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THE BLOCK RATIONAL ARNOLDI METHOD

STEVEN ELSWORTH
∗

AND STEFAN GÜTTEL
∗

Abstract. The block version of the rational Arnoldi method is a widely used procedure for
generating an orthonormal basis of a block rational Krylov space. We study block rational Arnoldi
decompositions associated with this method and prove an implicit Q theorem. We relate these de-
compositions to nonlinear eigenvalue problems. We show how to choose parameters to prevent a
premature breakdown of the method and improve its numerical stability. We explain how rational
matrix-valued functions are encoded in rational Arnoldi decompositions and how they can be eval-
uated numerically. Two different types of deflation strategies are discussed. Numerical illustrations
using the MATLAB Rational Krylov Toolbox are included.
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1. Introduction. Block Krylov methods were introduced in the 1970s, starting
with the block Lanczos algorithm for linear eigenproblems with repeated eigenvalues
[16, 27, 36]. More recently, block Krylov methods have found applications in model
order reduction [2, 22, 23], for the solution of matrix equations [6, 19, 31, 33], matrix
function approximation [24,37,38,40], including multisource electromagnetic modeling
[13,15,42,43], and solving linear systems with multiple right-hand sides [12,14,18,21,
28,41,48]. While the theory of single-vector rational Krylov spaces is well developed [9,
10,44,45,46,47], the block case has only been explored to a limited extent [4,24,29]. A
general framework for block polynomial Krylov spaces has recently been proposed by
Frommer et al. [24] and Lund [38], exploring the use of block inner products to create
different algorithmic variants of block Arnoldi method. Following the terminology
introduced by these authors, our focus is on a rational variant of so-called classical
block Krylov spaces.

Block rational Krylov spaces are closely connected to their polynomial counter-
parts. To introduce notation, we will include a short review here. Block polynomial
Krylov spaces are linear subspaces of CN×s built with a matrix A ∈ CN×N and
a starting block vector b = [b1, . . . , bs] ∈ CN×s of maximal rank. The associated
(classical) block Krylov space of order m+ 1 is defined as

K�
m+1(A, b) := blockspan{b, Ab, . . . , Amb}

:=

{
m∑
k=0

AkbCk : Ck ∈ Cs×s
}
.

(1.1)

We have adopted the square superscript notation from [28]. If there is no room for

ambiguity, we sometimes omit (A, b) for brevity and just write K�
m+1. There exists

an integer M ≤ N , called the invariance index of (A, b) (or block grade of b with
respect to A; see [29]) such that

K�
1 (A, b) ⊂ K�

2 (A, b) ⊂ · · · ⊂ K�
M−1(A, b) ⊂ K�

M (A, b) = K�
M+1(A, b).
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We define the dimension d of a block Krylov space K�
m+1(A, b) as the cardinality of

a basis over CN×s, that is, there exist d block vectors b1, . . . , bd ∈ K
�
m+1 such that

every v ∈ K�
m+1 can be written in a unique way as v = α1b1 + · · ·+αdbd with scalar

coefficients αk ∈ C. Under the assumption that

the (m+ 1)s columns of [b, Ab, . . . , Amb] are linearly independent, (1.2)

the block Krylov space is of dimension d = (m + 1)s2 and there is a one-to-one
correspondence between any block vector

P (A) ◦ b := bC0 +AbC1 + · · ·+AmbCm ∈ K
�
m+1

and the matrix polynomial P (z) = C0 + zC1 + · · ·+ zmCm. The circ (◦) notation has
been attributed to Gragg in [34].

Given a polynomial qm ∈ Pm such that qm(A) is nonsingular, we define the
(classical) block rational Krylov space associated with A, b, and qm as follows:

Q�
m+1(A, b) := qm(A)−1K�

m+1(A, b) = K�
m+1(A, qm(A)−1b).

Note that the polynomial qm is implicit in our notation Q�
m+1 = Q�

m+1(A, b). The
roots ξ1, ξ2, . . . , ξm ∈ C := C ∪ {∞} of qm are referred to as the poles of the block
rational Krylov space. Both the dimension and the invariance index of a block rational
Krylov space equal those of its polynomial counterpart.

The focus of this paper is on theoretical and algorithmic aspects of generating
bases of block rational Krylov spaces. A convenient tool in this respect are so-called
block rational Arnoldi decompositions (BRADs), which we introduce in Section 2. In
Section 3 we provide an implicit Q theorem which characterizes the parameters that
uniquely determine a block rational Krylov space. The elements of a block rational

Krylov space are closely linked to rational functions: if Q�
m+1 is of full dimension

(m+ 1)s2, then there is a one-to-one correspondence between any vector

R(A) ◦ b := qm(A)−1(bC0 +AbC1 + · · ·+AmbCm) ∈ Q�
m+1 (1.3)

and the rational matrix-valued function

R(z) = qm(z)−1(C0 + zC1 + · · ·+ zmCm). (1.4)

We refer to such functions as RKFUNBs (block rational Krylov functions), gener-
alizing the RKFUN concept [11] to the block case. In Section 4, we explain how
RKFUNBs are uniquely encoded in block rational Arnoldi decompositions and how
they can be evaluated efficiently via “rerunning” the decomposition. During the algo-
rithmic construction of a block rational Krylov basis, an appropriate choice of so-called
continuation matrices needs to be made, and this is explained in Section 5. Linear
dependencies between the block Krylov vectors can lead to breakdowns of the rational
Arnoldi method. Possible deflation stategies, which can circumvent such breakdowns,
are described in Section 6. Finally, Section 7 contains numerical illustrations.

Notation. Finding an accessible notation for block Krylov methods is a chal-
lenge and varying notation is used in the literature. For clarity, we give a short
summary of our notation. Throughout this work, scalars are denoted by lowercase
Greek letters, e.g., α, β ∈ C. Vectors are denoted by lowercase Latin letters, e.g.,
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b ∈ CN and vk ∈ CN . Matrices are denoted by uppercase Latin letters and their
elements with the corresponding lowercase letters, e.g., A = [aij ] ∈ CN×N . Block
vectors are denoted by bold lowercase Latin letters and their columns are vectors,
e.g., b = [b1, . . . , bs] ∈ CN×s. Block matrices are denoted by bold uppercase Latin
letters and their elements are matrices, e.g., A = [Aij ] and Hm = [Hij ], or block
vectors, e.g., Vm = [v1, . . . , vm]. This notation has been chosen so that bold symbols
imply block structure. An element of a block vector is a vector, whereas an element
of a block matrix is a smaller matrix or a block vector. The linear space of scalar
polynomials of degree at most m is denoted by Pm. Finally, C := C ∪ {∞} denotes
the extended complex plane.

2. Block rational Arnoldi decompositions. We aim to establish a corre-
spondence between block rational Krylov spaces and a particular type of block matrix
decomposition. A block matrix

Hm =


H1,1 H1,2 · · · H1,m

H2,1 H2,2 · · · H2,m

H3,2 · · · H3,m

. . .
...

Hm+1,m

 ∈ C(m+1)s×ms, Hij ∈ Cs×s,

is called a block upper-Hessenberg matrix. A block upper-Hessenberg matrix Hm ∈
C(m+1)s×ms is unreduced if all its subdiagonal blocks are nonsingular, i.e., Hj+1,j is
nonsingular for j = 1, . . . ,m. The notion of being unreduced can be extended to a
block upper-Hessenberg pencil as follows.

Definition 2.1. Let Hm,Km ∈ C(m+1)s×ms be block upper-Hessenberg matrices.
We say that (Hm,Km) is an unreduced block upper-Hessenberg pencil if, for every
j = 1, . . . ,m, at least one of the matrices Hj+1,j and Kj+1,j is nonsingular.

We now define block rational Arnoldi decompositions as matrix equations which
generalize the decompositions described in [9, 46,47] to block rational Krylov spaces.

Definition 2.2. Let A ∈ CN×N be a given matrix. A relation of the form

AVm+1Km = Vm+1Hm (2.1)

is called a block rational Arnoldi decomposition (BRAD) if the following conditions
are satisfied:

(a) Vm+1 ∈ CN×(m+1)s is of full column rank,
(b) (Hm,Km) is an unreduced block upper-Hessenberg pencil of size (m+1)s×ms,
(c) µjKj+1,j = νjHj+1,j with scalars µj , νj ∈ C such that |µj | + |νj | 6= 0 for

j = 1, . . . ,m, and
(d) the numbers ξj = µj/νj are outside the spectrum Λ(A) for j = 1, . . . ,m.

