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SUMMARY

We introduce a novel block rational Krylov method to accelerate 

three-dimensional time-domain marine controlled-source electromagnetic modelling 

with multiple sources. This method approximates the time-varying electric solutions 

explicitly in terms of matrix exponential functions. A main attraction is that no time 

stepping is required, while most of the computational costs are concentrated in 

constructing a rational Krylov basis. We optimize the shift parameters defining the 

rational Krylov space with a positive exponential weight function, thereby producing 

smaller approximation errors at later times and reducing iteration numbers. 

Furthermore, for multi-source modelling problems, we adopt block Krylov techniques 

to incorporate all source vectors in a single approximation space. The method is tested 

on two examples: a layered seafloor model and a 3D hydrocarbon reservoir model 

with seafloor bathymetry. The modelling results are found to agree very well with 

those from 1D semi-analytic solutions and finite-element time-domain solutions using 

a backward Euler scheme, respectively. Numerical benchmarks show that the block 

method benefits from better memory and cache efficiency, resulting in about 1.26 to 

1.48-fold speedup compared to non-block methods. Further efficiency gains are 

achieved through optimized rational Krylov techniques, allowing our approach to 

outperform classical time stepping schemes.

Key words: Controlled source electromagnetics (CSEM); Numerical modelling; 

Marine electromagnetics; Electromagnetic theory.

Page 2 of 57Geophysical Journal International



1 INTRODUCTION

Time-domain electromagnetic (TDEM) surveys are very useful geophysical 

electromagnetic (EM) techniques for mineral exploration (e.g., Yang and Oldenburg, 

2012, Fountain et al., 2005), hydrocarbon detection (e.g., Wright et al., 2002, Connell 

and Key, 2013, Constable, 2010, Constable and Weiss, 2006), hydrogeophysical 

exploration (Danielsen et al., 2003, Fitterman and Stewart, 1986, Kafri and Goldman, 

2005), and environmental geophysics (e.g., Hoekstra and Blohm, 1990). The 

interpretation methods for TDEM data have turned from simple one-dimensional (1D) 

layered-earth models (e.g., Farquharson and Oldenburg, 1993) or thin plate models 

(Keating and Crossley, 1990) to arbitrarily complicated three-dimensional (3D) 

models (e.g., Haber et al., 2004, Oldenburg et al., 2013, Yang et al., 2013) . As 

forward modelling (and adjoint modelling) routines account for most of the 

computational runtime during inversion (Börner, 2010), the availability of accurate 

and fast three-dimensional TDEM modelling solvers is crucial.

The EM field can be solved in the frequency domain and then transformed to the 

time domain via the inverse Fourier transform (Anderson, 1983), Laplace transform 

(Stehfest, 1970, Knight and Raiche, 1982, Li et al., 2016), or fast Fourier transform 

(e.g., Jang et al., 2013). The main advantage of transform algorithms is that existing 

integral-equation (e.g., Cox et al., 2010, Newman et al., 1986), finite-difference (e.g., 

Liu and Yin, 2016), and finite-element (e.g., Li et al., 2017) forward solvers for 

frequency-domain EM modelling can be readily used to provide the 
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frequency-domain solutions. One weakness of transform algorithms is difficulties in 

obtaining accurate EM solutions for high frequencies due to numerical dispersion, 

which may lead to inaccurate results at early time channels. In addition, inverse 

Fourier transform-based methods (Anderson, 1983) need dozens of EM solutions for a 

rather wide frequency band, while for inverse Laplace transform, Laplace-domain 

responses must be recomputed for each sampled time channel, which are both 

computationally expensive. 

It is more straightforward to perform the numerical computations directly in the 

time domain. The space discretization of the time-dependent electric curl-curl 

equation results in an initial value problem for the electric field. Explicit and implicit 

time-stepping methods have been widely employed for the solution of such initial 

value problems. Explicit methods calculate the solutions at the current time step from 

the solutions at a few (depending on the order of the difference method) earlier time 

steps. Compared with implicit methods, explicit methods are easy to implement and 

parallelize, and the computational cost per time step is relatively low. However, many 

problems arising from geophysical electromagnetics are very stiff (Ascher and 

Petzold, 1998, Haber et al., 2002, Haber et al., 2004), for which the use of an explicit 

method requires impractically small time steps to keep the error acceptable. For 

example, the initial time step for the Du Fort-Frankel finite-difference scheme (Du 

Fort and Frankel, 1953) must be constrained (see e.g., Wang and Hohmann, 1993, 

Commer and Newman, 2004, Oristaglio and Hohmann, 1984) to prevent the artificial 
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displacement current term (Chew, 1995) from dominating the EM diffusion, which 

leads to extremely small initial time steps and further makes explicit schemes 

inefficient for long time intervals.

Compared to explicit methods, implicit methods involve the solution of system 

equations at the current time step and the later ones, making their computational cost 

per time step relatively high. The backward Euler (BE) scheme is a widely used 

implicit method to advance the EM solution in time, which is unconditionally stable, 

regardless of the choice of time step  (Um et al., 2010, Ascher and Petzold, 1998). ∆𝑡

For such problems, to achieve a given accuracy, it takes much less computational time 

to use an implicit method with larger time steps, even taking into account that one 

needs to solve a linear system of equations at each time step. Furthermore, the BE 

method can strongly attenuate high frequencies of the error (Haber et al., 2002). Due 

to the obvious advantages mentioned, the BE scheme has lately received great 

attention in the application to TDEM modelling over the past decades (e.g., Haber et 

al., 2002, Um et al., 2010, Yin et al., 2016a, Yin et al., 2016b, Cai et al., 2017, Ren et 

al., 2017). However, for BE schemes, solving hundreds (see e.g., Um et al., 2010, Yin 

et al., 2016b) of linear systems are still very expensive, although the computational 

cost could be reduced if implemented with direct solvers. In addition, time-stepping 

sizes (include the initial time step and the time-stepping multiplier) must be carefully 

selected taking into account the accuracy. Using larger time steps (and less number of 

time steps) will definitely accelerate the TDEM modelling, while larger errors will be 
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observed once the time-stepping size is increased unreasonably, which have been 

reported as periodic oscillations for airborne and ground TDEM problems by Yin et 

al. (2016b) and Li et al. (2018).

In this work, we will use rational Krylov methods for solving the initial value 

problem stated above. Polynomial and rational Krylov methods have been widely 

used for the approximation of matrix functions, such as the matrix exponential, and in 

the context of geophysical modelling. Druskin and Knizhnerman (1988) suggested to 

solve the nonstationary problems of electric prospecting by the spectral Lanczos 

decomposition method, which utilizes a polynomial Krylov space to approximate the 

action of a matrix exponential onto a vector. They further proposed to use this 

polynomial Krylov approach for Maxwell’s equations in both time and frequency 

domains (Druskin and Knizherman, 1994). A rational Krylov variant of this method 

was first adopted by Druskin et al. (2009) to simulate the TDEM problem. The choice 

of shifts in the procedure for constructing the rational Krylov basis was further 

discussed by Druskin et al. (2010). The Cole-Cole model was considered in 3D 

TDEM modelling with a rational Krylov method to take into account the 

induced-polarization effects by Zaslavsky et al. (2011). Furthermore, Börner et al. 

