
SIMULATING LOW PRECISION
FLOATING-POINT ARITHMETIC

Higham, Nicholas J. and Pranesh, Srikara

2019

MIMS EPrint: 2019.4

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

SIMULATING LOW PRECISION FLOATING-POINT ARITHMETIC∗

NICHOLAS J. HIGHAM† AND SRIKARA PRANESH∗

Abstract. The half precision (fp16) floating-point format, defined in the 2008 revision of the
IEEE standard for floating-point arithmetic, and a more recently proposed half precision format
bfloat16, are increasingly available in GPUs and other accelerators. While the support for low
precision arithmetic is mainly motivated by machine learning applications, general purpose numerical
algorithms can benefit from it, too, gaining in speed, energy usage, and reduced communication costs.
Since the appropriate hardware is not always available, and one may wish to experiment with new
arithmetics not yet implemented in hardware, software simulations of low precision arithmetic are
needed. We discuss how to simulate low precision arithmetic using arithmetic of higher precision. We
examine the correctness of such simulations and explain via rounding error analysis why a natural
method of simulation can provide results that are more accurate than actual computations at low
precision. We provide a MATLAB function chop that can be used to efficiently simulate fp16 and
bfloat16 arithmetics, with or without the representation of subnormal numbers and with the options
of round to nearest, directed rounding, stochastic rounding, and random bit flips in the significand.
We demonstrate the advantages of this approach over defining a new MATLAB class and overloading
operators.

AMS subject classifications. 65F05, 65G50, 65Y04

Key words. floating-point arithmetic, half precision, low precision, IEEE arithmetic, fp16,
bfloat16, subnormal numbers, mixed precision, simulation, rounding error analysis, round to nearest,
directed rounding, stochastic rounding, bit flips, MATLAB

1. Introduction. The 1985 IEEE standard 754 for floating-point arithmetic
[26] brought to an end the turbulent period in scientific computing when different
hardware manufacturers provided different floating-point arithmetics, some of which
were better behaved than others. A particular problem had been that the lack of a
guard digit in some floating-point arithmetics could cause algorithms that otherwise
work perfectly to fail [22, sec. 2.4]. For the two decades following the introduction of
the standard, virtually all floating-point hardware implemented IEEE single precision
(fp32) or double precision (fp64) arithmetic.

The 2008 revision of the standard [27] defined a 16-bit half precision (fp16) storage
format, but did not define operations on it. However, manufacturers have provided
implementations of half precision arithmetic, using the natural extension of the rules
for single and double precision. Half precision is available, for example, on the NVIDIA
P100 (2016) and V100 (2017) GPUs, the AMD Radeon Instinct MI25 GPU (2017),
and the ARM NEON architecture [1].

With regards to future chips, the Fujitsu A64FX Arm processor that will power
Japan’s first exascale computer will employ half precision [10]. Also the next gen-
eration AI chips of IBM will support an 8-bit floating-point format along with half
precision [11], [50].

Another form of half precision arithmetic called bfloat161 was introduced by
Google in its tensor processing units and will be supported by Intel in its forth-
coming Nervana Neural Network Processor [40]. The same floating-point format is

∗Version of March 20, 2019. Funding: This work was supported by MathWorks, Engineering
and Physical Sciences Research Council grant EP/P020720/1, and the Royal Society. The opinions
and views expressed in this publication are those of the authors, and not necessarily those of the
funding bodies.
†School of Mathematics, University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, srikara.pranesh@manchester.ac.uk).
1https://en.wikipedia.org/wiki/Bfloat16 floating-point format

1

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

suggested for ultra low power computing in [46], where it is called binary16alt.
While machine learning provides much of the impetus for the development of

half precision arithmetic in hardware [14], [45], half precision is also attractive for
accelerating general purpose scientific computing. It is already being used in weather
forecasting and climate modelling [4], [7], [18], [39], [47] and the solution of linear
systems of equations [2], [3], [15], [16], [17], [23]. The Summit machine at Oak
Ridge National Laboratory, which leads the June and November 2018 Top 500 lists
(https://www.top500.org), has a peak performance of 143.5 petaflops in the LIN-
PACK benchmark2, a benchmark that employs only double precision. For a genetics
application that uses half precision, the same machine has a peak performance of 2.36
exaflops [12]. This difference in the peak performances highlights the importance of
using low precision arithmetic to exploit the hardware. Library software that makes
efficient use of these low precision formats is being developed—for example, MAGMA3

[8], [48], [49].
While low-precision enabled hardware can provide substantial computational ben-

efits, these are specialist devices to which not everyone has ready access. Further-
more, one may wish to experiment with new floating-point formats not yet available
in hardware. In this work we investigate and propose ways to simulate low precision
floating-point arithmetics. Our approach is general, but with a particular focus on
numerical linear algebra kernels and implementation in MATLAB.

We propose in section 3 two simulation strategies, in both of which computations
are carried out at higher precision and then rounded to lower precision. In the first
variant, Simulation 3.1, we perform every scalar operation—addition, subtraction,
multiplication, and division—in high precision and round the results to low precision.
We explain why double rounding could vitiate this approach and identify precisions
for which it provides a valid simulation. In the second variant, Simulation 3.2, we
perform certain vector, matrix, or tensor kernels entirely in high precision and then
round the final answer to low precision. Using rounding error analysis we analyze
the accuracy and backward stability of matrix-matrix multiplication and solution of
a triangular system when the second form of simulation is used. We show that the
simulation provides results with forward errors that are essentially independent of
n and for triangular systems are also independent of the condition number of the
triangular matrix, so the results will generally be more accurate than for true low
precision computations.

In section 4 we discuss the pros and cons of Moler’s fp16 and vfp16 classes (data
types) for MATLAB, which are instances of Simulation 3.2,. In section 5 we propose
an alternative approach to simulating low precision arithmetic that stores data in
single or double precision but rounds results to match the target precision and range.
We provide a MATLAB function chop that rounds its argument to fp16, bfloat16,
fp32, fp64, or a user-defined format with round to nearest, round towards plus or
minus infinity, round towards zero, or stochastic rounding, and with optional support
of subnormal numbers. The function also allows random bit flips in the significand in
order to simulate soft errors, which could be due to running a processor at a reduced
voltage [38]; such bit flips are explored in [47], for example. Computing reliably in
the presence of soft errors is of interest in training of large scale neural networks [9].
In section 6 we demonstrate the performance advantages of chop over fp16/vfp16 and
give some examples of the insights that can be gained by experimenting with low

2https://www.top500.org/lists/2018/11/
3https://icl.utk.edu/magma/software/index.html

2

https://www.top500.org
https://www.top500.org/lists/2018/11/
https://icl.utk.edu/magma/software/index.html

Table 2.1
Parameters for bfloat16, fp16, fp32, and fp64 arithmetic: number of bits in significand and

exponent and, to three significant figures, unit roundoff u, smallest positive (subnormal) number
xsmin, smallest normalized positive number xmin, and largest finite number xmax.

