γImn

]  Vec (∆A′)
Vec (∆B′)

Vec (∆C)/γ

 = Vec(R), (3.6)

3Usually O(10−3)
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where

H1 =
[
α1(B

T
1 Y

T ⊗ In), α2(B
T
2 Y

T ⊗ In), · · · , αp(BT
p Y

T ⊗ In)
]
, (3.7)

H2 = [β1(Im ⊗ A1Y ), β2(Im ⊗ A2Y ), · · · , βp(Im ⊗ ApY )] ,

Vec (∆A′) =
[

Vec (∆A1)
T/α1, Vec (∆A2)

T/α2, · · · , Vec (∆Ap)
T/αp

]T
,

Vec (∆B′) =
[

Vec (∆B1)
T/β1, Vec (∆B2)

T/β2, · · · , Vec (∆Bp)
T/βp

]T
,

Im ∈ Rm×m, In ∈ Rn×n and Imn ∈ Rmn×mn are identity matrices. Compactly written, (3.6)
is Hz = r, which is an underdetermined system and is of full rank if γ 6= 0. Therefore there
exists a unique minimum two norm solution z = H†r, where H† is the pseudo inverse. Using
the relation between the 2-norm and the infinity norm it follows that

1√
2p+ 1

‖H†r‖2 ≤ ‖z‖∞ ≤ ‖H†r‖2.

Note that ‖z‖∞ = ηA(Y ) if ∆Bi = 0, and ‖z‖∞ = ηB(Y ) if ∆Ai = 0. Further if the
second order terms are negligible in (3.3), then ‖z‖∞ ≈ η(Y ). Now using the relation
‖H†r‖2 ≤ ‖H†‖2‖r‖2 we can deduce that

‖z‖∞ ≤ ‖H†‖2‖r‖2 = ‖r‖2/σmin(H), (3.8)

where σmin(H) is the minimum singular value of H. From (3.8) we can see that even if the
norm of the residual is low, ‖z‖∞ can be high, as it also depends on σmin(H), which in turn
depends on Ai, Bi, C, and Y . To quantify this dependency we now derive a lower bound on
σmin(H).

To achieve this consider the singular value decomposition (SVD) Y = UΣV T , where
U ∈ Rn×n, V ∈ Rm×m have orthonormal columns, and Σ ∈ Rm×n is a diagonal matrix
with entries the singular values σi. The singular values are assumed to have the ordering
σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n), and σmin(m,n)+1 = · · · = σmax(m,n) = 0. Now substitute the SVD
in the expression of H in (3.6). Since the singular values are invariant under orthonormal
transformations σmin(H) = σmin(H̃), where

H̃ = Q1HQ2, where

Q1 = V T ⊗ UT ,

Q2 = diag
(
(U ⊗ U)eTp , (V ⊗ V )eTp , V ⊗ U

)
, and

eTp = [1, 1, · · · , 1] ∈ Rp. Further

H̃ =
[
H̃1 H̃2 −γImn

]
, where

H̃1 =
[
α1(B̃

T
1 ΣT ⊗ In), α2(B̃

T
2 ΣT ⊗ In), · · · , αp(B̃T

p ΣT ⊗ In)
]
,

H̃2 =
[
β1(Im ⊗ Ã1Σ), β2(Im ⊗ Ã2Σ), · · · , βp(Im ⊗ ÃpΣ)

]
,

Ãi = UTAiU, i = 1, 2, 3, · · · , p, and

B̃i = V TBiV, i = 1, 2, 3, · · · , p.
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Now recall that the singular values of H̃ are the eigenvalues of

H̃H̃T =

p∑
i=1

{
α2
i (B̃

T
i ΣTΣB̃i ⊗ In) + β2

i (Im ⊗ ÃiΣΣT ÃTi )
}

+ γ2Imn.