(2008) presented a shift-and-invert Krylov method to solve the 3D Maxwell equations 

using a finite-element discretization in the frequency domain, while the time-domain 

responses were then evaluated by fast Hankel transform. More recently, Börner et al. 

(2015) applied a rational Krylov method to the problem of direct TDEM modelling, 
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while exploiting repeated shift parameters with a direct solver to compute the basis 

vectors in the Krylov space, which saves significant time compared to the 

frequency-domain to time-domain transform scheme. In addition, block Krylov 

techniques for CSEM problems with multiple right-hand sides have been investigated 

by Puzyrev and Cela (2015), with fewer iteration numbers and reduced computational 

time being observed for block methods.

In this paper, we introduce a block rational Krylov method for multi-source 

time-domain CSEM problems and improve the multi-source modelling in two ways. 

First, the use of block Krylov techniques which contain all the source vectors in the 

same approximation space results in better utilization of Level-3 Basic Linear Algebra 

Subprograms (BLAS) routines, thereby resulting in a better cache utilization and 

higher floating-point operations per communication ratio. Secondly, we propose a 

new approach to the shift parameters optimization, extending the work in Börner et al. 

(2015) by incorporating a weight function taking into account the exponential decays 

of the transient EM field. These results in smaller iteration numbers of the block 

method compared to the uniform approximated error optimization, further reducing 

the time to solution.

The rest of the paper is organized as follows. We first introduce how to discretize 

the electric field wave equation in space with the vector basis function on an 

unstructured tetrahedral grid, and recall the typical backward Euler scheme used in 

finite-element time-domain (FETD) methods. Then we show that the EM solutions 
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can be represented as the product of a matrix exponential function with a vector, 

which do not need any time stepping. Theoretical details are devoted to how to solve 

the matrix-vector function via block rational Krylov method for multiple sources. 

Even though the general method works for TDEM with magnetic-loop sources or 

electric-dipole sources, we only take time-domain marine CSEM as examples to 

prove its correctness. After the methodology part, we verify the accuracy of our 

method via a 1D layered space model. At last, a complicated 3D hydrocarbon 

reservoir model with seafloor bathymetry is adopted to fully benchmark the block 

rational Krylov method.

2 METHODOLOGY

2.1 Governing equation and finite-element discretization in space

Starting from the time-dependent Maxwell’s equations in the differential form 

and eliminating the magnetic field, we can obtain the electric field curl-curl equation 

inside the modelling domain :Ω

, (1.)∇ × [1
𝜇∇ × 𝐄(𝐫,𝑡)] +σ

∂𝐄(𝐫,𝑡)
∂𝑡 = ―

∂𝐉s(𝑡)
∂𝑡

where the displacement current is neglected,  is the electric field at time t, r is 𝐄(𝐫,𝑡)

the position vector,  is the magnetic permeability,  is the electrical conductivity, 𝜇 σ

and  is the electric current density of the imposed electromagnetic source.𝐉s(𝑡)

To discretize eq. (1.) using finite elements, we define a residual vector  𝐑(𝐫,𝑡)

as:

. (2.)𝐑(𝐫,𝑡) = ∇ × [1
𝜇∇ × 𝐄(𝐫,𝑡)] +σ

∂𝐄(𝐫,𝑡)
∂𝑡 +

∂𝐉s(𝑡)
∂𝑡
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Following the Galerkin’s method, we minimize the residual vector  in a 𝐑(𝐫,𝑡)

weighted-integral sense

, (3.)∭
Ω𝐍(𝐫)𝐑(𝐫,𝑡)𝑑𝑣 = 0

where the vector basis functions  are chosen as the weighted basis sets. The 𝐍(𝐫)

modelling domain is divided into a set of tetrahedral elements by the mesh generator 

first. Nédélec H(curl)-conforming vector basis functions defined in the Sobolev 

spaces (Nédélec, 1980) are used to approximate the electric field for each element 

because they meet the continuity condition of tangential electric field and 

automatically satisfy that the divergence of the electric field is zero. For each 

tetrahedral element, the electric field can be written as

, (4.)𝐄(𝐫,𝑡) = ∑𝑖 = 6
𝑖 = 1𝑒𝑖(𝑡)𝐍𝑖(𝐫)

where  is the electric field at time t for the i-th local edge in this element.𝑒𝑖(𝑡)

Substituting eq. (2.) and eq. (4.) into eq. (3.), integrating by parts and moving the 

source term of eq. (2.) to the right side, then we can obtain

, (5.)𝐀𝐄(𝑡) + 𝐁
𝑑𝐄(𝑡)

𝑑𝑡 = 𝐒

where A, B and S are the global stiffness matrix, mass matrix and source term, 

respectively. Their local forms for each tetrahedral element are denoted with a 

superscript “e” and are defined as:

, (6.)𝐀e
𝑖𝑗 =

1
𝜇∭

Ωe(∇ × 𝐍𝑖) ∙ (∇ × 𝐍𝑗)𝑑𝑣

, (7.)𝐁e
𝑖𝑗 = ∭

Ωe(𝐍𝑖 ∙ 𝜎 ∙ 𝐍𝑗)𝑑𝑣

. (8.)𝐒e
𝑖 = ― ∭

Ωe(𝐍𝑖 ∙
∂𝐉s(𝑡)

∂𝑡 )𝑑𝑣
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The imposed current source term  is considered as an electric dipole in the 𝐉s(𝑡)

elements which contain a segment of transmitter, and elsewhere it is zero (Yin et al., 

2016b, Li et al., 2017, Jahandari and Farquharson, 2014) 

, (9.)𝐉e
s(𝑡) = 𝐈e(𝑡)𝛿(𝐫 ― 𝐫0)𝑑𝑙

where  is the imposed current density in this element,  is the coordinate of 𝐈e(𝑡) 𝐫0

the midpoint of the small approximated electric dipole,  is the length of the dipole, 𝑑𝑙

and  is the Dirac delta function. Substituting eq. (9.) into eq. (8.) and considering 𝛿

the integral property of the delta function, the source term for each element is 

. (10.)𝐒e
𝑖 = ― 𝐍𝑖(𝐫0)𝑑𝐈𝐞(𝑡)

𝑑𝑡 𝑑𝑙

2.2 Boundary conditions and initial conditions

The unstructured tetrahedral grids allow efficient local refinements in the region 

with high gradients of EM field. In addition, increasing the domain size by stretching 

elements far from the central sensitive domain does not result in a significant increase 

of the total number of elements. When generating the grid, we always refine the 

central sensitive domain, which contains the EM sources and receivers, while 

extending the outer boundaries of the model far away from the sensitive domain, such 

that both the tangential electric field  and normal magnetic-induction 𝐄(𝐫,𝑡)

time-derivative components  are zero on the outer boundary. To obtain a 
∂𝐇(𝐫,𝑡)

∂𝑡

unique numerical solution for a specific model using eq. (5.), homogeneous Dirichlet 

boundary conditions are incorporated on the outer boundary  of the entire ∂Ω

modelling domain :Ω
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, (11.)[𝐧 × 𝐄(𝐫,𝑡)]∂Ω = 0

where n is the normal vector for the surfaces on .∂Ω

For the time-dependent problem, we also need to set up the initial conditions at 

the time t=0. The initial electric field can be decomposed into two parts (Commer and 

Newman, 2004, Um et al., 2010)

