
Complex structure on the smooth dual of GL(n)

Brodzki, Jacek and Plymen, Roger

2002

MIMS EPrint: 2006.105

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


1

Complex structure on the smooth dual of GL(n)

Jacek Brodzki1 and Roger Plymen

Abstract. Let G denote the p-adic group GL(n), let Π(G)
denote the smooth dual of G, let Π(Ω) denote a Bernstein
component of Π(G) and let H(Ω) denote a Bernstein ideal
in the Hecke algebra H(G). With the aid of Langlands
parameters, we equip Π(Ω) with the structure of complex
algebraic variety, and prove that the periodic cyclic homol-
ogy of H(Ω) is isomorphic to the de Rham cohomology of
the Bernstein component Π(Ω). We show how the struc-
ture of the variety Π(Ω) is related to Xi’s affirmation of a
conjecture of Lusztig for GL(n,C). The smooth dual Π(G)
admits a deformation retraction onto the tempered dual
Πt(G).

2000 Mathematics Subject Classification: 46L80 22E50
46L87 11S37
Keywords and Phrases: Langlands correspondence, p-adic
GL(n), Baum-Connes map, smooth dual, tempered dual.

Introduction

The use of unramified quasicharacters to create a complex structure
is well established in number theory. The group of unramified quasi-
characters of the idele class group of a global field admits a complex
structure: this complex structure provides the background for the
functional equation of the zeta integral Z(ω,Φ), see [39, Theorem
2, p. 121].
Let now G be a reductive p-adic group and let M be a Levi sub-
group of G. Let Πsc(M) denote the set of equivalence classes of
irreducible supercuspidal representations of M . Harish-Chandra
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creates a complex structure on the set Πsc(M) by using unramified
quasicharacters of M [16, p.84]. This complex structure provides
the background for the Harish-Chandra functional equations [16,
p. 91].
Bernstein considered the set Ω(G) of all conjugacy classes of pairs
(M,σ) where M is a Levi subgroup of G and σ is an irreducible
supercuspidal representation of M . Making use of unramified qua-
sicharacters of M , Bernstein gave the set Ω(G) the structure of a
complex algebraic variety. Each irreducible component Ω of Ω(G)
has the structure of a complex affine algebraic variety [5].
Let Π(G) denote the set of equivalence classes of irreducible smooth
representations of G. We will call Π(G) the smooth dual of G.
Bernstein defines the infinitesimal character from Π(G) to Ω(G):

inf.ch. : Π(G) → Ω(G).

The infinitesimal character is a finite-to-one map from the set Π(G)
to the variety Ω(G).
Let F be a nonarchimedean local field and from now on let G =
GL(n) = GL(n, F ). Let now WF be the Weil group of the local
field F , then WF admits unramified quasicharacters, namely those
which are trivial on the inertia subgroup IF . Making use of the
unramified quasicharacters of WF , we introduced in [8] a complex
structure on the set of Langlands parameters for GL(n). In view
of the local Langlands correspondence for GL(n) this creates, by
transport of structure, a complex structure on the smooth dual of
GL(n).
In Section 1 of this article, we describe in detail the complex struc-
ture on the set of L-parameters for GL(n). We prove that the
smooth dual Π(GL(n)) has the structure of complex manifold. The
local L-factors L(s, π) then appear as complex valued functions of
several complex variables. We illustrate this with the local L-factors
attached to the unramified principal series of GL(n).
The complex structure on Π(GL(n)) is well adapted to the periodic
cyclic homology of the Hecke algebra H(GL(n)). The identical
structure arises in the work of Xi on Lusztig’s conjecture [40]. Let
W be the extended affine Weyl group associated to GL(n,C), and
let J be the associated based ring (asymptotic algebra) [27, 40].
Xi confirms Lusztig’s conjecture and proves that J ⊗Z C is Morita
equivalent to the coordinate ring of the complex algebraic variety
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(̃C×)n/Sn, the extended quotient by the symmetric group Sn of the
complex n-dimensional torus (C×)n. In Section 2 we describe the
theorem of Xi on the structure of the based ring J .
So the structure of extended quotient, which runs through our work,
occurs in the work of Xi at the level of algebras. The link with our
work is now provided by the theorem of Baum and Nistor [3, 4]

HP∗(H(n, q)) ' HP∗(J)

where H(n, q) is the associated extended affine Hecke algebra.
Let Ω be a component in the Bernstein variety Ω(GL(n)), and let
H(G) =

⊕
H(Ω) be the Bernstein decomposition of the Hecke

algebra.
Let

Π(Ω) = (inf.ch.)−1Ω.

Then Π(Ω) is a smooth complex algebraic variety with finitely many
irreducible components. We have the following Bernstein decom-
position of Π(G):

Π(G) =
⊔

Π(Ω).

Let M be a compact C∞ manifold. Then C∞(M) is a Fréchet
algebra, and we have Connes’ fundamental theorem [14, Theorem
2, p. 208]:

HP∗(C
∞(M)) ∼= H∗(M ; C).

Now the ideal H(Ω) is a purely algebraic object, and, in computing
its periodic cyclic homology, we would hope to find an algebraic
variety to play the role of the manifold M . This algebraic variety
is Π(Ω).

Theorem 0.1. Let Ω be a component in the Bernstein variety Ω(G).
Then the periodic cyclic homology of H(G) is isomorphic to the
periodised de Rham cohomology of Π(Ω):

HP∗(H(Ω)) ∼= H∗(Π(Ω); C).

This theorem constitutes the main result of Section 3, which is
then used to show that the periodic cyclic homology of the Hecke
algebra of GL(n) is isomorphic to the periodic cyclic homology
of the Schwartz algebra of GL(n). We also provide an explicit
numerical formula for the dimension of the periodic cyclic homology
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of H(Ω) in terms of certain natural number invariants attached to
Ω.
The smooth dual Π(GL(n)) has a natural stratification-by-
dimension. We compare this stratification with the Schneider-
Zink stratification [34]. Stratification-by-dimension is finer than
the Schneider-Zink stratification, see Section 3.
A scheme X is a topological space, called the support of X and
denoted |X|, together with a sheaf OX of rings on X, such that the
pair (|X|,OX) is locally affine, see [15, p. 21]. The smooth dual
Π(G) determines a reduced scheme, see [18, Prop. 2.6]. If S is the
reduced scheme determined by the Bernstein variety Ω(G), then
Π(G) is a scheme over S, i.e. a scheme together with a morphism
Π(G) → S. This morphism is the q-projection introduced in [8]:

πq : Π(G) → S.

