
NLEVP: A Collection of Nonlinear Eigenvalue
Problems. Users’ Guide

Betcke, Timo and Higham, Nicholas J. and Mehrmann,
Volker and Negri Porzio, Gian Maria and Schröder,

Christian and Tisseur, Françoise

2011

MIMS EPrint: 2011.117

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

NLEVP: A Collection of Nonlinear Eigenvalue Problems.

Users’ Guide.

Timo Betcke∗ Nicholas J. Higham† Volker Mehrmann‡

Gian Maria Negri Porzio† Christian Schröder‡ Françoise Tisseur†

March 25, 2019

Abstract

This is the Users’ Guide for NLEVP: a collection of nonlinear eigenvalue problems pro-
vided in the form of a MATLAB toolbox. A separate paper describes the collection and its
organization.

1 Introduction

This document describes how to install and use the NLEVP MATLAB toolbox, which provides a
collection of nonlinear eigenvalue problems.

For details of the design and organization of the collection, and the problems it contains, see
[1].

This document describes 4.0 of the toolbox. The collection will grow and contributions are
welcome (see Section 6).

2 Installation and Usage

To install the toolbox create the directory nlevp in a suitable location and make it the current
directory. Then you can

• either clone the NLEVP toolbox if you are a Git user with the command

git clone https://github.com/ftisseur/nlevp

then add NLEVP to the MATLAB path (ideally in startup.m) with the command

addpath(nlevphome), savepath

or through the File menu;

• or download the toolbox it as a zip file from https://github.com/ftisseur/nlevp, then
use appropriate “unzip” software (making sure to preserve the directory structure) Remem-
ber to put put the nlevp directory on the MATLAB path as above.

∗Department of Mathematics, University College London, WC1E 6BT, UK (t.betcke@ucl.ac.uk). The work
of this author was supported by Engineering and Physical Sciences Research Council Grant EP/H004009/1.
†School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

({nick.higham,francoise.tisseur, gianmaria.negriporzio}@manchester.ac.uk). This work of these au-
thors was supported by Engineering and Physical Sciences Research Council grant EP/D079403/1. The work of
the second author was also supported by a Royal Society-Wolfson Research Merit Award and Engineering and
Physical Sciences Research Council grant EP/E050441/1 (CICADA: Centre for Interdisciplinary Computational
and Dynamical Analysis) and the work of the fifth author was also supported by a Leverhulme Research Fellowship
and Engineering and Physical Sciences Research Council grant EP/I005293/1.
‡Institut für Mathematik, MA 4-5, Technische Universität Berlin, Germany

({mehrmann,schroed}@math.tu-berlin.de). Supported by Deutsche Forschungsgemeinschaft through Math-
eon, the DFG Research Center Mathematics for key technologies in Berlin.

1

To try the toolbox, run the demonstration script by typing nlevp_example at the MATLAB
command prompt. Then execute the following commands:

help nlevp

nlevp query problems

nlevp query properties

nlevp help railtrack

nlevp query railtrack

coeffs = nlevp(’railtrack’)

spy(coeffs{2})

coeffs = nlevp(’bicycle’)

polyeig(coeffs{:})

The collection does not work with versions 7.6 (R2008a) and earlier versions of MATLAB,
since it uses functionality introduced in MATLAB 7.7 (R2008b).

3 Release History

Versions 1.0–3.0 are available from

http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html

3.1 First Release, 1.0

The first release of the toolbox was version 1.0, dated 4-Apr-2008, and contained 26 problems.

3.2 Second Release, 2.0

The second release, version 2.0, was dated 15-Nov-2010, contained 46 problems, and had the
following changes:

• Problem string has been renamed spring. spring has been generalized to include more
parameters but is backward compatible with string. Invoking nlevp(’string’) still works:
it invokes nlevp(’spring’) and produces a warning message.

• The matrices generated by problems acoustic wave 1d and acoustic wave 2d have been
modified in order to more closely match the formulation in the paper from which this problem
is taken. The eigenvalues now lie in the upper half-plane instead of the left half-plane.