Signif. Exp. u xsmin xmin xmax

bfloat16 8 8 3.91× 10−3 9.18× 10−41a 1.18× 10−38 3.39× 1038

fp16 11 5 4.88× 10−4 5.96× 10−8 6.10× 10−5 6.55× 104

fp32 24 8 5.96× 10−8 1.40× 10−45 1.18× 10−38 3.40× 1038

fp64 53 11 1.11× 10−16 4.94× 10−324 2.22× 10−308 1.80× 10308

aIn Intel’s bfloat16 specification subnormal numbers are not supported [28], so any number less
than xmin in magnitude is flushed to zero. The value shown would pertain if subnormals were
supported.

precision computations in MATLAB.

2. Low precision floating-point arithmetics. We assume that IEEE stan-
dard single precision and double precision are available in hardware and that we wish
to simulate arithmetics of lower precision. Table 2.1 shows the arithmetics of partic-
ular interest in this work. Even lower precisions, including 8-bit (quarter precision)
formats [32], [34], [46], [50] and a 9 bit format [25], are also of interest, but they are
not standardized.

We wish to simulate arithmetic of the appropriate precision and range, with var-
ious rounding modes, and make the support of subnormal numbers optional. IEEE
arithmetic supports subnormal numbers, but bfloat16 as defined by Intel does not [28].
The main reason for a hardware designer not to support subnormal numbers is to sim-
plify the implementation, but when they are handled in software subnormal numbers
can degrade the performance of a code4. One question that simulation can help ad-
dress is to what extent subnormal numbers make a difference to the behavior of an
algorithm for particular types of data.

3. Simulation models and their properties. We discuss two different ways
to simulate low precision arithmetic. We need to achieve both the correct precision
and the correct range. Correct range refers not only to ensuring that numbers too
large for the target range overflow, but also that numbers in the subnormal range are
correctly represented with less precision than normalized numbers. Our approach is
to carry out all computations in single precision or double precision, which we refer
to as higher precision, and round back to the target precision. This can be done at
two different levels of granularity: by rounding every individual scalar operation or by
allowing a group of operations to be carried out in higher precision and then rounding
the result to lower precision. We investigate how these two possibilities affect the
accuracy and stability of computations.

3.1. Rounding every operation. The most natural way to simulate low pre-
cision arithmetic is as follows. Here, rounding means any of the following four IEEE
arithmetic rounding modes: round to nearest with ties broken by rounding to an even
least significant bit, round towards plus infinity or minus infinity, and round towards
zero. We will refer to the low precision format of interest as the target format, and
we assume that the operands are given in the target format. In practice, numbers in

4https://devblogs.nvidia.com/cuda-pro-tip-flush-denormals-confidence/, https://en.wikipedia.
org/wiki/Denormal number

3

https:// devblogs.nvidia.com/cuda-pro-tip-flush-denormals-confidence/
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/Denormal_number

the target format might actually be stored in a higher precision format, padded with
zero bits (we will use this approach in Section 5).

Simulation 3.1. Simulate every scalar operation by converting the operands to
fp32 or fp64, carrying out the operation in fp32 or fp64, then rounding the result back
to the target format.

By computing a result first in fp32 or fp64 and then rounding to the target format
we are rounding the result twice. It is well known that double rounding can give a
result different from rounding directly to the target format. A simple example with
round to nearest in base 10 is rounding 1.34905 to two significant figures: rounding
first to three significant figures gives 1.35 and then rounding to two significant figures
gives 1.4, but rounding directly to two significant figures gives 1.3. Fortunately, for the
operations of addition, subtraction, multiplication, division, and square root rounding
first to fp32 or fp64 and then to bfloat16 or fp16 gives the same result as rounding
directly to bfloat16 or fp16, even allowing for subnormal numbers. This is shown by
results in [13] and [42], which essentially require that the format used for the first
rounding has a little more than twice as many digits in the significand as the target
format (this condition is needed for round to nearest, but not for directed rounding).
Since double rounding does not change results in simulating bfloat16 or fp16 via
fp32 or fp64, we can conclude that Simulation 3.1 is equivalent to carrying out the
computation wholly in bfloat16 or fp16, provided that the range is correctly handled.

If the low precision numbers are stored in a special format then Simulation 3.1
can be expensive because every scalar operation incurs the overhead of converting
between different floating-point formats.

A subtlety arises in elementary function evaluations, in that Simulation 3.1 is
likely to provide a correctly rounded result whereas a computation entirely at the
target precision may be unable to do so.q For example, in an exponentiation xy

it is hard to guarantee a correctly rounded result without using extra precision [37,
sec. 13.2]. However, since elementary functions are not included in the IEEE standard
the computed results will in any case depend upon the implementation.

Simulation 3.1 has been used to develop a bfloat16 data type and basic arithmetic
operations on it for Julia [30]. A C++ header file for fp16 is available [41]; we note that
it does not convert to fp16 after every scalar operation, but retains a number in fp32
as long as possible, in order to reduce the overhead caused by repeated conversions.
This implementation therefore is not of the form Simulation 3.1. SciPy has a float16
data type5, which appears to use Simulation 3.1 with computations in single precision.

Another instance of Simulation 3.1 is the rpe (reduced floating-point precision)
library of Dawson and Düben [6], which provides a derived type and overloaded op-
erators for Fortran and was developed for use in weather and climate modeling. It
emulates the specified precision but in general uses the exponent range of double
precision.

3.2. Rounding kernels. We now consider a weaker form of simulation. Here,
“kernel” can be a vector, matrix, or tensor operation.

Simulation 3.2. Simulate isolated scalar operations as in Simulation 3.1. Im-
plement appropriate kernels by carrying out the kernel in fp32 or fp64 then rounding
the result back to the target precision.