The numbers ξ1, . . . , ξm ∈ C are called the poles of the BRAD.

The block columns of Vm+1 = [v1, . . . , vm+1] blockspan the space of the decom-

position, that is, the linear space of block vectors v =
∑m+1
j=1 vjCj with arbitrary

coefficient matrices Cj ∈ Cs×s. If Vm+1 has (m+ 1)s orthonormal columns, we have
an orthonormal BRAD. Any BRAD can be transformed into an orthonormal BRAD

with the same poles ξj by using a thin QR factorization Vm+1 =: V̂m+1R, where

V̂m+1 ∈ CN×(m+1)s has orthonormal columns, and R ∈ C(m+1)s×(m+1)s is upper
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triangular and nonsingular. Setting K̂m := RKm, and Ĥm := RHm, we obtain an

orthonormal BRAD AV̂m+1K̂m = V̂m+1Ĥm that is equivalent to the original BRAD
in the following sense.

Definition 2.3. Two BRADs (2.1) with the same matrix A ∈ CN×N are equiv-
alent if they blockspan the same space and have the same poles ξ1, . . . , ξm (not neces-
sarily in this order).

This definition of BRAD equivalence generalizes [9, Definition 2.4] from standard
rational Krylov spaces to the block case. It justifies that, without loss of generality,
one may assume that BRADs are orthonormal.

In order to construct an orthonormal BRAD, Algorithm 2.1 can be used. This
algorithm is a natural extension of the single-vector rational Arnoldi method, using
thin QR factorizations to ensure orthonormality of the block vectors vj , that is,

v∗
j vk =

{
Is×s if j = k,

Os×s if j 6= k.

This type of orthonormality is also enforced in the so-called “classical block method”
for polynomial Krylov spaces; see [24, 38]. Our variant of the algorithm starts with

the orthogonalization of the initial block vector b ∈ CN×s, which we assume to
be of maximal rank s. For each of the poles ξj , a quadruple (νj , µj , ρj , ηj) ∈ C4

is chosen such that µj/νj = ξj and µj/νj 6= ηj/ρj . A simple strategy is to set
(νj , µj) = (1, ξj) for finite poles ξj , and (νj , µj) = (0, 1) when ξj =∞. To guarantee
that µj/νj 6= ηj/ρj , we set (ρj , ηj) = (1, 0) when |ξj | > 1, and (ρj , ηj) = (0, 1)
otherwise. The quotient ηj/ρj is referred to as the continuation root [10].

The computational core of Algorithm 2.1 is line 5, where a linear system (νjA−
µjI)wj = (ρjA − ηjI)VjTj is solved for wj . The continuation matrix Tj ∈ Cjs×s

is used to select an appropriate element from Q�
j = blockspan{v1, . . . , vj} to form

the right-hand side of the linear system. Different choices of continuation matrices
Tj are discussed in Section 5. The block vector wj is orthogonalized against the
previous block vectors. For simplicity of exposition, Algorithm 2.1 uses the classic
Gram–Schmidt procedure, but one could equally use the modified Gram–Schmidt
procedure; see, e.g., [32, Chapter 19]. Furthermore, we remark that when s > 1, there
are many possibilities for the implementation of the orthogonalization: for example,
one can treat each block vector as a set of individual vectors and orthogonalize on a
vector level as opposed to a block orthogonalization. Finally, the newly orthogonalized
block vector wj is made orthonormal by computing a thin QR factorization.

It is straightforward to verify that Algorithm 2.1 produces a BRAD by decom-
posing the for loop. Combining lines 6–8, we have

wj = Vjcj + vj+1Cj+1,j = Vj+1cj ,

and by line 5,

(νjA− µjI)Vj+1cj = (ρjA− ηjI)VjTj .

Separating the terms containing A as a factor, we obtain

AVj+1(νjcj − ρjTj) = Vj+1(µjcj − ηjTj).
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Algorithm 2.1 Block rational Arnoldi method RKToolbox: rat krylov

Input: A ∈ CN×N , b ∈ CN×s of rank s, poles {ξj}
m
j=1 ⊂ C \ Λ(A)

Output: Orthonormal BRAD AVm+1Km = Vm+1Hm

1. Compute a thin QR factorization of b =: v1R
2. for j = 1, . . . ,m do
3. Choose (νj , µj , ρj , ηj) ∈ C4 such that µj/νj = ξj and ρjµj 6= ηjνj
4. Choose a continuation matrix Tj ∈ Cjs×s

5. Compute wj := (νjA− µjI)−1(ρjA− ηjI)VjTj
6. Project cj := V ∗

j wj
7. Compute wj := wj −Vjcj orthogonal to v1, . . . , vj
8. Compute a thin QR factorization of wj =: vj+1Cj+1,j

9. Set kj := νjcj − ρjTj and hj := µjcj − ηjTj , where Tj = [TTj Os×s]
T and

cj = [cTj , C
T
j+1,j ]

T

10. end for

Using the definitions of kj and hj in line 9 of the algorithm, we have

AVj+1kj = Vj+1hj .

Concatenating the columns of these relations for all j = 1, . . . ,m gives the orthonor-
mal BRAD AVm+1Km = Vm+1Hm returned by the algorithm.

3. The block rational implicit Q theorem. The implicit Q theorem, to be
given in Theorem 3.3, states that an orthonormal BRAD (2.1) is essentially uniquely
determined by the starting block vector v1 and the ordered poles ξ1, . . . , ξm. To put
this result in context, consider a standard (s = 1) polynomial Krylov space associated

with the matrix A ∈ CN×N . Given a matrix Vm ∈ CN×m with orthonormal columns,
the standard implicit Q theorem states that if Hm = V ∗

mAVm is an unreduced upper-
Hessenberg matrix, then Vm is uniquely determined (up to unimodular column scaling)
by its first column; see, e.g., [50, Chapter 2, Theorem 3.3]. This result is extended
to standard (s = 1) rational Krylov spaces in [9, Theorem 3.2], using the notion of
essentially equal rational Arnoldi decompositions (RADs); see [9, Definition 3.1]. The
concept of essentially equal RADs extends to block rational Krylov spaces as follows.

Definition 3.1. Two orthonormal BRADs, namely, AVm+1Km = Vm+1Hm

and AV̂m+1K̂m = V̂m+1Ĥm, are essentially equal if there exists a unitary block

diagonal matrix Dm+1 ∈ C(m+1)s×(m+1)s, and a nonsingular block upper-triangular

matrix Tm ∈ Cms×ms, such that V̂m+1 = Vm+1Dm+1, Ĥm = D∗
m+1HmTm, and

K̂m = D∗
m+1KmTm.

Essentially equal orthonormal BRADs form an equivalence class and we call any
of its elements essentially unique.

Two orthonormal BRADs may be equivalent but not essentially equal if the poles
are ordered differently. The following lemma collects some useful results on unreduced
block upper-Hessenberg matrices and BRADs.

Lemma 3.2.
(i) If Hm ∈ C(m+1)s×ms is an unreduced block upper-Hessenberg matrix, then it

is of maximal rank ms.
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(ii) Let (Hm,Km) be an unreduced block upper-Hessenberg pencil of a BRAD,
then each subdiagonal Hj+1,j is either nonsingular or the zero matrix.

(iii) Let (Hm,Km) be an unreduced block upper-Hessenberg pencil of a BRAD,
then the matrix αHm−βKm is of maximal rank ms for all α, β ∈ C satisfying
|α|+ |β| 6= 0.

(iv) Let Lm ∈ C(m+1)s×ms be of maximal rank ms, then the dimension of the left

null space of Lm is s. Moreover, if x ,y ∈ C(m+1)s×s are of maximal rank s

and x ∗Lm = Os×ms and y∗Lm = Os×ms, then there exists a nonsingular

matrix M ∈ Cs×s such that x = yM .

Proof.
(i) Removing the first block row of Hm yields a block upper-triangular matrix

with nonsingular diagonal blocks. Hence Hm has full column rank.
(ii) Assume that Hj+1,j is singular, in which case Kj+1,j must be nonsingular.

