
An Arbitrary Precision Scaling and Squaring
Algorithm for the Matrix Exponential

Fasi, Massimiliano and Higham, Nicholas J.

2018

MIMS EPrint: 2018.36

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

AN ARBITRARY PRECISION SCALING AND SQUARING
ALGORITHM FOR THE MATRIX EXPONENTIAL˚

MASSIMILIANO FASI: AND NICHOLAS J. HIGHAM;

Abstract. The most popular algorithms for computing the matrix exponential are those based
on the scaling and squaring technique. For optimal efficiency these are usually tuned to a particular
precision of floating-point arithmetic. We design a new scaling and squaring algorithm that takes
the unit roundoff of the arithmetic as input and chooses the algorithmic parameters in order to
keep the forward error in the underlying Padé approximation below the unit roundoff. To do so,
we derive an explicit expression for all the coefficients in an error expansion for Padé approximants
to the exponential and use it to obtain a new bound for the truncation error. We also derive
a new technique for selecting the internal parameters used by the algorithm, which at each step
decides whether to scale or to increase the degree of the approximant. The algorithm can employ
diagonal Padé approximants or Taylor approximants and can be used with a Schur decomposition or
in transformation-free form. Our numerical experiments show that the new algorithm performs in a
forward stable way for a wide range of precisions and that the most accurate of our implementations,
the Taylor-based transformation-free variant, is superior to existing alternatives.

Key words. multiprecision arithmetic, matrix exponential, matrix function, scaling and squar-
ing method, Padé approximation, Taylor approximation, forward error analysis, MATLAB, expm

AMS subject classifications. 15A16, 65F60

1. Introduction. The exponential of a matrix has been the subject of much
research in the 150 years or so since Laguerre first defined it [24], thanks to its many
applications and in particular its central role in the solution of differential equations.
Several equivalent definitions of this matrix function exist [17, Table 10.1], of which
perhaps the most well known is the representation via its Taylor series expansion: the
exponential of A P Cnˆn is the matrix

(1.1) eA “
8
ÿ

k“0

Ak

k!
.

Since the analogous series expansion of ez, for z P C, has an infinite radius of con-
vergence, the power series (1.1) is convergent for any A P Cnˆn [17, Thm. 4.6], and
truncating it to the first few terms gives a crude algorithm for approximating eA. This
method is known to be unsatisfactory—so much so that Moler and Van Loan [29],
[30] take it as a lower bound on the performance of any algorithm for computing the
matrix exponential.

The most popular method for computing the exponential of a matrix is the scaling
and squaring algorithm paired with Padé approximation. This technique, originally
proposed by Lawson [25], and further developed and analyzed by various authors over
the past half-century, proves remarkably reliable in finite precision arithmetic, but its
numerical stability is not fully understood. The method owes its name to the identity

(1.2) eA “
`

e2
´sA

˘2s

,

˚Version of November 24, 2018. Funding: This work was supported by MathWorks, Engineering
and Physical Sciences Research Council grant EP/P020720/1, and the Royal Society. The opinions
and views expressed in this publication are those of the authors, and not necessarily those of the
funding bodies.

:School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(massimiliano.fasi@manchester.ac.uk)

;School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/˜higham)

1

and relies on the approximation

(1.3) eA « rkmp2
´2Aq2

s

,

where rkmpzq is the rk{ms Padé approximant to ez at 0 and the nonnegative integers
k, m, and s are chosen so that rkmp2

´sAq achieves a prescribed accuracy while min-
imizing the computational cost of the algorithm. In practice, diagonal approximants
rm :“ rmm are the most common choice, as symmetries in the coefficients of the
numerator and denominator enable an efficient evaluation of rmpAq.

In recent years there has been a sharp rise of interest in multiprecision compu-
tation, and the number of programming languages that support arbitrary precision
floating-point arithmetic, either natively or through dedicated libraries, is growing.
In many cases, a wide range of arbitrary precision linear algebra kernels is available.
Numerical routines for the evaluation of matrix functions are also sometimes provided,
as we now explain.

The computer algebra systems Maple [26] and Mathematica [27] offer functions
that can evaluate in arbitrary precision real matrix powers, the matrix logarithm,
the matrix exponential, and a function that computes fpAq given a scalar function f
and a square matrix A. The open source computer algebra system Sage [35] supports
arbitrary precision floating-point arithmetic, but does not implement any algorithms
for the evaluation of matrix functions.

Turning to software focused on floating-point arithmetic, the mpmath library [22]
for Python provides functions for evaluating in arbitrary precision a wide range of
matrix functions, including real powers, exponential, logarithm, sine, and cosine.
MATLAB does not support arbitrary precision floating-point arithmetic natively, but
arbitrary precision floating-point data types are provided by the Symbolic Math Tool-
box [37] and the Multiprecision Computing Toolbox [31]. Both toolboxes implement
algorithms for the matrix square root, the exponential, the logarithm, and general
matrix functions, and the Multiprecision Computing Toolbox also includes the hyper-
bolic and trigonometric sine and cosine of a matrix. Finally, the Julia language [6]
supports multiprecision floating-point numbers by means of the built-in data type
BigFloat, which provides only a few basic linear algebra kernels for arbitrary preci-
sion computation, and the ArbFloats package, a wrapper to the C library Arb [21] for
arbitrary-precision ball arithmetic, which is capable of computing the matrix square
root and exponential.

The algorithms underlying the functions described above are not publicly avail-
able, to our knowledge. Nor are details of the implementations (albeit embodied in the
source code of the open source packages), which in some cases may involve symbolic
arithmetic.

The MATLAB function expm is a careful implementation of the algorithm of
Al-Mohy and Higham [2], which relies on diagonal Padé approximants and exploits
precomputed constants θm that specify how small the 1-norm of certain powers of
a matrix A must be in order for rmpAq to provide an accurate approximation to eA

in IEEE double precision arithmetic. These constants are obtained by combining
a floating-point backward error analysis with a mix of symbolic and high precision
computations, and, at the price of a computationally expensive algorithm design stage,
provide a very efficient algorithm. For arbitrary precision computations, however, a
new approach is required, since this procedure, despite being in principle repeatable
for any given precision, is impractical to carry out when the accuracy at which the
function should be evaluated is known only at runtime and should hence be treated
as an input parameter to the algorithm.

2

The only published algorithm that we are aware of for computing the matrix
exponential in arbitrary precision is that of Caliari and Zivcovich [7], which employs
a scaling and squaring algorithm based upon Taylor approximation. It includes a new
shifting technique less prone to overflow than the classic approach in [17, sect. 10.7.3]
and a novel way to compute at runtime a bound on the backward error of the truncated
Taylor series. The underlying backward error analysis relies on an explicit series
expansion for the backward error of truncated Taylor series approximants [36] that
does not readily extend to general Padé approximants, and the technique used to
bound the error relies on a conjecture on the decay rate of the terms of this series
expansion.

The goal of this work is to develop an algorithm for evaluating the exponential
of a matrix in arbitrary precision floating-point arithmetic that can be used with
diagonal Padé approximants or Taylor approximants and is fully rigorous. We wish
to avoid symbolic computation and we are particularly interested in precisions higher
than double. This work complements that for the matrix logarithm in [12].

The broad need for arbitrary precision matrix functions is clear from their inclu-
sion in the software mentioned above. The need to compute the matrix exponential
to high precision is needed, for example, in order to compute accurate solutions to the
burnup equations in nuclear engineering [34]. Our particular interest in the matrix
exponential stems not only from its many applications but also from algorithm devel-
opment. Estimating the forward error of algorithms for matrix functions requires a
reference solution computed in higher precision, and an arbitrary precision algorithm
for the matrix exponential can be used not only for the exponential itself, but also for
trigonometric [1], [4], [17, Ch. 12], [19] and hyperbolic [8] matrix functions, as these
can be expressed in terms of the exponential. Furthermore, such an algorithm allows
us to estimate the backward error of algorithms for evaluating matrix functions de-
fined implicitly by equations involving the exponential, such as the logarithm [3], [12],
the Lambert W function [13], and inverse trigonometric and hyperbolic functions [5].

After giving some notation and background material in the next section, we derive
in section 3 a new bound on the forward error of Padé approximants to the matrix
exponential. We also make a conjecture that, if true, would lead to a more cheaply
computable error bound. In section 4 we develop a novel algorithm for evaluating
the exponential of a matrix in arbitrary precision. In section 5 we test experimentally
several versions of this algorithm and compare their performance with that of existing
algorithms. In section 6 we summarize our findings and discuss future lines of research.