With this form of simulation we could compute the product of two matrices A and

5https://docs.scipy.org/doc/numpy-1.15.4/user/basics.types.html

4

https://docs.scipy.org/doc/numpy-1.15.4/user/basics.types.html

B by converting A and B to fp64, computing the product in fp64, and then rounding
the result back to the target format.

We now consider what can be said about the accuracy and backward stability of
two particular kernels under Simulation 3.2: matrix multiplication and the solution
of a triangular system.

Denote the lower precision by fp low and the higher precision (fp32 or fp64)
by fp high. We assume round to nearest, use the standard model of floating-point
arithmetic [22, sec. 2.2], and ignore the possibility of overflow and underflow. We
denote by u` and uh the unit roundoffs for the lower and higher precisions and write

γ`(n) =
nu`

1− nu`
, γh(n) =

nuh
1− nuh

for nu` < 1 and nuh < 1.
Let A ∈ Rm×n and B ∈ Rn×p, and let C = AB. The product Ĉ computed in

precision fp high satisfies [22, sec. 3.5]

(3.1) |C − Ĉ| ≤ γh(n)|A||B|,

where the absolute value is taken componentwise. Rounding Ĉ to C̃ in fp low, we
have [22, Thm. 2.2]

(3.2) C̃ = Ĉ + ∆C, |∆C| ≤ u`|Ĉ|.

Hence
|C − C̃| = |C − Ĉ + Ĉ − C̃| ≤ γh(n)|A||B|+ u`|Ĉ|.

From (3.1) we obtain

|Ĉ| ≤ (1 + γh(n))|A||B|

and then
|C − C̃| ≤

(
γh(n) + u`(1 + γh(n))

)
|A||B|.

Hence we certainly have

(3.3) |C − C̃| ≤ 2u`|A||B|

as long as γh(n)(1 + u`) + u` ≤ 2u`, which is equivalent to

(3.4) n ≤ u`
uh(1 + 2u`)

.

When fp low and fp high are fp16 and fp64, respectively, this bound is 4.3 × 1012,
which covers all n of current practical interest for dense matrix multiplication. The
bound (3.3) is to be compared with the bound

(3.5) |C − Ĉ| ≤ γ`(n)|A||B|

that holds for the computation done entirely in fp low. The difference is that in (3.3)
the constant does not depend on n, as long as (3.4) holds. Looked at another way, the
constant in (3.5) exceeds 1 once nu` ≥ 1 (indeed the bound is only valid for nu` < 1),
whereas the constant in (3.3) is of order u` and the bound holds for n up to a much
larger value. This demonstrates that the results from Simulation 3.2 will in general
be more accurate than for actual low precision computation.

5

Now consider the solution of a triangular system Tx = b, where T ∈ Rn×n and
x, b ∈ Rn. Solving by substitution in fp high we know that the computed solution x̂
satisfies the componentwise backward error result [22, Thm. 8.5]

(3.6) (T + ∆T)x̂ = b, |∆T | ≤ γh(n)|T |.

Rounding to fp low gives

(3.7) x̃ = (I +D)x̂, D = diag(δi), |δi| ≤ u`.

First, we consider the backward error. We have

|T x̃− b| = |T x̂+ TDx̂− b| = | −∆T x̂+ TDx̂| ≤ (γh(n) + u`)|T ||x̂|,

which implies that [22, Thm. 7.3]

(3.8) (T + ∆Th)x̃ = b, |∆Th| ≤ (u` + γh(n))|T |.

If (3.4) holds then we certainly have |∆Th| ≤ 2u`|T |.
The conclusion is that x̃ has the same componentwise form of backward error as

if it had been computed entirely in fp low, but with no dependence on n as long as
(3.4) holds.

Turning to the forward error, (3.6) implies [22, Thm. 7.4]

(3.9)
‖x− x̂‖∞
‖x‖∞

≤ cond(T, x)γh(n)

1− cond(T)γh(n)
,

where

cond(T, x) =
‖ |T−1||T ||x| ‖∞

‖x‖∞
, cond(T) = ‖ |T−1||T | ‖∞.

Combined with (3.7) this gives

‖x− x̃‖∞
‖x‖∞

.
cond(T, x)γh(n)

1− cond(T)γh(n)
+ u`.

Hence, since cond(T, x) ≤ cond(T), as long as γh(n) cond(T) . u`, that is,

(3.10) n cond(T) .
u`
uh

we will have

(3.11)
‖x− x̃‖∞
‖x‖∞

. 2u`,

and the right-hand side of (3.10) is 4.3× 1012 for fp low as fp16 and fp high as fp64.
This is to be compared with the bound

‖x− x̂‖∞
‖x‖∞

≤ cond(T, x)γ`(n)

1− cond(T)γ`(n)

(analogous to (3.9)) that we would expect for a solution computed entirely in fp low.
Hence when (3.10) is satisfied we can expect x̃ to be more accurate than it would be

6

were it to be computed entirely in fp low, for two reasons: the constant term in (3.11)
does not depend on n and the condition number does not appear in the bound.

Suppose now that T is upper triangular and that we implement back substitution
for Tx = b as

xi = fllow

bi − f llow

(
f lhigh

(∑n
j=i+1 tijxj

))
tii

 ,

that is, the underlying inner product is evaluated in fp high but the subtraction and
division are in fp low. It is easy to see that we now obtain a backward error result of
the same form as (3.8) but with a different constant that again is independent of n
unless n is very large, but we cannot conclude that a small normwise forward error is
obtained. So this mode of evaluation is closer to evaluation wholly in fp low than if
we execute the substitution in fp high and then round to fp low.

In summary, our analysis of Simulation 3.2 shows that the results it yields can be
more accurate than those from true low precision computation in two respects. First,
by evaluating the whole kernel at precision fp high we obtain a forward error bound
for matrix multiplication and a backward error bound for the solution of triangular
systems that have essentially no dependence on n. Second, the forward error for Tx =
b will be essentially independent of the condition number. The second phenomenon
no longer holds if only the underlying inner products are evaluated at the higher
precision.

Our conclusion is that care is needed in deciding at what level of granularity to
apply the higher precision. The lower the level, the more realistic the simulation will
be.

4. Moler’s fp16 and vfp16 classes. We now focus on simulating low precision
arithmetic in MATLAB. The fp16 half-precision MATLAB class of Moler [32], [34]
introduces a new data type fp16 that implements the IEEE fp16 storage format and
overloads some basic functions for fp16 arguments. It uses Simulation 3.2. Although
it was designed to be economical in coding rather than to have good performance, the
fp16 class has proved very useful in research [3], [23], [24].