Using the Courant-Fischer min-max theorem [13, Coro. 7.7.4], and a property of the eigen-
values of the Kronecker product, 4 we can show that

λmin(H̃H̃T ) ≥
∑
j∈J

α2
jλmin(B̃T

j ΣTΣB̃j) +
∑
k∈J ′

β2
kλmin(ÃkΣΣT ÃTk ) + γ2, (3.9)

where λmin(·) denotes the minimum eigenvalue, J ,J ′ ⊂ (1, 2, 3, · · · , p) are the indices for
which the matrices Bi and Ai respectively are nonsingular. We can further simplify the
summands of (3.9) as

λmin(B̃T
i ΣTΣB̃i) =

1

‖B̃−1i (ΣTΣ)†B̃−Ti ‖2
≥ σm(Y )2

‖B−1i ‖2F
, (3.10)

and

λmin(ÃiΣΣT ÃTi ) =
1

‖Ã−Ti (ΣΣT )†Ã−1i ‖2
≥ σn(Y )2

‖A−1i ‖2F
. (3.11)

To obtain the last inequality we have used ‖AB‖2 ≤ ‖A‖2‖B‖2, the unitary invariance of
the two norm, and ‖A‖2 ≤ ‖A‖F . Substituting (3.10), (3.11) in (3.9) we can show that

λmin(H̃H̃T ) ≥
∑
j∈J

α2
j

σm(Y )2

‖B−1j ‖2F
+
∑
k∈J ′

β2
k

σn(Y )2

‖A−1k ‖2F
+ γ2,

and therefore

σmin(H) ≥

(∑
j∈J

α2
j

σm(Y )2

‖B−1j ‖2F
+
∑
k∈J ′

β2
k

σn(Y )2

‖A−1k ‖2F
+ γ2

)1/2

. (3.12)

Finally using (3.12) in (3.8) we obtain

‖z‖∞ ≤ µ
‖R‖F
τ

, (3.13)

µ =
τ(∑

j∈J α
2
j
σm(Y )2

‖B−1
j ‖2F

+
∑

k∈J ′ β
2
k
σn(Y )2

‖A−1
k ‖

2
F

+ γ2
)1/2

, (3.14)

τ =

p∑
i=1

(αi‖Bi‖F + ‖Ai‖Fβi) ‖Y ‖F + γ. (3.15)

4If A ∈ Rn×n ,B ∈ Rm×m, then λk(A ⊗ B) ∈ {λi(A)λj(B) : i ∈ (1, 2, · · · , n), j ∈ (1, 2, · · · ,m)} for k ∈
(1, 2, · · · ,mn) [14, Theorem 4.2.15].
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The scalar µ ≥ 1 is a magnification factor, therefore small residual does not necessarily
imply small ‖z‖∞.

Now we demonstrate that the analysis of this section generalizes the results of [7] and
[8, p 1051]. Consider just the Sylvester equation AX −XB = C, then it can be recast into
a generalized Sylvester equation in the following way,

(AXIm)− (InXB) = C.

For the above equation (3.13) and (3.14) reduce to

µ =
(α1 + β2)‖Y ‖F + γ

(α2
1σm(Y )2 + β2

2σn(Y )2 + γ2)
1/2
,

η(Y ) ≤ µ
‖R‖F

(α1 + β2)‖Y ‖F + γ
. (3.16)

(3.16) is same as (3.1), and the result of [8, p 1051]. Furthermore if B = 0 and X ∈ Rn×1,
Sylvester equation simplifies to a system of linear equations, and (3.16) further reduces to
the backward error of a linear system of equation within a factor of

√
2.