. (12.)𝐄initial = 𝐄source + 𝐄DC

where  is the electric field defined by the imposed source and  is the 𝐄source 𝐄DC

direct-current (DC) electric field induced by the electrodes of EM transmitter.  𝐄DC

vanishes for a magnetic loop source. However, for an electric source excited by a 

step-off waveform, there exists a DC electric field all over the modelling domain. The 

electric field  for each edge is calculated from the potentials at the two 𝐄DC ϕ(𝐫) 

nodes of this edge. Therefore, we solve a direct current problem to compute the 

electric potentials for all the nodes in the grid, which satisfies the following 3D 

Poisson equation

. (13.)∇ ∙ (σ∇ϕ(𝐫)) = ―∇ ∙ 𝐣s(𝐫)

Eq. (13.) is solved using a total-potential approach on the same grid as the 

time-domain problem. The source term for the DC problem is zero except at the two 

electrodes of the CSEM transmitter. Here the homogenous Dirichlet boundary 

conditions are considered in the scalar finite-element discretization for the DC 

problem, which is consistent with the boundary condition for the time-domain 

problem.
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2.3 Backward Euler scheme for discretization in time

The solution of eq. (5.), eq. (11.) and eq. (12.) can be advanced in time by the 

implicit backward Euler scheme. For the second-order backward Euler scheme, the 

difference of electric field at the i+2th time step can be approximated by

, (14.)
𝑑𝐄(𝑖 + 2)(𝑡)

𝑑𝑡 =
1

2∆𝑡[3𝐄(𝑖 + 2)(𝑡) ― 4𝐄(𝑖 + 1)(𝑡) + 𝐄(𝑖)(𝑡)]

where  and  are the electric field at the i+1th and i+2th time step 𝐄(𝑖 + 1)(𝑡) 𝐄(𝑖 + 2)(𝑡)

respectively. Applying eq. (14.) to eq. (5.) yields

. (15.)(3𝐁 + 2∆𝑡𝐀)𝐄(𝑖 + 2)(𝑡) = 𝐁[4𝐄(𝑖 + 1)(𝑡) ― 𝐄(𝑖)(𝑡)] +2∆𝑡𝐒(𝑖 + 2)

We can thus solve eq. (15.) at each time step to obtain the transient electric field, 

and simultaneously compute the time-varying magnetic fields using Faraday's law.

2.4 Explicit electric solutions in terms of matrix functions

The main idea behind the (block) rational Krylov method is that we can obtain 

the explicit solution to the initial value problem defined by eq. (5.) directly as the 

product of a matrix exponential function with a vector (Börner et al., 2015)

b, (16.)𝐄(𝑡) = exp( ―𝑡𝐁 ―1𝐀)𝐁 ―1𝐬 = 𝑓𝑡(𝐌)

where

. (17.)𝐌 = 𝐁 ―1𝐀, 𝐛 = 𝐁 ―1𝐬

Here  is the initial current density. The function  in eq. (16.) is𝐬 = 𝐒 + 𝐁𝐄DC 𝑓𝑡(𝐳)

. (18.)𝑓𝑡(𝐳) = exp( ―𝑡𝐳)

Once the global stiffness matrix A, mass matrix B and source term s are 

assembled from their local forms, we solve the equation  via a direct solver to 𝐁𝐛 = 𝐬
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calculate the vector b. For the multi-source problem, b is a collection of vectors 𝐛𝑖

, (19.)𝐛 = [𝐛1,𝐛2,…,𝐛𝑛𝑠]

where ns is the number of sources and  is the i-th source vector computed from eq. 𝐛𝑖

(17.).

2.5 A block rational Krylov algorithm for multi-source modelling

The matrices arising from geophysical EM modelling are typically large and 

sparse, and usually it is impractical to compute the (generally dense) matrix function 

 first and then perform the matrix-vector product with the vector b. exp( ―𝑡𝐌)

Krylov methods avoid this problem by approximating the product  exp( ―𝑡𝐌)b

directly via projection onto a Krylov space, without any time stepping.

In order to introduce the basic concept of rational Krylov spaces, and to motivate 

their use compared with the more familiar time-stepping methods, let us consider the 

solution of the initial value problem at a time point t using m steps of the basic 

first-order backward Euler scheme with step size : 𝜏 = 𝑡/𝑚 𝐄𝑖 = (𝐈 + 𝜏𝐌) ―1𝐄𝑖 ― 1

, where I is the identity matrix. Note that  is the time-stepping , 𝑖 = 1,2,…,𝑚 𝐄𝑖

approximation for . Crucially, we have , which shows that 𝐄(𝑡) 𝐄𝑚 = (𝐈 + 𝜏𝐌) ―𝑚𝐛

the backward Euler method produces a result  where 𝐄𝑚 = 𝑟(𝐌)𝐛 𝑟(𝑧) =

 is a rational function with a pole of multiplicity m at . The (1 + 𝜏𝑧) ―𝑚 𝑧 = ―1/𝜏

reasoning behind rational Krylov methods is to replace  with a potentially better 𝑟(𝑧)

rational function by seeking approximations to  from an m-dimensional rational 𝐄(𝑡)

Krylov space  where  is a 𝑄𝑚(𝐌,𝐛) = 𝑞𝑚(𝐌) ―1𝑠𝑝𝑎𝑛{𝐛,𝐌𝐛,…,𝐌𝑚 ― 1𝐛} 𝑞𝑚(𝑧)
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polynomial of degree at most m, having no root at any of the eigenvalues of M 

(otherwise,  would not be invertible). The roots of  are often referred 𝑞𝑚(𝐌) 𝑞𝑚(𝑧)

to as the poles or shift parameters of the rational Krylov space. Note that  𝑄𝑚(𝐌,𝐛)

is a linear space of rational functions , all having the same denominator 𝑟(𝐌)𝐛 𝑞𝑚

. In particular, if we choose , then our backward Euler (𝑧) 𝑞𝑚(𝑧) = (1 + 𝜏𝑧)𝑚

approximation  is an element of . If, on the other hand,  is 𝐄𝑚 𝑄𝑚(𝐌,𝐛) 𝑞𝑚(𝑧)

chosen as the constant polynomial , then  is just a polynomial 𝑞𝑚(𝑧) = 1 𝑄𝑚(𝐌,𝐛)

Krylov space. Such spaces are widely used for the solution of linear systems, for 

example in the CG or GMRES methods (Saad, 2003). As we will show later, the 

choice of , i.e., the shift parameters, plays a crucial role when tuning the space 𝑞𝑚(𝑧)

 so that it contains good approximations to .𝑄𝑚(𝐌,𝐛) exp( ―𝑡𝐌)b

Polynomial Krylov methods have become very popular since the 1990s for 

approximating , the action of matrix functions  onto a (single) vector 𝑓𝑡(𝐌)𝐛 𝑓𝑡(𝐌)

 and are still a topic of recent research; see e.g. (Saad, 1992, Druskin and 𝐛

Knizherman, 1994, Frommer et al., 2014). The polynomial based techniques are 

explicit essentially for the fact that solving linear system equations are not required, 

thus they are not suitable for very stiffness problems (Gallopoulos and Saad, 1989). 