• New problems are: fiber, foundation, genhyper2, Hadeler, intersection, metal strip,
pdde stability, plasma drift, omnicam1, omnicam2, qep1, qep2, qep3, qep4, railtrack2,
relative pose 5pt, relative pose 6pt, shaft, speaker box, surveillance.

• New functionality: nlevp(’eval’,...) and [coeffs,fun] = nlevp(’name’,...).

• Automatic testing of problem properties via nlevp_test.

• Cosmetic changes have been made to some of the functions.

• Citations to the sources of the problems have been updated, where necessary.

3.3 Third Release, 3.0

The third release, version 3.0, is dated 20-Dec-2011, contains 52 problems, and has the following
changes:

• New problems gen tantipal2, gen tpal2, mirror, planar waveguide, qep5, time delay.

2

• For scalable problems the first dimension parameter now specifies the size, n, of the coefficient
matrices (or an approximation to it). Previously, n was a function of this parameter in some
cases. It is now possible to generate all scalable problems of a given size (or approximately
that size). A warning message, with identifier NLEVP:truescale, is printed when the affected
problems are called.

• Scalable problems now return coefficient matrices in the MATLAB sparse format when the
coefficient matrices are sparse.

• A new problem property random has been introduced to specify problems that use random
numbers in their construction. Such problems include an optional input argument that is
used to seed the random number generator. If that optional input argument is not provided
then the same (fixed) problem is generated each time. A random number seed argument has
been added to gen hyper and may result in different matrices being generated than with
previous versions of NLEVP. All problems with the random property can use either the old
or new (rng) MATLAB syntax for seeding the random number generator, as chosen through
an input argument.

• dirac has been vectorized. The coefficients may differ at the level of rounding error from
those produced by the previous, unvectorized code.

• The first two input arguments of spring dashpot have been interchanged, so that the first
is the dimension.

• A bug in the computation of the derivatives of the gun problem has been corrected.

• This release is compatible with GNU Octave [2], as far as possible. It has been tested with
Octave 3.2.4 under Windows and Octave 3.4.3 under Linux. Since Octave does not have a
function polyeig the function nlevp example will not run.

3.4 Fourth Release, 4.0

The fourth release, version 4.0, dated 25-Mar-2019, contains 74 problems, and has the following
changes:

• 22 problems have been added (see Table 1). Their description can be found in [3].

• A new third output is returned by all the problems. It is called F and returns the function
handle for F (λ) =

∑k
i=0 fi(λ)Ai. This new output should be used in place of

>> F = @(lam) nlevp(’eval’,name,lam)

whose evaluation is slower for large size problems than that of the new third output;

• Three new identifiers are available, tridiagonal, banded and low-rank. The property
banded is given to problems with coefficient matrices Ai ∈ Cn×n having bandwidth less than
n/5. The low-rank flag is used for problems that have at least one low-rank coefficient.

• For all the problems with the low-rank identifier, a fourth output, called xcoeffs, has been
added. It returns a 2× (k + 1) cell array such that if the i-th coefficient matrix Ai = EiFi

for some rectangular matrices Ei and Fi, then Ei is equal to xcoeffs{1,i} and Fi to
xcoeffs{2,i}.

• The syntax randn(’state’,state) to seed the random number generator has been replaced
by the newer syntax rng(state). The problems influenced by this choice are bcc traffic,
gen hyper2, gen tantipal2, gen tpal2, mirror and spring dasphpot.

• Minor bugs fixed.

• New GitHub repository for the MATLAB codes and documentation, https://github.

com/ftisseur/nlevp.

• This release is not compatible with GNU Octave [2].

3

Table 1: New problems in NLEVP version 4.0.

Quadratic bcc_traffic circular_piston damped_gyro

deformed_consensus disk_brake100 disk_brake4669

elastic_deform utrecht1331

Rational photonic_crystal railtrack_rep railtrack2_rep

Nonlinear bent_beam bucking_plate canyon_particle

distributed_delay1 nep1 nep2

pdde_symmetric pillbox_cavity pillbox_small

sandwich_beam time_delay2

4 The MATLAB Function nlevp

The toolbox has just one main user-callable function, nlevp, which is as follows.

function varargout = nlevp(name,varargin)

%NLEVP Collection of nonlinear eigenvalue problems.

