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Stability analysis of a chain of non-identical
vehicles under bilateral cruise control
Liang Wanga, Françoise Tisseurb, Gilbert Strangc and Berthold K.P. Hornd∗

Abstract—Bilateral cruise control (BCC) suppresses traffic
flow instabilities. Previously, for simplicity of analysis, vehicles
in BCC traffic flow were assumed to be identical, i.e., using
the same gains for control. In this study, we analyze the
stability of an inhomogeneous vehicular chain in which the gains
used by different vehicles are not the same. Not unexpectedly,
mathematical analysis becomes more difficult, and leads to a
quadratic eigenvalue problem. We study several different cases,
and shows that a chain of vehicles under bilateral cruise control
is stable even when the vehicles do not all have the same control
system properties. Numerical simulations validate the analysis.

Index Terms—bilateral cruise control (BCC), linear feedback
control, stability analysis, inhomogeneous system, quadratic
eigenvalue problem.

I. INTRODUCTION AND RELATED WORK

FOR self-driving cars, and those with some form of driver
assistance, several measurements of the environment can

be obtained simultaneously. For instance, for a sensor based
control system, it is no more difficult to “look back” than
it is to “look forward.” New control strategies should be
explored that exploit this increased capability. For instance,
it has been shown that “stop-and-go” traffic and “phantom
traffic jams” (appearing regularly in today’s highway traffic)
can be suppressed in traffic flow using newly designed cars
with some form of advanced cruise control. One basic question
is how to control a chain of cars. Should control be global and
central? How much “freedom” should be given to individual
cars? Several models have been proposed.

One well-known approach is platoon control [1]–[4]. In
brief, the platoon controller tries to “bind” successive cars
together and force them to move in lock-step like carriages
in a train. In general, a single lead vehicle controls a whole
chain and plays the same role as a locomotive in a train.
New platoon models, e.g., decentralized platoon, bi-directional
platoon, multi-neighbor platoon, are continuing to be proposed
[5]–[13]. See also [14], [15] for theoretical analyses of various
platoon models. Some questions immediately come to mind,
for instance, “are self-driving cars willing to give up their
freedom?”, “will the passengers in the self-driving cars trust
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other vehicles and allow very tight spacing between cars?”,
“who should be the lead vehicle? (why not me?)” and so on.

A different approach is to reserve as much freedom for
self-driving cars as for human drivers. Newly designed adap-
tive cruise control (ACC) systems control vehicles moving
independently like cars, rather than like carriages in a train.
In this approach, global-control parameters, such as (preset)
desired speed and (preset) desired spacing between cars, are
not allowed. The control system (including control commands
such as the desired acceleration) of one car is not accessible
to ACC systems in other cars. The input of the ACC system
comes from the vehicle’s on-board sensors, and control of the
vehicle is based entirely on the outputs of its own sensors.
One newly extended ACC system is known as bilateral cruise
control (BCC) [16]–[19], in which the vehicle is controlled
to stay as far from the leading car as from the following car.
See also [20]–[22] for previous efforts involving use of bi-
directional information flow.

This “freedom” also means that vehicles in the traffic flow
need not be identical. Even if the same control strategy
is used, the mass and control ability may be different for
different cars. In this paper, we study a line of inhomogeneous
traffic flow containing vehicles with different control gains.
All vehicles use bilateral cruise control. For stability analysis,
control of each vehicle is simplified to a linear feedback
system. But, unlike previous analyses, in which all cars are
assumed to use the same control gains [5]–[8], [16]–[19],
we explore here the more general case in which vehicles
preserve their “individuality” by using different gains. The
corresponding mathematical analysis becomes more difficult
than the case of identical-vehicle flow, and thus, such analysis,
and the corresponding results, have not been explored before
(at least not in the field of ACC design and traffic stability
analysis). We study several cases — from special to more and
more general. Different from traditional quadratic eigenvalue
problem (QEP) corresponding to some physical models, e.g.
mechanical structure analysis [23], Newton III will not be
assumed when we analyze the QEP corresponding to a chain
of non-identical vehicles. As a result, the stability analysis of
such non-identical vehicular chain is not trivial. In this paper,
we provide some mathematical “tricks” to prove the stability
of the non-identical vehicular chain under BCC.