The fp16 class includes the following two functions (which live in the @fp16 di-
rectory).

function z = plus(x,y)

z = fp16(double(x) + double(y));

end

function [L,U,p] = lu(A)

[L,U,p] = lutx(A);

end

These functions do the computations in double precision and round the result back to
fp16. The plus function is used for matrix addition and is invoked when MATLAB
encounters the + operator with fp16 operands. The lutx function called from lu is
a “textbook” implementation of LU factorization with partial pivoting, implemented
as a straightforward MATLAB program file in [32]. When this function is called with
an fp16 argument all the operations within the function are done by the overloaded
fp16 operators. The key lines of lutx are

% Compute multipliers

i = k+1:n;

7

A(i,k) = A(i,k)/A(k,k);

% Update the remainder of the matrix

j = k+1:n;

A(i,j) = A(i,j) - A(i,k)*A(k,j);

For fp16 variables, the multiplication in the last of these lines calls the function mtimes

in the @fp16 directory.

function z = mtimes(x,y)

z = fp16(double(x) * double(y));

end

Because mtimes is being called to evaluate a rank-1 matrix, and hence it performs
one multiplication per entry and no additions, that line faithfully simulates fp16
arithmetic. However, an expression A*B with fp16 matrices A and B will in general
be evaluated as multiple double precision multiplications and additions with a final
rounding to fp16, that is, as in Simulation 3.2 with matrix multiplication as the kernel.

The solution of linear systems (as invoked by backslash) is done by the function
mldivide, which has the form

function z = mldivide(x,y)

z = fp16(double(x) \ double(y));

end

Here again, the whole solution process is carried out in double precision then rounded
to fp16, so this is Simulation 3.2 with linear system solution as the kernel. This is
not equivalent to carrying out the computation in fp16, as we saw in the last section
in the special case of triangular systems.

From our analysis in the previous section we conclude that in the fp16 class
both matrix multiplication and linear system solutions enjoy error bounds that are
essentially independent of n and the forward error for the latter will be condition
number independent (for all n of practical interest), so we can expect to obtain more
accurate results than for actual fp16 computation.

Moler’s fp16 class has the advantage that it is a true MATLAB class and so
program files (ones containing sequences of MATLAB commands) can work seamlessly
when provided with fp16 input arguments. However, arithmetic in this class is very
slow because of both the overhead of object orientation in MATLAB and the cost
of converting to and from the fp16 storage format. In the experiments with linear
systems in [23], [24] the dimension was restricted to a few hundred in order to obtain
reasonable computing times.

Moler has also written a class vfp16 that allow the partitioning of a 16-bit word
between significand and exponent to be varied, in particular allowing bfloat16 to be
simulated [36]. This class also allows subnormals to be supported or not, and it
allows fused multiply-adds (FMAs) to be done within the inner products inside a
matrix multiplication.

5. Parametrized rounding. We now develop a different strategy to simulate
low precision arithmetic in MATLAB. Instead of defining a new data type, we store all
variables in double precision or single precision but ensure that they have the precision
and range corresponding to the lower precision. Computations are performed in the
storage format but rounded to the target precision.

8

Table 5.1
Rounding modes supported by MATLAB function chop, as specified by the function’s

options.round parameter.

options.round Rounding modes
1 Round to nearest, with tie broken by rounding to the number with

an even last bit
2 Round towards ∞
3 Round towards −∞
4 Round towards zero
5 Stochastic rounding, mode 1: round to the next larger or smaller

floating-point number x with probability equal to 1 minus the distance
to x

6 Stochastic rounding, mode 2: round up or down with equal probabil-
ity.

This strategy is facilitated by our MATLAB function chop. It takes an fp64 or
fp32 argument and rounds it to a precision chosen from among bfloat16, fp16, fp32,
fp64, or a user-defined format, using one of the rounding modes listed in Table 5.1.
We support stochastic rounding because of its increasing adoption in machine learning
[14] and the need for better understanding of its behavior. The user-defined format
allows selection of, for example, the nonstandard fp8 and fp16 formats proposed in
[50]. See the appendix for a link to chop and examples of its usage.

We note that MATLAB has an undocumented function feature(’setround’,mode),
(as used in [43], for example), which sets the rounding mode on the processor. Here,
mode can specify any of the first four rounding modes in Table 5.1. This function
works for the built-in fp32 and fp64 data types only, so is not useful within chop, but
we have used it to test chop.

The chop function allows subnormal numbers to be supported or flushed to zero.
The reason we allow fp64 as an output option is that by asking for subnormals not to
be supported one can explore the effect of flushing subnormals to zero in fp64. The
chop function can also create random bit flips in the significand, which enable soft
errors to be simulated.

Chopping refers to rounding towards zero, which was the form of rounding used
in certain computer architectures prior to the introduction of the IEEE standard.
The less specific name round would therefore be preferable to chop, but round is a
built-in MATLAB function that rounds to the nearest integer or to a specified number
of decimal places. The chop function is consistent with earlier MATLAB functions of
the same name. The original Fortran version of MATLAB had a function chop [33],
[35]:

“The result of each floating point operation may also be ‘chopped’
to simulate a computer with a shorter word length . . . the statement
CHOP(p) causes the p least significant octal or hexadecimal digits
in the result of each floating point operation to be set to zero.”

This function was implemented by using the Fortran binary operator .AND. to mask
the result of every arithmetic operation. Our function chop builds on a function of
the same name in the Matrix Computation Toolbox [19] that has been successfully
used to simulate single precision arithmetic6 with round to nearest in, for example,
[5], [20], [21], [22].

Applying chop to the result of every arithmetic operation can be cumbersome.

6MATLAB first provided single precision arithmetic in MATLAB 7.0 (Release 14) in 2004.

9

For example, the scalar computation x = a + b*c would be rewritten

x = chop(a + chop(b*c))

However, if an algorithm is expressed in a vectorized fashion, just a few invocations
of chop may be required. Moler’s function lutx, discussed in the previous section, is
a good example. To produce a modified function lutx_chop that uses chop we need
to change just two lines, as shown in this extract:

% Compute multipliers

i = k+1:n;

A(i,k) = chop(A(i,k)/A(k,k));

% Update the remainder of the matrix

j = k+1:n;

A(i,j) = chop(A(i,j) - chop(A(i,k)*A(k,j)));

The expression chop(A(i,k) * A(k,j))) forms a rank-1 matrix in double precision
and then rounds every element to the target precision.