In Section 4 we give a detailed description of the q-projection and
prove that the q-projection is a finite morphism.
¿From the point of view of noncommutative geometry it is nat-
ural to seek the spaces which underlie the noncommutative alge-
bras H(G) and S(G). The space which underlies the Hecke algebra
H(G) is the complex manifold Π(G). The space which underlies the
Schwartz algebra is the Harish-Chandra parameter space, which is
a disjoint union of compact orbifolds. In Section 5 we construct a
deformation retraction of the smooth dual onto the tempered dual.
We view this deformation retraction as a geometric counterpart of
the Baum-Connes assembly map for GL(n).
In Section 6 we track the fate of supercuspidal representations of
G through the diagram which appears in Section 5. In particular,
the index map µ manifests itself as an example of Ahn reciprocity.
We would like to thank Paul Baum, Alain Connes, Jean-Francois
Dat and Nigel Higson for many valuable conversations. Jacek
Brodzki was supported in part by a Leverhulme Trust Fellow-
ship. This article was completed while Roger Plymen was at IHES,
France.

1. The complex structure on the smooth dual of GL(n)

The field F is a nonarchimedean local field, so that F is a finite
extension of Qp, for some prime p or F is a finite extension of the
function field Fp((x)). The residue field kF of F is the quotient
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oF/mF of the ring of integers oF by its unique maximal ideal mF .
Let q be the cardinality of kF .
The essence of local class field theory, see [29, p.300], is a pair of
maps

(d : G −→ Ẑ, v : F× −→ Z)

where G is a profinite group, Ẑ is the profinite completion of Z,
and v is the valuation.
Let F be a separable algebraic closure of F . Then the absolute
Galois group G(F |F ) is the projective limit of the finite Galois
groups G(E|F ) taken over the finite extensions E of F in F . Let

F̃ be the maximal unramified extension of F . The map d is in this
case the projection map

d : G(F |F ) −→ G(F̃ |F ) ∼= Ẑ

The group G(F̃ |F ) is procyclic. It has a single topological genera-
tor: the Frobenius automorphism φF of F̃ |F . The Weil group WF

is by definition the pre-image of < φF > in G(F | F ). We thus
have the surjective map

d : WF −→ Z

The pre-image of 0 is the inertia group IF . In other words we have
the following short exact sequence

1 → IF → WF → Z → 0

The group IF is given the profinite topology induced by G(F |F ).
The topology on the Weil group WF is dictated by the above short
exact sequence. The Weil group WF is a locally compact group
with maximal compact subgroup IF . The map

WF −→ G(F̃ |F )

is a continuous homomorphism with dense image.
A detailed account of the Weil group for local fields may be found
in [37]. For a topological group G we denote by Gab the quotient
Gab = G/Gc of G by the closure Gc of the commutator subgroup of
G. Thus Gab is the maximal abelian Hausdorff quotient of G. The
local reciprocity laws [29, p.320]

rE|F : G(E|F )ab ∼= F×/NE|FE
×



6 J. Brodzki, R. Plymen

now create an isomorphism [30, p.69]:

rF : W ab
F
∼= F×

We have WF = tΦnIF , n ∈ Z. The Weil group is a locally compact,
totally disconnected group, whose maximal compact subgroup is
IF . This subgroup is also open. There are three models for the
Weil-Deligne group.
One model is the crossed product WF n C, where the Weil group
acts on C by w · x = ‖w‖x, for all w ∈ WF and x ∈ C.
The action of WF on C extends to an action of WF on SL(2,C).
The semidirect product WF n SL(2,C) is then isomorphic to the
direct product WF × SL(2,C), see [22, p.278]. Then a complex
representation of WF × SL(2,C) is determined by its restriction to
WF × SU(2), where SU(2) is the standard compact Lie group.
¿From now on, we shall use this model for the Weil-Deligne group:

LF = WF × SU(2).

Definition 1.1. An L-parameter is a continuous homomorphism

φ : LF → GL(n,C)

such that φ(w) is semisimple for all w ∈ WF . Two L-parameters
are equivalent if they are conjugate under GL(n,C). The set of
equivalence classes of L-parameters is denoted Φ(G).

Definition 1.2. A representation ofG on a complex vector space V is
smooth if the stabilizer of each vector in V is an open subgroup of G.
The set of equivalence classes of irreducible smooth representations
of G is the smooth dual Π(G) of G.

Theorem 1.3. Local Langlands Correspondence for GL(n). There is
a natural bijection between Φ(GL(n)) and Π(GL(n)).

The naturality of the bijection involves compatibility of the L-
factors and ε-factors attached to the two types of objects.
The local Langlands conjecture for GL(n) was proved by Laumon,
Rapoport and Stuhler [25] when F has positive characteristic and
by Harris-Taylor [17] and Henniart [19] when F has characteristic
zero.
We recall that a matrix coefficient of a representation ρ of a group
G on a vector space V is a function on G of the form f(g) =
〈ρ(g)v, w〉, where v ∈ V , w ∈ V ∗, and V ∗ denotes the dual space of
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V . The inner product is given by the duality between V and V ∗.
A representation ρ of G is called supercuspidal if and only if the
support of every matrix coefficient is compact modulo the centre of
G.
Let τj = spin(j) denote the (2j + 1)-dimensional complex ir-
reducible representation of the compact Lie group SU(2), j =
0, 1/2, 1, 3/2, 2, . . ..
For GL(n) the local Langlands correspondence works in the follow-
ing way.

• Let ρ be an irreducible representation of the Weil group
WF . Then πF (ρ ⊗ 1) is an irreducible supercuspidal rep-
resentation of GL(n), and every irreducible supercuspidal
representation of GL(n) arises in this way. If det(ρ) is a
unitary character, then πF (ρ⊗ 1) has unitary central char-
acter, and so is pre-unitary.

• We have πF (ρ⊗spin(j)) = Q(∆), the Langlands quotient as-
sociated to the segment {| |−(j−1)/2πF (ρ), . . . , | |(j−1)/2πF (ρ)}.
If det(ρ) is unitary, then Q(∆) is in the discrete series. In
particular, if ρ = 1 then πF (1 ⊗ spin(j)) is the Steinberg
representation St(2j + 1) of GL(2j + 1).