The stability analysis of non-identical vehicular chains
under BCC shows that bilateral cruise control absolutely does
not require wireless communication. Only one simple rule
is used: aim to stay in the middle. This works even if the
control strategy is implemented differently in different vehicles
(i.e., using different gains). Such BCC cars can be made
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differently and run independently. The philosophy of vehicles,
namely “control of my car, by my car and for my car”, is
totally preserved by bilateral cruise control. We also provide
numerical simulations to validate the theoretical analysis.

II. BILATERAL CRUISE CONTROL REVIEW

Let yn(t) be the position of the nth car, and vn(t) = ẏn(t)
be its velocity1. The pair {yn(t), vn(t)} gives the state of car
n, which is adjusted through the acceleration an(t) = ÿn(t)
commanded by the control system.

In this paper, control of car n is provided by a simple linear
feedback system:

an = kd(dn − sn) + kv(rn − un), (1)

where dn = yn−1 − yn − ℓ denotes the space between
the current car and its leading car (with car length ℓ), and
rn = vn−1 − vn denotes the relative velocity between the
current car and its leading car. The proportional gain kd and
derivative gain kv are both positive. The desired space sn
and desired speed difference un are specified differently in
different vehicle-control models as explained next.

For instance, drivers can implement a “constant headway”
car-following model (CFM):

sn = s and un = 0. (2)

Here car n tries to keep a constant space from its leading car
n−1. Alternatively, the desired space can also be set adaptively
by appealing to a constant reaction time T . Then

sn = vnT and un = 0. (3)

This model is known as “constant-time headway” CFM [24]–
[26]. In these two models, control of car n is based only on
the relative state of car n− 1 immediately ahead.

For human drivers, it is difficult (or distracting) to look
forward and backward simultaneously, however, that is not a
problem for a sensor-based control system. A second pair of
sensors can be used to measure space and speed difference
between the current car and the car following. These two new
measurements dn+1 and rn+1 can then be used for control.
For instance, we can set

sn = dn+1 and un = rn+1. (4)

Then, eq. (1) becomes

an = kd
(
dn − dn+1

)
+ kv

(
rn − rn+1

)
. (5)

We call this new control strategy the bilateral cruise control
(BCC). Here, control of car n is based on the relative positions
and relative velocities of both car n− 1 ahead and car n+ 1
behind. The control objective of BCC is to stay in the middle
between the “front and back” neighbors, and to run at the
average speed of these two neighbors. Fig. 1 shows the car-
following control model and bilateral control model. See [16],
[17] for more details about implementation of BCC.

1Note that yn−1 and yn denote the position of the leading and current cars.
The positive direction is chosen as the direction in which cars are moving,
thus, yn−1 − yn > 0 (see Fig. 1).

(a) Car-following model

(b) Bilateral cruise control model

Fig. 1. The car-following model (CFM) and bilateral cruise control
(BCC) model. The blocks with “L”, “C” and “F” denote the leading
car, current car and following car. (a) CFM is based only on the state
of the leading car “L”. (b) BCC uses the states of both leading car
“L” and following car “F”.

A physical analog of a line of traffic under BCC is a big
“spring-damper-mass” system shown in Fig. 2. Intuitively, a
perturbation will lead to damped waves travelling outward
in both directions from the point of perturbation, and the
amplitude of these waves will decay as they travel [17].
Thus, traffic flow under BCC is stable for all kd > 0 and
kv > 0 [16]–[18]. Ref. [18] provides the analysis of BCC
traffic flow under various boundary conditions2: infinite line,
circular boundaries, fixed-fixed boundaries, free-free bound-
aries and fixed-free boundaries. Thus, traffic flow instabilities
can be suppressed by automated control systems in individual
vehicles without global control.

Fig. 2. A physical analog of the traffic flow under bilateral control is a big
“spring-damper-mass” system.