For optimal efficiency we need to minimize the number of calls to chop, and
this may require reformulating a computation. For example, consider the multi-
plication C = AB of n × n matrices. If we code at the scalar level, C(i, j) =∑n

k=1A(i, j)B(k, j), then O(n3) calls to chop will be required, as chop will be ap-
plied to the result of every scalar multiplication and addition. Using the formulation
C(:, j) =

∑n
k=1A(:, k)B(k, j) requires O(n2) calls, but the outer product formulation

C =
∑n

k=1A(:, k)B(k, :) requires just O(n) calls to chop (analogously to lutx_chop)
and so is the most efficient way to code matrix multiplication with chop.

We discuss the key features of the function chop. The general form of a call is
chop(x,options), where options is a structure used to define the arithmetic format,
the rounding mode, whether subnormal numbers are supported, and whether random
bit flips are required. The second input argument, options, can be omitted as long as
the required options are set up on the initial call to chop. A persistent variable in the
function stores the selected options for future use during a session. Importantly, all
arithmetic operations in chop are vectorized, so best efficiency is obtained by calling
it with a vector or matrix argument. The rounding operation is done in the separate
function roundit.

A significant advantage of chop over the use of a class is that since all data is
maintained in single precision or double precision the overheads of conversions to and
from other formats are avoided.

The simple nature of chop provides some benefits. Mixed precision arithmetic
is easily implemented, simply by using different options arguments on different in-
vocations of chop. An FMA y = a + b*c can be simulated using chop(a + b*c):
assuming the target precision is single or less and that a, b, and c are outputs from
chop at that precision, the product b*c will be computed exactly at double precision
and so a + b*c will be obtained correctly rounded to double-precision and will then
be correctly rounded to the target precision.

6. Experiments. We now describe experiments with the chop function that
illustrate some of the points made in the previous sections and show how insight into
low precision computations can be gained.

Our experiments were carried out in MATLAB R2018b on a machine with an Intel
Core i7-6800K CPU with 6 cores running at 3.4–3.6GHz. Our codes are available at

10

Table 6.1
The error measure min{ ε > 0 : |C−Ĉ| ≤ ε|A||B| } for random n×n A and B from the uniform

[0, 1] distribution, where C = AB and Ĉ is the computed product. The product C is computed entirely
in fp16 or in fp64 and then rounded to fp16 (“fp64 → fp16”).

n fp16 fp64 → fp16

500 1.19e-02 4.88e-04
1000 2.30e-02 4.88e-04
1500 4.07e-02 3.67e-04
2000 4.60e-02 4.88e-04
2500 6.88e-02 4.29e-04

Table 6.2
Time in seconds for LU factorizing with partial pivoting an n×n matrix randn(n) using Moler’s

lutx function. The function lutx chop is lutx modified with calls to chop, as discussed in section 5,
with fp16 arithmetic and subnormals supported.

n lutx with fp16 class lutx_chop at fp16 lutx in double

50 6.3 3.8e-2 1.6e-3
100 4.9e1 4.9e-2 3.2e-3
250 7.2e2 3.4e-1 3.7e-2
500 5.8e3 3.4 4.1e-1

https://github.com/SrikaraPranesh/LowPrecision Simulation.
We note that the defaults for chop are to support subnormals for fp16, fp32, and

fp64 and not to support them for bfloat16.
The first experiment compares two implementations of matrix multiplication in

fp16 arithmetic: the first carries out every operation in fp16 and the second computes
the product in fp64 and then rounds to fp16. The error bound in (3.3) for the latter
computation is constant, whereas for fp16 the error bound in (3.5) is proportional to
n. The results in Table 6.1 for random fp16 A and B confirm the behavior suggested
by the bounds, with the fp64 → fp16 errors approximately constant and the fp16
errors growing proportional to n.

Table 6.2 gives the times to LU factorize with partial pivoting an n×n matrix with
random fp16 entries from the normal (0, 1) distribution using Moler’s lutx function
called by his fp16 class and using lutx_chop with fp16 arithmetic and with subnor-
mal numbers supported. Results generated by the lutx function and our function
lutx_chop are bitwise identical. We see that lutx_chop is of order 1000 times faster
than lutx. Clearly, the code using the fp16 class is spending almost all its time on
overheads and not on floating-point arithmetic. The last column of the table shows
that the conversions to fp16 in chop cause a factor 10 or so slowdown compared with
running the code in double precision. This is comparable to the typical slowdown
reported for the rpe library [6], which is compiled Fortran rather than semi-compiled
MATLAB.

The ability to vary the precision with which a code executes can be useful in a
variety of situations. As a simple example, consider the harmonic series 1 + 1/2 +
1/3+· · · . The series diverges, but when summed in the natural order in floating-point
arithmetic it converges, because the partial sums grow while the addends decrease,
and eventually the addends are small enough that they do not change the partial
sum. Table 6.3 shows the computed harmonic series for five different precisions, along
with how many terms are added before the sum becomes constant. The results for the
first four arithmetics were computed with MATLAB using the chop function (and the
bfloat16 and fp16 results have been reproduced in Julia [44]). The arithmetic denoted

11

https://github.com/SrikaraPranesh/LowPrecision_Simulation

Table 6.3
Computed harmonic series

∑∞
i=1 1/i in five precisions of floating-point arithmetic and number

of terms for the computed sum to converge.

Arithmetic Sum Terms

fp8 3.5000 16
bfloat16 5.0625 65

fp16 7.0859 513
fp32 15.404 2097152
fp64 34.122 2.81 · · · × 1014

Table 6.4
Computed harmonic series

∑∞
i=1 1/i in fp16 and bfloat16 arithmetic for six rounding modes,

with number of terms for the computed sum to converge. The stochastic rounding modes are defined
in Table 5.1.

bfloat16 fp16
Rounding mode Sum Terms Sum Terms

To nearest 5.0625 65 7.0859 513
Towards ∞ 2.2× 1012 5013 ∞ 13912
Towards −∞ 4.0000 41 5.7461 257
Towards 0 4.0000 41 5.7461 257
Stochastic, mode 1 4.1875 38 6.1797 277
Stochastic, mode 2 4.0938 34 6.2148 257

by fp8 is not standard, but is a form of quarter precision implemented in Moler’s fp8
class [32], [34]; it apportions 5 bits to the significand and 3 to the exponent. The fp64
value is reported by Malone [31], based on a computation that took 24 days.