Rational Krylov methods are the natural extension of these approaches to rational 

approximants, based on rational Krylov spaces (Ruhe, 1994, Van den Eshof and 

Hochbruck, 2006, Moret and Novati, 2004, Druskin et al., 2009). For a review of 

rational Krylov techniques and the various approaches to choose the involved shift 
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parameters in a (near-) optimal way, see Güttel (2013). 

To approximate the matrix functions  with a block vector, we can either 𝑓𝑡(𝐌)𝐛

apply the rational Arnoldi method with each column  separately (herein referred to 𝐛𝑖

as single-vector rational Krylov method), or we can treat all columns of b at once as a 

block (block rational Krylov method). The block rational Arnoldi algorithm is the 

natural extension of Ruhe’s original algorithm (Ruhe, 1994) to the block case. In our 

application of rational Krylov method, the inner product is induced by the mass 

matrix B, i.e., , while the induced norm . Given a 〈𝐱,𝐲〉𝐁 = 𝐲H𝐁𝐱 ‖𝐱‖𝐁 = 𝐱H𝐁𝐱

starting block vector b and a sequence of shifts ,  , …, , the block rational 𝜉1 𝜉2 𝜉𝑚

Arnoldi algorithm uses Gram-Schmidt orthogonalisation to compute a sequence of 

block vectors v1, v2, …, vm+1 spanning a rational Krylov space and being mutually 

B-orthonormal, i.e.,  whenever  and , where O and 𝐯T
𝑖 ∙ 𝐁 ∙ 𝐯𝑗 = 𝐎 𝑖 ≠ 𝑗 𝐯T

𝑖 ∙ 𝐁 ∙ 𝐯𝑗 = 𝐈

I is the  zero and identity matrix respectively. The shifts , , …,  are 𝑛𝑠 × 𝑛𝑠 𝜉1 𝜉2 𝜉𝑚

important parameters, the choice of which influence both the computational cost of 

the algorithm and the approximation quality of the rational Arnoldi approximation 

defined below, where we will also discuss the choice of the shift parameters tailored 

to our application. For consistency purposes, the algorithm for single-vector rational 

and block rational Krylov methods is summarized as follows:

Algorithm 1: Block rational Arnoldi algorithm

Input: Finite-element global matrices A, B, source vector b of full rank, shift 

parameters , , …, 𝜉1 𝜉2 𝜉𝑚
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Output: B-orthonormal block Krylov basis 𝐕𝑚 + 1: = [𝐯1,𝐯2,…,𝐯𝑚 + 1]

1 Compute , where  is a thin QR factorization𝐯1 = 𝐛𝐑 ―1
1 𝐛 = 𝐯1𝐑1

2 for j = 1,…,m

3  Solve 𝐰𝑗 = (𝐀 ― 𝜉𝑗𝐁) ―1𝐁𝐯𝑗

4  Orthogonalize , where 𝐰𝑗 = 𝐰𝑗 ― ∑𝑖 = 𝑗
𝑖 = 1𝐯𝑖𝐡𝑗 𝐡𝑗 = 𝐯T

𝑖 ∙ 𝐁 ∙ 𝐰𝑗

5 Compute , where  is a thin QR 𝐯𝑗 + 1 = 𝐰𝑗𝐑 ―1
𝑗 + 1 𝐰𝑗 = 𝐯j + 1𝐑𝑗 + 1

factorization

6 end

In the case of just a single source, ns=1, the normalization steps  𝐯𝑗 + 1 = 𝐰𝑗𝐑 ―1
𝑗 + 1

reduce to computing . Note that the QR factorizations must also be 𝐯𝑗 + 1 = 𝐰𝑗/‖𝐰𝑗‖𝐁

performed in the inner product induced by the matrix B so that . This 𝐯T
𝑖 ∙ 𝐁 ∙ 𝐯𝑗 = 𝐈

can be achieved most easily by applying the Gram-Schmidt orthogonalisation 

procedure to the columns of the blocks , using the B inner product. Note that we 𝐰𝑗

have implicitly assumed that all factors  are invertible, i.e., we assume that all 𝐑𝑗

block vectors  are of full column rank ns. The case when a block vector  𝐰𝑗 𝐰𝑗

becomes (nearly) rank deficient can be detected in practice by (numerically) singular 

factor  and is treated by removing (nearly) linearly dependent columns from the 𝐑𝑗

rational Krylov basis. This procedure is known as deflation and is implemented in the 

block rational Arnoldi algorithm of the Rational Krylov Toolbox (Berljafa et al., 

2014) that we use for our numerical computations. For our case of EM modelling, we 

did not observe any deflation effects due to the fact that our source vectors are 
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linearly independent.

When the algorithm completes, the returned basis matrix 𝐕𝑚 + 1 =

 is B-orthonormal, i.e., . The rational Arnoldi [𝐯1,𝐯2,…,𝐯𝑚 + 1] 𝐕T
𝑚 + 1𝐁𝐕𝑚 + 1 = 𝐈

approximation to the electric field  is then obtained as follows:𝐄(𝑡)

, (20.)𝐄Arnoldi(𝑡) = 𝐕𝑚 + 1exp ( ―𝑡𝐀𝑚 + 1)𝐕T
𝑚 + 1𝐁𝐛

where  projects the matrix A onto the subspace with respect 𝐀𝑚 + 1 = 𝐕T
𝑚 + 1𝐀𝐕𝑚 + 1

to the subspace basis .𝐕𝑚 + 1

The total number of rational Arnoldi iterations, i.e., m, is usually small (in our 

case, in the order of at 40). Therefore the matrix  is of moderate size 𝐀𝑚 + 1 (𝑚 + 1)

 and the computation of its exponential  is typically of × 𝑛𝑠 exp( ―𝑡𝐀𝑚 + 1)

negligible cost compared to the computation of the rational Krylov basis . 𝐕𝑚 + 1

Fortunately, the expensive computation of this basis is only performed once 𝐕𝑚 + 1 

and independent of the number of time points t where we want to evaluate eq. (20.). 

The time dependence when evaluating approximated electric field solution with the 

rational Krylov basis  is fully concentrated in . The 𝐕𝑚 + 1 exp( ―𝑡𝐀𝑚 + 1)

computationally most expensive operation per rational Arnoldi iteration is the linear 

system solve for  with the coefficient matrix . However, in our case the 𝐰𝑗 (𝐀 ― 𝜉𝑗𝐁)

shifts  will be chosen constant over several iterations so that the matrix 𝜉𝑗

factorizations of the direct solver can be reused. This is similar to what has been 

advocated in Börner et al. (2015) for the non-block Krylov case.

The use of block techniques here could result in better computational 
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performance for problems with moderate number of sources ns. As solving the linear 

system  and the operations , , and  𝐰𝑗 + 1 = (𝐀 ― 𝜉𝑗𝐁) ―1𝐁𝐯𝑗 𝐁𝐯𝑗 𝐯𝑖𝐡𝑗 𝐡𝑗 = 𝐯T
𝑖 𝐁𝐰𝑗 + 1

are performed for all ns block columns simultaneously, the block methods require less 

memory access to the stored decomposition results and matrices. On the other hand, 

when running the onetime matrix-matrix multiplication instead of several 

matrix-vector products, the method makes good use of Level 3 BLAS for 

matrix-matrix operations. These lead to better cache utilization and higher 

floating-point operations per communication ratio. However, as the block matrix 

operations are non-linear time complexity with respect to the number of columns ns, 

the computational cost may increase dramatically when more source vectors are 

added, thereby eliminating the performance gains.