2. Notation and background. We denote by R` “ tx P R : x ě 0u the set
of nonnegative real numbers, by N the set of nonnegative integers, and by } ¨ } any
consistent matrix norm. The spectrum of a square matrix A P Cnˆn is denoted
by σpAq, its spectral radius by ρpAq “ maxt|λ| : λ P σpAqu, and the unit roundoff of
floating-point arithmetic by u. Given f : Cnˆn Ñ Cnˆn and A P Cnˆn, we measure
the sensitivity of fpAq by means of the relative condition number

κf pAq “ lim
δÑ0

sup
}E}ďδ}A}

}fpA` Eq ´ fpAq}

δ}fpAq}
,

which is given explicitly by [17, Thm. 3.1]

(2.1) κf pAq “
}Df pAq}}A}

}fpAq}
,

3

where Df : Cnˆn Ñ Cnˆn is the Fréchet derivative of f at A, which is the unique
linear functional that, for all E P Cnˆn, satisfies fpA`Eq “ fpAq`Df pAqrEs`op}E}q.

3. Padé approximation of the matrix exponential. Let f be a complex
function analytic at 0, and let k,m P N. The rational function rkmpzq “ pkmpzq{qkmpzq
is the rk{ms Padé approximant of f at 0 if pkmpzq and qkmpzq are polynomials of de-
gree at most k and m, respectively, the denominator is normalized so that qkmp0q “ 1,
and fpzq ´ rkmpzq “ Opzk`m`1q.

The numerator and denominator of the rk{ms Padé approximant to the exponen-
tial at 0 are [14, Thm. 5.9.1]

(3.1)

pkmpzq “
k
ÿ

j“0

ˆ

k

j

˙

pk `m´ jq!

pk `mq!
zj “:

k
ÿ

j“0

β
rk{ms
j zj ,

qkmpzq “
m
ÿ

j“0

p´1qj
ˆ

m

j

˙

pk `m´ jq!

pk `mq!
zj “:

k
ÿ

j“0

δ
rk{ms
j zj .

In our algorithm, we will approximate eA by means of the rational matrix function
rkmpAq “ qkmpAq

´1pkmpAq, which we evaluate by first computing P “ pkmpAq and
Q “ qkmpAq and then solving a multiple right-hand side linear system in order to
obtain X :“ Q´1P . The computational efficiency of this method depends entirely on
the evaluation scheme chosen to compute P and Q. In the literature, the customary
choice is the the Paterson–Stockmeyer method [33], which we now briefly recall.

Let us rewrite the polynomial ppXq “
řk
i“0 αiX

i as

(3.2) ppXq “
µ
ÿ

i“0

BipXqX
νi,

where ν ď k is a positive integer, µ “ tk{νu, and

BipXq “

#

ανi`ν´1X
ν´1 ` ¨ ¨ ¨ ` ανi`1X ` ανiI, i “ 0, . . . , µ´ 1,

αkX
k´νµ ` ¨ ¨ ¨ ` ανµ`1X ` ανµI, i “ µ.

If we use Horner’s method with (3.2), then the number of matrix multiplications
required to evaluate ppXq is

(3.3) Cpν pkq “ ν ` µ´ 1´ ηpν, kq, ηpx, yq “

#

1, if x divides y,

0, otherwise,

which is approximately minimized by taking either ν “ t
?
ku or ν “ r

?
ks. Therefore

evaluating rkmpXq requires, in general,

(3.4) Crνpkq “ νk ` νm `

Z

k

νk

^

`

Z

m

νm

^

´ 2´ ηpνk, kq ´ ηpνm,mq

matrix multiplications, where ν` denotes
?
` rounded to the nearest integer. This cost

can be considerably reduced for diagonal Padé approximants (for which k “ m) by
exploiting the identity pmpXq “ qmp´Xq, where pm :“ pmm and qm :“ qmm. By
rewriting the numerator as

pmpAq “
m
ÿ

i“0

βiA
i “

tm{2u
ÿ

i“0

β2iA
2i `A

rm{2´1s
ÿ

i“0

β2i`1A
2i “: Ue `AV “: Ue ` Uo,

4

where Uo and Ue are the sums of the monomials with even and odd powers, respec-
tively, we obtain that qmpAq “ Ue´Uo. By using ν stages of the Paterson–Stockmeyer
method on A2, computing Ue and Uo requires one matrix product to form A2 and ν´1
matrix multiplications to compute the first ν powers of A2; evaluating the polynomials
Ue and V require

X

tm{2u{ν
\

´ηpν, tm{2uq and
X

tpm´1q{2u{ν
\

´ηpν, tpm´1q{2uqmatrix
multiplications, respectively; and computing Uo requires one additional multiplication
by A. Therefore evaluating both pmpAq and qmpAq requires

Ceνpmq “ ν ` 1`

Z

tm{2u

ν

^

`

Z

tpm´ 1q{2u

ν

^

´ ηpν, tm{2uq ´ ηpν, tpm´ 1q{2uq

matrix multiplications, and it can be shown that Ceνpmq is approximately minimized
by taking either ν “

X
a

m´ 1{2
\

or ν “
P
a

m´ 1{2
T

. For m between 1 and 21,

we have that min

Ct
?
mupmq, Cr

?
mspmq

(

“ πm, where the πm are tabulated in [17,
Table 10.3].

In principle, when designing an algorithm based on Padé approximation, one
could use approximants of any order but, for any given cost, it is worth considering
only the approximant that will deliver the most accurate result. By definition, this
will be that of highest order, thus if evaluating the approximant of order m requires
Cpmq matrix multiplications, an algorithm will typically examine only approximants
of optimal order

m1 “ argmax
mPN

tCpmq “ ζu,

for some ζ P N. For truncated Taylor series and diagonal Padé approximants to the
exponential, the sequences of optimal orders are [11, eqs. (2.7) and (4.6)]

(3.5) ai “

Z

pi` 2q2

4

^

, i P N,

and

(3.6)

b0 “ 1, b1 “ 2,

bi “ 2

R

i´ 1

4

Vˆ

i´ 3

Z

i´ 1

4

^˙

` 1, i P Nz t0, 1u ,

respectively. Note that, for diagonal Padé approximants to the exponential, all opti-
mal orders but b1 are odd.

For a thorough discussion of the effect of rounding errors on the evaluation of
matrix polynomials using the scheme (3.2) see [17, sect. 4.2].

3.1. Forward error. In this section we present a new upper bound on the norm
of the forward error of rkmpAq as an approximation to eA. In section 4, this bound will
play a central role in the design of a scaling and squaring algorithm for computing the
matrix exponential in arbitrary precision. The leading term of the truncation error
of the rk{ms Padé approximant is known [14, Thm. 5.9.1], since

(3.7) ez ´ rkmpzq “ c1kmz
k`m`1 `Opzk`m`2q,

where

(3.8) c1km “ p´1qm
k!m!

pk `mq!pk `m` 1q!
.

5

We begin by obtaining all the terms in the series expansion of qkmpzqe
z ´ pkmpzq,

which is closely related the truncation error in (3.7).

Lemma 3.1. Let rkmpzq “ pkmpzq{qkmpzq be the rk{ms Padé approximant to ez

at 0. Then for all z P C,

(3.9) qkmpzqe
z ´ pkmpzq “

8
ÿ

i“1

cik,mz
k`m`i,

where

(3.10) cik,m “
p´1qmk!

pk `mq!

pm` i´ 1q!

pi´ 1q!pk `m` iq!
.

Proof. By equating the coefficients of zk`m`i on the left- and right-hand sides
of (3.9), we obtain that cik,m is the sum, for j from 0 to m, of the jth coefficient of
qkmpzq multiplied by the pk `m` i´ jqth coefficient of the series expansion of ez:

cik,m “
m
ÿ

j“0

δ
rk{ms
j

1

pk `m` i´ jq!
´ 0

“
1

pk `mq!

m
ÿ

j“0

p´1qj
ˆ

m

j

˙

pk `m´ jq!

pk `m` i´ jq!
.

We prove (3.10) by induction on m. For m “ 1 we have

cik,m “
1

pk ` 1q!

ˆˆ

1

0

˙

pk ` 1q!

pk ` 1` iq!
´

ˆ

1

1

˙

k!

pk ` iq!

˙

“
k!

pk ` 1q!pk ` 1` iq!
pk ` 1´ k ´ 1´ iq “

p´1q1k!i!

pk ` 1q!pk ` iq!pi´ 1q!
.

By exploiting the identity
`

a`1
b

˘

“
`

a
b

˘

`
`

a
b´1

˘

, for the inductive step we have

cik,m`1 “
1

pk `m` 1q!

m`1
ÿ

j“0

p´1qj
ˆ

m` 1

j

˙

pk `m` 1´ jq!

pk `m` 1` i´ jq!

“
1

pk `m` 1q!