In Table 6.4 we focus on bfloat16 and fp16 and show the computed harmonic
series for all the different rounding modes supported by chop. We see significant
variation of the result with the rounding mode.

Next, we show the value of being able to control whether or not subnormal num-
bers are supported. We evaluate the sum

∑n
i=1 1/(n − i + 1)2 for n = 102, 103, 104

in fp16 arithmetic with and without subnormal numbers, using the chop function.
As Table 6.5 shows, for n = 103, 104 the sum is larger when subnormal numbers are
supported than when they are flushed to zero. This is because the terms are summed
from smallest to largest, so that the smaller terms can contribute to the sum, even if
they are subnormal [21], [22, sec. 4.2].

The next experiment emphasizes how quickly bfloat16 and fp16 can lose accuracy
and the importance, again, of subnormal numbers. We solve the ordinary differential
equation y′ = −y =: f(x, y) over [0, 1], with y(0) = 0.01, using Euler’s method,
yk+1 = yk +hf(xk, yk), y0 = y(0), where h = 1/n, with several n between 10 and 105.
The absolute (global) errors |y(1) − ŷn| are plotted in Figure 6.1. Since the global
error in Euler’s method is of order h, we expect a linear decrease in the error as n
increases until rounding error starts to dominate, at which point the error will increase
linearly, and the theory suggests that the optimal h is of order u1/2, corresponding
to an optimal n of order u−1/2 [29, pp. 374–376]. This is roughly what we see in
Figure 6.1: note that u−1/2 = 16 for bfloat16. However, perhaps surprising is that
when subnormal numbers are flushed to zero in fp16 the errors start to grow much
sooner than when subnormals are supported. In fact, once n & 100 the hf(xk, yk) term
underflows and the computed yk are constant when subnormals are not supported.

Our final experiment compares the different rounding modes in the solution of
linear systems. We generate 100 linear systems Ax = b, with A ∈ R100×100 and
b having random fp16 elements from the normal (0,1) distribution. Each system is

12

Table 6.5
The computed sum

∑n
i=1 1/(n − i + 1)2 in fp16. ŝ1: with subnormal numbers, ŝ2: without

subnormal numbers.

n ŝ1 ŝ2 ŝ1 − ŝ2
100 1.635742e+00 1.635742e+00 0.00e+00

1000 1.644531e+00 1.637695e+00 6.84e-03
10000 1.645508e+00 1.637695e+00 7.81e-03

101 102 103 104 105
10-8

10-7

10-6

10-5

10-4

10-3

10-2

Error

fp16 no subnormals

bfloat16

fp16 with subnormals

fp32

fp64

Figure 6.1. Absolute errors in Euler’s method for y′ = −y, y(0) = 0.01, over [0, 1], in different
simulated arithmetics, with stepsize h = 1/n.

solved by LU factorization with partial pivoting and substitution using lutx_chop,
with fp16 simulation and each of the supported rounding modes. Table 6.6 shows the
mean, maximum, and minimum backward errors ‖b−Ax̂‖1/(‖A‖1‖x‖1 +‖b‖1) for the
computed solutions x̂. As might be expected, round to nearest produces the smallest
backward errors.

7. Conclusions. We have analyzed the use of higher precision arithmetic with
rounding to simulate lower precision arithmetic, showing that it is valid way to sim-
ulate bfloat16 or fp16 using fp32 or fp64 arithmetic. It is essential to keep in mind
the limitations pointed out in section 3, notably that results of greater accuracy than
expected can be obtained if one carries out sequences of operations at higher precision
before rounding back to the target format.

Our MATLAB function chop rounds to a specified target format, including fp16
or bfloat16 or a user-specified format, respecting precision and range, and offers six
different rounding modes and optional support for subnormal numbers. It incurs a
performance penalty of about an order of magnitude when applied to a pure MATLAB
program file for LU factorization, compared with execution in double precision, which
compares favorably with the overhead of Moler’s fp16/vfp16 MATLAB class.

Software simulation provides a useful tool for understanding the effects of lower-
ing the precision in numerical computations, as well as the benefits of representing
subnormal numbers instead of flushing them to zero, as the examples in section 6

13

Table 6.6
Backward errors for 100 random linear systems Ax = b with A ∈ R100×100 solved in fp16

arithmetic using LU factorization with partial pivoting and substitution. The stochastic rounding
modes are defined in Table 5.1.

Round to Round Round Round Stochastic Stochastic
nearest towards +∞ towards −∞ towards zero rounding 1 rounding 2

Mean 5.24e-04 3.47e-03 3.50e-03 3.45e-03 6.86e-04 9.09e-04
Min 3.52e-04 1.87e-03 2.05e-03 1.94e-03 4.75e-04 6.55e-04
Max 7.74e-04 6.92e-03 5.72e-03 6.51e-03 1.44e-03 6.51e-03

demonstrate. It also provides a convenient way to explore floating-point formats not
supported in hardware as well as stochastic rounding, which is becoming popular in
machine learning.

Appendix A. The MATLAB function chop.
The function chop uses the function roundit. Both functions are available from

https://github.com/higham/chop. Test codes test_chop and test_roundit thor-
oughly test these functions. There are two main usages of chop. First, one can pass
options with every call:

options.precision = ’s’; options.round = 5; options.subnormal = 1;

...

A(i,j) = chop(A(i,j) - chop(A(i,k) * A(k,j),options),options);

Here, options.precision = ’s’ specifies that the precision is single, options.round
= 5 specifies stochastic rounding, mode 1 (see Table 5.1), and options.subnormal

= 1 specifies that subnormal numbers are not flushed to zero. For full details of the
options see the link given at the start of the section. The above usage is rather tedious
and produces cluttered code. Instead we can set up the arithmetic parameters on a
call of the form chop([],options) and exploit the fact that subsequent calls with
just one input argument will reuse the previously specified options:

options.precision = ’s’; options.subnormal = 1; chop([],options)

...

A(i,j) = chop(A(i,j) - chop(A(i,k)*A(k,j)));

The current value of options stored inside the function (in a persistent variable, whose
value is retained during the session until the function is cleared with clear chop) can
be obtained with

[~,options] = chop

14

https://github.com/higham/chop

REFERENCES

[1] ARM Architecture Reference Manual. ARMv8, for ARMv8-A Architecture Profile. ARM Lim-
ited, Cambridge, UK, 2018. Version dated 31 October 2018. Original release dated 10 April
2013.