• If φ is an L-parameter for GL(n) then φ = φ1 ⊕ . . . ⊕ φm

where φj = ρj ⊗ spin(j). Then πF (ρ) is the Langlands quo-
tient Q(∆1, . . . ,∆m). If det(ρj) is a unitary character for
each j, then πF (φ) is a tempered representation of GL(n).

This correspondence creates, as in [23, p. 381], a natural bijection

πF : Φ(GL(n)) → Π(GL(n)).

A quasi-character ψ : WF → C× is unramified if ψ is trivial on the
inertia group IF . Recall the short exact sequence

0 → IF → WF
d→ Z → 0

Then ψ(w) = zd(w) for some z ∈ C×. Note that ψ is not a Galois
representation unless z has finite order in the complex torus C×, see
[37]. Let Ψ(WF ) denote the group of all unramified quasi-characters
of WF . Then

Ψ(WF ) ' C×

ψ 7→ z
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Each L-parameter φ : LF → GL(n,C) is of the form φ1 ⊕ · · · ⊕ φm

with each φj irreducible. Each irreducible L-parameter is of the
form ρ ⊗ spin(j) with ρ an irreducible representation of the Weil
group WF .

Definition 1.4. The orbit O(φ) ⊂ ΦF (G) is defined as follows

O(φ) = {
m⊕

r=1

ψrφr | ψr ∈ Ψ(WF ), 1 ≤ r ≤ m}

where each ψr is an unramified quasi-character of WF .

Definition 1.5. Let detφr be a unitary character, 1 ≤ r ≤ m and
let φ = φ1 ⊕ . . .⊕ φm. The compact orbit Ot(φ) ⊂ Φt(G) is defined
as follows:

Ot(φ) = {
m⊕

r=1

ψrφr | ψr ∈ Ψ(WF ), 1 ≤ r ≤ m}

where each ψr is an unramified unitary character of WF .

We note that IF×SU(2) ⊂ WF×SU(2) and in fact IF×SU(2) is the
maximal compact subgroup of LF . Now let φ be an L-parameter.
Moving (if necessary) to another point in the orbit O(φ) we can
write φ in the canonical form

φ = φ1 ⊕ . . .⊕ φ1 ⊕ . . .⊕ φk ⊕ . . .⊕ φk

where φ1 is repeated l1 times, . . ., φk is repeated lk times, and the
representations

φj|IF×SU(2)

are irreducible and pairwise inequivalent, 1 ≤ j ≤ k. We will now
write k = k(φ). This natural number is an invariant of the orbit
O(φ). We have

O(φ) = Syml1C× × . . .× SymlkC×

the product of symmetric products of C×.

Theorem 1.6. The set Φ(GL(n)) has the structure of complex al-
gebraic variety. Each irreducible component O(φ) is isomorphic to
the product of a complex affine space and a complex torus

O(φ) = Al × (C×)k

where k = k(φ).
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Proof. Let Y = V(x1y1 − 1, . . . , xnyn − 1) ⊂ C2n. Then Y is a
Zariski-closed set in C2n, and so is an affine complex algebraic va-
riety. Let X = (C×)n. Set α : Y → X,α(x1, y1, . . . , xn, yn) =
(x1, . . . , xn) and β : X → Y, β(x1, . . . , xn) = (x1, x

−1
1 , . . . , xn, x

−1
n ).

So X can be embedded in affine space C2n as a Zariski-closed sub-
set. Therefore X is an affine algebraic variety, as in [36, p.50].
Let A = C[X] be the coordinate ring of X. This is the re-
striction to X of polynomials on C2n, and so A = C[X] =
C[x1, x

−1
1 , . . . , xn, x

−1
n ], the ring of Laurent polynomials in n vari-

ables x1, . . . , xn. Let Sn be the symmetric group, and let Z denote
the quotient variety X/Sn. The variety Z is an affine complex al-
gebraic variety.
The coordinate ring of Z is

C[Z] ' C[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn .

Let σi, i = 1, . . . , n be the elementary symmetric polynomials in n
variables. Then from the last isomorphism we have

C[Z] ' C[x1, . . . , xn]Sn ⊗ C[σ−1
n ]

' C[σ1, . . . , σn]⊗ C[σ−1
n ]

' C[σ1, . . . , σn−1]⊗ C[σn, σ
−1
n ]

' C[An−1]⊗ C[A− {0}]
' C[An−1 × (A− {0})]

where An denotes complex affine n-space. The coordinate ring of
the quotient variety C×n/Sn is isomorphic to the coordinate ring of
An−1 × (A − {0}). Now the categories of affine algebraic varieties
and of finitely generated reduced C-algebras are equivalent, see [36,
p.26]. Therefore the variety C×n/Sn is isomorphic to the variety
An−1 × (A− {0}).
Consider A− {0} = V(f) where f(x) = x1x2 − 1. Then ∂f/∂x1 =
x2 6= 0 and ∂f/∂x2 = x1 6= 0 on the variety V(f). So A − {0}
is smooth. Then An−1 × (A − {0}) is smooth. Therefore the quo-
tient variety C×n/Sn is a smooth complex affine algebraic variety
of dimension n. Now each orbit O(φ) is a product of symmetric
products of C×. Therefore each orbit O(φ) is a smooth complex
affine algebraic variety. We have

O(φ) = Syml1C× × . . .× SymlkC× = Al × (C×)k
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where l = l1 + . . .+ lk − k and k = k(φ). �

We now transport the complex structure from Φ(GL(n)) to
Π(GL(n)) via the local Langlands correspondence. This leads to
the next result.

Theorem 1.7. The smooth dual Π(GL(n)) has a natural complex
structure. Each irreducible component is a smooth complex affine
algebraic variety.

The smooth dual Π(GL(n)) has countably many irreducible com-
ponents of each dimension d with 1 ≤ d ≤ n. The irreducible su-
percuspidal representations of GL(n) arrange themselves into the
1-dimensional tori.
It follows from Theorems 1.6 and 1.7 that the smooth dual
Π(GL(n)) is a complex manifold. Then C × Π(GL(n)) is a com-
plex manifold. So the local L-factor L(s, πv) and the local ε-factor
ε(s, πv) are functions of several complex variables:

L : C× Π(GL(n)) −→ C

ε : C× Π(GL(n)) −→ C.