Looking at Fig. 2, we can see that Newton III applies to
two successive masses. That is, the force on the two ends
of the “spring” (and similarly the force on the two ends
of the “damper”) between successive masses are equal in
magnitude, and opposite in direction. Actually, Newton III —
action equals reaction — can be thought as a special kind
of communication: “no matter what I do to you, you do the
same to me.” In the original BCC model (5), the need for
explicit communication between vehicles to enforce this rule
is avoided simply by using the same gains kd and kv for
all vehicles. In effect, in order to guarantee Newton III (and
the resulting system stability), vehicles need to be identical
in control properties (i.e., having the same gains {kd, kv}).
When different gains kd and kv are used by different vehicles,
Newton III will no longer hold. There will be no physical

2The boundaries in platooning are used to control the desired states of all
vehicles in the platoon. The boundary condition in BCC is just to design the
ACC system such that the car can operate when there is no vehicle ahead
and/or no vehicle behind.
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analog such as that shown in Fig. 2. The basic question then
is “will inhomogeneous traffic flow be stable?” In the rest of
this paper, we will study this problem step by step.

III. A LINE OF INHOMOGENEOUS TRAFFIC

We still assume that all vehicles (except the first and last
cars) in the traffic flow implement BCC strategy: trying to stay
in the middle. The first car 0 (whose leading car is far away) is
moving freely at some constant speed v0(t) = V , and the last
car N (whose following car is far away) simply implements
“constant headway” CFM with sN = s. Now, the vehicles are
non-identical, and the attributes, e.g. mass and control ability,
for different cars might be different. Mathematically, various
gains might be used in different cars. That is, eq. (5) becomes

an = k
(n)
d

(
dn − dn+1

)
+ k(n)v

(
rn − rn+1

)
(6)

for n = 1, 2, · · · , N − 1, and for n = N , we find:

aN = k
(N)
d

(
dN − s

)
+ k(N)

v

(
rN − 0

)
. (7)

Let xn(t) = yn(t)+n · (s+ ℓ)−y0(0)−V · t be the deviation
from the corresponding “equilibrium position” y0(0)+V · t−
n · (s + ℓ) where car n was supposed to be, then we find
x0(t) = 0, dn = xn−1−xn+s, rn = ẋn−1−ẋn and an = ẍn.
Let

x(t) =
(
x1(t) · · · xn(t) · · · xN (t)

)T
, (8)

then the ordinary differential equation (ODE) system (6) and
(7) can be written in the following matrix-vector form:

ẍ(t) +KvSẋ(t) +KdSx(t) = 0. (9)

Both Kd and Kv are (positive) diagonal matrices, i.e.,

Kd =


k
(1)
d

. . .

k
(N)
d

 ,Kv =


k
(1)
v

. . .

k
(N)
v

 . (10)

The matrix S is symmetric and positive-definite [27]:

S =


2 −1

−1
. . . . . .
. . . 2 −1

−1 1

 . (11)

Actually, S = ATA with the invertible matrix A as [28]:

A =


1

−1 1

. . . . . .

−1 1

 . (12)

The stability of the non-identical vehicular chain (under BCC)
can be studied by eigenvalue analysis.

IV. STABILITY ANALYSIS

The second-order differential equation (9) can be rewritten
as a first order differential equation of the twice the dimension,

ż(t) = Cz(t), (13)

where

z(t) =

[
x(t)

ẋ(t)

]
, C =

[
0 I

KdS KvS

]
, (14)

with 0 the zero matrix and I the identity matrix. Then for all
finite t, z(t) = eCtb is the unique solution vector of (13)
with the initial condition z(0) = b [29, Chap. 6]. Hence, the
general solution to the differential equation system (9) is given
by

x(t) =
[
I 0

]
z(t) =

[
I 0

]
eCtb. (15)

The 2N × 2N matrix C in (14) is called the companion form
of the N ×N monic quadratic matrix polynomial

Q(λ) = λ2I+ λKvS+KdS. (16)

The latter has 2N finite eigenvalues, counting multiplicities:
these are the roots of characteristic polynomial

det
(
Q(λ)

)
= 0,

that is, the points λ ∈ C for which Q(λ) is singular. It is
shown in [30], [23] that det

(
Q(λ)

)
= det(C−λI), so Q(λ)

and C share the same eigenvalues [23]. They also have the
same Jordan structure. In particular, if

C = YJY−1 (17)

is the Jordan canonical decomposition of C then Y has the
form

Y =

[
V

VJ

]
and (17) is equivalent to

VJ2 +KvSVJ+KdSV = 0, det

([
V

VJ

])
̸= 0. (18)

The pair (V,J) is called a Jordan pair for Q(λ). Since eCt =
YeJtY−1, x(t) in (15) can be rewritten as

x(t) = VeJtc, (19)

where c = Y−1b. Now from the explicit expression for the
exponential of a Jordan form provided in Appendix B, we find
that the solution x(t) in (20) can be written in the form

x(t) =

2N∑
n=1

pn(t)e
λntvn, (20)

where the λn are the eigenvalues of Q(λ) and the pn(t) are
scalar polynomials in t of bounded degrees. It is then clear
that x(t) decreases exponentially to zero as t tends to infinity
if and only if all the eigenvalues λn, n = 1, . . . , 2N , have
negative real part.