Choice of shift parameters

Similarly to what has been proposed in Börner et al. (2015) we find negative 

shift parameters , , …,  as the (repeated) roots of a polynomial defined as 𝜉1 𝜉2 𝜉𝑚 𝑞𝑚

 by solving a surrogate approximation problem (𝑧) = (𝑧 ― 𝜇1)𝑑(𝑧 ― 𝜇2)𝑑…(𝑧 ― 𝜇𝑝)𝑑

using the rational Arnoldi method itself. The subscript p denotes the number of 

distinct (repeated) roots of the polynomial  of degree m, while the superscript 𝑞𝑚(𝑧)

d is the number of repetitions of each pole, hence . Börner et al. (2015) 𝑞 × 𝑑 = 𝑚

found that using  cyclically repeated shifts seems to be the most efficient in the 𝑝 = 2

application to TDEM. In other words, for a given number m of rational Krylov 

iterations, repeating  shifts for  times results in a good trade-off 𝑝 = 2 𝑑 = 𝑚/2
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between the number of matrix factorizations and the approximation quality of the 

rational Arnoldi approximants.

More precisely, we set the surrogate matrix  and vector 𝐌 = diag(𝜆1,𝜆2,…,𝜆𝑛) 𝐛

, with the eigenvalues  chosen dense enough to mimic a = [1,1,…,1]T 𝜆𝑗 ≥ 0

continuous spectrum. In our case, we choose 1000 logarithmically spaced points in 

the spectral interval [10-6,106]. We found this choice sufficient in the sense that the 

computed shift parameters did not change significantly when using more than a 

thousand points or longer spectral intervals. Given positive integers p and d, and an 

initial guess for negative shift parameters , we try to minimize the 𝜇1,𝜇2,…,𝜇𝑝 < 0

worst-case error

. (21.)Err(𝜇1,𝜇2,…,𝜇𝑝) =
max

𝑡min ≤ 𝑡 ≤ 𝑡max
  

max
𝑧 ≥ 0𝑤(𝑡)‖exp ( ― 𝑡𝐌)𝐛 ― 𝐄Arnoldi(𝑡)‖2

The parameters  which approximately minimize  𝜇1,𝜇2,…,𝜇𝑝 Err(𝜇1,𝜇2,…,𝜇𝑝)

give good choices for the shifts in the rational Arnoldi algorithm (Börner et al., 2015). 

Note that the weight function  does not appear in that work, but we found it 𝑤(𝑡)

necessary for cases which the transient electromagnetic field varies over rather large 

orders of magnitude. This happens in particular for long time intervals , or [𝑡min,𝑡max]

when the model is very resistive and the electromagnetic field decays quickly. 

Choosing  as a positive function allows us to place more weight on later time t 𝑤(𝑡)

(as  decays exponentially when t increases). In our experiments we ‖exp ( ―𝑡𝐌)𝐛‖2

choose  with an appropriately chosen . 𝑤(𝑡) = exp(𝛼𝑡) α > 0

To illustrate the above discussion at the example of time-domain marine CSEM 
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modelling, we consider a time interval  and set . As shown 𝑡 = [10 ―2,102]s α = 0.1

in Fig. 1(a), this produces a weight function  which increases from 1 𝑤(𝑡) = exp(𝛼𝑡)

to 22004 on , approximately corresponding to the three to four orders 𝑡 = [10 ―2,102]s

of decay of the transients in typical marine CSEM models. We now perform a total of 

m=40 rational Arnoldi iterations with two distinct shifts for the surrogate model, 

finally the two optimal shifts obtained by the parameter search procedure (i.e., eq. 

(21) ) are . The error curve of the surrogate 𝜉1 = ―0.1654 and 𝜉2 = ―76.3031

rational Arnoldi approximation, evaluated for 100 time points in , is 𝑡 = [10 ―2,102]s

shown in Fig. 1(b). Note how the error decays for late time points, staying below the 

inverse of the scaled weight function (the dashed black curve). We also show in red 

the error orthogonal projection of the exact exponential  onto the exp( ― 𝑡𝐌)𝐛

rational Krylov space. The fact that this error curve is very close to the rational 

Arnoldi curve is an illustration of the near-optimality of the rational Arnoldi 

approximation; see e.g. Güttel (2013)[Corollary 3.4]. 

2.6 Analysis of error 

The numerical errors involved in computing the rational Arnoldi approximation 

 fall into three classes. The first error source is due to the spatial 𝐄Arnoldi(𝑡)

discretization, i.e., model setup, mesh generation, and the finite-element 

approximation, including solving the DC problem for the initial conditions and using 

the Nédélec vector basis functions to solve for the electric field. This approximation 

error is inherent to the finite element method, but can be controlled and reduced with 
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carefully designed high-quality meshes. For a detailed analysis we refer to Ren et al. 

(2013). The second error source is the Arnoldi approximation  over the 𝐄Arnoldi(𝑡)

time interval of interest. Here the most important factor is the choice of shift 

parameters. As we have illustrated in Fig. 1, our shift strategy results in a uniform 

error  over the relevant time interval for the surrogate 𝑤(𝑡)‖exp ( ―𝑡𝐌)𝐛‖2

approximation problem. The accuracy of  as an approximation to the 𝐄Arnoldi(𝑡)

original is limited by the accuracy of the surrogate problem. As proved by Börner et 

al. (2015) and Güttel (2013), this shift strategy leads to convergence independent of 

mesh size and conductivity structure, resulting in exponentially decaying error for 

arbitrary models. (A mesh refinement or change in conductivity structure merely 

affects the spectral interval of , and the robust convergence is a simple consequence 𝐌

of the fact that the shift optimization has been performed for an unbounded spectral 

interval.) For FETD using second-order BE schemes, on the other hand, the second 

error source is owing to the local truncation error  of time discretization, o(∆𝑡3)

which usually demonstrates as a periodic oscillation because we increase the time 

steps after a fixed number of iterations. The final error source is the numerical 

solution of the linear systems in Algorithm 1 and the construction of the 

B-orthonormal block Krylov basis. These errors, due to numerical round-off, are 

usually of much smaller size relative to the inaccuracies introduced by the first two 

error classes.

3 NUMERICAL EXPERIMENTS
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The finite-element discretization and backward Euler scheme are implemented in 

modern Fortran. The open source tetrahedral mesh generator TetGen (Si, 2015) is 

applied to recover the topology information of the mesh. Meanwhile, we use the 

sparse direct solver MUMPS (Amestoy et al., 2006) of version 5.1.2 with the ordering 

package PORD (Schulze, 2001) for BE schemes in FETD. The MATLAB 

implementation of block rational Arnoldi algorithm in the Rational Krylov Toolbox 

(Berljafa et al., 2014) is used for computing the rational Krylov bases. Due to the 

symmetry of the stiffness and mass matrices arising from finite-element 

discretization, we only factorize the upper triangle part of the matrices instead of the 

entire ones in FETD or rational Krylov methods. All our numerical experiments are 

performed on a Windows (R) workstation equipped with two Intel (R) Xeon (R) CPU 

E5-2650 v2 @ 2.60 GHz and 128 GB of memory. 