The pencil satisfies a BRAD and so µjKj+1,j = νjHj+1,j with |µj |+ |νj | 6= 0.
This is only possible when µj = 0 and hence Hj+1,j = Os×s.

(iii) This proof follows closely that of [10, Lemma 2.5]. Consider auxiliary scalars

α̂ = 1 and β̂ ∈ C such that α̂Hm − β̂Km is of rank ms. Multiplying the

BRAD (2.1) by α̂ and subtracting β̂Vm+1Km from both sides gives(
α̂A− β̂I

)
Vm+1Km = Vm+1

(
α̂Hm − β̂Km

)
. (3.1)

Clearly, the right-hand side of this equation is of rank ms, hence so is the
left-hand side. As a consequence, Km is of rank ms, which proves the claim
for α = 0.
If α 6= 0, consider α = α̂ and β = β̂ in (3.1). There are two possible
cases: either αHm − βKm is unreduced and so by (i) of maximal rank, or
αHm − βKm is not unreduced, and so there exists an index j ∈ {1, . . . ,m}
such that αHj+1,j − βKj+1,j is singular. Now either Hj+1,j is nonsingular
or Hj+1,j = Os×s by (ii). If Hj+1,j is nonsingular, then αHj+1,j − βKj+1,j

being singular is equivalent to

Hj+1,j −
β

α
Kj+1,j = Hj+1,j

(
1−

νjβ

µjα

)
being singular, therefore β/α = µj/νj , i.e., equal to the jth pole and hence
αA−βI must be nonsingular. IfHj+1,j = Os×s, then we would have β/α =∞
and hence α = 0, contradicting our assumption. Finally, since αA − βI is
nonsingular, and Vm+1 and Km are of full column rank, we conclude that
αHm − βKm is of full column rank by (3.1).

(iv) The first part follows directly from the rank–nullity theorem (see, e.g., [49,

Theorem 3.17]). For the second part, assume that x ,y ∈ C(m+1)s×s are of
maximal rank s and x ∗Lm = Os×ms and y∗Lm = Os×ms. Then by definition,
the columns of x ,y form a basis of the left null space of Lm, and hence there

exists a nonsingular matrix M ∈ Cs×s such that x = yM .

We are now in the position to state our implicit Q theorem.

Theorem 3.3 (block implicit Q theorem). Let A ∈ CN×N satisfy an or-
thonormal block rational Arnoldi decomposition AVm+1Km = Vm+1Hm with poles

{µj/νj}
m
j=1 ⊂ C\Λ(A). The orthonormal matrix Vm+1 and the pencil (Hm,Km) are
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essentially uniquely determined by v1 (the first block column of Vm+1) and the poles
µ1/ν1, . . . , µm/νm.

Proof. Let AV̂m+1K̂m = V̂m+1Ĥm be an orthonormal BRAD with V̂m+1 =
[v1, v̂2, . . . , v̂m+1] and poles µ1/ν1, . . . , µm/νm. We want to show that AVm+1Km =

Vm+1Hm and AV̂m+1K̂m = V̂m+1Ĥm are essentially equal.
Without loss of generality, we may assume that Hj+1,j is nonsingular and there-

fore µj/νj 6= 0, for j = 1, . . . ,m. Otherwise, if Hj+1,j is singular for some j, the
matrix Kj+1,j is nonsingular as (Hj ,Kj) is an unreduced block upper-Hessenberg

pencil, and so µj = 0 as νjHj+1,j = µjKj+1,j . In this case 0 = µj/νj /∈ Λ(A) and so

A is nonsingular, hence we can consider Vm+1Km = A−1Vm+1Hm at the jth step,
thus interchanging the roles of Hm and Km.

Given any pole µ/ν ∈ C \ (Λ(A) ∪ {0}), we subtract (ν/µ)AVm+1Hm from both
sides of the relation AVm+1Km = Vm+1Hm to give the decomposition

A(ν/µ)Vm+1L
(ν/µ)
m = Vm+1Hm, (3.2)

where A(ν/µ) := (I −Aν/µ)−1A and L(ν/µ)
m := (Km−Hmν/µ). The matrix L(ν/µ)

m is
of maximal rank by Lemma 3.2 (iii).

By construction, for each pole {µj/νj}
m
j=1, the matrix L

(νj/µj)
m is block upper-

Hessenberg. Furthermore, the jth column of L
(νj/µj)
m has all but the leading j

blocks equal to the zero matrix: consider the (j + 1, j)th block of L
(νj/µj)
m , then

Lj+1,j = Kj+1,j−(Hj+1,jνj)/µj = Os×s. An analogous result holds for AV̂m+1K̂m =

V̂m+1Ĥm.
We now prove by induction on m, one block column at a time, that the two

BRADs are essentially equal. Define D1,1 = Is×s, as v̂1 = v1D1,1, and consider the
first block column of (3.2),

A(ν1/µ1)v1L
(ν1/µ1)
1,1 = v1H1,1 + v2H2,1. (3.3)

The block columns of Vm+1 are block orthonormal, therefore pre-multiplying (3.3)
by v∗

1 gives

v∗
1A

(ν1/µ1)v1L
(ν1/µ1)
1,1 = H1,1. (3.4)

Substituting (3.4) into (3.3), rearranging and right-multiplying by H−1
2,1 yields

v2 = (A(ν1/µ1)v1 − v1v
∗
1A

(ν1/µ1)v1)(L
(ν1/µ1)
1,1 H−1

2,1 ). (3.5)

Analogously, we have Ĥ1,1 = v∗
1A

(ν1/µ1)v1L̂
(ν1/µ1)
1,1 and

v̂2 = (A(ν1/µ1)v1 − v1v
∗
1A

(ν1/µ1)v1)(L̂
(ν1/µ1)
1,1 Ĥ−1

2,1 ). (3.6)

By rearranging (3.5) and (3.6), we find v̂2 = v2D2 with

D2 := H2,1(L
(ν1/µ1)
1,1 )−1L̂

(ν1/µ1)
1,1 Ĥ−1

2,1 .

The matrix D2 is unitary as the block vectors v2 and v̂2 have orthonormal columns.

Defining T1 = T1,1 = (L
(ν1/µ1)
1,1 )−1(L̂

(ν1/µ1)
1,1 ) and D2 = diag(D1, D2), we can write

D∗
2H1T1 =

(
D1 0
0 D2

)∗(
H1,1

H2,1

)
T1,1 = Ĥ1,



8 S. ELSWORTH AND S. GÜTTEL

as H1,1(L
(ν1/µ1)
1,1 )−1 = Ĥ1,1(L̂

(ν1/µ1)
1,1 )−1 and v2H2,1(L

(ν1/µ1)
1,1 )−1 = v̂2Ĥ2,1(L̂

(ν1/µ1)
1,1 )−1.

An analogous calculation shows that D∗
2K1T1 = K̂1.

Assume that for 2 ≤ j ≤ m, there exists a unitary block diagonal matrix Dj =

diag(D1, . . . , Dj) and a block upper-triangular matrix Tj−1 such that V̂j = VjDj ,

Ĥj−1 = D∗
jHj−1Tj−1, and K̂j−1 = D∗

jKj−1Tj−1.

Reading off the jth block column of (3.2) yields

A(νj/µj)VjL
(νj/µj)

:,j = Vj+1H:,j = VjH:,j + vj+1Hj+1,j , (3.7)

where H:,j is the jth block column of the matrix Hj . The columns of Vj+1 are block

orthonormal, and so V ∗
j Vj+1 = [Ijs×js |Ojs×s]. Premultiplying (3.7) by V ∗

j gives

V ∗
j A

(νj/µj)VjL
(νj/µj)

:,j = H:,j . (3.8)

Substituting (3.8) into (3.7) and rearranging for vj+1 yields

vj+1Hj+1,j = A(νj/µj)VjL
(νj/µj)

:,j −VjV
∗
j A

(νj/µj)VjL
(νj/µj)

:,j

= (I −VjV
∗
j )A(νj/µj)VjL

(νj/µj)

:,j . (3.9)

We can write the block column L
(νj/µj)

:,j ∈ Cjs×s as

L
(νj/µj)

:,j = L
(νj/µj)

j−1 zj−1 + qj (3.10)

with block vectors zj−1 ∈ C(j−1)s×s and qj ∈ Cjs×s, where the columns of qj are cho-

sen so that they do not lie in the span of the columns of Lj−1
(νj/µj), those components

are in zj−1, and so q∗
j L

(νj/µj)

j−1 = Os×(j−1)s.