ˆ

pk `m` 1q!

pk `m` 1` iq!
`

m
ÿ

j“1

p´1qj
ˆ

m

j

˙

pk `m` 1´ jq!

pk `m` 1` i´ jq!

`

m
ÿ

j“1

p´1qj
ˆ

m

j ´ 1

˙

pk `m` 1´ jq!

pk `m` 1` i´ jq!
` p´1qm`1 k!

pk ` iq!

˙

“
1

pk `m` 1q!

m
ÿ

j“0

p´1qj
ˆ

m

j

˙ˆ

ppk ` 1q `m´ jq!

ppk ` 1q `m` i´ jq!
´

pk `m´ jq!

pk `m` i´ jq!

˙

“
1

pk `m` 1q!

ˆ

p´1qmpk ` 1q!pm` i´ 1q!

pi´ 1q!pm` k ` i` 1q!
´
p´1qmk!pm` i´ 1q!

pi´ 1q!pm` k ` iq!

˙

“
p´1qmk!pm` i´ 1q!

pk `m` 1q!pi´ 1q!pm` k ` i` 1q!
pk ` 1´m´ k ´ i´ 1q

“
p´1qm`1k!ppm` 1q ` i´ 1q!

pk ` pm` 1qq!pi´ 1q!ppm` 1q ` k ` iq!
.

6

This result can be exploited to bound the truncation error of rkmpAq. We will
use the result in [2, Thm. 4.2(a)]: if fpxq “

ř8

i“` cix
i and ci has the same sign for all

i ě `, then for any X such that

(3.11) αdpXq :“ mint}Xd}1{d, }Xd`1}1{pd`1qu, dpd´ 1q ď `,

is less than the radius of convergence of the series, we have

(3.12) }fpXq} ď
8
ÿ

i“`

|ci|αdpXq
i “

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“`

ciαdpXq
i

ˇ

ˇ

ˇ

ˇ

ˇ

“ |fpαdpXqq| .

An alternative definition of αdpXq has been recently proposed for the computation
of the wave-kernel matrix functions [32]. This more refined strategy requires the
computation of }Adi}1 for all di, dj such that gcdpdi, djq “ 1 and didj´di´dj ă k`m.
The cost of finding all such pairs is difficult to determine, but it must be at least
O
`

pk`mq logpk`mq
˘

operations, as there are at least O
`

pk`mq2
˘

pairs to test and
Euclid’s algorithm for finding the greatest common divisor of two integers a, b P N
such that a ă b requires 2 log2 a ` 1 operations in the worst case. Moreover, even if
all the pairs to be tested were known, the cost of evaluating the bound would increase
with k and m, and as both can be potentially large when resorting to high precision,
we prefer to use the cheaper bound given by (3.11). However, all the results in this
section can be modified by replacing αdpXq with

αrk{mspXq :“ min
gcdpa,bq

ab´a´băk`m

max
!

}Xa}1{a, }Xb}1{b
)

.

For the truncation error of the rk{ms Padé approximant to the matrix exponential,
we would like to obtain a bound of the form

(3.13) }eX ´ rkmpXq} ď |e
αdpXq ´ rkmpαdpXqq|,

which would be true if all the nonzero terms in the series expansion at 0 of ez´rkmpzq
had the same sign. By Lemma 3.1, this would be true if qkmpzq

´1 had a power series
expansion with all coefficients of the same sign. This applies to Taylor approximants
tk :“ rk0, since qkmpzq

´1 “ 1, and by (3.12) we can derive the bound

}ex ´ tkpxq} “

›

›

›

›

›

8
ÿ

i“k`1

1

i!
xi

›

›

›

›

›

ď

›

›

›

›

›

8
ÿ

i“k`1

αdpXq
i

i!

›

›

›

›

›

“

ˇ

ˇ

ˇ
eαdpXq ´ tkpαdpXqq

ˇ

ˇ

ˇ
.

For all other even values of m that we have checked, this is not the case. For ex-
ample, the series expansion for the reciprocal of the denominator of the r2{2s Padé
approximant is

1

q22pzq
“ 1`

z

2
`
z2

6
`
z3

24
`

z4

144
´

z6

1728
`O

`

z7
˘

.

However, for the algorithm we are designing we are interested only in bounding
the forward error of diagonal approximants of optimal degree, and from (3.6) we
know that most optimal degrees are, in fact, odd. The evidence suggests that, in this
case, the coefficients of the series expansion are indeed one-signed, and we make a
conjecture.

7

Conjecture 3.2. For odd m, all the coefficients of the series expansion of qkmpzq
´1

at 0 are positive.

If this conjecture were true, then we could use the bound (3.13) for all diagonal
approximants of degree bi in (3.6) for i P Nz t1u, but since we do not have a proof of
the conjecture we will bound the truncation error of rkm for any k and m. We will
use the next result, which combines Lemma 3.1 and (3.12).

Corollary 3.3 (bound on the truncation error of Padé approximants). Let
rkmpzq “ pkmpzq{qkmpzq be the rk{ms Padé approximant to ez at 0. Then for X P

Cnˆn and any positive integer d such that dpd´ 1q ď k `m` 1,

(3.14)
›

›eX ´ rkmpXq
›

› ď
›

›qkmpXq
´1

›

›

ˇ

ˇ

ˇ
qkmpαdpXqqe

αdpXq ´ pkmpαdpXqq
ˇ

ˇ

ˇ

Proof. By (3.12), we have

›

›eX ´ rkmpXq
›

› “
›

›qkmpXq
´1

`

qkmpXqe
X ´ pkmpXq

˘
›

›

ď
›

›qkmpXq
´1

›

›

›

›qkmpXqe
X ´ pkmpXq

›

›

ď
›

›qkmpXq
´1

›

›

ˇ

ˇ

ˇ
qkmpαdpXqqe

αdpXq ´ pkmpαdpXqq
ˇ

ˇ

ˇ
,

where for the last inequality we used the fact that the coefficients of the series expan-
sion of qkmpzqe

z ´ pkmpzq all have the same sign, by Lemma 3.1.

Since the norm of q´1
kmpXq does not depend on αdpXq, the bound in (3.14) is

nondecreasing in αdpXq and therefore is minimized by choosing for d the value

(3.15) d‹ “ argmin
1ďdďdrk{ms

αdpXq,

where

(3.16) drk{ms “ maxtd P N : dpd´ 1q ď k `m` 1u “

[

1`
a

5` 4pk `m` 1q

2

_

.

Depending on the size of k and m, this choice might require the estimation of αdpXq
for too many values of d, and thus be unpractical. On the other hand, it has been
observed [2] that the sequence pαdpXqqdPN is typically roughly decreasing, so it is rea-
sonable to use the considerably cheaper approximation αdrk{mspXq. In our algorithm,
we adopt an intermediate approach that has the same cost as the computation of
αdrk{mspXq, but improves on it by reusing previously computed quantities. We discuss
this in detail in section 4.

4. A multiprecision scaling and squaring algorithm. In this section we
develop a novel scaling and squaring method for computing the matrix exponential in
arbitrary precision floating-point arithmetic. Our algorithm differs from traditional
scaling and squaring approaches, such as those of Al-Mohy and Higham [2] and Caliari
and Zivcovich [7], in several respects. First, it relies on a bound on the forward error
rather than on the backward error of the Padé approximants to the matrix exponential
and avoids the use of any precomputed precision-dependent constants by evaluating at
runtime the bound (3.14) for some choice of d. Moreover, unlike scaling and squaring
algorithms for double precision based on diagonal Padé approximants [2], [16], [17,
Alg. 10.20], [18], which use approximants of order at most 13 and a nonzero scaling

8

Algorithm 4.1: Scaling and squaring algorithm for the matrix exponential.

Given A P Cnˆn, this algorithm computes an approximation to eA in floating-
point arithmetic with unit roundoff u using a scaling and squaring method
based upon Padé approximants. The pseudocode of evalBoundDiag and
evalPadeDiag is given in Fragment 4.3, that of evalBoundTayl and
evalPadeTayl in Fragment 4.5, and that of recompDiags in Fragment 4.2.