To explore the conditions under which µ is very large, let us consider the case where m =
n, Ai-s and Bi-s are non-singular. Further we consider the normwise relative perturbation,
that is αi = ‖Ai‖F , βi = ‖Bi‖F , and γ = ‖C‖F . Since all Ai and Bi are non-singular
J = J ′ = (1, 2, 3, · · · , p), and (3.14) simplifies to

µ =
2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F(∑p
i=1 ‖Ai‖2F

σm(Y )2

‖B−1
i ‖2F

+
∑p

i=1 ‖Bi‖2F
σn(Y )2

‖A−1
i ‖2F

+ ‖C‖2F
)1/2 ,

≥ 2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F
σmin(Y )

(∑p
i=1

‖Ai‖F ‖Bi‖F
κF (Bi)

+
∑p

i=1
‖Bi‖F ‖Ai‖F
κF (Ai)

)
+ ‖C‖F

, (3.17)

where κF (Bi) = ‖B−1i ‖F‖Bi‖F and κF (Ai) = ‖A−1i ‖F‖Ai‖F . From (3.17) we can conclude
that µ � 1 when either ‖Y ‖F � σmin(Y), and/or matrices Ai, Bi are ill conditioned. To
further clarify the dependence on the condition numbers of Y , Ai, and Bi, we consider the
case when γ = 0, that is the right hand side matrix is assumed to be known exactly. Under
this assumption (3.17) simplifies to

µ ≥ 2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F
σmin(Y )

(∑p
i=1

‖Ai‖F ‖Bi‖F
κF (Bi)

+
∑p

i=1
‖Bi‖F ‖Ai‖F
κF (Ai)

) ,
≥ min

i∈(1,2,··· ,p)
[κF (Ai), κF (Bi)]‖Y ‖F‖Y †‖2,

≥ κ2(Y ) min
i∈(1,2,··· ,p)

[κF (Ai), κF (Bi)], (3.18)

where κ2(Y ) = ‖Y †‖2‖Y ‖2. From the above inequality it becomes clear that, even if some
Ai and Bi are ill conditioned the backward error can still be small, in Section 6 we will
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verify this numerically. Therefore the only remaining question is, under what conditions the
computed solution is ill conditioned? This seems to be an open problem even for Sylvester
equations, [1, Chapter 16].

Recall that ‖z‖∞ = ηA(Y ) if ∆Bi = 0, therefore by considering βk = 0 in (3.14) we
obtain

ηA(Y ) ≤ µA
‖R‖F
τ

, (3.19)

µA =
τ(∑

j∈J α
2
j
σm(Y )2

‖B−1
j ‖2F

+ γ2
)1/2

,

τ =

p∑
i=1

(αi‖Bi‖F + ‖Ai‖Fβi) ‖Y ‖F + γ.

In the above equation µA is the magnification factor, which is a ratio of the backward error
ηA(Y ) and the relative residual ‖R‖F/τ . Similarly a bound on ηB(Y ) can be derived by
setting αj = 0 in (3.14). Therefore,

ηB(Y ) ≤ µB
‖R‖F
τ

, (3.20)

µB =
τ(∑

k∈J ′ β
2
k
σn(Y )2

‖A−1
k ‖

2
F

+ γ2
)1/2 ,

τ =

p∑
i=1

(αi‖Bi‖F + ‖Ai‖Fβi) ‖Y ‖F + γ.

An interpretation similar to µA can also be given for µB as well.

4. Condition number

In this section we derive the condition number of a generalized Sylvester equation using
the perturbation theory. To achieve this we first consider

p∑
i=1

(
(Ai + ∆Ai)(X + ∆X)(Bi + ∆Bi)

)
= C + ∆C.

Unlike backward error analysis, only small perturbations are of interest here, and accordingly
second order terms can be dropped. Hence we obtain

p∑
i=1

Ai∆XBi = ∆C −
p∑
i=1

(∆AiXBi + AiX∆Bi) . (4.1)

10



Using the Kronecker product notation (4.1) can be restated as

P Vec(∆X) = γ ( Vec(∆C)/γ)−
p∑
i=1

{[
αi(B

T
i X

T ⊗ In) βi(Im ⊗ AiX)
] [ Vec(∆Ai)/αi

Vec(∆Bi)/βi

]}
,

(4.2)

where P =
∑p

i=1B
T
i ⊗ Ai, and α, β, γ are positive and a measure of the extent of pertur-

bation. If we consider a normwise perturbation, and

ε = max{‖∆Ai‖F/αi, ‖∆Bi‖F/βi, ‖∆C‖F/γ}, for i ∈ (1, 2, 3, · · · , p),

then

‖∆X‖F
‖X‖F

≤ (2p+ 1)1/2Ψε, (4.3)

where

Ψ = ‖P−1
[
H1 H2 −γImn

]
‖2/‖X‖F , (4.4)