In this section, we compare the proposed block rational Krylov method with the 

BE schemes for CSEM modelling to evaluate its accuracy and performance. As the 

time stepping in BE schemes affects the results accuracy and dominates the main 

computation cost in FETD method, we first determine the time steps. As shown in 

Fig. 2, three different time-stepping schemes are designed with the total number of 

time steps 1000, 595 and 200 respectively. The initial time step size is chosen as 10-3 

s and the time step ∆t increases at a fixed multiplier. The time-stepping increasing 

procedures are nine, six and four times for the three schemes. Therefore, comparisons 

with these three time-stepping schemes can illustrate a comprehensive view of the 
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efficiency of our block rational Krylov method. 

3.1 A layered seafloor model

Accuracy verification

To verify the validity and accuracy of the block rational Krylov algorithm for 

multi-source time-domain CSEM modelling, we first consider a moving CSEM 

transmitter over a two-layered seafloor. The depth of the seawater is 1000 m. The 

conductivities of seawater and seafloor sediments are 3.33 S/m and 1.428 S/m 

respectively, while the conductivity of air is set to 10-8 S/m. The EM transmitter is an 

electric dipole with a finite length of 250 m, which is placed 100 m above the 

seafloor. To clearly discuss the problem, we conduct the forward modelling with only 

three sources that are located at x=0 m, 1000 m and 2000 m respectively, where 8 

receivers with a space of 1000 m are placed on the seafloor, as shown in Fig. 3.

The outer boundary of the grid for this layered model is empirically set 50 km 

from the origin, which can satisfy the Dirichlet boundary condition. Fig. 4 illustrates 

the cross section of the tetrahedral grid at y=0 m. Each transmitter is divided into 50 

segments, moreover the elements near the transmitters and receivers are locally 

refined, and generating a grid consists of 173,790 tetrahedral elements and 29,609 

nodes. Consequently, the total number of unknowns is 204,229.

Fig. 5 shows the inline electric field Ex and vertical electric field Ez from the block 

rational Arnoldi approximation of order m=40, and their relative errors with respect to 

the 1D semi-analytic solutions. The 1D time-domain results are obtained via an 

Page 23 of 57 Geophysical Journal International



inverse Fourier transform from frequency-domain solutions (Schmucker and Weidelt, 

1975). The CSEM responses for the fixed-offset transmitter-receiver pairs at same 

depth should be identical for a layered model. From Fig. 5(a) and Fig. 5(c), it is 

clearly seen that both Ex and Ez are nearly identical at three different offsets, and the 

block rational Krylov solutions agree well with the 1D solutions for the three sources. 

Although the relative errors for Ex increase at very late time channels, the maximum 

relative errors are still less than 2.5% (cf. Fig. 5(b)). The comparison of Fig. 5(c) with 

Fig. 5(a) further indicates that the vertical component Ez is an order of magnitude 

smaller than Ex for a horizontal electric dipole in the sea water, which implies that Ez 

is more sensitive to the numerical errors. This coincides well with Fig. 5(d) that the 

relative errors for Ez are larger than Ex, and the errors become about 6% at late times, 

while it is still acceptable for 3D forward modelling. The relative errors between 

block rational Krylov solutions and FETD solutions using 1000 time steps at three 

offsets are provided in Fig. 6. The relative errors of these two results present periodic 

oscillations after one second for three different offsets. However, this phenomenon is 

easy to explain. The numerical errors by spatial discretization and finite-element 

approximation are (almost) subtracted when computing the relative errors, so only the 

local truncation errors of time discretization in the BE scheme are remained, which 

show a cyclical pattern in Fig. 6. Both the results of Ex and Ez demonstrate the good 

accuracy of our finite element based rational Krylov method for multi-source 

time-domain CSEM modelling.
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Timings and efficiency

The multi-source CSEM problems can be modeled for each EM source by 

applying the rational Krylov method with a single vector, meanwhile they can also be 

solved all at once using block Krylov method, as discussed in the methodology 

section. We compare the consuming time for the three BE schemes in FETD 

modelling with both single-vector rational Krylov approximation and block Krylov 

approximation, which is shown in Table 1. Here only the time discretization in BE 

scheme (i.e., eq. (15.)) and rational Arnoldi approximation (i.e., Algorithm 1) are 

included in the timings. We choose the BE scheme with 1000 steps as the baseline 

and set its relative efficiency to one. Table 1 shows that block rational Krylov method 

is about 48% faster than single-vector rational Krylov method. Moreover, block 

rational Krylov method is 11.33 times faster than the BE scheme with 1000 time 

steps.

3.2 A synthetic 3D hydrocarbon reservoir model with seafloor bathymetry

To further reveal the ability and flexibility of block rational Krylov method for 

solving the real-world problem with complicated electric interfaces inside the earth, 

meanwhile to fully assess the performance of block method, we conduct numerical 

experiments using a 3D hydrocarbon reservoir model with significant seafloor 

bathymetry. Fig. 7 shows the seafloor bathymetry, EM sources and receivers in this 

model. We assume 45 transmitting sources distributed along three lines with an 

interval of 1000 m. The transmitting sources are about 50 m above the seafloor. The 
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survey lines are located at the seafloor parallel with the transmitting sources. On each 

line, EM receivers are laid along the seafloor every 100 meters, from -4000 m to 4000 

m, totally 243 stations. The resistive hydrocarbon reservoir is 3000 m×2000 m×200 

m in the x-, y-, and z-directions, while its center is located at [0, 0, 2000] m. The 

conductivities of air, seawater, sediments and the hydrocarbon reservoir are set to 

10-8, 3.33, 1.43 and 0.005 S/m respectively.

For the 3D hydrocarbon reservoir model, the outer boundary of the grid is 

empirically set 50 km from the center of the model, as that for the layered seafloor 

model. The maximum rate for element growth is 1.4 for meshing all the subdomains. 

For elements close to the transmitting sources, the minimum element size is chosen to 

be 1 m, while it is 3 m for those near the receivers. The seafloor bathymetry is 

described by a three-dimensional surface with a grid space of about 100 m, and no 

explicit constraints on element sizes are imposed. As a result, the modelling domain is 

divided into 692,221 tetrahedral elements by 117,052 nodes and 810,100 edges. The 

cross sections of the final tetrahedral grid are shown in Fig. 8(a) and Fig. 8(b).

The amplitude versus offset plots

Fig. 9 shows the inline component of electric field computed by the block rational 

Krylov method, where only the electric fields at inline receivers are plotted for each 

line. Electric fields are shown as “amplitude versus offset” plots, i.e., the absolute 

value of Ex field of 81 receivers in each line for 7 time channels logarithmically 

distributed in [10-2, 102] s are plotted versus their x coordinate. One can clearly 
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observe that Ex field shows a maximum when they are closing to the sources due to 

the strong effect of the EM transmitters. As a result of the influences of the energy of 

air wave (Constable and Weiss, 2006), there are large changes in the slope of the plots 

especially at the amplitudes from 4×10-11 V/m to 2×10-9 V/m. The electric field is 

very small at late time channels (e.g., the lowest two line plots of each subfigure in 

Fig. 9). In addition, they are not smooth horizontally for adjacent receivers. This can 

be easily explained as the result of the difference of their vertical locations. In fact, all 

the transmitters keep almost a constant distance above the interface (i.e., bathymetry, 

and the receivers) of seawater and sediment layer in our models, therefore the 

non-smooth phenomenon should be considered as the effect of bathymetry.