In what follows, we study the stability of the second-order
differential equation (9) through the eigenvalues of the asso-
ciated quadratic matrix polynomial Q(λ) in (16). We proceed
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step by step: from the most special case to more and more
general cases. We repeatedly use the fact that strict equivalence
transformations applied to Q(λ) preserve its eigenvalues.
Indeed, the quadratic matrix polynomials Q(λ) and EQ(λ)F
with E,F nonsingular, have the same eigenvalues since
det
(
EQ(λ)F

)
= α det

(
Q(λ)

)
where α = det(E) det(F )

is a nonzero constant. Hence the characteristic polynomials
det
(
EQ(λ)F

)
and det

(
Q(λ)

)
differ by a nonzero constant

and so their roots are equal.

A. Special case: homogeneous traffic

First, let us consider the most special case: homogeneous
traffic, in which the gains k

(n)
d = kd and k

(n)
v = kv are the

same for all vehicles. As a result, Kd = kdI and Kv = kvI,
and Q(λ) in (16) becomes

Q(λ) = λ2I+ λkvS+ kdS. (21)

Since S is symmetric then, by the spectral theorem [27], there
exist U orthogonal and Dµ diagonal such that

UTSU = Dµ =


µ1

. . .

µN

 . (22)

Here µn is an eigenvalue of S and the nth column of U is a
corresponding eigenvector. Also, since S is positive definite,

µn > 0, n = 1, . . . , N.

An explicit expression for µn and for the entries of U is
provided in Appendix A. On using (22), we find that the
quadratic matrix polynomial

UTQ(λ)U = λ2I+ λkvDµ + kdDµ

is diagonal and

det
(
Q(λ)

)
= det

(
UTQ(λ)U

)
=

N∏
n=1

(λ2 + λkvµn + kdµn).

As a result, the 2N eigenvalues of Q(λ) can be expressed in
terms of the N eigenvalues µn of S as

λ2n−1 =
−kvµn +

√
k2vµ

2
n − 4kdµn

2
, (23)

λ2n =
−kvµn −

√
k2vµ

2
n − 4kdµn

2
, (24)

n = 1, . . . , N . Since µn > 0, kd > 0 and kv > 0, all the
eigenvalues of Q(λ) have negative real part. In summary, we
proved the following result.

Theorem IV.1. The system

ẍ(t) + kvSẋ(t) + kdSx(t) = 0 (25)

corresponding to homogeneous traffic is stable.

It turns out that the solution x(t) to (25) can be written
explicitly in terms of the eigenvalues and eigenvectors of S.
Indeed, the columns of U = [u1, . . . ,uN ] are eigenvectors of

S but they are also eigenvectors of Q(λ). In particular, un is
an eigenvector of Q(λ) with eigenvalues λ2n−1 and λ2n, i.e.,

Q(λ2n−1)vn = 0, Q(λ2n)vn = 0.

Also, the Jordan form of diagonalizable quadratic matrix
polynomials can only have 1×1 and 2×2 blocks [31, Sec. 3],
the latter arising when scalar quadratics on the diagonal of
the diagonalized quadratic matrix polynomial have two equal
roots.