% [COEFFS,FUN,OUT3,OUT4,...] = NLEVP(NAME,ARG1,ARG2,...)

% generates the matrices and functions defining the problem specified by

% NAME (a case insensitive string).

% ARG1, ARG2,... are problem-specific input arguments.

% All problems are of the form

% T(lambda)*x = 0

% where

% T(lambda)= f0(lambda)*A0 + f1(lambda)*A1 + ... + fk(lambda)*Ak.

% The matrices A0, A1, ..., Ak are returned in a cell array:

% COEFFS = {A0,...,Ak}.

% FUN is a function handle that can be used to evaluate the functions

% f1(lambda),...,fk(lambda). For a scalar lambda,

% F = FUN(lambda) returns a row vector containing

% F = [f1(lambda), f2(lambda), ..., fk(lambda)].

% If lambda is a column vector, FUN(lambda) returns a row per element in

% lambda.

% [F,FP] = FUN(lambda) also returns the derivatives

% FP = [f1’(lambda), f2’(lambda), ..., fk’(lambda)].

% [F,FP,FPP,FPPP,...] = FUN(lambda) also returns higher derivatives.

% OUT3, OUT4, ... are additional problem-specific output arguments.

% See the list below for the available problems.

%

% PROBLEMS = NLEVP(’query’,’problems’) or NLEVP QUERY PROBLEMS

% returns a cell array containing the names of all problems

% in the collection.

% NLEVP(’help’,’name’) or NLEVP HELP NAME

% gives additional information on problem NAME, including number and

% meaning of input/output arguments.

% NLEVP(’query’,’name’) or NLEVP QUERY NAME

% returns a cell array containing the properties of the problem NAME.

% PROPERTIES = NLEVP(’query’,’properties’) or NLEVP QUERY PROPERTIES

% returns the properties used to classify problems in the collection.

% NLEVP(’query’,property1,property2,...) or NLEVP QUERY PROPERTY1 ...

% lists the names of all problems having all the specified properties.

%

% [T,TP,TPP,...] = NLEVP(’eval’,NAME,LAMBDA,ARG1,ARG2,...)

% evaluates the matrix function T and its derivatives TP, TPP,...

% for problem NAME at the scalar LAMBDA.

4

%

% NLEVP(’version’) or NLEVP VERSION

% prints version, release date, and number of problems

% of the installed NLEVP collection.

% V = NLEVP(’version’)

% returns a structure V containing version information.

% V consists of the fields v.number, v.date, and v.problemcount.

%

% Available problems:

%

% acoustic_wave_1d Acoustic wave problem in 1 dimension.

% acoustic_wave_2d Acoustic wave problem in 2 dimensions.

% bcc_traffic QEP from stability analysis of chain of non-identical cars.

% under bilateral cruise control.

% bent_beam 6-by-6 NEP from a bent beam model.

% bicycle 2-by-2 QEP from the Whipple bicycle model.

% bilby 5-by-5 QEP from Bilby population model.

% bucking_plate 3-by-3 NEP from a bucking plate model.

% butterfly Quartic matrix polynomial with T-even structure.

% canyon_particle NEP from the Schrödinger equation on a canyon-like shape.

% cd_player QEP from model of CD player.

% circular_piston Sparse QEP from model of circular piston.

% closed_loop 2-by-2 QEP associated with closed-loop control system.

% concrete Sparse QEP from model of a concrete structure.

% damped_beam QEP from simply supported beam damped in the middle.

% damped_gyro QEP of a damped gyroscopic system.

% deformed_consensus n-by-n QEP from multi-agent systems theory.

% dirac QEP from Dirac operator.

% disk_brake100 100-by-100 QEP from a disk brake model.

% disk_brake4669 4669-by-4669 QEP from a disk brake model.

% distributed_delay1 3-by-3 NEP from distributed delay system.

% elastic_deform QEP from elastic deformation of anisotropic material.

% fiber NEP from fiber optic design.