Example 1.8. Unramified representations. Let ψ1, . . . , ψn be unram-
ified quasicharacters of the Weil group WF . Then we have

ψj(w) = z
d(w)
j

with zj ∈ C× for all 1 ≤ j ≤ n. Let φ be the L-parameter given by
ψ1⊕ . . .⊕ψn. Then the image πF (φ) of φ under the local Langlands
correspondence πF is an unramified principal series representation.
For the local L-factors L(s, π) see [23, p. 377]. The local L-factor
attached to such an unramified representation of GL(n) is given by

L(s, πF (φ)) =
n∏

j=1

(1− zjq
−s)−1.

This exhibits the local L-factor as a function on the complex man-
ifold C× SymnC×.
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2. The structure of the based ring J

Let W be the extended affine Weyl group associated to GL(n,C).
For each two-sided cell c of W we have a corresponding partition λ
of n. Let µ be the dual partition of λ. Let u be a unipotent element
in GL(n,C) whose Jordan blocks are determined by the partition
µ. Let the distinct parts of the dual partition µ be µ1, . . . , µp with
µr repeated nr times, 1 ≤ r ≤ p.
Let CG(u) be the centralizer of u in G = GL(n,C). Then
the maximal reductive subgroup Fc of CG(u) is isomorphic to
GL(n1,C)×GL(n2,C)× · · · ×GL(np,C).
Following Lusztig [27] and Xi [40, 1.5] let J be the free Z-module
with basis {tw | w ∈ W}. The multiplication twtu =

∑
v∈W γw,u,vtv

defines an associative ring structure on J . The ring J is the based
ring of W . For each two-sided cell c of W the Z-submodule Jc of
J , spanned by all tw, w ∈ c, is a two-sided ideal of J . The ring Jc

is the based ring of the two-sided cell c. Let |Y | be the number of
left cells contained in c. The Lusztig conjecture says that there is
a ring isomorphism

Jc 'M|Y |(RFc), tw 7→ π(w)

where RFc is the rational representation ring of Fc. This conjecture
for GL(n,C) has been proved by Xi [40, 1.5, 4.1, 8.2].
Since Fc is isomorphic to a direct product of the general linear
groups GL(ni,C) (1 ≤ i ≤ p) we see that RFc is isomorphic to
the tensor product over Z of the representation rings RGL(ni,C),
1 ≤ i ≤ p. For the ring RGL(n,C) we have

RGL(n,C) ' Z[X1, X2, . . . , Xn][X−1
n ]

where the elements X1, X2, . . . , Xn, X
−1
n are described in [40, 4.2][6,

IX.125]. Then

RGL(n,C) ' Z[σ1, . . . , σn, σ
−1
n ]

' Z[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]Sn

We have

RGL(n,C) ⊗Z C ' C[SymnC×]

and

RFc ⊗Z C ' C[Symn1C× × · · · × SymnpC×]
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We recall the extended quotient. Let the finite group Γ act on

the space X. Let X̃ = {(x, γ) : γx = x}, let Γ act on X̂ by

γ1(x, γ) = (γ1x, γ1γγ
−1
1 ). Then X̃/Γ is the extended quotient of X

by Γ, and we have

X̃/Γ =
⊔

Xγ/Z(γ)

where one γ is chosen in each Γ-conjugacy class.

There is a canonical projection X̃/Γ → X/Γ.
Let γ ∈ Sn have cycle type µ, let X = (C×)n. Then

Xγ ' (C×)n1 × · · · × (C×)np

Z(γ) ' (Z/µ1Z) o Sn1 × · · · × (Z/µpZ) o Snp

Xγ/Z(γ) ' Symn1C× × · · · × SymnpC×

and so
RFc ⊗Z C ' C[Xγ/Z(γ)]

Then

J ⊗Z C = ⊕c(Jc ⊗Z C) ∼ ⊕c(RFc ⊗Z C) ' C[X̃/Sn]

The algebra J ⊗Z C is Morita equivalent to a reduced, finitely gen-
erated, commutative unital C-algebra, namely the coordinate ring

of the extended quotient X̃/Sn.

3. Periodic cyclic homology of the Hecke algebra

The Bernstein variety Ω(G) of G is the set of G-conjugacy classes
of pairs (M,σ), where M is a Levi (i.e. block-diagonal) subgroup
of G, and σ is an irreducible supercuspidal representation of M .
Each irreducible smooth representation of G is a subquotient of
an induced representation iGMσ. The pair (M,σ) is unique up
to conjugacy. This creates a finite-to-one map, the infinitesimal
character, from Π(G) onto Ω(G).
Let Ω(G) be the Bernstein variety ofG. Each point in Ω(G) is a con-
jugacy class of cuspidal pairs (M,σ). A quasicharacter ψ : M −→
C× is unramified if ψ is trivial on M◦. The group of unramified
quasicharacters of M is denoted Ψ(M). We have Ψ(M) ∼= (C×)`

where ` is the parabolic rank of M . The group Ψ(M) now creates
orbits: the orbit of (M,σ) is {(M,ψ⊗σ) : ψ ∈ Ψ(M)}. Denote this
orbit by D, and set Ω = D/W (M,D), where W (M) is the Weyl
group of M and W (M,D) is the subgroup of W (M) which leaves
D globally invariant. The orbit D has the structure of a complex
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torus, and so Ω is a complex algebraic variety. We view Ω as a
component in the algebraic variety Ω(G).
The Bernstein variety Ω(G) is the disjoint union of ordinary quo-
tients. We now replace the ordinary quotient by the extended quo-
tient to create a new variety Ω+(G). So we have

Ω(G) =
⊔

D/W (M,D) and Ω+(G) =
⊔

D̃/W (M,D)

Let Ω be a component in the Bernstein variety Ω(GL(n)), and let
H(G) =

⊕
H(Ω) be the Bernstein decomposition of the Hecke

algebra.
Let

Π(Ω) = (inf.ch.)−1Ω.

Then Π(Ω) is a smooth complex algebraic variety with finitely many
irreducible components. We have the following Bernstein decom-
position of Π(G):

Π(G) =
⊔

Π(Ω).

Let M be a compact C∞ manifold. Then C∞(M) is a Fréchet
algebra, and we have Connes’ fundamental theorem [14, Theorem
2, p. 208]:

HP∗(C
∞(M)) ∼= H∗(M ; C).

Now the ideal H(Ω) is a purely algebraic object, and, in computing
its periodic cyclic homology, we would hope to find an algebraic
variety to play the role of the manifold M . This algebraic variety
is Π(Ω).