By Lemma 3.2 (iii), the block matrix L
(νj/µj)

j is of full column rank. Furthermore,

the block vector qj has full column rank by (3.10), as the s columns of L
(νj/µj)

:,j (the

jth column block of L
(νj/µj)

j ) are linearly independent, and are not contained in the

span of the columns of L
(νj/µj)

j−1 .

Substituting (3.10) into (3.9), gives

vj+1Hj+1,j = (I−VjV
∗
j )A(νj/µj)VjL

(νj/µj)

j−1 zj−1 +(I−VjV
∗
j )A(νj/µj)Vjqj . (3.11)

We show that the first term on the right hand side of (3.11) is ON×s, by substituting
the first j − 1 block columns of (3.2) with ν = νj and µ = µj :

(I −VjV
∗
j )A(νj/µj)VjL

(νj/µj)

j−1 zj−1 = (I −VjV
∗
j )VjHj−1zj−1,

= VjHj−1zj−1 −VjV
∗
j VjHj−1zj−1,

= ON×s.

Equation (3.11) reduces to

vj+1Hj+1,j = (I −VjV
∗
j )A(νj/µj)Vjqj . (3.12)
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Analogously, we have L̂
(νj/µj)

:,j = L̂
(νj/µj)

j−1 ẑj−1 + q̂j , where q̂∗
j L̂

(νj/µj)

j−1 = Os×(j−1)s

and v̂j+1Ĥj+1,j = (I−V̂jV̂
∗
j )A(νj/µj)V̂j q̂j . By the induction hypothesis V̂j = VjDj ,

and so

v̂j+1Ĥj+1,j = (I −VjV
∗
j )A(νj/µj)VjDj q̂j . (3.13)

Combining L̂
(νj/µj)

j−1 = D∗
j L

(νj/µj)

j−1 Tj−1 from the induction hypothesis and q̂∗
j L̂

(νj/µj)

j−1 =

Os×(j−1)s, we have q̂∗
jD

∗
j L

(νj/µj)

j−1 Tj−1 = Os×(j−1)s. Now by construction Tj−1 is

nonsingular, hence q̂∗
jD

∗
j L

(ξj)

j−1 = Os×(j−1)s.

The block vectors Dj q̂j , qj and the block matrix L
(νj/µj)

j−1 are of maximal rank. By

Lemma 3.2 (iv), there exists a nonsingular matrix M ∈ Cs×s such that Dj q̂j = qjM .
Combining equations (3.12) and (3.13), we obtain

v̂j+1Ĥj+1,j = vj+1Hj+1,jM, (3.14)

and so the columns of the block vectors vj+1 and v̂j+1 span the same space. Further-

more, v∗
j+1vj+1 = v̂∗

j+1v̂j+1 = Is×s, so there exists a unitary matrix Dj+1,j+1 ∈ Cs×s

such that v̂j+1 = vj+1Dj+1,j+1. This relation can be written as vj+1(Dj+1,j+1Ĥj+1,j−
Hj+1,jM) = O(j+1)s×s, and so Ĥj+1,j = D∗

j+1,j+1Hj+1,jM .
It remains to find the block column T:,j of the nonsingular matrix Tj such that

Ĥj = D∗
j+1HjTj , and K̂j = D∗

j+1KjTj . Rearranging and substituting (3.10) and

analogous result into Dj q̂j = qjM yields

Dj(L̂
(νj/µj)

:,j − L̂
(νj/µj)

j−1 ẑj−1) = (L
(νj/µj)

:,j − L
(νj/µj)

j−1 zj−1)M,

which can be rearranged to

L̂
(νj/µj)

:,j = D∗
j L

(νj/µj)

j−1 (Tj−1ẑj−1 − zj−1M) + D∗
j L

(νj/µj)

:,j M = D∗
j L

(νj/µj)

:,j T:,j

where T:,j =

(
Tj−1ẑj−1 − zj−1M

M

)
.

Finally substituting our results in (3.8), we have

Ĥ:,j = V̂ ∗
j A

(νj/µj)V̂jL̂
(νj/µj)

:,j ,

= (VjDj)
∗A(νj/µj)VjDjD

∗
j L

(νj/µj)

:,j T:,j ,

= D∗
jV

∗
j A

(νj/µj)VjL
(νj/µj)

:,j T:,j .

Substituting (3.7) yields

Ĥ:,j = D∗
jV

∗
j Vj+1H:,jT:,j ,

= D∗
jH:,jT:,j .

The subdiagonal elements follow from (3.14), and so Ĥj = D∗
j+1HjTj . An analogous

result can be found for K̂j . Therefore V̂j+1 = Vj+1Dj+1, Ĥj = D∗
j+1HjTj , and
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K̂j = D∗
j+1KjTj , so the two BRADs are essentially equal, thereby completeing the

induction.

In Section 2 we showed how any BRAD can be transformed into an orthonor-
mal BRAD using a thin QR factorization. By the implicit Q theorem, these two
decompositions are essentially equal.

4. Rational matrix-valued functions and RKFUNB objects. Let us recall
from the introduction that, under assumption (1.2), there is a one-to-one correspon-

dence between any vector R(A) ◦ b ∈ Q�
m+1(A, b), given in (1.3), and a rational

matrix-valued function R(z) given in (1.4). Our aim is to show how rational matrix-
valued functions are encoded in BRADs. The following lemma will be useful.

Lemma 4.1. Given two rational matrix-valued functions R(z) = qm(z)−1(C0 +
zC1+· · ·+zmCm) and S(z) = qm(z)−1(D0+zD1+· · ·+zmDm) with matrix coefficients

C0, . . . , Cm, D0, . . . , Dm ∈ Cs×s, and a scalar polynomial p(z). Let A ∈ CN×N and

B ∈ CN×s, then

(i) [p(z)R(z)]
∣∣
z=A
◦B = p(A)(R(A) ◦B) = R(A) ◦ (p(A)B),

(ii) Let M ∈ Cs×s, then [MR(z)]
∣∣
z=A
◦B = R(A) ◦ (BM),

(iii) Let M ∈ Cs×s, then [R(z)M ]
∣∣
z=A
◦B = (R(A) ◦B)M ,

(iv) (R · S)(A) ◦B = S(A) ◦ (R(A) ◦B).

Proof.
(i) This result follows from the definition of the circ operator in (1.3) and the

fact that p(A) commutes with qm(A)−1 and all matrix powers of A.
(ii)

[MR(z)]
∣∣
z=A
◦B = qm(A)−1([MC0 + zMC1 + · · ·+ zmMCm]

∣∣
z=A
◦B)

= qm(A)−1(MC0 +ABMC1 + · · ·+AmBMCm)

= R(A) ◦ (BM).

(iii)

[R(z)M ]
∣∣
z=A
◦B = qm(A)−1([C0M + zC1M + · · ·+ zmCmM ]

∣∣
z=A
◦B)

= qm(A)−1(C0M +ABC1M + · · ·+AmBCmM)

= (R(A) ◦B)M.

(iv) This is a generalization of [20, Proposition 1]. The left-hand side is

(R · S)(A) ◦B = qm(A)−2
2m∑
k=0

AkB
∑
i+j=k

CiDj .

For the right-hand side, we have

S(A) ◦ (R(A) ◦B) = S(A) ◦
(
qm(A)−1

m∑
i=0

AiBCi
)

= qm(A)−1(S(A) ◦
m∑
i=0

AiBCi
)

= qm(A)−2
m∑
j=0

Aj
m∑
i=0

AiBCiDj ,
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where for the second equality we have used part (i) of the lemma and the fact
that there exists a polynomial p(z) such that qm(A)−1 = p(A).

Given a BRAD AVm+1Km = Vm+1Hm, we can identify each block column
of Vm+1 = [v1, . . . , vm+1] with a rational matrix-valued function Rj(z) such that
vj+1 = Rj(A) ◦ b. In other words, we can write

A[R0(A) ◦ b, . . . , Rm(A) ◦ b]Km = [R0(A) ◦ b, . . . , Rm(A) ◦ b]Hm.