1 A0 Ð I
2 if use taylor then
3 evalBound Ð evalBoundTayl
4 evalPade Ð evalPadeTayl
5 A1 Ð A

6 else
7 evalBound Ð evalBoundDiag
8 evalPade Ð evalPadeDiag
9 A1 Ð A2

10 sÐ 0
11 iÐ 0
12 γ Ð r´8,´8, . . . s
13 αmin Ð8

14 δold Ð8

15 rδ, ψ, κAs Ð evalBoundpA, mi, sq
16 while δ ě uψ and s ă smax and i ď N do
17 if κA ě ζpuq or δold ă δ2 then
18 sÐ s` 1

19 else
20 iÐ i` 1

21 δold Ð δ
22 rδ, ψ, κAs Ð evalBoundpA, mi, sq

23 Y Ð evalPadepA,m, sq
24 if isQuasiUpperTriangularpAq then
25 Y Ð recompDiagsp2´sA, Y q

26 for tÐ 1 to s do
27 Y Ð Y 2

28 if isQuasiUpperTriangularpAq then
29 Y Ð recompDiagsp2´s`tA, Y q

30 return X

parameter only if the approximant of highest degree is expected not to deliver either
a truncation error smaller than u or an accurate evaluation of r13pAq, our algorithm
blends the two phases together and tries to determine both parameters at the same
time.

Our arbitrary precision scaling and squaring algorithm for the computation of eA

is given in Algorithm 4.1. Besides the matrix A P Cnˆn, the algorithm accepts several
additional input arguments.

‚ The arbitrary precision floating point parameter u P R` specifies the unit

9

roundoff of the working precision of the algorithm.
‚ The Boolean parameter use taylor specifies the kind of Padé approximants

the algorithm will use: truncated Taylor series if set to true, diagonal Padé
approximants otherwise.

‚ The parameter ubnd P R` specifies the unit roundoff of the precision used
to evaluate }qmi

p2´sAq´1}1 in (4.1) below. The value of ubnd is ignored if
use taylor is set to true.

‚ The vector m P NN , sorted in ascending order, specifies what orders of Padé
approximants the algorithm can consider. The algorithm will select i between
1 and N , and then evaluate either the truncated Taylor series of order mi or
the rmi{mis Padé approximant, depending on the value of use taylor.

‚ The nonegative integer smax specifies the maximum number of binary pow-
erings the algorithm is allowed to compute during the squaring stage, or,
equivalently, the maximum number of times the matrix can be multiplied by
1
2 during the initial scaling stage.

‚ The function parameter ζ : R` Ñ R` specifies a precision-dependent value
that is used to predict whether the evaluation of qmipAq will be accurate or
not. This parameter is not used when use taylor is set to true.

We now discuss the outline of Algorithm 4.1. The variables A, γ, and αmin are
assumed to be available within the following code fragments (that is, their scope is
global). The Boolean variable use taylor chooses between the auxiliary functions
in Fragments 4.3 and 4.5, tailored to the case of diagonal Padé approximants and
truncated Taylor series, respectively. Finally, we use the notation rx, x, . . . s, to denote
a vector whose elements are all initialized to x and whose length is unimportant. We
assume that very few of its entries will take a value different from the default, and
thus that such a vector can be stored in a memory-efficient way.

The algorithm starts by determining a suitable order and a scaling parameter s
for the scaling and squaring method. To this end, on line 10–11 it sets s and i to 0 and
then increments them, trying to find a choice for which the right-hand side of (3.14),
for X “ 2´sA, k “ mi, and m “ k or m “ 0, is smaller than uψp2´sAq, where ψpXq
approximates

›

›eX
›

›

1
. As long as this condition is not satisfied, two heuristics are used

to decide which parameter it is more convenient to change. One approach is aimed
at keeping the evaluation of the Padé approximant as accurate as possible, by taking
into account the conditioning of qmi ; being specific to diagonal approximants this is
discussed in section 4.1. On the other hand, we noticed that when αdp2

´sAq " 1, the
bound (3.14) can sometimes decrease exceedingly slowly as m increases, leading to
the use of an approximant of degree much larger than needed, which in turn causes
loss of accuracy and unnecessary computation. We found that monitoring the rate at
which our bound on the truncation error of the approximant decreases provides an
effective strategy to prevent this from happening. In particular, we increment s when
the bound on the truncation error does not decrease at least quadratically, that is,
when δold ă δ2, where δold and δ are the values of the error bound at the previous
and current iteration of the while loop on line 16 of Algorithm 4.1, respectively.

As soon as a combination of scaling parameter and Padé approximant order is
found, the algorithm computes Y by evaluating the Padé approximant (diagonal or
Taylor) of order mi at 2´sA, and finally computes eA « Y 2s , by applying s steps of
binary powering to Y . If A is upper quasi-triangular, in order to improve the accuracy
of the final result, the function recompDiags in Fragment 4.2 is used to recompute
the diagonal and first upperdiagonal of the intermediate matrices from the elements
of A, as recommended by Al-Mohy and Higham [2].

10

Fragment 4.2: Recomputation of the diagonals.

1 function recompDiagspA P Cnˆn, X P Cnˆnq
Ź Compute main diagonal and first upper-diagonal of X « eA from A.

2 for i “ 1 to n do
3 if i “ n´ 1 or i ď n´ 2 and ai`2,i`1 “ 0 then
4 if ai`1,i “ 0 then
5 Recompute xi,i, xi,i`1, xi`1,i`1 using [17, Eq. (10.42)].
6 else
7 Recompute xi,i, xi,i`1, xi`1,i, xi`1,i`1 using [2, Eq. (2.2)].

8 iÐ i` 1

9 else
10 xi,i Ð eai,i

In the next two sections, we discuss how the functions evalBound and evalPade
can be implemented efficiently for diagonal Padé approximants and truncated Taylor
series.

4.1. Diagonal Padé approximants. When use taylor is set to false, that is,
when diagonal Padé approximants are being considered, the condition that needs to
be tested on lines 15 and 22 of Algorithm 4.1 is, for some d such that dpd´1q ă 2 mi`1,

(4.1)
›

›qmip2
´sAq´1

›

›

1

ˇ

ˇ

ˇ
qmipαdp2

´sAqqeαdp2
´sAq ´ pmipαdp2

´sAqq
ˇ

ˇ

ˇ
ă uψp2´sAq,

As discussed in section 3, the choice of αdpXq that would guarantee the best bound

is α
rmi{mis

d‹ pXq, for d‹ in (3.15), but this value can become impractical to compute, even
for Padé approximants of relatively low degree. Taking αdrmi{mispXq, where drmi{mis is
defined in (3.16), on the other hand, is appealing because this estimate requires the

evaluation of }Ad}
1{d
1 for at most two values of d independently of the value of mi,

and is often not far from the best choice, since the sequence
`

}Ad}1{d
˘

dPN is typically
roughly decreasing [2].

However, it is sometimes possible to obtain a better bound at almost no extra
cost, by reusing quantities computed during previous steps of the algorithm. Observe
that, since }p2´sAqd}1{d “ 2´s}Ad}1{d and thus αdp2

´sAq “ 2´sαdpAq, it is enough
to estimate the norm of powers of A and then scale their value as required. Moreover,
since the algorithm considers the approximants in nondecreasing order of cost, the
value of drmi{mis is nondecreasing in i. Therefore, in (4.1) we can replace αdp2

´2Aq by
2´sαmin, where αmin is a variable that keeps track of the smallest value of αdrmi{mispXq
computed so far, and is updated only when a new value α

drmj {mj s
pXq ă αmin is found

for some j ą i.
Since only the order of magnitude of αmin is actually needed, we estimate }Ad}1 by

running in precision ubnd the 1-norm estimation algorithm of Higham and Tisseur [20].
This method repeatedly computes the action of A on a tall and skinny matrix with-
out explicitly forming any powers of A, and thus requires only Opn2q flops. In the
pseudocode, the 1-norm estimation is performed by the function normest1, whose
only input is a function that computes the product AX given the matrix X P Cnˆt.
In order to keep the notation as succinct as possible, anonymous functions are spec-
ified using a lambda notation, and λx.fpxq denotes a function that replaces all the
occurrences of x in the body of f with the value of its input argument.

11

By storing the values of }Ad}1 in the global array γ, the 1-norm of each power
of A is estimated at most once. Further computational savings can be achieved by
computing some carefully chosen powers of A within the algorithm and using them
to evaluate of the action of powers of A on a vector, as we will discuss later.

As long as the bound (4.1) is not satisfied, the algorithm can decide to either
increment the scaling factor or increase the order of the Padé approximant, since
either choice will reduce the truncation error of the approximation. Both options,
however, may have an adverse effect on the numerical behavior of the algorithm, since
taking a Padé approximant of higher degree may significantly increase the conditioning
of the coefficient of the linear system to be solved, thus jeopardizing the accurate
evaluation of the approximant, whereas increasing s will increase the number of matrix
multiplications that will occur during the squaring phase of the algorithm, which is
the most sensitive to rounding errors, as shown by [17, Thm. 10.21].