Theorem 3.1. Let Ω be a component in the Bernstein variety Ω(G).
Then the periodic cyclic homology of H(G) is isomorphic to the
periodised de Rham cohomology of Π(Ω):

HP∗(H(Ω)) ∼= H∗(Π(Ω); C).

Proof. We can think of Ω as a vector (τ1, . . . , τr) of irreducible su-
percuspidal representations of smaller general linear groups, the
entries of this vector being only determined up to tensoring with
unramified quasicharacters and permutation. If the vector is equiv-
alent to (σ1, . . . , σ1, . . . , σr, . . . , σr) with σj repeated ej times, 1 ≤
j ≤ r, and σ1, . . . , σr are pairwise distinct, then we say that Ω has
exponents e1, . . . , er.
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Then there is a Morita equivalence

H(Ω) ∼ H(e1, q1)⊗ . . .⊗H(er, qr)

where q1, . . . , qr are natural number invariants attached to Ω.
This result is due to Bushnell-Kutzko [11, 12, 13]. We describe the
steps in the proof. Let (ρ,W ) be an irreducible smooth represen-
tation of the compact open subgroup K of G. As in [12, 4.2], the
pair (K, ρ) is an Ω-type in G if and only if, for (π, V ) ∈ Π(G), we
have inf.ch.(π) ∈ Ω if and only if π contains ρ. The existence of an
Ω-type in GL(n), for each component Ω in Ω(GL(n)), is established
in [13, 1.1]. So let (K, ρ) be an Ω-type in GL(n). As in [12, 2.9],
let

eρ(x) = (volK)−1(dim ρ) TraceW (ρ(x−1))

for x ∈ K and 0 otherwise.
Then eρ is an idempotent in the Hecke algebra H(G). Then we
have

H(Ω) ∼= H(G) ∗ eρ ∗H(G)

as in [12, 4.3] and the two-sided ideal H(G) ∗ eρ ∗H(G) is Morita
equivalent to eρ∗H(G)∗eρ. Now let H(K, ρ) be the endomorphism-
valued Hecke algebra attached to the semisimple type (K, ρ). By
[12, 2.12] we have a canonical isomorphism of unital C-algebras :

H(G, ρ)⊗C EndCW ∼= eρ ∗H(G) ∗ eρ

so that eρ ∗ H(G) ∗ eρ is Morita equivalent to H(G, ρ). Now we
quote the main theorem for semisimple types in GL(n) [13, 1.5]:
there is an isomorphism of unital C-algebras

H(G, ρ) ∼= H(G1, ρ1)⊗ . . .⊗H(Gr, ρr)

The factors H(Gi, ρi) are (extended) affine Hecke algebras whose
structure is given explicitly in [11, 5.6.6]. This structure is in terms
of generators and relations [11, 5.4.6]. So let H(e, q) denote the
affine Hecke algebra associated to the affine Weyl group Ze o Se.
Putting all this together we obtain a Morita equivalence

H(Ω) ∼ H(e1, q1)⊗ . . .⊗H(er, qr)



Complex structure 15

The natural numbers q1, . . . , qr are specified in [11, 5.6.6]. They
are the cardinalities of the residue fields of certain extension fields
E1/F, . . . , Er/F .
Using the Künneth formula the calculation of HP∗(H(Ω)) is re-
duced to that of the affine Hecke algebra H(e, q). Baum and Nistor
demonstrate the spectral invariance of periodic cyclic homology in
the class of finite type algebras [3, 4]. Now H(e, q) is the Iwahori-
Hecke algebra associated to the extended affine Weyl group ZeoSe,
and let J be the asymptotic Hecke algebra (based ring) associated to
Ze o Se. According to [3, 4], Lusztig’s morphisms φq : H(e, q) → J
induce isomorphisms

(φq)∗ : HP∗(H(e, q)) → HP∗(J)

for all q ∈ C× that are not proper roots of unity. At this point we
can back track and deduce that

HP∗(H(e, q)) ' HP∗(J) ' HP∗(H1)

and use the fact that H(e, 1) ' C[Ze oSe]. It is much more illumi-
nating to quote Xi’s proof of the Lusztig conjecture for the based
ring J , see Section 2. Then we have

HP∗(H(e, q)) ' HP∗(J) ' HP∗(C[(̃C×)e/Se]) ' H∗((̃C×)e/Se; C).

If Ω has exponents e1, . . . , er then e1 + . . . + er = d(Ω) = dimC Ω,
and W (Ω) is a product of symmetric groups:

W (Ω) = Se1 × . . .× Ser

We have

HP∗(H(Ω)) ' HP∗(H(e1, q1)⊗ · · · ⊗H(er, qr))
' HP∗(H(e1, q1))⊗ · · · ⊗ HP∗(H(er, qr))

' H∗((̃C×)e1/Se1 ; C)⊗ · · · ⊗ H∗((̃C×)er/Ser ; C)

Now the extended quotient is multiplicative, i.e.

˜(C×)d(Ω)/W (Ω) = (̃C×)e1/Se1 × · · · × (̃C×)er/Ser

which implies that

HP∗(H(Ω)) = H∗( ˜(C×)d(Ω)/W (Ω); C)
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Recall that
Ω = (C×)d(Ω)/W (Ω)

Ω+ = ˜(C×)d(Ω)/W (Ω)

and by [8, p. 217] we have Π(Ω) ' Ω+. It now follows that

HP∗(H(Ω)) ' H∗(Π(Ω); C)

�

Lemma 3.2. Let Ω be a component in the variety Ω(G) and let Ω
have exponents {e1, . . . , er}. Then for j = 0, 1 we have

dimC HPj H(Ω) = 2r−1β(e1) · · · β(er)

where
β(e) =

∑
|λ|=e

2α(λ)−1

and where α(λ) is the number of unequal parts of λ. Here |λ| is the
weight of λ, i.e. the sum of the parts of λ so that λ is a partition
of e.

Proof. Suppose first that Ω has the single exponent e. By Theorem
3.1 the periodic cyclic homology of H(Ω) is isomorphic to the peri-
odised de Rham cohomology of the extended quotient of (C×)e by
the symmetric group Se. The components in this extended quotient
correspond to the partitions of e. In fact, if α(λ) is the number of
unequal parts in the partition λ then the corresponding component
is homotopy equivalent to the compact torus of dimension α(λ).
We now proceed by induction, using the fact that the extended
quotient is multiplicative and the Künneth formula. �

Theorem 3.1, combined with the calculation in [7], now leads to the
next result.