H1 =
[
α1(B

T
1 X

T ⊗ In), α2(B
T
2 X

T ⊗ In), · · · , αp(BT
p X

T ⊗ In)
]
,

H2 = [β1(Im ⊗ A1X), β2(Im ⊗ A2X), · · · , βp(Im ⊗BpX)] .

(2p + 1)1/2Ψ is the condition number of a generalized Sylvester equation, and the above
bound is attainable. For the Sylvester equation, p = 2 and we obtain

51/2‖P−1
[
α1(X

T ⊗ In) β1(Im ⊗X) −γImn
]
‖2/‖X‖F ,

which is the condition number derived in [7] to within a factor of (3/5)1/2. Similar conclusion
holds for the results of [8], which are derived for a two term generalized Sylvester equation.
The bound in (4.3) can be weakened to

‖∆X‖F
‖X‖F

≤ (2p+ 1)1/2Φε, where

Φ = ‖P−1‖2

(
p∑
i=1

[αi‖Bi‖F + βi‖Ai‖F ] ‖X‖F + γ

)
/‖X‖F . (4.5)

Note that Φ can be much greater than Ψ as demonstrated in [1] for the Sylvester equation.
For a linear system Ax = b, the condition number is given by

κA,b(A, x) =
‖A−1‖‖b‖
‖x‖

+ ‖A−1‖‖A‖, (4.6)

where ‖·‖ can be any norm of choice, and we will consider the Frobenius norm for consistency
with (4.3). The system of equations in stochastic Galerkin were initially identified as a
standard linear system [15, Section 3.3.6], and therefore their condition number is estimated
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using (4.6). One major drawback of using (4.6) for estimating the condition number is
that it does not take into account the actual structure of the equation. For the case of the
generalized Sylvester equation, (4.6) can be written as

κA,b(A, x) =
‖
(∑p

i=1(B
T
i ⊗ Ai)

)−1 ‖F‖C‖F
‖X‖F

+

∥∥∥∥∥∥
(

p∑
i=1

(BT
i ⊗ Ai)

)−1∥∥∥∥∥∥
F

∥∥∥∥∥
p∑
i=1

(BT
i ⊗ Ai)

∥∥∥∥∥
F

.

(4.7)

Note that in deriving the above expression, a perturbation of
∑p

i=1(B
T
i ⊗ Ai) is considered

rather than individual matrices, we refer to [1, Sec 7.1] for further details. We will compare
(4.7) and (4.5) numerically in Section 6.

5. Application to the stochastic Galerkin method

In the stochastic Galerkin method the matrices {Ai}pi=1 are symmetric and positive
definite, B1 is a diagonal matrix with positive entries and {Bi}pi=2 are sparse, symmetric,
singular matrices, and for problems of practical interest m � n [16, Section 4] . Therefore
the expression for µA in (3.19) simplifies to

µ
(sg)
A =

2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F(
‖A1‖2F
‖B−1

1 ‖2F
σm(Y )2 + ‖C‖2F

)1/2 . (5.1)

From a computational point of view evaluating (5.1) is not expensive because B1 is a diagonal
matrix, and m� n, that is Y is a tall, skinny matrix, and therefore σm(Y ) can be computed
very efficiently [17, Sec 5.4]. Similarly the expression for µB in (3.20) can also be simplified,
which gives

µ
(sg)
B =

2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F
‖C‖F

. (5.2)

From (5.1) and (5.2) we can infer that the solution of the generalized Sylvester equation in
the stochastic Galerkin method is backward stable in Bi, and conditionally backward stable
in Ai.