We solve this dilemma by means of a heuristic that prevents the 1-norm con-
dition number of qkimi

p2´sAq from getting too large. In particular, if our estimate
κA “ normest1pλx.qmp2

´sAq´1xq normest1pλx.qmp2
´sAqxq is larger than a con-

stant ζpuq that depends on the unit roundoff u, we update the scaling parameter
and leave the order of the Padé approximant unchanged. Otherwise, we increment
i and take an approximant of higher order chosen according to the elements in m.
In practice, we set ζpuq :“ u´1{8. For IEEE double precision, this choice gives
ζpuq “ 253{8 « 98.70, which agrees (within a factor of 1.4) with the largest condition
number allowed by Al-Mohy and Higham [2, Table 3.1] for double precision.

Within our algorithm, we can exploit the evaluation scheme discussed in section 3
to reduce the computational cost of the evaluation not only of rmip2

´sAq, but also of
the term }qmip2

´2Aq}1 appearing in the bound (4.1).
Since Algorithm 4.1 considers Padé approximants of increasing cost, for diagonal

Padé approximants we have that mi ă mj for i ă j. Hence, whenever in Algorithm 4.1
the bound (4.1) is evaluated for the approximant of order mi, we are guaranteed that on
line 23 rmj p2

´sAq will be evaluated for some j ě i. Since numerator and denominator
of the approximant are evaluated by means of the Paterson–Stockmeyer method, we
know that at least the first ν “ r

?
mis powers of 2´sA will be needed, and since scaling

a matrix requires only Opn2q flops, it is worth it to compute immediately the first

ν powers of A, and subsequently use them to speed up the estimation of }Ad}
1{d
1 ,

}q´1
mi
p2´sAq}1, and }eA}1.
Fragment 4.3 shows how the bound (4.1) can be evaluated efficiently for diagonal

Padé approximants. In order to estimate }q´1
m p2

´sAq}1, the algorithm computes the
matrices Ue and Uo using the Paterson–Stockmeyer method given in Fragment 4.4.
This implementation stores the powers of A2 in the global array A, which is updated
only when it does not already contain the first r

?
ms powers of A2. Since the number

of matrices stored in A changes with m, we introduce a function lengthpAq, that
returns the number of positive powers stored in A. In other words, if lengthpAq “ `,
then A contains `` 1 matrices from A0 “ I to A` “ A2`.

Note that although it makes sense, from a performance point of view, to compute
Ue and Uo in lower precision, the elements of A must be computed at precision u
in order to be reused to evaluate numerator and denominator of rmp2

´sAq. These
lower precision approximation of Ue and Uo can be used to compute a cheap ap-
proximation ψpe2

´sAq to }e2
´sA}1 needed in (4.1), since e2

´sA « qmpXq
´1pmpXq “

2pUe ´ Uoq
´1Uo ` I can be evaluated by means of only one multiple right-hand side

system solve at precision ubnd.

12

Fragment 4.3: Auxiliary functions for diagonal Padé approximants rm.

1 function evalBoundDiagpA P Cnˆn,m P N, s P Nq
Ź Check (4.1) for rm and estimate κ1pqmpAqq.

2 αmin Ð optAlphaDiagpA,m,αminq

3 rUe, Uos Ð evalPadeDiagAuxpA,m, s, ubndq
4 Set working precision to ubnd.
5 rL,U s Ð lupUe ´ Uoq
6 η Ð normest1pλx.pU´1pL´1xqq
7 Set working precision to u.

8 δ Ð η |qmp2
´sαminqe

2´sαmin ´ pmp2
´sαminq|

9 ψ Ð normest1pλx.pU´1pL´1p2Uoxqq ` xqq
10 κA Ð η normest1pλx.pUe ´ Uoqxq
11 return δ, ψ, κA

12 function evalPadeDiagpA P Cnˆn,m P N, s P Nq
Ź Evaluate rmp2

´sAq.
13 rUe, Uos Ð evalPadeDiagAuxpA,m, s, uq
14 rL,U s Ð lupUe ´ Uoq
15 return U´1pL´1p2Uo ` Iqq

16 function evalPadeDiagAuxpA P Cnˆn,m P N, s P N, u P R`q
Ź Evaluate components of pmmpAq and qmmpAq.

17 Set working precision to u.

18 βe Ð
”

m!p2m´2iq!
p2mq!pm´2iq! p2iq!

ıtm{2u

i“0
βo Ð

”

m!p2m´2i´1q!
p2mq!pm´2i´1q! p2i`1q!

ırm{2´1s

i“0

19 return evalPolyPSp2s, βe,
P?
m
T

q, p2´sAq evalPolyPSp2s, βo,
P?
m
T

q

20 function optAlphaDiagpA P Cnˆn,m P N, αmin P R`q
Ź Compute αmin.

21 dÐ
Y

1`
?
5`8m
2

]

22 if γd “ ´8 then

23 γd Ð normest1pλx.evalPowVecDiagpd, xqq1{d

24 if γd`1 “ ´8 then

25 γd`1 Ð normest1pλx.evalPowVecDiagpd` 1, xqq1{pd`1q

26 return mintmaxtγd, γd`1u, αminu

27 function evalPowVecDiagpd P N, X P Cnˆtq
Ź Compute AdX using elements in A.

28 `Ð lengthpAq
29 while d ą 1 and ` ą 1 do
30 for iÐ 1 to td{p2`qu do
31 X Ð A`X

32 dÐ d mod 2`
33 `Ð mint`´ 1, td{2u` 1u

34 if d “ 1 then
35 X Ð AX

36 return X

13

Fragment 4.4: Modified Paterson–Stockmeyer algorithm.

1 function evalPolyPSps P N, β P Ct, ν P Nq
Ź Evaluate

řt
`“0 β`p2

´sAq` using elements of A.
2 `Ð lengthpAq
3 µÐ tt{νu

4 for iÐ `` 1 to ν do
5 Ai Ð Ai´1 A1

6 Y Ð
řm´νµ
j“0 βνµ`j2

´sjAj

7 for iÐ µ´ 1 down to 0 do

8 Y Ð Y 2´sνAs `
řs´1
j“0 βνi`j2

´sjAj

9 return Y

In addition, the elements of A can be used to reduce the computational cost of es-
timating the 1-norm of powers of A. In order to estimate }Ad}1, normest1 computes
repeatedly Y :“ AdX, where X P Cnˆt, with t ! n. If the matrix multiplications
are performed from right to left, evaluating Y requires 2dtn2 flops, but if some of the
powers of A are available, the factor d can be reduced to as little as log2 d. We illus-
trate the strategy to perform this cost reduction in the function evalPowVecDiag,
which evaluates AdX using the powers of A2 stored in A. We use the two variables
rd and `, initialized to d and lengthpAq, respectively, to keep track of the state of the

computation. The function repeatedly multiplies X by A` “ A2` for t “ trd{p2`qu

times, that is, until rd becomes smaller than 2`. At this point, the algorithm updates
rd and `, setting the former to the number of matrix multiplications left to perform,
rd ´ t, and the latter to the largest integer smaller than the new value of rd. Since A
contains powers of A2 rather than A, an additional multiplication by A is necessary
for odd d.

This algorithm requires
`

minpCt
?
miupmiq, Cr

?
mispmiqq ` s

˘

n3 flops in precision u,

for evaluating rmipAq and performing the final squaring phase, and
`

2
?
mi`

2
3

˘

in3 flops
in precision ubnd for evaluating and factorizing qmip2

´sAq, in order to check whether
the bound (4.1) is satisfied.

4.2. Taylor approximants. Truncated Taylor series are appealing Padé ap-
proximants to use in conjunction with bound (3.14), as the property that qk0pxq “ 1
enables us to eliminate the computation of qmip2

´sAq, the most expensive term to
evaluate in (4.1), and thus obtain substantial computational savings. Even though
for truncated Taylor series there is no need to evaluate the approximant when evalu-
ating the bound, the function evalBoundTayl updates the array A, which in this
case stores powers of A rather than A2. In fact, these powers can be used to reduce
the cost of estimating }Ad}1 as well as }eA}1. The elements of A are estimated by
means of normest1, and the action of the powers of A on a vector is computed by
means of the function evalPowVecTayl in Fragment 4.5, which uses the elements
in A analogously to evalPowVecDiag.

For ψ in the bound (4.1) one can use a lower bound on the 1-norm of eA. The
inequality }eA}1 ě e´}A}1 [17, Thm. 10.10] can be exploited at no extra cost, but
being typically not very sharp can potentially lead to unnecessary computation. Van

14

Fragment 4.5: Auxiliary functions for truncated Taylor series tm.

1 function evalBoundTaylpA P Cnˆn,m P N, s P Nq
Ź Check (4.1) for tm.