Theorem 3.3. The inclusion H(G) −→ S(G) induces an isomor-
phism at the level of periodic cyclic homology:

HP∗(H(G)) ' HP∗(S(G)).

Remark 3.4. We now consider further the disjoint union

Φ(Ω) = O(φ1) t · · · t O(φr) ' Ω+

If we apply the local Langlands correspondence πF then we obtain

Π(Ω) = πF (O(φ1)) t · · · t πF (O(φr)) ' Ω+
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This partition of Π(Ω) is identical to that in Schneider-Zink [34,
p. 198], modulo notational differences. In their notation, for each
P ∈ B there is a natural map

QP : Xnr(NP) → Irr(Ω)

such that
Irr(Ω) =

⊔
P∈B

im(QP).

In fact this is a special stratification of Irr(Ω) in the precise sense
of their article [34, p.198].
Let

ZP =
⋃

P′≤P

im(QP)

Then ZP is a Jacobson closed set, in fact ZP = V (JP), where JP is
a certain 2-sided ideal [34, p.198]. We note that the set ZP is also
closed in the topology of the present article: each component in Ω+

is equipped with the classical (analytic) topology.
Issues of stratification play a dominant role in [34]. The stratifica-
tion of the tempered dual Πt(GL(n)) arises from their construction
of tempered K-types, see [34, p. 162, p. 189]. In the context of
the present article, there is a natural stratification-by-dimension as
follows. Let 1 ≤ k ≤ n and define

k-stratum = {O(φ) | dimC O(φ) ≤ k}
If πF (O(φ)) is the complexification of the component Θ ⊂ Πt(G)
then we have

dimR Θ = dimC O(φ).

The partial order in [34] on the components Θ transfers to a partial
order on complex orbits O(φ). This partial order originates in the
opposite of the natural partial order on partitions, and the parti-
tions manifest themselves in terms of Langlands parameters. For
example, let

φ = ρ⊗ spin(j1)⊕ · · · ⊕ ρ⊗ spin(jr)
φ′ = ρ⊗ spin(j′1)⊕ · · · ⊕ ρ⊗ spin(j′r)

Let λ1 = 2j1 + 1, . . . , λr = 2jr + 1, µ1 = 2j′1 + 1, . . . , µr = 2j′r + 1
and define partitions as follows

λ = (λ1, . . . , λr), λ1 ≥ λ2 ≥ . . .
µ = (µ1, . . . , µr), µ1 ≥ µ2 ≥ . . .
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The natural partial order on partitions is: λ ≤ µ if and only if

λ1 + · · ·+ λi ≤ µ1 + · · ·+ µi

for all i ≥ 1, see [28, p.6]. Let l(λ) be the length of λ, that is the
number of parts in λ. Then dimC O(φ) = l(λ). Let λ′, µ′ be the
dual partitions as in [28]. Then we have [28, 1.11] λ ≥ µ if and only
if µ′ ≥ λ′. Note that l(λ) = λ′1, l(µ) = µ′1. Then

Θλ ≤ Θµ ⇔ λ ≥ µ⇔ µ′ ≥ λ′ ⇒ λ′1 ≤ µ′1

So if Θλ ≤ Θµ then dimR Θλ ≤ dimR Θµ, similarly O(φ) ≤ O(φ′) im-
plies dimC O(φ) ≤ dimC O(φ′). Stratification-by-dimension is finer
than the Schneider-Zink stratification [34].

Let now R denote the ring of all regular functions on Π(G). The
ring R is a commutative, reduced, unital ring over C which is not
finitely generated. We will call R the extended centre of G. It is
natural to believe that the extended centre R of G is the centre of
an ‘extended category’ made from smooth G-modules. The work of
Schneider-Zink [34, p. 201] contains various results in this direction.

4. The q-projection

Let Ω be a component in the Bernstein variety. This component is
an ordinary quotient D/Γ. We now consider the extended quotient

D̃/Γ =
⊔
Dγ/Zγ, where D is the complex torus C×m. Let γ be a

permutation of n letters with cycle type

γ = (1 . . . α1) · · · (1 . . . αr)

where α1 + · · · + αr = m. On the fixed set Dγ the map πq, by
definition, sends the element (z1, . . . , z1, . . . , zr, . . . , zr) where zj is
repeated αj times, 1 ≤ j ≤ r, to the element

(q(α1−1)/2z1, . . . , q
(1−α1)/2z1, . . . , q

(αr−1)/2zr, . . . , q
(1−αr)/2zr)

The map πq induces a map from Dγ/Zγ to D/Γ, and so a map,

still denoted πq, from the extended quotient D̃/Γ to the ordinary
quotient D/Γ. This creates a map πq from the extended Bernstein
variety to the Bernstein variety:

πq : Ω+(G) −→ Ω(G).

Definition 4.1. The map πq is called the q-projection.
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The q-projection πq occurs in the following commutative diagram
[8]:

Φ(G) −−−→ Π(G)

α

y yinf. ch.

Ω+(G)
πq−−−→ Ω(G)

Let A,B be commutative rings with A ⊂ B, 1 ∈ A. Then the
element x ∈ B is integral over A if there exist a1, . . . , an ∈ A such
that

xn + a1x
n−1 + . . .+ an = 0.

Then B is integral over A if each x ∈ B is integral over A. Let X, Y
be affine varieties, f : X −→ Y a regular map such that f(X) is
dense in Y . Then the pull-back f# defines an isomorphic inclusion
C[Y ] −→ C[X]. We view C[Y ] as a subring of C[X] by means of
f#. Then f is a finite map if C[X] is integral over C[Y ], see [35].
This implies that the pre-image F−1(y) of each point y ∈ Y is a
finite set, and that, as y moves in Y , the points in F−1(y) may
merge together but not disappear. The map A1 − {0} −→ A1 is
the classic example of a map which is not finite.

Lemma 4.2. Let X be a component in the extended variety Ω+(G).
Then the q-projection πq is a finite map from X onto its image
πq(X).