Using Lemma 4.1 (i) and (iii), this is equivalent to

z[R0(z), . . . , Rm(z)]Km

∣∣∣
z=A
◦ b = [R0(z), . . . , Rm(z)]Hm

∣∣∣
z=A
◦ b.

Note that we have formally “isolated” both A and b from the decomposition using
the circ operator, hence it is meaningful to consider the functions Rj(z) indepen-
dently from (A, b). Moreover, these functions are fully encoded in the matrix pencil
(Hm,Km). To give a more insightful characterization of the functions Rj(z), it is
helpful to transform a BRAD into an essentially equal BRAD where the subdiagonals
of the upper-Hessenberg matrices are multiples of the identity (and therefore commute
with all other square matrices of appropriate size).

Definition 4.2. A BRAD is normalized if the subdiagonal blocks of the matrix
pencil (Hm,Km) are multiples of the identity.

By the definition of a BRAD AVm+1Km = Vm+1Hm, the subdiagonal blocks
satisfy νjHj+1,j = µjKj+1,j for j = 1, . . . ,m with at least one of the two matrices
being nonsingular. We define Zm := diag(Z1, . . . , Zm) with

Zj :=

{
H−1
j+1,j if Hj+1,j is nonsingular,

K−1
j+1,j otherwise.

Setting K̂m := KmZm and Ĥm := HmZm, we obtain a normalized BRADAV̂m+1K̂m =

V̂m+1Ĥm which is essentially equal to the original BRAD (by the implicit Q theo-
rem). The following theorem gives a recursive characterization of the functions Rj(z)
associated with a normalized BRAD.

Theorem 4.3. Given a normalized BRAD with block upper-Hessenberg pencil
(Hm,Km) having subdiagonal blocks (µjIs×s, νjIs×s), j = 1, . . . ,m, and a block ma-
trix Vm+1 = [v1, . . . , vm+1]. Then, for j = 1, . . . ,m,

vj+1 = Rj(A) ◦ v1 =

j∑
i=1

(µj − zνj)
−1(zKij −Hij)

∣∣
z=A
◦ vi. (4.1)

Proof. Reading off the jth block column of the normalized BRAD yields

(Iµj −Aνj)vj+1 =

j∑
i=1

(
AviKi,j − viHi,j

)
, (4.2)

for j = 1, . . . ,m. Multiplying on the left by (Iµj − Aνj)
−1, which is guaranteed to

exist by the choice of the pole µj/νj , gives

vj+1 =

j∑
i=1

(Iµj −Aνj)
−1 (AviKi,j − viHi,j

)
.
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Making use of the circ operator, we can write this as

vj+1 =

j∑
i=1

(µj − zνj)
−1(zKij −Hij)

∣∣
z=A
◦ vi.

We can also characterize the functions Rj(z) in terms of block determinants.
Given an s × s matrix X = [X], the associated block determinant is defined as

det�(X ) := X. Further, the block determinant of a block upper-Hessenberg matrix
X whose subdiagonal block elements are multiples of the identity,

X =


X11 X12 · · · X1,n

x1Is×s X22 · · · X2,n

. . .
. . .

...
xn−1Is×s Xn,n


is defined recursively as

det�(X ) :=

n∑
i=1

(−1)i+n det�(Mi,n)Xi,n, (4.3)

where Mi,n is obtained by removing the ith block row and nth block column of X .
This block determinant is a special form of a quasideterminant ; see, e.g., [25, 26].
In our case, the assumption of the block upper-Hessenberg structure and structured
subdiagonal elements simplifies the following derivations significantly and is sufficient
for our purposes. We have the following theorem.

Theorem 4.4. Given a normalized BRAD with block upper-Hessenberg pencil
(Hm,Km) having subdiagonal blocks (µjIs×s, νjIs×s), j = 1, . . . ,m, and a block ma-
trix Vm+1 = [v1, . . . , vm+1]. Then, for j = 1, . . . ,m,

vj+1 = qj(A)−1
(

det�(zKj −Hj)
∣∣
z=A
◦ v1

)
, (4.4)

where qj(z) =
∏j
`=1(µ` − zν`).

Proof. Multiplying (4.2) on the left by qj−1(A) yields

qj(A)vj+1 = qj−1(A)

j∑
i=1

(AviKi,j − viHi,j). (4.5)

It is clear that (4.5) is the same as (4.4) for j = 1. Assume that (4.4) is true for
j = 1, . . . , n − 1 and consider j = n. Substituting every occurence of vi on the
right-hand side of (4.5) by (4.4) yields

qn(A)vn+1 = qn−1(A)

n∑
i=1

[
A
(
qi−1(A)−1 det�(zKi−1 −Hi−1)

∣∣
z=A
◦ v1

)
Ki,n

−
(
qi−1(A)−1 det�(zKi−1 −Hi−1)

∣∣
z=A
◦ v1

)
Hi,n

]
.

Using Lemma 4.1 (i) and (iv) yields

qn(A)vn+1 =

n∑
i=1

[
qn−1(z)qi−1(z)−1 det�(zKi−1 −Hi−1)(zKi,n −Hi,n)

] ∣∣∣
z=A
◦ v1

=

[
n∑
i=1

(−1)i+n
(

det�(zKi−1 −Hi−1)(−1)n−iqn−1(z)qi−1(z)−1
)

(zKi,n −Hi,n)

] ∣∣∣
z=A
◦ v1.
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It remains to show that the term in the last square brackets corresponds to det�(zKn−
Hn), from which would then follow the required statement that

qn(A)vn+1 = det�(zKn −Hn)
∣∣∣
z=A
◦ v1.

Indeed, the term in square brackets can be identified with the expansion given in (4.3)
by setting Xi,n = (zKi,n −Hi,n) and

det�(Mi,n) = det�(zKi−1 −Hi−1)(−1)n−iqn−1(z)qi−1(z)−1.

The latter formula follows from the fact that each Mi,n has an (i−1)× (i−1) leading

normalized block upper-Hessenberg matrix with block determinant det�(zKi−1 −
Hi−1), and an (n − i) × (n − i) block upper-triangular part along the diagonal with

block determinant (−1)n−iqn−1(z)qi−1(z)−1.

We have shown that a block matrix pencil (Hm,Km) encodes a recursion of
rational matrix-valued functions. If we fix R0 ≡ Is×s, then all functions Rj(z) are

specified. Given a set of matrix coefficients D0, D1, . . . , Dm ∈ Cs×s, which we collect
in a block matrix D := [D0, D1, . . . , Dm] for convenience, then

R(z) := R0(z)D0 +R1(z)D1 + · · ·+Rm(z)Dm

defines a rational matrix-valued function which we refer to as RKFUNB (short for
block rational Krylov function). The function R(z) is represented by the triplet
(Hm,Km,D), a block extension of the RKFUN objects introduced in [7].

The RKFUNB representation R(z) ≡ (Hm,Km,D) allows for an efficient nu-
merical evaluation procedure. Note that evaluating R(z) at a scalar z ∈ C such that
qm(z) 6= 0 is equivalent to evaluating R(A) ◦ b for A = zIs×s and b = Is×s. More

generally, we consider evaluating R(Â) ◦ b̂ for Â ∈ CN̂×N̂ with ξ1, . . . , ξm /∈ Λ(Â) and

b̂ ∈ CN̂×s. We start by computing {Rj(Â) ◦ b̂}mj=0 by rerunning the block rational
Arnoldi method without computing the orthogonalization coefficients, but reusing the
quantities provided in (Hm,Km). This is shown in Algorithm 4.2, which constructs
a new decomposition

ÂV̂m+1Km = V̂m+1Hm,

where V̂m+1 = [b̂, R1(Â) ◦ b̂, . . . , Rm(Â) ◦ b̂]. Note that this decomposition is not

necessarily a BRAD as V̂m+1 might fail to be of full column rank. Finally, the
evaluated RKFUNB is obtained by summation

R(Â) ◦ b̂ := (R0(Â) ◦ b̂)D0 + (R1(Â) ◦ b̂)D1 + · · ·+ (Rm(Â) ◦ b̂)Dm.