Comparison between rational Krylov solutions and BE solutions

Fig. 10 compares the EM responses by the block rational Krylov method and 

FETD method using BE scheme with 1000 time steps for each line, where there are 

15 sources and 81 receivers. We can easily see that the relative differences for most 

transmitter and receiver pairs are less than 1%, except several very early time 

channels (i.e., from 0.01 s to 0.04 s). We examine these simulation results carefully 

and find that all the larger differences (still less than 5%) occur only at very short 

offsets (a few hundred meters near the sources). As the EM field diffuses to short 

offsets faster and there are no stable stages like that for longer offsets (e.g., 2 km to 6 

km in Fig. 5), so we argue that smaller time steps at early times are necessary by BE 

scheme for this model. Similar periodic oscillations of relative differences are 
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presented for this model due to the remained truncation errors of the BE scheme. In 

general, the block rational Krylov method with only 40 rational Arnoldi iterations has 

accuracy as good as the FETD method using 1000 time steps for the complicated 

model. 

The anomaly pseudo-sections

CSEM is an EM exploration method that measures total EM field rather than the 

secondary field. Furthermore, the EM fields present strong attenuation in the seawater 

and sediments which are both high conductive medium, particularly for long offsets. 

These two factors make the effect of hydrocarbon reservoir very difficult to be 

recognized in the plots of absolute scale (i.e., Fig. 9). The significant relief of the 

sediments even brings us more trouble. For these reasons, the anomaly 

pseudo-sections used by Key and Ovall (2011) for frequency-domain CSEM 

problems are adopted here to identify the anomaly. The anomaly signal is defined as 

. Therefore, the background responses without the 3D Anomaly =
𝐄reservoir ― 𝐄background

𝐄background

hydrocarbon reservoir are then computed with our block rational Krylov method. For 

different time channels, the relative differences (i.e., the anomaly signal) of electric 

field with and without the reservoir are plotted, as shown in Fig. 11, where the x-axis 

is for the source-receiver midpoint, while the y-axis is for the source-receiver offset. 

We can see that the peak signals of the 3D reservoir occur at the offset about 3 km to 

5 km. The maximum anomalies are about 10% to 15% for the early and middle time 

channels (see Fig. 11(a) and Fig. 11(b)), while they are below 5% for the late time 
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channels (see Fig. 11(d)). For the 3D hydrocarbon reservoir model shown in Fig. 7, 

the electric currents flow less vertically to the resistive hydrocarbon reservoir. The 

currents channeling effect leads to the increase of inline electric field, which is proved 

by the positive anomaly in Fig. 11. 

Timings and efficiency

We benchmark the block rational Krylov method against single-vector rational 

Krylov method and FETD method using three BE schemes for 5, 15, 25, 35 and 45 

sources separately, to demonstrate the speedup and memory requirements of block 

method for different number of sources. Table 2 gives the elapsed time of FETD 

method using three BE schemes, single-vector rational Krylov method and our block 

rational Krylov method. The speedup ratio is calculated by dividing the run time of 

the three BE schemes and two rational Krylov methods by that of the BE scheme 

using 1000 time steps. We can find that the efficiency of BE scheme increases if less 

time steps are carried out, meanwhile the elapsed time is almost proportional to the 

number of time steps. This is because only a few matrix decompositions are carried 

out in the advance of the EM solution, so the forward and backward substitutions for 

each time step are almost the most expensive tasks for multi-source problems. The 

simple repetition of single-vector method is also linear in time complexity, while the 

time cost for block method are approximately proportional to , which indicates 𝑛𝑠1.5

that the block method may slow down with increasing number of sources, as 

discussed in the Section 2.5. However, the block method is still 26% faster (in the 
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worst case for our model) than the single-vector method for 45 sources. Considering 

the block method can produce equivalent accuracy with FETD using 1000 steps, as 

proved in Fig. 10, and the similar block Krylov iterative solvers can usually achieve a 

speedup between 1.5-fold and 2.0-fold (e.g., Puzyrev and Cela, 2015), this 

improvement is very significant and useful. The memory usage of the block Krylov 

method for different number of sources is reported in Table 3. A linear increase of the 

memory requirement with the number of sources ns is observed. This is due to the fact 

that the block basis  requires the storage of (m+1)ns single 𝐕𝑚 + 1: = [𝐯1,𝐯2,…,𝐯𝑚 + 1]

vectors and, together with the memory requirement for storing the matrix 

factorizations (that is independent of ns), these vectors dominate the memory 

foot-print.

4 CONCLUSION

We developed an efficient block rational Krylov forward solver for 3D 

time-domain CSEM modelling with unstructured tetrahedral grids. The rational 

Krylov method computes the efficient approximations to the electric field from a 

rational Krylov space without time-stepping, therefore avoids the common issues 

about designing the optimal time steps. Moreover, the rational approximations are 

implicit essentially, thus this remarkable property makes them suitable for handling 

the stiffness EM modelling problems just like the implicit time-stepping methods. By 

incorporating an exponential weight to the approximation error, we can obtain desired 

numerical accuracy with only 40 optimized shifts and thereby reduce the number of 
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linear system solves. Compared to the single-vector rational Krylov method, the 

proposed block technique takes advantage of the BLAS-3 functions for matrix-vector 

operations during the Arnoldi process with better memory efficiency. Numerical 

experiments verify the effectiveness and stability of the rational Krylov method and 

demonstrate that it can obtain equivalent accuracy with the backward Euler scheme 

using up to 1000 time steps but at a lower computational cost. If implemented the EM 

forward modeling with data domain decomposition by dividing all the sources into 

smaller groups and distributing the computation tasks over multiple processes, the 

block Krylov method could be very useful for problems with hundreds of sources. 

Our research indicates that the block rational Krylov method is a very promising 

choice for TDEM modelling.
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LIST OF FIGURES

Figure 1. Rational Arnoldi approximation errors with 2 distinct shift parameters 

which repeat 20 times for the desired time interval t=[10-2,102]s. (a) The exponential 

weight function; (b) Arnoldi error and orthogonal projection of the rational Arnoldi 

approximations. 

Figure 2. Time-stepping sizes as the function of EM diffusion time for the three 

BE schemes. The total number of time steps are 1000, 595 and 200 respectively.

Figure 3. Layered seafloor model with CSEM transmitters and receivers. The 

three short lines are electric-dipole sources. The eight circles are receivers on the 

seafloor. 

Figure 4. Cross section of the tetrahedral grid at y=0 m for the layered seafloor 

model shown in Fig. 3. The elements in green represent sea water, while grids in blue 

and red are air and seabed sediments respectively.

Figure 5. Comparison of inline electric field and vertical electric field computed 

by block rational Krylov method against 1D semi-analytic solutions at three offsets. 

(a) and (c) are Ex and Ez at the offset=2 km, 4 km, 6 km for the three sources shown in 

Fig. 3. The line plots are for 1D solutions, while the scatters are the block rational 

Krylov solutions. (b) and (d) are the relative errors for Ex and Ez in percentage. 