Proof. Note that the fixed-point set Dγ is a complex torus of
dimension r, that πq(D

γ) is a torus of dimension r and that
we have an isomorphism of affine varieties Dγ ∼= πq(D

γ). Let
X = Dγ/Zγ, Y = πq(D

γ)/Γ where Zγ is the Γ-centralizer of γ. Now
each of X and Y is a quotient of the variety Dγ by a finite group,
hence X, Y are affine varieties [35, p.31]. We have Dγ −→ X −→ Y
and C[Y ] −→ C[X] −→ C[Dγ]. According to [35, p.61], C[Dγ] is
integral over C[Y ] since Y = Dγ/Γ. Therefore the subring C[X] is
integral over C[Y ]. So the map πq : X −→ Y is finite. �

Example 4.3. GL(2). Let T be the diagonal subgroup of G = GL(2)
and let Ω be the component in Ω(G) containing the cuspidal
pair (T, 1). Then σ ∈ Π(GL(2)) is arithmetically unramified if
inf.ch.σ ∈ Ω. If πF (φ) = σ then φ is a 2-dimensional representa-
tion of LF and there are two possibilities:
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φ is reducible, φ = ψ1 ⊕ ψ2 with ψ1, ψ2 unramified quasicharacters

of WF . So ψj(w) = z
d(w)
j , zj ∈ C×, j = 1, 2. We have πF (φ) =

Q(ψ1, ψ2) where ψ1 does not precede ψ2. In particular we obtain
the 1-dimensional representations of G as follows:

πF (| |1/2ψ ⊕ | |−1/2ψ) = Q(| |1/2ψ, | |−1/2ψ) = ψ ◦ det.

φ is irreducible, φ = ψ ⊗ spin(1/2). Then πF (φ) = Q(∆) with
∆ = {| |−1/2ψ, | |1/2ψ} so πF (φ) = ψ ⊗ St(2) where St(2) is the
Steinberg representation of GL(2).
The orbit of (T, 1) is D = (C×)2, and W (T,D) = Z/2Z. Then
Ω ∼= (C×)2/Z/2Z ∼= Sym2 C×. The extended quotient is Ω+ =
Sym2 C× t C×. The q−projection works as follows:

πq : {z1, z2} 7→ {z1, z2}

πq : z 7→ {q1/2z, q−1/2z}
where q is the cardinality of the residue field of F .

Let A = H(GL(2)//I) be the Iwahori-Hecke algebra of GL(2).
This is a finite type algebra. Following [21, p. 327], denote by
Primn(A) ⊂ Prim(A) the set of primitive ideals B ⊂ A which
are kernels of irreducible representations of A of dimension n. Set
X1 = Prim1(A), X2 = Prim1(A) t Prim2(A) = Prim(A). Then X1

and X2 are closed sets in Prim(A) defining an increasing filtration
of Prim(A). Now A is Morita equivalent to the Bernstein ideal
H(Ω), and Π(Ω) ' Prim(A).
Let φ1 = 1⊗ spin(1/2), φ2 = 1⊗ 1⊕ 1⊗ 1. The 1-dimensional rep-
resentations of GL(2) determine 1-dimensional representations of
H(G//I) and so lie in X1. The L-parameters of the 1-dimensional
representations ofGL(2) do not lie in the 1-dimensional orbit O(φ1):
they lie in the 2-dimensional orbit O(φ2). The Kazhdan-Nistor-
Schneider stratification [21] does not coincide with stratification-
by-dimension.

Example 4.4. GL(3). In the above example, the q-projection is
stratified-injective, i.e. injective on each orbit type. This is not so
in general, as shown by the next example. Let T be the diagonal
subgroup of GL(3) and let Ω be the component containing the
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cuspidal pair (T, 1). Then Ω = Sym3 C× and

Ω+ = Sym3 C× t (C×)2 t C×

.
The map πq works as follows:

{z1, z2, z3} 7→ {z1, z2, z3}

(z, w, w) 7→ {z, q1/2w, q−1/2w}

(z, z, z) 7→ {qz, z, q−1z}.

Consider the L-parameter

φ = ψ1 ⊗ 1⊕ ψ2 ⊗ spin(1/2) ∈ Φ(GL(3)).

If ψ(w) = zd(w) then we will write ψ = z. With this understood,
let

φ1 = q ⊗ 1⊕ q−1/2 ⊗ spin(1/2)

φ2 = q−1 ⊗ 1⊕ q1/2 ⊗ spin(1/2).

Then α(φ1), α(φ2) are distinct points in the same stratum of the
extended quotient, but their image under the q-projection πq is the
single point {q−1, 1, q} ∈ Sym3 C×.
Let

φ3 = 1⊗ spin(3/2)

φ4 = q−1 ⊗ 1⊕ 1⊗ 1⊕ q ⊗ 1.

Then the distinct L-parameters φ1, φ2, φ3, φ4 all have the same im-
age under the q-projection πq.

5. The diagram

In this section we create a diagram which incorporates several major
results. The following diagram serves as a framework for the whole
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article:

Ktop
∗ (G) K∗(C

∗
r (G))

H∗(G; βG) HP∗(H(G)) HP∗(S(G))

H∗
c(Φ(G); C) H∗

c(Π(G); C) H∗
c(Π

t(G); C)

?

ch

-
µ

?

ch

-ppppppp?
-ı∗

? ?
- -

An outline of the construction of the Chern character on the left
hand side of the diagram is given in [1]. The Baum-Connes assem-
bly map µ is an isomorphism [1, 24]. The map

H∗(G; βG) → HP∗(H(G))

is an isomorphism [20, 33]. The map ı∗ is an isomorphism by The-
orem 3.3. The right hand Chern character is constructed in [9] and
is an isomorphism after tensoring over Z with C [9, Theorem 3].
We believe that the top half of the diagram is commutative but at
present there is no proof of this. We emphasize that the results
in this papers do not depend on commutativity of this part of the
diagram.
In the diagram, H∗

c(Π
t(G); C) denotes the (periodised) compactly

supported de Rham cohomology of the tempered dual Πt(G), and
H∗

c(Π(G); C) denotes the (periodised) de Rham cohomology sup-
ported on finitely many components of the smooth dual Π(G). The
map

HP∗(S(G)) → H∗
c(Π

t(G); C)

is constructed in [7] and is an isomorphism [7, Theorem 7].
The map

H∗
c(Π(G); C) → H∗

c(Π
t(G); C)

is constructed in the following way. Given an L-parameter φ :
LF → GL(n,C) we have

φ = φ1 ⊕ . . .⊕ φm

with each φj an irreducible representation. We have φj = ρj ⊗
spin(j) where each ρj is an irreducible representation of the Weil
group WF . We shall assume that det ρj is a unitary character. Let
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O(φ) be the orbit of φ as in Definition 1.4. The map O(φ) → Ot(φ)
is now defined as follows

ψ1φ1 ⊕ . . .⊕ ψmφm 7→ |ψ1|−1 · ψ1φ1 ⊕ . . .⊕ |ψm|−1 · ψmφm.