This evaluation procedure is implemented in the Rational Krylov Toolbox since
version 2.8 as a method of the rkfunb class. Given an RKFUNB represented as a
MATLAB object R, the user can type R(A,b) to obtain R(A) ◦ b. We will show an
application of this procedure in Section 7.1.

5. Continuation matrices. As before we work with the rank assumption (1.2).
At each iteration j = 1, 2, . . . ,m of the block rational Arnoldi method (Algorithm 9),
we have available a BRAD

AVjKj−1 = VjHj−1 (5.1)
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Algorithm 4.2 Evaluating an RKFUNB

Input: Â ∈ CN̂×N̂ , b̂ ∈ CN̂×s, RKFUNB R(z) ≡ (Hm,Km,D)

Output: R(Â) ◦ b̂

1. Set v̂1 := b̂, V̂1 := v̂1
2. for j = 1, . . . ,m do
3. Find (νj , µj , ρj , ηj) ∈ C4 such that µjKj+1,j = νjHj+1,j , |µj |+ |νj | 6= 0, ρjµj 6=

ηjνj
4. Compute Tj := (µjkj − νjhj)/(ηjνj − ρjµj)
5. Compute cj := (ηjkj − ρjhj)/(ηjνj − ρjµj), Cj+1,j := (ηjKj+1,j −

ρjHj+1,j)/(ηjνj − ρjµj)
6. Compute wj := (νjÂ− µjI)−1(ρjÂ− ηjI)V̂jTj
7. Compute wj := wj − V̂jcj
8. Compute v̂j+1 := wjC

−1
j+1,j and set V̂j+1 := [V̂j , v̂j+1]

9. end for
10. Compute R(Â) ◦ b̂ :=

∑m
j=0 v̂j+1Dj

which we would like to extend by an orthonormalized version of the block vector

wj := (νjA− µjI)−1(ρjA− ηjI) ·VjTj .

To select an appropriate block element VjTj ∈ Q
�
j (A, v1) for the extension, a contin-

uation matrix Tj ∈ Cjs×s of rank s needs to be chosen. By Theorem 4.3, VjTj can
be written in terms of a rational matrix-valued function

VjTj = v1T1,1 + v2T2,1 + · · ·+ vjTj,1 =: R(A) ◦ v1,

where R(z) = qj−1(z)−1(C0 + zC1 + · · ·+ zj−1Cj−1) for C0, C1, . . . , Cj−1 ∈ Cs×s. Let
us investigate the case of an avoidable breakdown of the orthogonalization procedure
with a finite pole ξj = µj/νj , where there exists a vector x ∈ Cs \ {0} and another

function S(z) = qj−1(z)−1(D0 + zD1 + · · ·+ zj−1Dj−1) for D0, D1, . . . , Dj−1 ∈ Cs×s

such that

[(A− ξjI)−1(ρjA− ηjI) ·R(A) ◦ v1]x = [S(A) ◦ v1]x. (5.2)

This means that the columns of the block vector wj can be linearly combined into a
vector already contained in the span of Vj , hence not expanding this space by s new
directions. Left-multiplying (5.2) by the nonsingular matrix qj−1(A)(A− ξjI), it can
be rewritten in the equivalent form

(ρjz − ηj)R(z)x = (z − ξj)S(z)x.

Comparing the coefficients of the independent variable z in

(ρjz − ηj)(C0 + zC1 + · · ·+ zj−1Cj−1)x = (z − ξj)(D0 + zD1 + · · ·+ zj−1Dj−1)x,
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results in the following system of equations:

ρjCj−1x = Dj−1x,
(ρjCj−2 − ηjCj−1)x = (Dj−2 − ξjDj−1)x,

...
(ρjC0 − ηjC1)x = (D0 − ξjD1)x,
−ηjC0x = −ξjD0x.

This can be rewritten as a polynomial (nonlinear) eigenvalue problem [30,51]

(ρjξj − ηj)(C0 + ξjC1 + ξ2jC2 + · · ·+ ξj−1
j Cj−1)x = 0.

The factor (ρjξj − ηj) is nonzero by our assumption ξj = µj/νj 6= ηj/ρj (see Al-
gorithm 9). Consequently, given a block vector VjTj = R(A) ◦ v1, an avoidable
breakdown will occur if ξj is an eigenvalue of the polynomial eigenvalue problem

(C0 + zC1 + z2C2 + · · ·+ zj−1Cj−1)x = 0.

Throughout the literature, the most commonly used continuation matrix is such
that VjTj = vj , i.e.,

Tj =
[
Os×s · · · Os×s Is×s

]T
. (5.3)

With this continuation strategy, which always uses the last computed block basis
vector and is henceforth referred to as strategy 'last', one can read off the “forbidden
poles” (which would lead to an avoidable breakdown) as the eigenvalues of the matrix
pencil in (5.1).

Theorem 5.1. Given a BRAD (5.1) with Vj = [v1, . . . , vj ], and write vj−1 =

R(A) ◦ v1. The eigenvalues λ of the nonlinear eigenvalue problem xTR(λ) = 0T are
contained in the set of generalized eigenvalues of (Hj−1,Kj−1).

Proof. Consider (5.1) in the “scalar” form

z[R0(z), . . . , Rj−2(z), R(z)]Kj−1 = [R0(z), . . . , Rj−2(z), R(z)]Hj−1,

merge the last two columns and rearrange to get

[R0(z), . . . , Rj−2(z)](zKj−1 −Hj−1) = R(z)(Hj,j−1 − zKj,j−1)ET
j−1,

where ET
j−1 = [Os×s, . . . , Os×s, Is×s] ∈ Rs×(j−1)s. Suppose that λ ∈ C is an eigen-

value of R(z) with corresponding left eigenvector x ∈ Cs \ {0}, i.e., xTR(λ) = 0T .
Then

xT [R0(λ), . . . , Rj−2(λ)](λKj−1 −Hj−1) = 0T ,

and so (λ, xT [R0(λ), . . . , Rj−2(λ)]) is a left eigenpair of (Hj−1,Kj−1).

Theorem 5.1 provides an easy way to check whether a given pole ξj should be
avoided when the continuation strategy 'last', according to (5.3), is used. If all
poles ξj are pairwise distinct, another strategy is to use

Tj =
[
Is×s Os×s · · · Os×s

]T
.
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This strategy, called 'first', allows for parallelism in the construction of the block
Krylov basis vectors, but even for the case s = 1 it can lead to severe numerical
instabilities [10].

In practice we are often in the situation where the pole sequence ξ1, ξ2, . . . , ξm is
given a priori and we wish to have a continuation strategy that avoids breakdowns
and numerical instabilities. For the single-vector (s = 1) case, Ruhe [47] introduced a
continutation vector designed to prevent breakdowns caused by the cancelation of a
common root in the numerator and denominator of the rational function underlying
a rational Krylov vector. We now extend this strategy, referred to as 'ruhe', to the
block case: again we assume that at iteration j of Algorithm 2.1 we have a BRAD (5.1)
which we would like to extend by a new block vector using the pole ξj = µj/νj 6=∞.
We start with computing a full QR factorization of

νjHj−1 − µjKj−1 = QjRj,j−1. (5.4)

The involved matrices are of size νjHj−1 − µjKj−1 ∈ Cjs×(j−1)s, Qj ∈ Cjs×js, and

Rj,j−1 ∈ Cjs×(j−1)s. Note that the subscripts refer to the iteration index and not the
matrix sizes. By Lemma 3.2 (iii) we know that Rj−1,j−1, the upper (j−1)s× (j−1)s
part of Rj,j−1, is nonsingular.

Multiplying the BRAD by νjηj , subtracting µjηjVjKj−1 from both sides and

rearranging yields

(νjA− µjI)VjηjKj−1 = ηjVj(νjHj−1 − µjKj−1). (5.5)

Similarly, multiplying the BRAD by ρjµj , subtracting ρjνjAVjHj−1 from both sides

and rearranging yields

(νjA− µjI)VjρjHj−1 = ρjAVj(νjHj−1 − µjKj−1). (5.6)

Subtracting (5.5) from (5.6) and rearranging gives the decomposition

(νjA− µjI)−1(ρjA− ηjI)Vj(νjHj−1 − µjKj−1) = Vj(ρjHj−1 − ηjKj−1).