Next we consider the estimation of the condition number Φ given by (4.5). As men-
tioned in section 1, iterative solvers are used for the solution of (1.1) in the context of the
stochastic Galerkin method. Further, since (1.2) is a symmetric and positive definite matrix,
preconditioned conjugate gradient (PCG) is the most popular choice. Also extremely good
preconditioners are available as well [2], [18]. Now note that in (4.5), ‖P−1‖2 = λmin(P ),
that is the minimum eigenvalue of P , and this can be estimated using the Lancsoz method.
Now exploiting the connection between the PCG and Lancsoz algorithm [6, Sec. 5.1], the
condition number Φ can be computed as a bi-product of solving the generalized Sylvester
equation. Further since the Lancsoz iteration converges to the extreme eigenvalues very
quickly [6, Sec. 4.2.3], this method is computationally efficient.
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Estimating the condition number Ψ would involve either inversion of P or solution of
a linear system with multiple right hand sides, that is each column of H1, H2, and Imn.
Therefore even though Ψ is desirable, for problem of practical interest, estimating it would
be extremely expensive.

6. Numerical Experiments

In this section we perform numerical experiments to achieve three objective

1. Verify the predictions made by the analysis in Sections 3 regarding the conditions in
which µ of (3.13) has a large value.

2. Compare the actual backward error ηA(Y ) and the relative residual — to be defined
later — for matrices from the stochastic Galerkin method.

3. Compare the condition number given by (4.4), (4.5) and (4.7) for matrices from the
stochastic Galerkin method.

All the experiments are performed on a Mac laptop with Intel Core i5, and 8 Gb RAM, using
MATLAB 2018b. We have made our codes available at https://github.com/SrikaraPranesh/
GeneralizedSylvester.

To numerically verify the predictions made by the analysis of the Sections 3 regarding µ
in (3.13), we consider a two term generalized Sylvester equation, that is

A1XB1 + A2XB2 = C. (6.1)

We consider 1000 square matrices of size 4 × 4, and the matrices are generated using the
randsvd command of MATLAB. To make the results reproducible we seed the random
number generator using rng(s), where s = [1 : 1 : 1000]. Right hand side C is generated
using the randn command. (6.1) is solved by converting it to a linear system using the
Kronecker product notation of (1.2), and using Gaussian elimination with partial pivoting,
namely the ‘\’ command of MATLAB. We will refer to ‘\’ as the backslash command.
Backward error for the linear system, which we refer to as the relative residual is computed
using ∥∥[∑2

i=1(B
T
i ⊗ Ai)

]
x̂− b

∥∥
∞

‖
∑2

i=1B
T
i ⊗ Ai‖∞‖x̂‖∞ − ‖b‖∞

, (6.2)

where x̂ is the computed solution, and the actual backward error η(Y ) is computed using
(3.6) again by using the backslash command. Recall that µ in (3.13) was derived by con-
sidering only the first order perturbation terms, and therefore to be consistent with the
analysis the test matrices were chosen so that the second order terms are negligible. We
verify this by solving the non-linear least square problem (3.3) using lsqnonlin function of
MATALB with default options. Throughout the numerical experiments we will consider the
combinations of 2-norm condition numbers of Ai and Bi, which are listed in Table 6.1.

We choose the condition numbers of all the matrices to be 1e15, that is case 1 in Table
6.1. We deliberately choose a high condition number to demonstrate the dependency of
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Table 6.1: Combinations of the 2-norm condition numbers of the matrices A1, A2, B1, and B2 in (6.1),
which are considered in the numerical experiments.

κ2(A1) κ2(B1) κ2(A2) κ2(B2)

case 1 1e15 1e15 1e15 1e15
case 2 1e15 1e15 1e2 1e15
case 3 1e15 1e15 1e2 1e2

the backward error on the condition number of the component matrices. The results are
displayed in Figure 6.1a and we can observe that the actual backward error is up to 6 orders
of magnitude higher than the relative residual which is O(u), where u = 2.22e − 16 is the
unit round off of the double precision, therefore µ ≈ 106. From (3.18) we can see that the
magnification factor depends on the condition number of the solution as well. In Figure
6.1b we display the condition number of the computed solution and it can be observed that
the solution matrix is well conditioned compared to the input matrices. Therefore the high
value of µ is because of the high condition number of the input matrices.