It is easy to check that with Λ = diag(λ1, λ2, . . . , λ2N ) and
en denoting the nth column of the 2N × 2N identity matrix,
the pair (V,J) where

V =
[
u1 u1 u2 u2 . . . uN uN

]
, (26)

J =

{
Λ if µn ̸= 4kd/k

2
v for all n,

Λ + e2j−1e
T
2j if µj = 4kd/k

2
v for some j,

(27)

forms a Jordan pair for Q(λ), that is, (V,J) satisfies (18) with
Kd = kdI and Kv = kvI. In other words, for our specific
quadratic matrix polynomial, the Jordan matrix is diagonal
unless there is a j such that µj = 4kd/k

2
v , in which case

the eigenvalue λ2j−1 = λ2j belongs to a 2× 2 Jordan block.
Hence, it follows from (19) that when µn ̸= 4kd/k

2
v for all n

then

x(t) =

N∑
n=1

(c2n−1e
λ2n−1t + c2ne

λ2nt)un, (28)

and when there exists j such that µj = 4kd/k
2
v then

x(t) =

N∑
n=1

(c2n−1e
λ2n−1t+ c2ne

λ2nt)un+ c2jte
λ2jtuj , (29)

where cn, n = 1, . . . , 2N , are constants determined by the
initial conditions. Since the eigenvalues and eigenvectors of
S are known explicitly–see appendix A, the 2N eigenvalues
λj of Q(λ) in (23)–(24) are also known explicitly and hence
x(t) in (28) or (29) provides and explicit expression for the
solution to the second-order system in (25).

B. More general case: proportional and derivative gains with
constant ratio

Second, let us consider a more general case: the proportional
gains k

(n)
d and the derivative gains k

(n)
v are different for

different vehicles, but, their ratio is constant, i.e., k(n)v = τk
(n)
d

for all n (with τ > 0). Then (16) becomes

Q(λ) = λ2I+ λτKdS+KdS. (30)

Since the diagonal matrix Kd has positive diagonal entries,

K
1/2
d =


√

k
(1)
d

. . . √
k
(N)
d

 (31)

is nonsingular and since S is symmetric positive definite, so
is K

1/2
d SK

1/2
d . Hence, as in the special case of homogeneous

traffic described in section IV-A, there exist an orthogonal
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matrix U = [u1, . . . ,uN ] and a diagonal matrix Dµ =
diag(µ1, . . . , µN ) with positive diagonal entries such that

UT (K
1/2
d SK

1/2
d )U = Dµ. (32)

But unlike for the matrix S, we do not have an explicit
expression for the eigenpairs of K1/2

d SK
1/2
d . Nevertheless the

quadratic matrix polynomial Q(λ) in (30) can be diagonalized
via similarity with T = K

1/2
d U. Indeed, on using (32) and

the orthogonality of U, we find that Q(λ) is similar to the
diagonal quadratic matrix polynomial

T−1Q(λ)T = UTK
−1/2
d Q(λ)K

1/2
d U

= λ2I+ λτDµ +Dµ,

whose 2N eigenvalues (and thereby that of Q(λ)) are given
by (for n = 1, . . . , N )

λ2n−1 = (−τµn +
√
τ2µ2

n − 4µn)/2, (33)

λ2n = (−τµn −
√
τ2µ2

n − 4µn)/2, (34)

Since µn > 0 for all n and τ > 0, the eigenvalues of Q(λ)
all have negative real part. This leads to the following result.

Theorem IV.2. The system

ẍ(t) + τKdSẋ(t) +KdSx(t) = 0 (35)

corresponding to the case of constant ratio between the
proportional gains and the derivative gains is stable.

If we let
N = {n : µn = 4/τ2}

then for V and J in (19) we have

V = K
1/2
d

[
u1 u1 u2 u2 . . . uN uN

]
,

J = diag(λ1, λ2, . . . , λ2N ) +
∑
n∈N

e2n−1e
T
2n.

Hence there are 2 × 2 Jordan blocks when N is not the
emptyset. It then follows from (19) that

x(t) =
N∑

n=1

(c2n−1e
λ2n−1t + c2ne

λ2nt)K
1/2
d un

+
∑
n∈N

c2nte
λ2ntK

1/2
d un,

where cn, n = 1, . . . , 2N are constants determined by the
initial conditions.

C. The most general case

Now, let us consider the most general case of (16), in which
Kd and Kv are two different positive diagonal matrices (not
just multiples of one another). Since S is symmetric positive
definite, it has a unique symmetric positive definite square root,
which we denote by S1/2 [32, Cor. 1.30]. It follows from (22)
that

S1/2 = U


√
µ1

. . .
√
µN

UT

since S1/2S1/2 = S, S1/2 is symmetric and it is positive
definite since all its eigenvalues are positive. It then follows
that S1/2 is nonsingular. On using S1/2, we find that Q(λ) is
similar to the symmetric quadratic matrix polynomial

Q̃(λ) := S1/2Q(λ)S−1/2

= λ2I+ λS1/2KvS
1/2 + S1/2KdS

1/2. (36)

But since S1/2KvS
1/2 and S1/2KdS

1/2 do not commute
when Kd ̸= Kv , Q̃(λ) cannot be reduced further to diagonal
form by congruence transformation [33].