2 for iÐ lengthpAq ` 1 to r
?
ms do

3 Ai Ð Ai´1 A1

4 αmin Ð optAlphaTaylpA,m,αminq

5 δ Ð |e2
´sαmin ´ pmp2

´sαminq|

6 ψ Ð estimateNormExppsq
7 return δ, ψ, 1

8 function evalPadeTaylpA P Cnˆn,m P N, s P Nq
Ź Evaluate tmp2

´sAq.
9 β Ð

“

1
i!

‰m

i“0

10 return evalPolyPSps, β,
?
mq

11 function optAlphaTaylpA P Cnˆn,m P N, αmin P R`q
Ź Compute αmin.

12 dÐ
Y

1`
?
5`4m
2

]

13 if γd “ ´8 then

14 γd Ð normest1pλx.evalPowVecTaylpd, xqq1{d

15 if γd`1 “ ´8 then

16 γd`1 Ð normest1pλx.evalPowVecTaylpd` 1, xqq1{pd`1q

17 return mintmaxtγd, γd`1u, αminu

18 function evalPowVecTaylpd P N, X P Cnˆtq
Ź Compute AdX using elements in A.

19 `Ð lengthpAq
20 while d ą 0 do
21 for iÐ 1 to tp{`u do
22 X Ð A`X

23 dÐ d mod `
24 `Ð mint`´ 1, du

25 return X

26 function estimateNormExpps P Nq
Ź Estimate }eA}1 using elements in A.

27 Z Ð
řlengthpAq
i“0

Ai

2sii!
28 return normest1pλx.Zxq

Loan [38] suggests the bound

}eA}1 ě eλ
˚

, λ˚ “ max
λPσpAq

Reλ,

which is typically tighter than the previous bound, and always so when λ˚ ą 0.
Estimating λ˚, however, requires either the eigendecomposition of A, or the solution

15

of a family of shifted linear systems [28], and both solutions might be unpractical in
that they require Opn3q flops for dense matrices. A practical estimate that can be
computed with only Opn2q extra cost is provided by the function estimateNormExp
in Fragment 4.5, which relies on the approximation

e2
´sA «

ÿ̀

i“0

p2´sAqi

i!
“

ÿ̀

i“0

2´siAi

i!
“: ξs` , ` “ lengthpAq.

If only the elements of A already computed on line 2-3 of evalBoundTayl are used,
computing this estimate requires only 2`n2 flops. Additional savings can be gained
by noting that ξs``1 can be obtained from ξs` with only one matrix scaling and one
matrix sum, and the full cost of 2`n2 flops need not be paid as long as s does not
change.

Overall, this algorithm requires
`

2
?
mi ` s

˘

n3 floating-point operations.

4.3. Schur–Padé variants. If A is normal (A˚A “ AA˚) and a multiprecision
implementation of the QR algorithm is available, diagonalization in higher precision
is another approach for computing eA. More generally, a (real) Schur decomposition
can be used: A “ QTQ˚, where T,Q P Cnˆn are, respectively, upper triangular
and unitary if A has complex entries and upper quasi-triangular and orthogonal if A
has real entries. Then eA “ QeTQ˚. In our experiments, we consider a Schur–Padé
approach that computes the Schur decomposition of the input matrix and exploits
Algorithm 4.1 to compute the exponential of its triangular factor.

Overall, this algorithm requires
`

28`
`

mintCt
?
miupmiq, Cr

?
mispmiqu ` s

˘

{3
˘

n3 and
`

28 ` p2
?
mi ` sq{3

˘

n3 flops, for diagonal Padé approximants and truncated Taylor
series, respectively.

5. Numerical experiments. We now test the algorithm derived in section 4
and compare it with two existing codes for computing the matrix exponential in arbi-
trary precision floating point arithmetic. We consider two test sets: H, which contains
35 Hermitian matrices, and N , which consists of 97 non-Hermitian matrices. These
matrices, of size ranging between 2 and 1000, are taken from the literature of the
matrix exponential, from a collection of benchmark problems for the burnup equa-
tions [23], [39], and from the MATLAB gallery function. The experiments were
performed using the 64-bit (glxna64) version of MATLAB 9.4 (2018a) on a machine
equipped with an Intel I5-3570 processor running at 3.40GHz and with 8Gb of RAM.
The code uses the Multiprecision Computing Toolbox (version 4.4.7.12739) [31], which
provides the class mp to represent arbitrary precision floating-point numbers and over-
loads all the MATLAB functions we need in our implementations. We note that this
toolbox allows the user to specify the number of decimal digits of working precision,
but not the number of bits in the fraction of its binary representation, thus, in this
section, whenever we refer to d (decimal) digits of precision, we mean that the working
precision is set using the command mp.Digits(d). The MATLAB code that runs the
tests in this section is available on GitHub.1

In our experiments, we compare the following codes.
‚ expm, the built-in function expm of MATLAB, which implements the algo-

rithm of Al-Mohy and Higham [2], and is intended for double precision only.
‚ exp mct, the expm function provided by the Multiprecision Computing Tool-

box.

1https://github.com/mfasi/mpexpm.

16

https://github.com/mfasi/mpexpm

‚ exp otf, the algorithm by Caliari and Zivcovich [7], a shifted scaling and
squaring method based on truncated Taylor series. The matrix is shifted by
tracepAq{n, and (1.2) is replaced by

eA “
`

ep2
s
`2tq´1A

˘2s`2t

, s P N, t P NY t´8u.

The order of the approximant is chosen by estimating at runtime a bound on
the backward error of the approximant in exact arithmetic.

‚ exp d, an implementation of Algorithm 4.1 with use taylor “ false.
‚ exp t, an implementation of Algorithm 4.1 with use taylor “ true.
‚ exp sp d, an implementation of the Schur–Padé approach discussed in sec-

tion 4.3 using Algorithm 4.1, with use taylor “ false, for the triangular
Schur factor.

‚ exp sp t, an implementation of the Schur–Padé approach discussed in sec-
tion 4.3 using Algorithm 4.1, with use taylor “ true, for the triangular
Schur factor.

In our implementations of Algorithm 4.1, we set ubnd “ 2´53, ε “ u, smax “ 100, and
the entries of m to the elements of (3.5) smaller than 1000 and those of (3.6) smaller
than 400, for truncated Taylor series and diagonal Padé approximant, respectively.

We do not include the function expm provided by the Symbolic Math Toolbox
in our tests since, for precision higher than double, it appears to be extending the
precision internally, using a number of extra digits that increases with the working
precision. As a result, the forward error of the algorithm is typically several orders
of magnitude smaller than machine epsilon, when computing with 20 or more digits,
but tends to be larger than the unit roundoff u, for u « 10´20 or larger. We note
that the accuracy drops for matrices that are nondiagonalizable, singular, or have
ill-conditioned eigenvectors. Moreover, the Symbolic Math Toolbox implementation
is rather slow on moderately large matrices (n Á 50, say), which makes this code
unsuitable for extended testing.

In our tests, we assess the accuracy of the solution rX computed by an algo-
rithm running with d digits of precision by means of the relative forward error
}X ´ rX}1{}X}1, where X is a reference solution computed using exp mct with 2d
significant digits. Since the magnitude of forward errors depends not only on the
working precision but also on the conditioning of the problem, in our plots we com-
pare the forward error of the algorithms with κexppAqu, where κexppAq is the 1-norm
condition number [17, Ch. 4] of the matrix exponential of A (see (2.1)). We esti-
mate it in double precision using the funm condest1 function provided by the Matrix
Function Toolbox [15] on expm.

When plotting the forward error, we choose the limits of the y-axis in order to
show the area where most of the data points lie, and move the outliers to the the closest
edge of the box containing the plot. In several cases, we present our experimental
results with the aid of performance profiles [10], and adopt the technique of Dingle
and Higham [9] to rescale values smaller than u.

5.1. Comparison with expm in double precision. In this experiment, we
compare the performance of exp d, exp t, exp sp d, and exp sp t running in IEEE
double precision, with that of expm and exp otf. The purpose of this experiment is
to verify that the new algorithms are broadly competitive with expm; since expm is
optimized for double precision, we do not expect them to be as efficient.

Figure 5.1a compares the forward error of the algorithms on the matrices in
our test sets, sorted by decreasing condition number. The performance profile in

17

10-18

10-13

10-8

10-3

N H

(a) Forward error in double precision.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

(b) Performance profile for N in (a).

κexppAq exp d exp t exp sp d exp sp t

expm exp otf

(c) Legend for the data in (a) and (b).

Figure 5.1: Left: forward error of expm and exp sp d, exp sp t, exp d, and exp t

running in IEEE double precision arithmetic on the matrices in N and H, ordered by
decreasing value of κexppAq. Right: performance profile for the matrices in N .

Figure 5.1b presents the results for N on a by-algorithm rather than by-matrix basis:
for a given method, the height of the line at θ “ θ0 represents the fraction of matrices
in the data set for which the relative forward error is within a factor θ0 from the error
of the algorithm that delivers the most accurate result for that matrix.