[2] Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput., 39(6):
A2834–A2856, 2017.

[3] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

[4] Matthew Chantry, Tobias Thornes, Tim Palmer, and Peter Düben. Scale-selective precision
for weather and climate forecasting. Monthly Weather Review, 147(2):645–655, 2019.

[5] Anthony J. Cox and Nicholas J. Higham. Accuracy and stability of the null space method for
solving the equality constrained least squares problem. BIT, 39(1):34–50, 1999.

[6] Andrew Dawson and Peter D. Düben. rpe v5: An emulator for reduced floating-point precision
in large numerical simulations. Geoscientific Model Development, 10(6):2221–2230, 2017.

[7] Andrew Dawson, Peter D. Düben, David A. MacLeod, and Tim N. Palmer. Reliable low
precision simulations in land surface models. Climate Dynamics, 51(7):2657–2666, 2018.

[8] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire To-
mov, and Ichitaro Yamazaki. Accelerating numerical dense linear algebra calculations with
GPUs. In Numerical Computations with GPUs, Volodymyr Kindratenko, editor, Springer
International Publishing, Cham, 2014, pages 3–28.

[9] Sanghamitra Dutta, Ziqian Bai, Tze Meng Low, and Pulkit Grover. CodeNet: Training
large scale neural networks in presence of soft-errors. arXiv e-prints, page 54, 2019.
arXiv:1903.01042.

[10] Michael Feldman. Fujitsu reveals details of processor that will power Post-K supercom-
puter. https://www.top500.org/news/fujitsu-reveals-details-of-processor-that-will-power-
post-k-supercomputer, August 2018. Accessed November 22, 2018.

[11] Michael Feldman. IBM takes aim at reduced precision for new generation of
AI chips. https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-
generation-of-ai-chips/, December 2018. Accessed January 8, 2019.

[12] Michael Feldman. Record-breaking exascale application selected as Gordon Bell fi-
nalist. https://www.top500.org/news/record-breaking-exascale-application-selected-as-
gordon-bell-finalist/, September 2018. Accessed January 8, 2019.

[13] Samuel A. Figueroa. When is double rounding innocuous? SIGNUM News, 30(3):21–26, 1995.
[14] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning

with limited numerical precision. In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of JMLR: Workshop and Conference Proceedings, 2015,
pages 1737–1746.

[15] Azzam Haidar, Ahmad Abdelfattah, Mawussi Zounon, Panruo Wu, Srikara Pranesh, Stanimire
Tomov, and Jack Dongarra. The design of fast and energy-efficient linear solvers: On the
potential of half-precision arithmetic and iterative refinement techniques. In Computational
Science—ICCS 2018, Yong Shi, Haohuan Fu, Yingjie Tian, Valeria V. Krzhizhanovskaya,
Michael Harold Lees, Jack Dongarra, and Peter M. A. Sloot, editors, Springer International
Publishing, Cham, 2018, pages 586–600.

[16] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Harnessing GPU
tensor cores for fast FP16 arithmetic to speed up mixed-precision iterative refinement
solvers. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, SC ’18 (Dallas, TX), Piscataway, NJ, USA, 2018, pages
47:1–47:11. IEEE Press.

[17] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra. Investigating half precision
arithmetic to accelerate dense linear system solvers. In Proceedings of the 8th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17 (Denver,
CO), November 2017, pages 10:1–10:8.

[18] Sam Hatfield, Peter Düben, Matthew Chantry, Keiichi Kondo, Takemasa Miyoshi, and Tim
Palmer. Choosing the optimal numerical precision for data assimilation in the presence of
model error. Journal of Advances in Modeling Earth Systems, 10(9):2177–2191, 2018.

[19] Nicholas J. Higham. The Matrix Computation Toolbox. http://www.maths.manchester.ac.uk/
∼higham/mctoolbox.

[20] Nicholas J. Higham. The accuracy of solutions to triangular systems. SIAM J. Numer. Anal.,
26(5):1252–1265, 1989.

[21] Nicholas J. Higham. The accuracy of floating point summation. SIAM J. Sci. Comput., 14(4):

15

https://developer.arm.com/docs/ddi0487/latest
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1175/mwr-d-18-0308.1
https://doi.org/10.1175/mwr-d-18-0308.1
https://doi.org/10.1023/A:1022365107361
https://doi.org/10.1023/A:1022365107361
https://doi.org/10.5194/gmd-10-2221-2017
https://doi.org/10.5194/gmd-10-2221-2017
https://doi.org/10.1007/s00382-017-4034-x
https://doi.org/10.1007/s00382-017-4034-x
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1007/978-3-319-06548-9_1
https://arxiv.org/pdf/1903.01042.pdf
https://arxiv.org/pdf/1903.01042.pdf
https://www.top500.org/news/fujitsu-reveals-details-of-processor-that-will-power-post-k-supercomputer
https://www.top500.org/news/fujitsu-reveals-details-of-processor-that-will-power-post-k-supercomputer
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/ibm-takes-aim-at-reduced-precision-for-new-generation-of-ai-chips/
https://www.top500.org/news/record-breaking-exascale-application-selected-as-gordon-bell-finalist/
https://www.top500.org/news/record-breaking-exascale-application-selected-as-gordon-bell-finalist/
https://doi.org/10.1145/221332.221334
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
https://doi.org/10.1007/978-3-319-93698-7_45
https://doi.org/10.1007/978-3-319-93698-7_45
http://dl.acm.org/citation.cfm?id=3291656.3291719
http://dl.acm.org/citation.cfm?id=3291656.3291719
http://dl.acm.org/citation.cfm?id=3291656.3291719
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1029/2018MS001341
https://doi.org/10.1029/2018MS001341
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
https://doi.org/10.1137/0726070
https://doi.org/10.1137/0914050

783–799, 1993.
[22] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[23] Nicholas J. Higham and Theo Mary. A new preconditioner that exploits low-rank approxima-
tions to factorization error. SIAM J. Sci. Comput., 41(1):A59–A82, 2019.

[24] Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon. Squeezing a matrix into half
precision, with an application to solving linear systems. MIMS EPrint 2018.37, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, November 2018.
15 pp. Revised March 2019.

[25] S. i. O’uchi, H. Fuketa, T. Ikegami, W. Nogami, T. Matsukawa, T. Kudoh, and R. Takano.
Image-classifier deep convolutional neural network training by 9-bit dedicated hardware
to realize validation accuracy and energy efficiency superior to the half precision floating
point format. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
2018, pages 1–5.