Next we set the condition numbers of A1, B1, B2 to 1× 1015, and the condition number
of A2 to 1× 102, that is case 2 in Table 6.1. In Figure 6.2a we display the actual backward
error and the relative residual. From the figure we can observe that the actual backward
error is up to 12 orders of magnitude higher than the relative residual which is O(u), that
is µ ≈ 1012. Next in Figure 6.2b we have displayed the condition number of the computed
solution for all the test matrices, and we can observe that the condition number of the
solution is also extremely high, thus leading to a high value of µ.
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Figure 6.1: (a) Compares the actual backward error (3.2) and the relative residual (6.2). (b) Condition
number of the solution matrix. Results are computed for the case 1 in Table 6.1.

From these two experiments we can conclude that the magnification factor µ is ex-
tremely high when the input matrices are either ill-conditioned or the solution matrix is
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Figure 6.2: (a) Compares the actual backward error (3.2) and the relative residual (6.2). (b) Condition
number of the solution matrix. Results are computed for the case 2 in Table 6.1.

ill-conditioned. However (3.18) predicts that the magnification is a function of the min-
imum over condition number of the input matrices. To verify this we set the condition
number of A1, B1 to 1× 1015, and A2, B2 to 1× 102, that is case 3 in Table 6.1. In Figure
6.3a we display the actual backward error and the relative residual, and we can observe that
the magnification factor is relatively low, that is µ = O(103). Further from Figure 6.3b we
can see that the solution is relatively well conditioned as well.
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Figure 6.3: (a) Compares the actual backward error (3.2) and the relative residual (6.2). (b) Condition
number of the solution matrix. Results are computed for the case 3 in Table 6.1.

From these numerical experiments we can conclude that our analysis successfully captures
the behaviour of the first order perturbation terms in the backward error. Further the
solution of a generalized Sylvester equation is only conditionally backward stable, as the
backward error depends on the condition number of the input matrices and the solution
matrix.

Next we perform numerical experiments to compare the condition number obtained using
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(4.4) and (4.5). The action of P−1 is obtained by using the backslash command of MATLAB.
We consider the same three combination of condition numbers listed in Table 6.1, and the
corresponding actual condition numbers of the generalized Sylvester equation are displayed
in Figure 6.4. For the sake of clarity we display the result for only first 30 matrices, the trend
is broadly similar for the remaining matrices as well. In the plot strong condition number
refers to (4.4), and weak condition number refers to (4.5). From the plots we can observe
that the condition number of the generalized Sylvester equation computed using (4.4) is
always lesser than (4.5), and in some cases it is up to three orders of magnitude lower.
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Figure 6.4: Condition number of the generalized Sylvester equation, strong condition number is computed
using (4.4), and weak condition number is computed using (4.5), condition number of the component matrices
are listed in Table 6.1 (a) case 1, (b) case 2, and (c) case 3. Condition numbers of only the first thirty matrices
are displayed.

Now for the matrices obtained from the stochastic Galerkin discretisation of an elliptic
sPDE we perform numerical experiments to compare the actual backward error and the
relative residual. The actual backward error is given by

ηA(Y ) = ‖H†Ar‖∞, (6.3)

where HA =
[
H1 −‖C‖F Imn

]
, H1 is given by (3.7), and r is the residual; bound for the
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backward error given by

η(Y ) ≤ µ
(sg)
A

‖R‖F
2 (
∑p

i=1 ‖Ai‖F‖Bi‖F ) ‖Y ‖F + ‖C‖F
, (6.4)

where µ
(sg)
A is given by (5.1), and the relative residual is computed as

‖ Vec(C)−
(∑p

i=1B
T
i ⊗ Ai

)
Vec(X)‖∞

‖
∑p

i=1B
T
i ⊗ Ai‖∞‖ Vec(X)‖∞ + ‖ Vec(C)‖∞

. (6.5)

Recall from (5.2) that for the stochastic Galerkin method, small residual implies small ηB(Y ),
therefore we do not consider it here. Further the condition numbers estimated using (4.4),
(4.5), and (4.7) are also compared.