For Hermitian matrices, we do not provide a performance profile, as the error
plot clearly shows that while exp otf, exp t, and exp d all provide forward error
well below κexppAqu, exp otf is consistently the most accurate on that data set. The
performance of expm is the same as that of exp sp d because both implementations
reduce to the evaluation of the scalar exponential at the eigenvalues of A when A is
Hermitian.

For the matrices in N , the errors of expm, exp otf, exp d, and exp t are ap-
proximately bounded by κexppAqu, with the algorithms based on truncated Taylor
series being overall more accurate than those based on diagonal Padé approximants.
The algorithms based on the Schur decomposition of A tend to give somewhat larger
errors, with the result that the performance profile curves are the least favorable.

5.2. Behavior in higher precision. Now we investigate the accuracy of our
algorithm in higher precision and compare it with exp mct, the built-in function of the
Multiprecision Computing Toolbox, and exp otf. The left column of Figure 5.2 com-
pares the quantity κexppAqu with the forward errors of exp mct, exp otf, exp sp d,
exp d, exp sp t, and exp t running with about 64, 256, and 1024 decimal signifi-
cant digits on the matrices in our test sets sorted by decreasing condition number
κexppAq. The right-hand column presents the data for the matrices in N by means of
performance profiles.

The results show that, as for double precision, transformation-free algorithms

18

10-66

10-62

10-58

10-54

N H

(a) d = 64 (u “ 2´213).

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

(b) Performance profile for N in (a).

10-258

10-253

10-248

10-243

N H

(c) d “ 256 (u “ 2´851).

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

(d) Performance profile for N in (c).

10-1026

10-1022

10-1018

10-1014

N H

(e) d “ 1024 (u “ 2´3402).

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

θ

(f) Performance profile for N in (e).

κexppAq exp d exp t exp sp d exp sp t

exp mct exp otf

(g) Legend for the data in (a)–(f).

Figure 5.2: Left: forward error of the methods on the matrices in the test sets.
Right: Corresponding performance profiles for the matrices in N .

19

Table 5.1: Execution time breakdown of exp t and exp d, run in quadruple preci-
sion on three matrices of increasing size. The table reports, for each algorithm, the
number of squarings (Msqr), the number of matrix multiplications needed to evalu-
ate the Padé approximant (Meval), the total execution time in seconds (Ttotq, and
the percentage of time spent evaluating the scalar bound (Tbnd), evaluating the Padé
approximant(Teval), and performing the final squaring step (Tsqr).

exp t exp d

n Msqr Meval Tbnd Teval Tsqr Ttot Msqr Meval Tbnd Teval Tsqr Ttot

A 10 5 13 20% 39% 41% 0.1 7 8 60% 12% 28% 0.2
20 6 13 13% 31% 56% 0.1 8 8 41% 14% 45% 0.2
50 7 15 7% 26% 67% 0.3 9 9 37% 17% 46% 0.6

100 8 15 4% 29% 67% 0.8 10 9 35% 23% 42% 1.6
200 9 15 4% 38% 58% 2.7 11 9 42% 29% 29% 6.4
500 10 16 3% 45% 51% 27.5 12 9 39% 33% 28% 59.2

1000 11 16 3% 45% 52% 197.1 12 10 33% 38% 29% 365.3

B 10 1 11 24% 61% 15% 0.0 1 9 69% 24% 8% 0.1
20 2 12 14% 58% 28% 0.1 2 9 54% 27% 18% 0.1
50 3 13 8% 44% 48% 0.2 3 10 45% 28% 27% 0.4

100 4 13 5% 34% 61% 0.4 5 9 41% 28% 31% 1.1
200 5 13 4% 33% 63% 1.3 6 9 46% 31% 24% 4.4
500 6 14 3% 30% 67% 11.2 6 10 39% 39% 22% 37.6

1000 7 14 2% 24% 74% 69.0 7 10 35% 39% 26% 238.7

C 10 2 11 35% 64% 1% 0.0 1 10 76% 24% 0% 0.1
20 2 12 23% 76% 1% 0.1 2 9 69% 30% 1% 0.1
50 3 12 16% 75% 9% 0.1 2 10 53% 45% 2% 0.3

100 3 13 8% 78% 14% 0.5 2 11 40% 56% 3% 1.4
200 3 14 6% 79% 15% 3.6 3 10 34% 58% 8% 6.5
500 4 13 5% 73% 21% 52.4 4 9 21% 63% 16% 69.5

1000 4 14 5% 74% 21% 434.0 5 9 16% 62% 22% 505.2

tend to produce a more accurate approximation of eA than those based on the Schur
decomposition of A. The code exp mct typically delivers the least accurate results,
with a forward error usually larger than κexppAqu.

On the Hermitian matrices in the test set, exp otf is typically the most accurate
algorithm, having a surprising ability to produce errors much less than κexppAqu.
On the set of non-Hermitian matrices, exp otf and exp t are the most accurate
algorithms, with exp t having the superior performance profile. On this dataset,
the least accurate of our versions of Algorithm 4.1 is exp sp t, closely followed by
exp sp d; the forward error of both, despite being typically smaller than that of
exp mct, is often slightly larger than κexppAqu, especially for the better conditioned
of our test matrices. Finally, exp d performs better than Schur-based variants, but
is slightly less accurate than exp otf and exp t on most of the matrices in this data
set. We remark, however, that its forward error is typically smaller than κexppAqu
when that of the other two Taylor-based algorithms is.

We note that the tests of exp otf in [7] have precision target 10´25 or larger,
which is between double and quadruple precision. This experiment shows that exp otf

maintains its good accuracy up to much higher precisions.

5.3. Code profiling. In Table 5.1, we compare the execution time of our MAT-
LAB implementations of exp t and exp d, running in quadruple precision (d “ 34
and unit roundoff u “ 2´113), on the matrices

20

A = 1e2*triu(gallery(’pei’’,n),1);

B = zeros(n); B(n+1:n+1:n^2) = 1:n-1; % Upper bidiagonal.

C = expm(gallery(’lotkin’, n));

where n ranges between 10 and 1000. For each matrix, we report the overall execution
time in seconds of the two implementations (Ttot), specifying how much time is spent
evaluating the scalar bound (Tbnd), evaluating the approximant on the input matrix
(Teval), and performing the final squaring stage (Tsqr).

For exp d, the evaluation of the forward bound on the truncation error of the Padé
approximant is typically the most expensive operation for small matrices, and even
when the size of the matrix increases the cost of this operation remains nonnegligible,
as the estimation of the quantity

›

›pqkmpAqq
´1

›

›

1
, which appears in the bound (4.1), has

cubic dependence on the size of the input matrix. For exp t, on the other hand, Tbnd
depends only quadratically on n, and tends to become relatively small for matrices of
size larger than 100.

6. Conclusions. State-of-the-art scaling and squaring algorithms for computing
the matrix exponential typically rely on a backward error analysis in order to scale
the matrix and then select an appropriate Padé approximant to meet a given accuracy
threshold. The result of this analysis is a small set of precision-dependent constants
that are hard to compute but can be easily stored for subsequent use. This approach is
not viable in multiprecision environments, where the working precision is known only
at run time and is an input argument of the algorithm rather than a property of the
underlying floating-point number system. For truncated Taylor series, it is possible
to estimate on-the-fly a bound on the backward error of the approximation [7], but
this technique relies on a conjecture and does not readily generalize to other Padé
approximants.

We have developed a new algorithm (Algorithm 4.1) based on Padé approximation
for computing the matrix exponential in arbitrary precision. In particular, we derived
a new representation for the truncation error of a general rk{ms Padé approximant
and showed how it can be used to compute practical error bounds for truncated
Taylor series and diagonal Padé approximants. In the first case, the bound is cheap
to compute, requiring only Opn2q flops. For diagonal Padé approximants the new
bound requires Opn3q low-precision flops, but if Conjecture 3.2 turns out to be true
then this cost will reduce to Opn2q flops.

According to our experimental results, Algorithm 4.1 in transformation-free form
using truncated Taylor series is the best option for computing the matrix exponential
in precisions higher than double. In particular, the algorithm is the most accurate
on non-Hermitian matrices. For Hermitian matrices, it is natural to compute eA via
a spectral decomposition (as does the MATLAB function expm), but an interesting
finding is that on our Hermitian test matrices this approach (to which exp sp d and
exp sp t effectively reduce) is less accurate than Algorithm 4.1 and the algorithm
of [7].