[26] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985. Insti-
tute of Electrical and Electronics Engineers, New York, 1985.

[27] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std 754-
1985). IEEE Computer Society, New York, 2008. 58 pp. ISBN 978-0-7381-5752-8.

[28] Intel Corporation. BFLOAT16—hardware numerics definition, November 2018. White paper.
Document number 338302-001US.

[29] Eugene Isaacson and Herbert Bishop Keller. Analysis of Numerical Methods. Wiley, New York,
1966. xv+541 pp. Reprinted by Dover, New York, 1994. ISBN 0-486-68029-0.

[30] Julia Computing. Bfloat16s. https://github.com/JuliaComputing/BFloat16s.jl.
[31] David Malone. To what does the harmonic series converge? Irish Math. Soc. Bulletin, 71:

59–66, 2013.
[32] Cleve B. Moler. Cleve Laboratory. http://mathworks.com/matlabcentral/fileexchange/59085-

cleve-laboratory.
[33] Cleve B. Moler. MATLAB users’ guide. Technical Report CS81-1 (revised), Department of

Computer Science, University of New Mexico, Albuquerque, New Mexico, August 1982. 60
pp.

[34] Cleve B. Moler. “Half precision” 16-bit floating point arithmetic. http://blogs.mathworks.com/
cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/, May 2017.

[35] Cleve B. Moler. The historic MATLAB users’ guide. https://blogs.mathworks.com/cleve/2018/
02/05/the-historic-matlab-users-guide/, February 2018.

[36] Cleve B. Moler. Variable format half precision floating point arithmetic. https:
//blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-
point-arithmetic/, January 2019.

[37] Jean-Michel Muller. Elementary Functions: Algorithms and Implementation. Third edition,
Birkhäuser, Boston, MA, USA, 2016. xxv+283 pp. ISBN 978-1-4899-7981-0.

[38] Krishna Palem and Avinash Lingamneni. Ten years of building broken chips: The physics and
engineering of inexact computing. ACM Trans. Embed. Comput. Syst., 12(2s):87:1–87:23,
2013.

[39] T. N. Palmer. More reliable forecasts with less precise computations: A fast-track route to
cloud-resolved weather and climate simulators? Phil. Trans. R. Soc. A, 372(2018), 2014.

[40] Naveen Rao. Beyond the CPU or GPU: Why enterprise-scale artificial intelligence requires
a more holistic approach. https://newsroom.intel.com/editorials/artificial-intelligence-
requires-holistic-approach, May 2018. Accessed November 5, 2018.

[41] Christian Rau. Half 1.12. IEEE 754-based half-precision floating point library. http://half.
sourceforge.net/index.html, March 2017.

[42] Pierre Roux. Innocuous double rounding of basic arithmetic operations. Journal of Formalized
Reasoning, 7(1):131–142, 2014.

[43] Siegfried M. Rump. Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica, 19:287–449, 2010.

[44] Viral Shah. Comment on Nicholas J. Higham, “Half Precision Arithmetic: fp16 Versus
bfloat16”. https://nickhigham.wordpress.com/2018/12/03/half-precision-arithmetic-fp16-
versus-bfloat16/#comment-5466, December 2018.

[45] Alexey Svyatkovskiy, Julian Kates-Harbeck, and William Tang. Training distributed deep
recurrent neural networks with mixed precision on GPU clusters. In MLHPC’17: Proceed-
ings of the Machine Learning on HPC Environments, ACM Press, New York, 2017, pages
10:1–10:8.

[46] Giuseppe Tagliavini, Stefan Mach, Davide Rossi, Andrea Marongiu, and Luca Benin. A trans-

16

http://dx.doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/18M1182802
https://doi.org/10.1137/18M1182802
http://eprints.maths.manchester.ac.uk/2690
http://eprints.maths.manchester.ac.uk/2690
https://doi.org/10.1109/ISCAS.2018.8350953
https://doi.org/10.1109/ISCAS.2018.8350953
https://doi.org/10.1109/ISCAS.2018.8350953
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://software.intel.com/en-us/download/bfloat16-hardware-numerics-definition
https://github.com/JuliaComputing/BFloat16s.jl
https://www.maths.tcd.ie/pub/ims/bull71/
http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory
http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory
http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2018/02/05/the-historic-matlab-users-guide/
https://blogs.mathworks.com/cleve/2018/02/05/the-historic-matlab-users-guide/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/
http://dx.doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1145/2465787.2465789
https://doi.org/10.1145/2465787.2465789
https://doi.org/10.1098/rsta.2013.0391
https://doi.org/10.1098/rsta.2013.0391
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach
http://half.sourceforge.net/index.html
http://half.sourceforge.net/index.html
https://doi.org/10.6092/issn.1972-5787/4359
https://doi.org/10.1017/S096249291000005X
https://nickhigham.wordpress.com/2018/12/03/half-precision-arithmetic-fp16-versus-bfloat16/#comment-5466
https://nickhigham.wordpress.com/2018/12/03/half-precision-arithmetic-fp16-versus-bfloat16/#comment-5466
https://doi.org/10.1145/3146347.3146358
https://doi.org/10.1145/3146347.3146358
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.23919/DATE.2018.8342167

precision floating-point platform for ultra-low power computing. In 2018 Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE), March 2018, pages 1051–1056.

[47] Tobias Thornes, Peter Düben, and Tim Palmer. On the use of scale-dependent precision in
earth system modelling. Quart. J. Roy. Meteorol. Soc., 143(703):897–908, 2017.

[48] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Computing, 36(5-6):232–240, 2010.

[49] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra solvers
for multicore with GPU accelerators. In Proc. of the IEEE IPDPS’10, Atlanta, GA, April
19-23 2010, pages 1–8. IEEE Computer Society. DOI: 10.1109/IPDPSW.2010.5470941.

[50] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan.
Training deep neural networks with 8-bit floating point numbers. In Advances in Neural
Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Curran Associates, Inc., 2018, pages 7686–7695.

17

https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.23919/DATE.2018.8342167
https://doi.org/10.1002/qj.2974
https://doi.org/10.1002/qj.2974
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1109/IPDPSW.2010.5470941
https://doi.org/10.1109/IPDPSW.2010.5470941
http://papers.nips.cc/paper/7994-training-deep-neural-networks-with-8-bit-floating-point-numbers.pdf