We solve (2.1) on a square domain between [0, 0.5] × [0, 0.5]. f(x, θ) is assumed to
be deterministic and a constant function of unit magnitude. A Homogeneous boundary
condition is applied at x = 0 and x = 0.5. For the spatial discretisation a linear triangles
are used, and a finite element space of dimensions 31 and 127 are considered. The random
field κ(x, θ) is assumed to have a mean of 200, variance of 1000, and a Gaussian covariance
model with a correlation length of 2.5 is adopted. The algorithm proposed in [10] is used
to discretise the covariance function. Two cases for the random variables ξi in (2.3) are
considered (i) Standard normal, then ψi in (2.5) are chosen to be Hermite polynomials, (ii)
uniform between [−

√
3,
√

3], then ψi in (2.5) are chosen to be Legendre polynomials. The
matrices Bi in (2.7) are computed using the stochastic Galerkin toolbox in https://github.

com/ezander/sglib. Since the coefficient of variation of the input random field is small, the
positive definiteness can be guaranteed even when standard normal random variables are
used in (2.3). M = BT

1 ⊗ A1 is used as the preconditioner, this is commonly known as the
mean based preconditioner in the uncertainty quantification community. The preconditioned
conjugate Gradient is terminated when the 2-norm of the residual — numerator of (6.5) —
is less than 1 × 10−6. For estimating the actual backward error ηA(Y ), H†A is computed
using the pinv command in (6.3). Further the action of P−1 in (4.4) is achieved using the
backslash command, and ‖P−1‖2 in (4.5) is computed using the eig command.

In Table 6.2 for two sizes of matrices Ai we display the actual backward error ηA(Y ),
its bound given by (6.4), and the relative residual computed using (6.5) for varying size of
matrices Bi. In (2.6) we can observe that the size of matrices Bi depends on two quantities,
namely p1 and q, these values are displayed in parenthesis in the second column of Table 6.2.
From Table 6.2 we can observe that the actual backward error is up to 2 orders of magnitude
higher than the relative residual. Further more the upper bound on the backward error is
tight. Therefore rather than using a norm of the residual as the stopping criterion ‖R‖Fµ(sg)

A

should be used as the stopping criterion.
Next in Table 6.3 the estimates of Ψ, Φ, and κA,b(A, x) of (4.4), (4.5), and (4.7) respec-

tively are displayed. The size of matrices Ai, and Bi are same as that of Table 6.2. From
Table 6.3 we can observe that Ψ is up to two order of magnitude lower than Φ and κA,b(A, x).
Furthermore Φ and κA,b(A, x) are broadly similar, however the perturbations considered in
deriving Φ is in accordance with the structure of the equation.
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Table 6.2: Comparison of the actual backward error ηA(Y ) (6.3), its bound (6.4), and the relative residual
(6.5). Matrices are obtained from the stochastic Galerkin method. The size of Ai is n, m is the size of Bi,
and the numbers in the parenthesis are p1 and q in (2.6). ‘Hermite’ and ‘Legendre’ indicate the type of gPC
polynomials used in (2.5).

Hermite Legendre
n m ηA(Y ) ηA(Y ) bound relative residual ηA(Y ) ηA(Y ) bound relative residual

6 (2,2) 1.79e-07 5.96e-07 1.20e-08 2.68e-08 9.79e-08 3.96e-09
10 (3,2) 1.73e-07 5.88e-07 1.17e-08 2.52e-08 1.20e-07 3.71e-09