Figure 6. The relative errors between block rational Krylov solutions and FETD 

solutions using 1000 time steps for the layered seafloor model at three offsets. (a) and 

(b) are for Ex and Ez respectively.
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Figure 7. Perspective of the seafloor bathymetry, EM sources and receivers for 

the 3D hydrocarbon reservoir model. The grey cube is the resistive hydrocarbon 

reservoir. The red short lines denote the EM sources, and the blue dots are the EM 

receivers. The black dots and segments are generated by the topography data which 

describe the bathymetry (shown as grey interface) and control the generation of the 

grid.

Figure 8. The cross sections of the unstructured tetrahedral grid discretization of 

the 3D hydrocarbon reservoir model with seafloor bathymetry. The grids in green are 

for sediments, while the grids in red are for the resistive hydrocarbon reservoir. The 

grids in blue are elements near the EM receivers. The sea water layer has been 

omitted in the plots. (a) Clip at x=0 m; (b) Clip at y=0 m.

Figure 9. Inline electric field responses for the complex 3D hydrocarbon 

reservoir model with seafloor bathymetry. EM responses for 7 time channels 

logarithmically distributed in [10-2, 102] s are plotted. Each peak in the line plots is for 

one transmitting source. (a) Ex for Line 1; (b) Ex for Line 2; (c) Ex for Line 3.

Figure 10. The relative differences between block rational Krylov results and BE 

solutions with 1000 time steps for the 3D hydrocarbon reservoir model. The black 

solid lines indicate a relative difference of 5%. Only the inline responses are 

considered in the plots. (a) Line 1; (b) Line 2; (c) Line 3.

Figure 11. Inline electric field anomaly midpoint-offset sections for the 3D 

complicated model illustrated in Fig. 7 at four different times. The relative differences 
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of the electric field solutions with and without the hydrocarbon reservoir are plotted 

horizontally at the midpoint of the source–receiver pairs and vertically at the source–

receiver offset.
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Figure 1. Rational Arnoldi approximation errors with 2 distinct shift parameters 

which repeat 20 times for the desired time interval t=[10-2,102]s. (a) The exponential 

weight function; (b) Arnoldi error and orthogonal projection of the rational Arnoldi 

approximations. 
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Figure 2. Time-stepping sizes as the function of EM diffusion time for the three 

BE schemes. The total number of time steps are 1000, 595 and 200 respectively.
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Figure 3. Layered seafloor model with CSEM transmitters and receivers. The 

three short lines are electric-dipole sources. The eight circles are receivers on the 

seafloor. 
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Figure 4. Cross section of the tetrahedral grid at y=0 m for the layered seafloor 

model shown in Fig. 3. The elements in green represent sea water, while grids in blue 

and red are air and seabed sediments respectively.
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Figure 5. Comparison of inline electric field and vertical electric field computed 

by block rational Krylov method against 1D semi-analytic solutions at three offsets. 

(a) and (c) are Ex and Ez at the offset=2 km, 4 km, 6 km for the three sources shown in 

Fig. 3. The line plots are for 1D solutions, while the scatters are the block rational 

Krylov solutions. (b) and (d) are the relative errors for Ex and Ez in percentage. 
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Figure 6. The relative errors between block rational Krylov solutions and FETD 

solutions using 1000 time steps for the layered seafloor model at three offsets. (a) and 

(b) are for Ex and Ez respectively.

132×64 mm (300×300 DPI)

Page 48 of 57Geophysical Journal International



Figure 7. Perspective of the seafloor bathymetry, EM sources and receivers for 

the 3D hydrocarbon reservoir model. The grey cube is the resistive hydrocarbon 

reservoir. The red short lines denote the EM sources, and the blue dots are the EM 

receivers. The black dots and segments are generated by the topography data which 

describe the bathymetry (shown as grey interface) and control the generation of the 

grid.
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Figure 8. The cross sections of the unstructured tetrahedral grid discretization of 

the 3D hydrocarbon reservoir model with seafloor bathymetry. The grids in green are 

for sediments, while the grids in red are for the resistive hydrocarbon reservoir. The 

grids in blue are elements near the EM receivers. The sea water layer has been 

omitted in the plots. (a) Clip at x=0 m; (b) Clip at y=0 m.
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Figure 9. Inline electric field 

responses for the complex 3D 

hydrocarbon reservoir model with 

seafloor bathymetry. EM responses for 7 

time channels logarithmically distributed 

in [10-2, 102] s are plotted. Each peak in 

the line plots is for one transmitting 

source. (a) Ex for Line 1; (b) Ex for Line 

2; (c) Ex for Line 3.
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Figure 10. The relative differences between block rational Krylov results and BE 

solutions with 1000 time steps for the 3D hydrocarbon reservoir model. The black 

solid lines indicate a relative difference of 5%. Only the inline responses are 

considered in the plots. (a) Line 1; (b) Line 2; (c) Line 3.

180×60 mm (300×300 DPI)

Page 52 of 57Geophysical Journal International



Figure 11. Inline electric field anomaly midpoint-offset sections for the 3D 

complicated model illustrated in Fig. 7 at four different times. The relative differences 

of the electric field solutions with and without the hydrocarbon reservoir are plotted 

horizontally at the midpoint of the source–receiver pairs and vertically at the source–

receiver offset.
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Table 1. Elapsed time and efficiency for the layered-earth seafloor model shown 

in Fig. 3.

Method Elapsed time Relative efficiency

FETD Scheme 1 922 s 1.00

FETD Scheme 2 546 s 1.69

FETD Scheme 3 202 s 4.56

Solving the initial vectors 4.5 s

Construction of rational 

Krylov basis
114.6 s

Single-vector 

rational 

Krylov Evaluation of electric 

solutions
1.5 s

7.65

Solving the initial vectors 4.5 s

Construction of rational 

Krylov basis
75.2 s

Block 

rational 

Krylov Evaluation of electric 

solutions
1.7 s

11.33
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Table 2. Comparison of computational time of forward modelling using FETD method using 3 BE schemes, single-vector rational Krylov 

method and block rational Krylov method for the 3D hydrocarbon reservoir model with seafloor bathymetry shown in Fig. 7. Numerical 

experiments are performed for different number of sources.

Method

Number
of sources

FETD 

Scheme 1

FETD 

Scheme 2

FETD 

Scheme 3

Single-vector 

rational Krylov

Block rational 

Krylov

Relative efficiency

ns=5 100.0 min 67.0 min 20.5 min 17.5 min 8.8 min 1.00/1.49/4.88/5.71/11.36

ns=15 334.5 min 176.0 min 58.5 min 52.4 min 25.3 min 1.00/1.90/5.72/6.38/13.22

ns=25 494.0 min 334.5 min 113.5 min 87.4 min 48.7 min 1.00/1.48/4.35/5.65/10.14

ns=35 648.0 min 409.0 min 160.0 min 122.2 min 82.8 min 1.00/1.58/4.05/5.30/7.83

ns=45 921.0 min 584.0 min 179.5 min 157.1 min 124.5 min 1.00/1.58/5.13/5.86/7.40
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Table 3. Memory usage of block rational Krylov method for different number of 

sources.

Number of 
sources

Memory for the matrix 
factorization (in MB)

Memory for the basis 
vectors (in MB)

Total memory usage 
(in MB)

ns=1 5939 253 6272
ns=5 5939 1265 7271
ns=15 5939 3795 9772
ns=25 5939 6325 12374
ns=35 5939 8855 14892
ns=45 5939 11385 17395
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