Substituting the QR factorization (5.4) on the left and inserting identity on the right,
we have

(νjA− µjI)−1(ρjA− ηjI)VjQjRj,j−1 = VjQjQ
∗
j (ρjHj−1 − ηjKj−1).

The matrix Rj,j−1 has s more rows than columns, and so the last s rows must be
zero. Multiplying on the right by the inverse of Rj−1,j−1 leads to

(νjA− µjI)−1(ρjA− ηjI)Wj−1 = WjFj−1, (5.7)

where Wj := VjQj and Fj−1 := Q∗
j (ρjHj−1 − ηjKj−1)R−1

j−1,j−1.

Our aim is to find a continuation combination VjTj such that multiplying by

(νjA − µjI)−1(ρjA − ηjI) expands the space. By (5.7) we know that any vector in
the span of Wj−1 does not enlarge the span of Wj = VjQj , and so we should choose
vectors from the orthogonal complement of Wj−1 in the span of Vj . This can be
achieved by selecting the last s columns of Qj as the continuation matrix. Hence, the
'ruhe' continuation strategy extended to the block case becomes

Tj =

{
Is×s if j = 1,

Qj(:,end− s+ 1 : end) otherwise.
(5.8)
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In Section 7.2 we will provide a numerical illustration of the benefits of the continua-
tion strategy 'ruhe' over the more commonly used strategy 'last'.

Remark 5.2. It is worth noting that, when constructing a rational Krylov basis
using Algorithm 2.1 with a pole ξj = ξj−1 repeated from the previous iteration, the
continuation strategies 'ruhe' and 'last' are essentially equivalent. With ξj−1 =
µj−1/νj−1 we have that µj−1Kj,j−1 = νj−1Hj,j−1 in (5.1). Hence, the final s rows of
the matrix νjHj−1 − µjKj−1 in (5.4) will be zero and therefore the last s columns of

Qj must be of the form

Tj =
[
Os×s · · · Os×s Us×s

]T
for any unitary matrix Us×s, which can be chosen as Is×s. This is the same continu-
ation matrix as (5.3).

6. Deflation. So far we have worked with the full rank assumption (1.2), but in
practice exact rank deficiencies may occur in the Krylov matrix [b, Ab, . . . , Ajb], or
the basis vectors wj computed in line 5 of Algorithm 2.1 might be such that [Vj ,wj ]
is badly conditioned. If the (nearly) dependent vectors in wj are not removed, the
matrix Cj+1,j computed in line 8 of the algorithm is (nearly) singular, resulting in a
(near) breakdown of the orthonormalization procedure. The removal of the (nearly)
linearly dependent vectors from wj is known as deflation.

Deflation can implemented by a straightforward modification of Algorithm 2.1.
Assume that the block vector wj in line 8 has sj ≤ s columns. We can compute a
thin SVD or column-pivoted QR factorization which, in both cases, is of the form

wj = QjRjP
∗
j =

[
Q

(k)
j , Q

(d)
j

] [R(k)
j

R
(d)
j

]
P ∗
j ,

whereQ
(k)
j ∈ CN×sj+1 andQ

(d)
j ∈ CN×(sj−sj+1) have (mutually) orthonormal columns,

R
(k)
j ∈ Csj+1×sj , R

(d)
j ∈ C(sj−sj+1)×sj , and Pj ∈ Csj×sj is unitary. Here, Q

(k)
j corre-

sponds to the columns to keep, and Q
(d)
j to the columns to deflate. The matrix R

(k)
j

is of upper trapezoidal form and R
(d)
j should have small norm. From here, we have

two options:

(i) We define the next basis vector vj+1 := Q
(k)
j and set Cj+1,j := R

(k)
j P ∗

j ∈
Csj+1×sj . When combined into an approximate BRAD

AVm+1Km = Vm+1Hm + Sm,

the block upper-Hessenberg matrices Hm and Km are of the format (only
shown for Hm):

Hm =



s1 s2 s3 sm

s1 H1,1 H1,2 H3,1 · · · Hm,1

s2 H2,1 H2,2 H3,2 · · · Hm,2

s3 H3,2 H3,3 · · · Hm,3

. . .
. . .

...

sm
. . . Hm,m

sm+1 Hm+1,m


,
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and the block columns of the residual matrix Sm = [s1, . . . , sm] are

sj = −(νjA− µjI)Q
(d)
j R

(d)
j P ∗

j .

This type of fat decomposition, used by Gutknecht in [28] for block polynomial
Krylov spaces, ensures that the diagonal blocks Hj,j and Kj,j are square.
The sequence s1, s2, . . . , sm+1 is monotonically nonincreasing and at least
one of the subdiagonal blocks Hj+1,j or Kj+1,j is of maximal rank sj+1. This
means that, given s1, one can infer the complete block structure of the pencil
(Hm,Km) by calculating the ranks of the subdiagonal blocks.

(ii) A thin decomposition AVm+1K̃m = Vm+1H̃m can obtained from a fat decom-
position AVm+1Km = Vm+1Hm via right-multiplication by a (rectangular)

block-diagonal matrix Dm = diag(D1, . . . , Dm). The matrices Dj ∈ Csj×sj+1

are chosen such that at least one of H̃j+1,j := Hj+1,jDj ∈ Csj+1×sj+1 and

K̃j+1,j := Kj+1,jDj ∈ Csj+1×sj+1 is nonsingular. This can be achieved, for
example, by setting Dj = [e1, e2, . . . , esj+1

], where ei ∈ Csj+1 is the ith unit

vector. The resulting block upper-Hessenberg matrices H̃m and K̃m are of

the format (only shown for H̃m):

H̃m =



s2 s3 s4 sm+1

s1 H1,1 H1,2 H3,1 · · · Hm,1

s2 H2,1 H2,2 H3,2 · · · Hm,2

s3 H3,2 H3,3 · · · Hm,3

. . .
. . .

...
sm Hm,m

sm+1 Hm+1,m


.

In this type of thin decomposition, all the subdiagonal blocks Hj+1,j and
Kj+1,j are square.

The MATLAB Rational Krylov Toolbox implements both types of decompositions
in the rat krylov function; see [8] for details.

7. Examples. In this section we provide numerical illustrations using the MAT-
LAB Rational Krylov Toolbox version 2.8�. All the experiments were performed with
the 64-bit version of MATLAB 2018a on a machine equipped with an Intel I7-6700
processor running at 3.40 GHz.

7.1. Vector autoregression via RKFUNB. In Section 4, we introduced the
RKFUNB framework which provides a Krylov-based representation of rational matrix-
valued functions. Matrix-valued functions have applications to modeling multivariate
time series, with one particular example being vector autoregression (VAR). Consider

the realization of a multivariate time series y = [y1, . . . , ys] ∈ RN×s (s � N) such
that y is of maximal rank s. Assuming that this times series is generated by a VAR(p)
process with mean zero, it can be written as

yt = yt−1C1 + · · ·+ yt−pCp + εt,

�
Available for download from http://rktoolbox.org.
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where yt refers to the t-th row of y , C1, . . . , Cp ∈ Rs×s, and εt is a white noise
process [39, Chapter 2]. The coefficients C1, . . . , Cp can be estimated by solving the
least squares problem

min
C1,...,Cp

∥∥∥∥∥∥∥
yp+1

...
yN

−
 yp

...
yN−1

C1 − · · · −

 y1
...

yN−p

Cp

∥∥∥∥∥∥∥
2

2

. (7.1)

Let us define the matrices

A =


0 1

. . .
. . .