When developing the algorithm and testing it experimentally we focused on pre-
cisions higher than double. We believe that a different approach is needed to address
the computation of the matrix exponential in low precision arithmetic, such as IEEE
half precision. Indeed, due its very limited range this number format is prone to un-
derflow and overflow, which makes accuracy and robustness difficult to achieve. How
to handle these challenges will be the subject of future work.

21

REFERENCES

[1] A. H. Al-Mohy, A truncated Taylor series algorithm for computing the action of trigonometric
and hyperbolic matrix functions, SIAM J. Sci. Comput., 40 (2018), pp. A1696–A1713,
https://doi.org/10.1137/17M1145227.

[2] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix
exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989, https://doi.org/10.
1137/09074721X.

[3] A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring algorithms for the
matrix logarithm, SIAM J. Sci. Comput., 34 (2012), pp. C153–C169, https://doi.org/10.
1137/110852553.

[4] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, New algorithms for computing the matrix
sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37 (2015), pp. A456–
A487, https://doi.org/10.1137/140973979.

[5] M. Aprahamian and N. J. Higham, Matrix inverse trigonometric and inverse hyperbolic
functions: Theory and algorithms, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1453–1477,
https://doi.org/10.1137/16M1057577.

[6] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to nu-
merical computing, SIAM Rev., 59 (2017), pp. 65–98, https://doi.org/10.1137/141000671.

[7] M. Caliari and F. Zivcovich, On-the-fly backward error estimate for matrix exponential
approximation by Taylor algorithm, J. Comput. Appl. Math., 346 (2019), p. 532548, https:
//doi.org/10.1016/j.cam.2018.07.042.

[8] E. Defez, J. Sastre, J. Ibáñez, and J. Peinado, Solving engineering models using hyperbolic
matrix functions, Applied Mathematical Modelling, 40 (2016), pp. 2837–2844, https://doi.
org/https://doi.org/10.1016/j.apm.2015.09.050.

[9] N. J. Dingle and N. J. Higham, Reducing the influence of tiny normwise relative errors
on performance profiles, ACM Trans. Math. Software, 39 (2013), pp. 24:1–24:11, https:
//doi.org/10.1145/2491491.2491494.

[10] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,
Math. Programming, 91 (2002), pp. 201–213, https://doi.org/10.1007/s101070100263.

[11] M. Fasi, Optimality of the Paterson–Stockmeyer method for evaluating matrix polynomials
and some rational matrix functions, MIMS EPrint, Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, 2018. In preparation.

[12] M. Fasi and N. J. Higham, Multiprecision algorithms for computing the matrix logarithm,
SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491, https://doi.org/10.1137/17M1129866.

[13] M. Fasi, N. J. Higham, and B. Iannazzo, An algorithm for the matrix Lambert W function,
SIAM J. Matrix Anal. Appl., 36 (2015), pp. 669–685, https://doi.org/10.1137/140997610.

[14] W. Gautschi, Numerical Analysis, Birkhäuser Basel, 2011.
[15] N. J. Higham, The Matrix Function Toolbox. http://www.maths.manchester.ac.uk/„higham/

mftoolbox.
[16] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM J.

Matrix Anal. Appl., 26 (2005), pp. 1179–1193, https://doi.org/10.1137/04061101X.
[17] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2008, https://doi.org/10.1137/1.
9780898717778.

[18] N. J. Higham, The scaling and squaring method for the matrix exponential revisited, SIAM
Rev., 51 (2009), pp. 747–764, https://doi.org/10.1137/090768539.

[19] N. J. Higham and P. Kandolf, Computing the action of trigonometric and hyperbolic matrix
functions, SIAM J. Sci. Comput., 39 (2017), pp. A613–A627, https://doi.org/10.1137/
16M1084225.

[20] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an
application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185–
1201, https://doi.org/10.1137/S0895479899356080.

[21] F. Johansson, Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic, IEEE
Trans. Comput., 66 (2017), p. 12811292, https://doi.org/10.1109/tc.2017.2690633.

[22] F. Johansson et al., Mpmath: A Python library for arbitrary-precision floating-point arith-
metic. http://mpmath.org.

[23] D. Lago and F. Rahnema, Development of a set of benchmark problems to verify numerical
methods for solving burnup equations, Annals of Nuclear Energy, 99 (2017), pp. 266–271,
https://doi.org/10.1016/j.anucene.2016.09.004.

[24] E. N. Laguerre, Le calcul des systèmes linéaires, extrait d’une lettre adressé à M. Hermite,
in Oeuvres de Laguerre, C. Hermite, H. Poincaré, and E. Rouché, eds., vol. 1, Gauthier–

22

https://doi.org/10.1137/17M1145227
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/110852553
https://doi.org/10.1137/110852553
https://doi.org/10.1137/140973979
https://doi.org/10.1137/16M1057577
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.cam.2018.07.042
https://doi.org/10.1016/j.cam.2018.07.042
https://doi.org/https://doi.org/10.1016/j.apm.2015.09.050
https://doi.org/https://doi.org/10.1016/j.apm.2015.09.050
https://doi.org/10.1145/2491491.2491494
https://doi.org/10.1145/2491491.2491494
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/140997610
http://www.maths.manchester.ac.uk/~higham/mftoolbox
http://www.maths.manchester.ac.uk/~higham/mftoolbox
https://doi.org/10.1137/04061101X
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/090768539
https://doi.org/10.1137/16M1084225
https://doi.org/10.1137/16M1084225
https://doi.org/10.1137/S0895479899356080
https://doi.org/10.1109/tc.2017.2690633
http://mpmath.org
https://doi.org/10.1016/j.anucene.2016.09.004

Villars, Paris, 1898, pp. 221–267, http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table.

The article is dated 1867 and is “Extrait du Journal de l’École Polytechnique, LXIIe

Cahier”.
[25] J. D. Lawson, Generalized Runge–Kutta processes for stable systems with large lipschitz con-

stants, SIAM J. Numer. Anal., 4 (1967), pp. 372–380, https://doi.org/10.1137/0704033.
[26] Maple. Waterloo Maple Inc., Waterloo, Ontario, Canada. http://www.maplesoft.com.
[27] Mathematica. Wolfram Research, Inc., Champaign, IL, USA. http://www.wolfram.com.
[28] K. Meerbergen, A. Spence, and D. Roose, Shift-invert and Cayley transforms for detection

of rightmost eigenvalues of nonsymmetric matrices, BIT, 34 (1994), pp. 409–423, https:
//doi.org/10.1007/bf01935650.

[29] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a
matrix, SIAM Rev., 20 (1978), pp. 801–836, https://doi.org/10.1137/1020098.

[30] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later, SIAM Rev., 45 (2003), pp. 3–49, https://doi.org/10.1137/
S00361445024180.

[31] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.
[32] P. Nadukandi and N. J. Higham, Computing the wave-kernel matrix functions, MIMS EPrint

2018.4, Manchester Institute for Mathematical Sciences, The University of Manchester, UK,
Feb. 2018, http://eprints.maths.manchester.ac.uk/2651/. Revised August 2018. To appear
in SIAM J. Sci. Comput.

[33] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications necessary
to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66, https://doi.org/10.1137/
0202007.

[34] M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nuclear
Science and Engineering, 169 (2011), p. 155167, https://doi.org/10.13182/nse10-81.

[35] The Sage Developers, Sage Mathematics Software. http://www.sagemath.org.
[36] J. Sastre, J. Ibáñez, P. Ruiz, and E. Defez, Accurate and efficient matrix exponential

computation, Internat. J. Comput. Math., 91 (2013), p. 97112, https://doi.org/10.1080/
00207160.2013.791392.

[37] Symbolic Math Toolbox. The MathWorks, Inc., Natick, MA, USA. http://www.mathworks.co.
uk/products/symbolic/.

[38] C. F. Van Loan, The sensitivity of the matrix exponential, SIAM J. Numer. Anal., 14 (1977),
pp. 971–981, https://doi.org/10.1137/0714065.

[39] S. Zhao, Matrix exponential approximation for burnup equation, M.Sc. thesis, The University
of Manchester, 2017.

23

http://gallica.bnf.fr/ark:/12148/bpt6k90210p/f242.table
https://doi.org/10.1137/0704033
http://www.maplesoft.com
http://www.wolfram.com
https://doi.org/10.1007/bf01935650
https://doi.org/10.1007/bf01935650
https://doi.org/10.1137/1020098
https://doi.org/10.1137/S00361445024180
https://doi.org/10.1137/S00361445024180
http://www.advanpix.com
http://eprints.maths.manchester.ac.uk/2651/
https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
https://doi.org/10.13182/nse10-81
http://www.sagemath.org
https://doi.org/10.1080/00207160.2013.791392
https://doi.org/10.1080/00207160.2013.791392
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
https://doi.org/10.1137/0714065