% foundation Sparse QEP from model of machine foundations.

% gen_hyper2 Hyperbolic QEP constructed from prescribed eigenpairs.

% gen_tantipal2 T-anti-palindromic QEP with eigenvalues on the unit

% circle.

% gen_tpal2 T-palindromic QEP with prescribed eigenvalues on the

% unit circle.

% gun NEP from model of a radio-frequency gun cavity.

% hadeler NEP due to Hadeler.

% hospital QEP from model of Los Angeles Hospital building.

% intersection 10-by-10 QEP from intersection of three surfaces.

% loaded_string REP from finite element model of a loaded vibrating

% string.

% metal_strip QEP related to stability of electronic model of metal

% strip.

% mirror Quartic PEP from calibration of cadioptric vision system.

% mobile_manipulator QEP from model of 2-dimensional 3-link mobile manipulator.

% nep1 2-by-2 basic NEP example.

% nep2 3-by-3 basic NEP example.

% omnicam1 9-by-9 QEP from model of omnidirectional camera.

% omnicam2 15-by-15 QEP from model of omnidirectional camera.

% orr_sommerfeld Quartic PEP arising from Orr-Sommerfeld equation.

% pdde_stability QEP from stability analysis of discretized PDDE.

% pdde_symmetric n-by-n NEP from a partial delay differential equation.

% photonic_crystal REP from dG-FEM of wave propagation in a periodic

5

% medium.

% pillbox_cavity 170562-by-170562 NEP from a RF pillbox cavity.

% pillbox_small 20-by-20 NEP from a RF pillbox cavity.

% planar_waveguide Quartic PEP from planar waveguide.

% plasma_drift Cubic PEP arising in Tokamak reactor design.

% power_plant 8-by-8 QEP from simplified nuclear power plant problem.

% qep1 3-by-3 QEP with known eigensystem.

% qep2 3-by-3 QEP with known, nontrivial Jordan structure.

% qep3 3-by-3 parametrized QEP with known eigensystem.

% qep4 3-by-4 QEP with known, nontrivial Jordan structure.

% qep5 3-by-3 nonregular QEP with known Smith form.

% railtrack QEP from study of vibration of rail tracks.

% railtrack_rep REP from study of vibration of rail tracks.

% railtrack2 Palindromic QEP from model of rail tracks.

% railtrack2_rep REP from model of rail tracks.

% relative_pose_5pt Cubic PEP from relative pose problem in computer vision.

% relative_pose_6pt QEP from relative pose problem in computer vision.

% sandwich_beam NEP from model of a clamped sandwich beam.

% schrodinger QEP from Schrodinger operator.

% shaft QEP from model of a shaft on bearing supports with a

% damper.

% sign1 QEP from rank-1 perturbation of sign operator.

% sign2 QEP from rank-1 perturbation of 2*sin(x) + sign(x)

% operator.

% sleeper QEP modelling a railtrack resting on sleepers.

% speaker_box QEP from finite element model of speaker box.

% spring QEP from finite element model of damped mass-spring

% system.

% spring_dashpot QEP from model of spring/dashpot configuration.

% surveillance 27-by-20 QEP from surveillance camera callibration.

% time_delay 3-by-3 NEP from a time-delay system.

% time_delay2 2-by-2 NEP from a time-delay system.

% utrecht1331 QEP 1331-by-1331 QEP with singular A1.

% wing 3-by-3 QEP from analysis of oscillations of a wing in

% an airstream.

% wiresaw1 Gyroscopic system from vibration analysis of wiresaw.

% wiresaw2 QEP from vibration analysis of wiresaw with viscous

% damping.

%

% Examples:

% coeffs = nlevp(’railtrack’)

% generates the matrices defining the railtrack problem.

% nlevp(’help’,’railtrack’)

% prints the help text of the railtrack problem.

% nlevp(’query’,’railtrack’)

% prints the properties of the railtrack problem.

%

% For example code to solve all polynomial eigenvalue problems (PEPs)

% in this collection of dimension < 500 with MATLAB’s POLYEIG

% see NLEVP_EXAMPLE.M.