31 15 (4,2) 1.73e-07 5.88e-07 1.17e-08 2.53e-08 1.21e-07 3.73e-09
10 (2,3) 7.04e-08 2.22e-07 1.60e-09 1.80e-07 6.15e-07 2.65e-08
20 (3,3) 6.81e-08 2.19e-07 1.54e-09 1.74e-07 6.24e-07 2.57e-08
6 (2,2) 2.94e-07 9.84e-07 1.05e-08 1.36e-08 1.02e-07 1.08e-09
10 (3,2) 2.88e-07 9.74e-07 1.03e-08 1.27e-08 1.26e-07 1.14e-09

127 15 (4,2) 2.88e-07 9.74e-07 1.03e-08 1.27e-08 1.27e-07 1.15e-09
10 (2,3) 1.07e-07 3.52e-07 1.27e-09 5.52e-08 7.22e-07 9.78e-09
20 (3,3) 1.05e-07 3.48e-07 1.25e-09 5.47e-08 7.28e-07 9.58e-09

Table 6.3: Comparison of the actual condition number Ψ (4.4), its upper bound Φ (4.5), and the condition
number of the corresponding linear system computed by (4.7). Matrices are obtained from the stochastic
Galerkin method. The size of Ai is n, m is the size of Bi, and the numbers in the parenthesis are p1 and q
in (2.6). ‘Hermite’ and ‘Legendre’ indicate the type of gPC polynomials used in (2.5).

Hermite Legendre
n m Ψ Φ κA,b(A, x) Ψ Φ κA,b(A, x)

6 (2,2) 8.10e+01 7.30e+02 8.76e+02 7.77e+01 1.68e+03 1.61e+03
10 (3,2) 9.18e+01 1.02e+03 1.43e+03 8.81e+01 2.02e+03 2.59e+03

31 15 (4,2) 1.01e+02 1.33e+03 2.09e+03 9.74e+01 2.37e+03 3.68e+03
10 (2,3) 8.29e+01 2.04e+03 2.62e+03 7.77e+01 2.86e+03 3.54e+03
20 (3,3) 9.41e+01 2.93e+03 4.74e+03 1.21e+02 6.26e+03 7.29e+03
6 (2,2) 3.15e+02 2.84e+03 6.58e+03 3.02e+02 6.47e+03 1.20e+04
10 (3,2) 3.57e+02 3.99e+03 1.07e+04 3.43e+02 7.82e+03 1.94e+04

127 15 (4,2) 3.95e+02 5.20e+03 1.58e+04 3.79e+02 9.16e+03 2.75e+04
10 (2,3) 3.16e+02 7.97e+03 1.97e+04 3.02e+02 1.11e+04 2.64e+04
20 (3,3) 3.58e+02 1.14e+04 3.57e+04 3.43e+02 2.42e+04 5.45e+04
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7. Conclusion and future direction

In this work we derived an upper bound on the backward error of the generalized Sylvester
equation, and demonstrated that a small residual need not imply a small backward error.
We proceed by introducing two definitions for the backward error, where we consider the
perturbations in Ai and Bi in (1.1) separately, and derived an upperbound on each of
them. Predictions of the analysis are verified using numerical experiments. Further for
the stochastic Galerkin method a computationally efficient method to estimate a bound on
the actual backward error is discussed. Using numerical experiments we demonstrate that
the actual backward error can be up to two orders of magnitude higher than the relative
residual. Therefore accounting for the magnification factor it would be advisable to use
‖r‖2µ(sg)

A as the stopping criterion, rather than just ‖r‖2 5. We also derived an expression
for the condition number of the generalized Sylvester equation by considering the structure
of the equation. Since efficient preconditioners are available for the stochastic Galerkin
method, using Krylov subspace methods to estimate the actual condition number can be
computationally efficient.

This work highlights the fact that the generalized Sylvester equation should be analysed
in its own right as matrix equation, rather than as a usual linear system. As indicated in
the introduction, only recently the generalized Sylvester equation is being considered by the
numerical linear algebra community, therefore many open problems still remain.

1. Conditions for the existence and uniqueness of the solution of a generalized Sylvester
equation, for a general Ai, Bi, and C.

2. Backward error for the generalized Sylvester equation, by using the definition (3.2).

We will consider these questions in our future research.
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