. . . 1
0

 ∈ RN×N , D = diag(1, . . . , 1︸ ︷︷ ︸
N−p

, 0 . . . , 0︸ ︷︷ ︸
p

) ∈ RN×N ,

and the seminorm ‖y‖D := ‖Dy‖2. Then (7.1) can be written more concisely as

min
C1,...,Cp

∥∥Apy −Ap−1yC1 − · · · −A
0yCp

∥∥2
D

= min
P (z)

∥∥Apy − P (A) ◦ y
∥∥2
D
, (7.2)

where the minimization on the right-hand side is over all matrix polynomials P (z) =
zp−1C1 + · · · + z0Cp. Using the block rational Arnoldi method, we can generate a

block basis Vp = [v1, . . . , vp] which blockspans K�
p (A,y) and is such that y = v1R

with nonsingular R ∈ Rs×s, and V ∗
pDVp = Ips×ps. Using Lemma 4.1 (ii)–(iii), we

can as well perform the minimization (7.1) using the block basis Vp as

min
P (z)

∥∥Ap(v1R)− P (A) ◦ (v1R)
∥∥2
D

= min
P̂ (z)

∥∥[Apv1 − P̂ (A) ◦ v1]R
∥∥2
D
, (7.3)

where P̂ (z) = RP (z)R−1 and the minimizer P̂ (A) ◦ v1 is naturally represented as an
RKFUNB object. Single-step predictions can now be obtained by repeatedly applying
P̂ (A) to the time series data.

The intimate connection between univariate autoregressive modeling and polyno-
mial Krylov spaces is well known, with [17] being one of the key references on this
topic. The connection between the multivariate case and block Krylov methods is
natural. Here we want to demonstrate the use of block Krylov spaces on a time series
example taken from [39, Example 3.2.3]�. The s = 3 time series under considera-
tion, stored in the matrix y , correspond to first-order differences of the logarithms of
quarterly seasonally adjusted West German fixed investment, disposable income, and
consumption expenditures. The aim is to forecast these time series using a VAR(2)
model. Figure 7.1 shows a snippet of MATLAB code performing a one-step VAR(2)
prediction using the RKFUNB class of the Rational Krylov Toolbox. The predictions
shown in Figure 7.2 are visually identical to those in [39, Fig. 3.3, Example 3.5.4].

7.2. Block continuation strategies. We now consider the INLET problem
from the Oberwolfach Model Reduction Benchmark Collection [1], an active control
model of a supersonic engine inlet; see also [35]. There are two nonsymmetric matrices

A,E ∈ RN×N , a block vector b ∈ RN×2, and a row vector cT ∈ R1×N with N =

�
Data available from http://www.jmulti.de/data_imtsa.html under the filename e1.dat.
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1 s = 3; % number of time series
2 [V, K, H, out] = rat krylov(A, y, xi, param);
3 invR = inv(out.R(1:s, 1:s));
4 C = param.inner product(Aˆ2*y, V);
5 coeffs = {C(1:s, :), C(s+1:2*s, :)};
6 r = rkfunb(K, H, coeffs); % construct RKFUNB
7

8 Ahat = [0, 1; 0, 0];
9 yhat = y(end-1:end, :);

10 prediction = r(Ahat, yhat*invR)

Fig. 7.1: MATLAB code to construct a VAR(2) model of y and perform a one-step prediction
using the RKFUNB class in the Rational Krylov Toolbox.
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Fig. 7.2: Four-step forecasts of the investment/income/consumption system computed using
RKFUNBs. The solid lines correspond to the observed values while the dashed lines are the
predictions. These plots replicate the VAR(2) predictions in [39, Fig. 3.3, Example 3.5.4].
Left: Transformed time series which is obtained by taking the logarithm of the original one
and then differencing. Right: Original time series and the back-transformed predictions.

11730. We consider the problem of approximating the transfer function H(s) =

cT (sE −A)−1b over a range of frequencies.

We compare two different sequences of poles denoted by ξ(1) and ξ(2). The first

sequence ξ(1) is chosen equal to that in [10, Section 5.2], with four poles equidistantly
placed on the interval i[0, 40] and cyclically repeated until we have 24 poles in total.

The second sequence ξ(2) is identical to ξ(1) except for the 13th pole being changed
to 0.996000− 0.0762000i, which is close to an eigenvalue 0.996026− 0.0762341i of the
matrix pencil (H12,K12). Classic Gram–Schmidt orthogonalization is used without
reorthogonalization. We construct the rational Krylov space for the matrix pencil
(A,E) and starting block vector b using three different continuation strategies. The
strategies 'last' and 'ruhe' are those defined in Section 5. The strategy 'last 4'

is a modification of 'last' with parallelization parameter p = 4; see [10]. It allows
for the parallel computation of four block basis vectors at a time, but is known to be
prone to numerical instabilities.

For each pole sequence ξ(1) and ξ(2) and each continuation strategy, we re-
port three different quantities cond, orth, and space in Table 7.1. Here, cond =
κ(Wm+1D) is the condition number of the rescaled rational Krylov basis Wm+1D
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before orthogonalization, where Wm+1 = [R,w1,w2, . . . ,wm] with the quantities com-
puted in lines 1 and 5 of Algorithm 2.1, and D is a diagonal matrix chosen such that

κ(Wm+1D) is (approximately) minimized. Furthermore, orth = ‖Ṽ ∗
m+1Ṽm+1 −

I(m+1)s×(m+1)s‖2 and space = ‖Vm+1(V ∗
m+1Ṽm+1) − Ṽm+1‖2, where Ṽm+1 is the

rational Krylov basis computed using double precision and Vm+1 is computed using
quadruple precision via the Multiprecision Computing Toolbox [3].

Table 7.1 shows that the condition number of the block basis being orthogonalized
is smallest with the continuation strategy 'ruhe', and the computed block vectors
are closer to being orthonormal after a single orthogonalization step. The 13th pole

in ξ(2) results in a near-breakdown and an inaccurate basis when the continuation
strategy 'last' is used, while the strategy 'ruhe' still performs robustly.

Table 7.1: Inlet example

ξ(1) ξ(2)

'last' 'ruhe' 'last 4' 'last' 'ruhe'

cond 8.7× 105 4.2× 103 8.7× 105 1.4× 109 4.8× 104

orth 3.1× 10−9 3.2× 10−11 7.4× 10−10 1.9× 10−4 2.7× 10−10

space 5.0× 10−6 1.5× 10−11 5.2× 10−10 7.3× 10−3 1.9× 10−10

8. Conclusions and future work. In view of the favourable numerical stabil-
ity observed with the continuation strategy 'ruhe', which we have extended to the
block case in Section 5, we believe this should be the default strategy for the (block)
rational Arnoldi method. It now is the default choice in the Rational Krylov Toolbox.
While the RKFUNB framework is applicable to vector autoregressive modeling as
demonstrated in Section 7.1, we currently do not know how to obtain rational mod-
els of vector autoregression with moving averages (VARMA). This would require a
block-version of the RKFIT pole relocation strategy developed in [11].

The connections between rational Krylov methods and nonlinear eigenvalues of
rational matrix-valued functions might open several research directions. For example,
it does not seem to be understood how these nonlinear eigenvalues relate to the
eigenvalues of the matrix A in the block case, and a generalization of a convergence
theory such as that in [5] is currently lacking. An example illustrating the different
convergence behavior of single-vector and block rational Ritz values for a Wilkinson
matrix can be found in the example collection of the RKToolbox.
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[9] M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an application
to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894–916.

[10] , Parallelization of the rational Arnoldi algorithm, SIAM J. Sci. Comput., 39 (2017),
pp. S197–S221.

[11] , The RKFIT algorithm for nonlinear rational approximation, SIAM J. Sci. Comput.,
39 (2017), pp. A2049–A2071.

[12] S. Birk, Deflated Shifted Block Krylov Subspace Methods for Hermitian Positive Definite Ma-
trices, PhD thesis, Bergische Universität Wuppertal, 2015.

[13] W. E. Boyse and A. A. Seidl, A block QMR method for computing multiple simultaneous
solutions to complex symmetric systems, SIAM J. Sci. Comput., 17 (1996), pp. 263–274.

[14] H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. M. Carvalho, A modified block
flexible GMRES method with deflation at each iteration for the solution of non-Hermitian
linear systems with multiple right-hand sides, SIAM J. Sci. Comput., 35 (2013), pp. S345–
S367.

[15] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur, Flexible variants of
block restarted GMRES methods with application to geophysics, SIAM J. Sci. Comput., 34
(2012), pp. A714–A736.

[16] J. Cullum and W. Donath, A block Lanczos algorithm for computing the q algebraically largest
eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matrices, in
IEEE Conference on Decision and Control, vol. 13, 1974, pp. 505–509.

[17] G. Cybenko, Restrictions of normal operators, Padé approximation and autoregressive time
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