% Reference:

% T. Betcke, N. J. Higham, V. Mehrmann, C. Schroeder, and F. Tisseur.

% NLEVP: A Collection of Nonlinear Eigenvalue Problems,

% ACM Transactions on Mathematical Software, 39(2), pp7:1-7:28, 2013.

6

% Check inputs

if nargin < 1, error(’Not enough input arguments’); end

if ~ischar(name), error(’NAME must be a string’); end

name = lower(name);

if strcmp(name,’query’)

if nargin == 1

error(’Not enough input arguments’)

end

[varargout{1:nargout}] = nlevp_query(varargin{:});

return

end

if strcmp(’string’,name)

name = ’spring’;

warning(’NLEVP:string_renamed’,’Problem string has been renamed spring.’)

end

if strcmp(’version’,name)

[varargout{1:nargout}] = nlevp_version(varargin{:});

return

end

switch name

case ’help’

nlevp_home = which(’nlevp’);

nlevp_home = strrep(nlevp_home, ’nlevp.m’, ’’);

if nargin < 2

help nlevp

else

if ~nlevp_isoctave

% some nlevp are shadowed by MATLAB functions. This fixes it

if ispc % we need to see if we are on Windows or not

help(sprintf(’%sprivate\\%s’, nlevp_home, varargin{1}))

else

help(sprintf(’%sprivate/%s’, nlevp_home, varargin{1}))

end

else

% Uglier code necessary for Octave.

eval([’help ’, varargin{1}]);

end

end

case ’eval’

[varargout{1:max(nargout,1)}] = nlevp_eval(varargin{:});

otherwise

[varargout{1:nargout}] = feval(name,varargin{:});

end

end

5 The MATLAB Function nlevp example

The toolbox contains a function nlevp_example.m that illustrates the use of nlevp. Running it
provides a quick test that the toolbox is correctly installed. This function can be adapted in order
to test the user’s own methods on subsets of NLEVP problems.

7

function nlevp_example(fname)

%NLEVP_EXAMPLE Run POLYEIG on PEP problems from NLEVP.

% NLEVP_EXAMPLE solves all the not-too-large PEP problems in NLEVP

% by POLYEIG, sending output to the screen.

% NLEVP_EXAMPLE(fname) directs partial output to the file named fname

% (intended for generating output for NLEVP paper).

if nargin == 0

fid = 1;

else

fid = fopen(fname,’w’);

end

s_rand = warning(’off’, ’NLEVP:random’); % For gen_hyper2.

nmax = 500;

probs = nlevp(’query’,’pep’);

nprobs = length(probs);

nprobs_total = length(nlevp(’query’,’problems’));

fprintf(fid,’NLEVP contains %2.0f problems in total,\n’, nprobs_total);

fprintf(fid,’of which %2.0f are polynomial eigenvalue problems (PEPs).\n’, nprobs);

fprintf(fid,’Run POLYEIG on the PEP problems of dimension at most %2.0f:\n\n’,nmax);

fprintf(fid,’ Problem Dim Max and min magnitude of eigenvalues\n’);

fprintf(fid,’ ------- --- ------------------------------------\n’);

m2 = 7;

m1 = ceil(nprobs/m2);

j = 1;

for i=1:nprobs

if fid ~= 1 && i == 9

fprintf(fid,’ ...\n’);

fid_save = fid;

fid = 1; % Omit output from this point on when writing to file.

end

coeffs = nlevp(probs{i});

[n, nc] = size(coeffs{1});

if n >= nmax

fprintf(fid,’%20s %3.0f is a PEP but is too large for this test.\n’, ...

probs{i}, n);

elseif n ~= nc

fprintf(fid,’%20s %3.0f is a PEP but is nonsquare.\n’, probs{i}, n);

else

% POLYEIG will convert sparse input matrices to full.

e = polyeig(coeffs{:});

fprintf(fid,’%20s %3.0f %9.2e, %9.2e\n’, ...

probs{i}, n, max(abs(e)), min(abs(e)));

subplot(m1,m2,j)

plot(real(e), imag(e),’.’)