Letting w = S1/2u, we have that S1/2u = 0 if and only if
u = 0 since S1/2 is nonsingular. Hence, for s = v and s = d,
and for all nonzero vectors u ∈ CN ,

u∗(S1/2KsS
1/2
)
u = w∗Ksw =

N∑
n=1

k(n)v |wn|2 > 0, (37)

where u∗ = uT denotes the conjugate transpose of u.
This shows that the symmetric matrices S1/2KvS

1/2 and
S1/2KdS

1/2 are positive definite.
Let vn ̸= 0 be an eigenvector of Q̃(λ) in (36). Then at

least one of the two roots of the quadratic scalar polynomial

v∗
nQ̃(λ)vn = λ2 + c(vn)λ+ k(vn) = 0 (38)

where

c(vn) = v∗
n

(
S1/2KvS

1/2
)
vn,

k(vn) = v∗
n

(
S1/2KdS

1/2
)
vn

is an eigenvalue of Q̃(λ) with eigenvector vn. But by (37),
c(vn) > 0 and k(vn) > 0 since vn ̸= 0, and hence the
roots of the quadratic polynomial in (38) have negative real
part. This implies that the eigenvalue of Q̃(λ) with eigenvector
vn has negative real part. Since this result holds for all the
eigenvectors vn of Q̃(λ), n = 1, . . . , 2N , all the eigenvalues
of Q̃(λ), and therefore those of Q(λ), have negative real part.
We have proven the following theorem.

Theorem IV.3. The BCC traffic flow of non-identical vehicles
described by the ODE (9) is stable.

Thus, the solution x(t) to (9) will be close to zero when t
is large, or equivalently

yn(t) → y0(0) + V t− n(s+ ℓ), n = 1, . . . , N,

that is, from arbitrary initial state, the inhomogeneous BCC
traffic will go to the equilibrium state in which all vehicles
are equally spaced by s and move at the same speed V .

In summary, smart driving is pretty simple, just try to stay in
the middle! This is the basic rule (which stops tailgating) used
in BCC. Vehicles can implement the basic rule independently
and differently. The traffic flow system will still be stable
(Theorem IV.3), and thus, smooth traffic flow can be achieved
without the need for communication between vehicles (V2V)
or between vehicles and the infrastructure (V2R).
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V. SIMULATION

We built a simulator to verify the theoretical analysis. Fig. 3
show simulation results (when N = 32). See [35] for the
video and MATLAB code (numerical implementation of (6)).
The time step is ∆t = 0.1 sec. Speed limits are 0 and 160
km/h (or 44.44 m/sec.), and acceleration/deceleration limits
are 5 and −5 m/sec2. In the simulation of Fig. 3, vehicles of
two types are mixed randomly. For the first type of (totally
16) vehicle (black curves and red squares in Fig. 3), relatively
large proportional gain is used: k

(n)
d is chosen as a random

number between 0.2 to 0.4 1/sec2, and the derivative gain k
(n)
v

is chosen as a random number between 0.05 to 0.15 1/sec. For
the second type of (totally 16) cars (red curves and red squares
in Fig. 3), relatively small proportional gain is used: k(n)d is
chosen as a random number between 0.05 to 0.15 1/sec2, and
the derivative gain k

(n)
v is chosen as a random number between

0.2 to 0.4 1/sec. Initially, the space between cars is set as a
random number between 5 to 45 meters, and the speed is
randomly chosen from 20 to 30 m/sec. In order to show the
simulation results, we let the cars run on a “loop” which is
longer than the total length of the traffic flow.