This map is a deformation retraction of the complex orbit O(φ) onto
the compact orbit Ot(φ). Since Φ(G) is a disjoint union of such
complex orbits this formula determines, via the local Langlands
correspondence for GL(n), a deformation retraction of Π(G) onto
the tempered dual Πt(GL(n)), which implies that the induced map
on cohomology is an isomorphism.
The map

H∗
c(Φ(G); C) → H∗

c(Π(G); C)

is an isomorphism, induced by the local Langlands correspondence
πF .
The map

HP∗(H(G)) → H∗
c(Π(G); C)

is an isomorphism by Theorem 3.1.
There is at present no direct definition of the map

H∗(G; βG) → H∗
c(Φ(G); C).

Suppose for the moment that F has characteristic 0 and has residue
field of characteristic p. An irreducible representation ρ of the Weil
group WF is called wildly ramified if dim ρ is a power of p and
ρ 6' ρ⊗ψ for any unramified quasicharacter ψ 6= 1 of WF . We write
Φwr

m (F ) for the set of equivalence classes of such representations of
dimension pm. An irreducible supercuspidal representation π of
GL(n) is wildly ramified if n is a power of p and π 6' π ⊗ (ψ ◦
det) for any unramified quasicharacter ψ 6= 1 of F×. We write
Πwr

m (F ) for the set of equivalence classes of such representations of
GL(pm, F ). In this case Bushnell-Henniart [10] construct, for each
m, a canonical bijection

πF,m : Φwr
m (F ) → Πwr

m (F ).

Now the maximal simple type (J, λ) of an irreducible supercuspidal
representation determines an element in the chamber homology of
the affine building [2, 6.7]. The construction of Bushnell-Henniart
therefore determines a map from a subspace of Heven

c (Φ(G); C) to a
subspace of H0(G; βG).
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In the context of the above diagram the Baum-Connes map has a
geometric counterpart: it is induced by the deformation retraction
of Π(GL(n)) onto the tempered dual Πt(GL(n)).

6. Supercuspidal representations of GL(n)

In this section we track the fate of supercuspidal representations
of GL(n) through the diagram constructed in the previous Section.
Let ρ be an irreducible n-dimensional complex representation of the
Weil group WF such that det ρ is a unitary character and let φ =
ρ ⊗ 1. Then φ is the L-parameter for a pre-unitary supercuspidal
representation ω of GL(n). Let O(φ) be the orbit of φ and Ot(φ) be
the compact orbit of φ. Then O(φ) is a component in the Bernstein
variety isomorphic to C× and Ot(φ) is a component in the tempered
dual, isomorphic to T. The L-parameter φ now determines the
following data.

6.1. Let (J, λ) be a maximal simple type for ω in the sense of Bush-
nell and Kutzko [11, chapter 6]. Then J is a compact open subgroup
of G and λ is a smooth irreducible complex representation of J .
We will write

T = {ψ ⊗ ω : ψ ∈ Ψt(G)}
where Ψt(G) denotes the group of unramified unitary characters of
G.

Theorem 6.1. Let K be a maximal compact subgroup of G containing
J and form the induced representation W = IndK

J (λ). We then have

`2(G×K W ) ' IndG
K(W ) ' IndG

J (λ) '
∫

T
πdπ.

Proof. The supercuspidal representation ω contains λ and, modulo
unramified unitary twist, is the only irreducible unitary representa-
tion with this property [11, 6.2.3]. Now the Ahn reciprocity theorem
expresses IndG

J as a direct integral [26, p.58]:

IndG
J (λ) =

∫
n(π, λ)πdπ

where dπ is Plancherel measure and n(π, λ) is the multiplicity of λ
in π|J . But the Hecke algebra of a maximal simple type is commu-
tative (a Laurent polynomial ring). Therefore ω|J contains λ with
multiplicity 1 (thanks to C. Bushnell for this remark). We then
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have n(ψ ⊗ ω, λ) = 1 for all ψ ∈ Ψt(G). We note that Plancherel
measure induces Haar measure on T, see [31].
The affine building of G is defined as follows [38, p. 49]:

βG = R× βSL(n)

where g ∈ G acts on the affine line R via t 7→ t + val(det(g)).
Let G◦ = {g ∈ G : val(det(g)) = 0}. We use the standard model
for βSL(n) in terms of equivalence classes of oF - lattices in the
n-dimensional F -vector space V . Then the vertices of βSL(n) are
in bijection with the maximal compact subgroups of G◦, see [32,
9.3]. Let P ∈ βG be the vertex for which the isotropy subgroup
is K = GL(n,oF ). Then the G-orbit of P is the set of all vertices
in βG and the discrete space G/K can be identified with the set
of vertices in the affine building βG. Now the base space of the
associated vector bundle G×K W is the discrete coset space G/K,
and the Hilbert space of `2-sections of this homogeneous vector
bundle is a realization of the induced representation IndG

K(W ). �

The C0(βG)-module structure is defined as follows. Let f ∈
C0(βG), s ∈ `2(G×K W ) and define

(fs)(v) = f(v)s(v)

for each vertex v ∈ βG. We proceed to construct a K-cycle in
degree 0. This K-cycle is

(C0(βG), `2(G×K W )⊕ 0, 0)

interpreted as a Z/2Z-graded module. This triple satisfies the prop-
erties of a (pre)-Fredholm module [14, IV] and so creates an ele-
ment in Ktop

0 (G). By Theorem 5.1 this generator creates a free
C(T)-module of rank 1, and so provides a generator in K0(C

∗
r (G)).

6.2. The Hecke algebra of the maximal simple type (J, λ) is com-
mutative (the Laurent polynomials in one complex variable). The
periodic cyclic homology of this algebra is generated by 1 in degree
zero and dz/z in degree 1.
The corresponding summand of the Schwartz algebra S(G) is
Morita equivalent to the Fréchet algebra C∞(T). By an elemen-
tary application of Connes’ theorem [14, Theorem 2, p. 208], the
periodic cyclic homology of this Fréchet algebra is generated by 1
in degree 0 and dθ in degree 1.
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6.3. The corresponding component in the Bernstein variety is a
copy of C×. The cohomology of C× is generated by 1 in degree 0
and dθ in degree 1.
The corresponding component in the tempered dual is the circle T.
The cohomology of T is generated by 1 in degree 0 and dθ in degree
1.
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