title(probs{i},’Interpreter’,’none’)

% Tweaks.

if strcmp(probs{i},’sign1’), ylim([-1 1]*1.5), end

if strcmp(probs{i},’damped_beam’)

title([’ ’ probs{i}],’Interpreter’,’none’)

end

if strcmp(probs{i},’relative_pose_6pt’)

title([’ ’ probs{i}],’Interpreter’,’none’)

end

8

if strcmp(probs{i},’speaker_box’) || strcmp(probs{i},’intersection’)

title([’ ’ probs{i}],’Interpreter’,’none’)

end

j = j+1;

end

end

if nargin > 0, fclose(fid_save); end

warning(s_rand)

end

Part of the output of the function is shown in [1].

6 Contributing to the Collection

Contributions of suggested new problems for the collection are welcome. They can be sent to Nick
Higham (nick.higham@manchester.ac.uk), Gian Maria Negri Porzio (gianmaria@manchester.ac.uk),
Françoise Tisseur (francoise.tisseur@manchester.ac.uk). The following rules should be fol-
lowed when providing new problems.

Write a LATEX file called problem name.tex, where problem name is the proposed name of your
example, describing the problem. Here, problem_name should be a string in lower case without
any spaces. The tex file should consist of a problem environment, with first line stating the
relevant identifiers for the problem (these properties are listed by nlevp query properties, and
are explained in the companion document [1]):

\begin{problem}{problem_name}{identifier1,identifier2,...}

This is a xxx-problem of dimension nnn.

It arises in ...

\end{problem}

Provide your citations in a bib file; one bib file suffices even if multiple tex files are provided.
Write an M-file generating the coefficients of the example called problem_name.m. Document

the M-file in the leading comment lines with the most important information from the tex file. If
the problem is parameter dependent, set default values for any parameters not specified when the
function is called. If you need extra data files, their names should begin with problem_name, e.g.,
problem_name.mat.

To specify a polynomial problem the first output of the M-file should be a cell array containing
the coefficient matrices starting with the constant term. Thus if the first output is called coeffs

and you want to define a PEP P (λ) =
∑k

i=0 λ
iAi, then coeffs{1}=A0, coeffs{2}=A1, . . . ,

coeffs{k+1}=Ak.
The second output argument must be a function that computes the nonlinear scalar functions

in the definition of the problem and their derivatives; for a polynomial eigenvalue problem this is
trivially provided by a line of the form

fun = @(lam) nlevp_monomials(lam,k);

Here, nlevp_monomials.m is a function provided with NLEVP in the private directory.
The third output must be a function handle that copies the behaviour of

>> F = @(lam) nlevp(’eval’,name,lam)

i.e., it must be the matrix function F (λ) =
∑k

i=0 fi(λ)Ai; for a polynomial eigenvalue problem
this is trivially provided by a line of the form

>> F = nlevp_handleQEP(coeffs);

If one or more of the coefficients has a low-rank structure, then please the fourth output xcoeffs
and the identifier low-rank. It must be a 2 × (k + 1) cell array such that if the i-th coefficient

9

matrix Ai = EiFi for some rectangular matrices Ei and Fi, then Ei is equal to xcoeffs{1,i} and
Fi to xcoeffs{2,i}.

If a supposed solution is provided it should be returned in a structure sol with the following
format:

sol.eval: an m× 1 vector, where m eigenvalues are provided,

sol.evec: an m × n matrix, where column j is the eigenvector corresponding to
sol.eval(j).

If both left and right eigenvectors are known, they should be returned in sol.evec_left and
sol.evec_right.

References

[1] T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder, and F. Tisseur. NLEVP: A collection
of nonlinear eigenvalue problems. ACM Trans. Math. Software, 39(2):7:1–7:28, Feb. 2013.

[2] GNU Octave. http://www.octave.org.

[3] N. J. Higham, G. M. N. Porzio, and F. Tisseur. An updated set of nonlinear eigenvalue prob-
lems. MIMS EPrint 2019.5, Manchester Institute for Mathematical Sciences, The University
of Manchester, UK, Mar. 2019. 12 pp.

10