In the first 100 sec., the first car, i.e., the bold curve and
solid square in Fig. 3, is moving at the constant speed of 25
m/sec. The stability of BCC traffic (Theorem 3) guarantees
that perturbations, i.e., departure from equilibrium state, in the
initial condition dissipate (See Fig. 3(b)). At 100 sec, the first
car brakes suddenly at −5 m/sec2 for 2 sec., and then speeds
up again at 5 m/sec2 for another 2 sec. (See the first curve
in Fig. 3(a)). Still, due to the system’s stability, the induced
perturbations are suppressed effectively (See Fig. 3(c)), rather
than are amplified to cause “phantom traffic jams” as they
would be in today’s highway traffic [17].

VI. CONCLUSION

In today’s traffic, drivers focus mostly on the car ahead,
and implement car-following control. This results in traffic
flow instabilities, including alternating “stop-and-go” driving
conditions. Such traffic flow instabilities can be suppressed
effectively if the vehicle also takes into account the state of the
car following it. Different from human drivers, ACC system
equipped with suitable sensors can implement BCC easily.
Thus, we can expect smooth traffic in the future when BCC
vehicles are widely used.

Bilateral cruise control guarantees “freedom” of vehicles.
Basically, “control of my car is by my car and for my car.”
In previous work, traffic is assumed to be homogenous. That
is, the same gains are used in the control systems of all of
the vehicles. (This hypothesis is also widely used in the study
of platooning models). In the case of BCC, the hypothesis
of homogenous traffic, i.e., identical vehicles, guarantees that
Newton III applies. However, the mass and control abilities of
various vehicles might be different, so that satisfying Newton
III would actually require communication. We show here
that there is no need for inter-vehicle communication while
reaping the benefits of bilateral control. We prove that inho-
mogeneous traffic is still stable under bilateral cruise control
(Theorem IV.3). Thus, the new driving strategy — trying to
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(a) Cars’ trajectories in relative reference (25 m/sec.)

(b) Initial state and traffic flow after 20 sec.

(c) Traffic flow at 102 sec. and 122 sec.

Fig. 3. Simulation results. (a) Trajectories of traffic flow in a relative
reference frame which moves at 25 m/sec. Red curves correspond to cars
whose kd ∈ (0.05, 0.15) and kv ∈ (0.2, 0.4) randomly. Black curves
correspond to cars whose kd ∈ (0.2, 0.4) and kv ∈ (0.05, 0.15) randomly.
At 100 sec., The first car (bold black curve) brakes hardly for 2 sec. (b) The
perturbations in the initial traffic state dissipate due to the stability of BCC.
(c) The perturbations due to sudden brake of the first car also dissipate.

stay in the middle — can be implemented independently by
different vehicles, and smooth traffic flow can be guaranteed.

In this paper, we only consider the ideal linear feedback
control (which is the simplification of the physical implemen-
tation ACC and BCC systems). In real application, delay and
non-linearity should also be considered [26]. Moreover, mixed
traffic containing human-drivers and BCC vehicles will also
be an interesting problem. These are some of the topics for
future work.

APPENDIX A
THE EIGENPAIRS OF DISCRETE LAPLACIAN

The tri-diagonal symmetric and positive definite matrix S
in (11) is a one dimensional (1-d) discrete Laplacian operator
with fixed-free boundaries [28]. Thus, the eigenvalues µn of
S are positive for all n, and all (unit) eigenvectors {un} form
an orthogonal matrix U =

[
u1 . . .un . . .uN

]
with UTU = I
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[27]. The m-th entry um,n in the eigenvector un — which is
also the entry in row m and column n of U — is

um,n =

√
2

N
sin

(
(2n− 1)m

2N + 1
π

)
, (39)

and the corresponding eigenvalue is (pp. 543 in [34]):

µn = 2− 2 cos

(
2n− 1

2N + 1
π

)
= 4 sin2

(
2n− 1

2N + 1

π

2

)
. (40)

Thus, µn > 0 for all n = 1, 2, · · · , N .

APPENDIX B
THE EXPONENTIAL OF A JORDAN MATRIX

Let J = diag(J1,J2, . . . ,Jp) be a Jordan matrix, where Ji

is an mi ×mi Jordan block with eigenvalue λi, that is,

Jk =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk .

Then
eJt = diag(eJ1t, eJ2t, . . . , eJpt),

where

eJit = eλit



1 t
t2

2!
. . .

t(mi−1)

(mi − 1)!
. . . . . . . . .

...
. . . . . . t2

2!
. . . t

1


. (41)
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