
Optimality of the Paterson-Stockmeyer method
for evaluating matrix polynomials and rational

matrix functions

Fasi, Massimiliano

2018

MIMS EPrint: 2018.38

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Optimality of the Paterson–Stockmeyer Method for Evaluating
Matrix Polynomials and Rational Matrix Functions*

Massimiliano Fasi†

Abstract

Many state-of-the-art algorithms reduce the computation of transcendental matrix func-
tions to the evaluation of polynomial or rational approximants at a matrix argument. �is
task can be accomplished e�ciently by recurring to the Paterson–Stockmeyer method, an
evaluation scheme originally developed for matrix polynomials that extends quite natur-
ally to rational functions. An important feature of these techniques is that the number of
matrix multiplications required to evaluate an approximant of order n grows slower than
n itself, with the result that di�erent approximants yield the same asymptotic computa-
tional cost. We analyze the number of matrix multiplications required by the Paterson–
Stockmeyer method and by two widely used generalizations, one for evaluating diagonal
Padé approximants of generic functions and one speci�cally tailored to those of the expo-
nential. In all three cases, we identify the approximants of maximum order for any given
computational cost.

Keywords: Paterson–Stockmeyermethod, polynomial evaluation,matrix polynomial, mat-
rix rational function, matrix function.

2010 MSC: 15A16, 13M10, 65F60.

1 Introduction

Several numerical methods for evaluating matrix functions, including the state-of-the-art al-
gorithms for computing the exponential [1], [13], [14, Chap. 10], the logarithm [2], [7], trigono-
metric [3] and hyperbolic functions, and their inverses [5], rely on rational approximation. �e
special case of polynomial approximants is of particular interest, as it usually yields easier for-
mulae and o�en leads to easier proofs of theoretical results. In the literature, algorithms based
on polynomial approximation have been proposed for the exponential [6], [8], [9], [19], [20],
for the logarithm [10], and for trigonometric functions [4], [18].
In order to compute f (A), where f ∶Cn×n → Cn×n and A ∈ Cn×n, these algorithms typically

perform three main steps. First, a series of transformations is applied to A, in order to obtain a
matrix B for which some polynomial or rational approximant to f of suitable order is guaranteed
to deliver a prescribed level of accuracy. �is approximant is then evaluated at the matrix B, and

*Version of 13th December 2018. Funding:�is work was supported by MathWorks and the Istituto Nazionale
di Alta Matematica, INdAM–GNCS Project 2018. �e opinions and views expressed in this publication are those
of the author, and not necessarily those of the funding bodies.

†School of Mathematics, �e University of Manchester, Oxford Road, Manchester, M13 9PL, UK
(massimiliano.fasi@manchester.ac.uk).

1

an approximation to f (A) is obtained by exploiting algebraic properties of f in order to reverse
the transformations initially applied to A.
Let us consider the polynomial

p(A) =
k

∑
i=0
ciAi , (1)

where k ∈ N and c0, c1, . . . , ck ∈ C. Since p(A) is nothing but a linear combination of powers of
its argument, one can evaluate it by explicitly computing the �rst k powers of A, scaling them by
the corresponding coe�cients of p, and summing them up. If all the powers A2,A3, . . . ,Ak are
computed, this algorithm requires k−1matrixmultiplications, kmatrix scalings, kmatrix sums,
and one diagonal update of the form A ← A + αI, for α ∈ C, which can be performed in only
n ops without explicitly forming the diagonal matrix αI. Since only two additional matrices,
one for the intermediate powers of A and one for accumulating the partial sums, are needed,
the algorithm can be implemented in a memory e�cient way that requires only 2n2 additional
elements of storage.
A second evaluation scheme for (1) is the matrix version of Horner’s method. �is is the

algorithm of choice for scalar polynomials, as it reduces the number of multiplications to be
performed without a�ecting that of scalar sums. In order to employ this scheme, we de�ne the
recursion

Pk−1 = ckA+ ck−1I,
Pi = Pi+1A+ ciI, j = k − 2, k − 3, . . . , 0,

(2)

and evaluate p(A) = P0 by recursively computing Pi for i from k − 1 down to 0. For dense
polynomials, this method requires k − 1 matrix multiplications, but only one matrix scaling
and k diagonal updates. Since there is no need to compute powers of A, this method can be
implemented so to require only half of the additional storage of the algorithm based on the
explicit powering.
Paterson and Stockmeyer [17] propose a less straightforward algorithm for evaluating (1),

which for k ≥ 3 reduces the number ofmatrixmultiplications needed to form p(A), and typically
yields an operation count much lower than that of the two techniques discussed thus far. By
collecting powers of A in a suitable fashion, for s ∈ N+ ∶= N ∖ {0} we obtain

p(A) =
ν

∑
i=0

(As)iB[p]
i (A), ν = ⌊k

s
⌋ (3)

where

B[p]
i (A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

s−1
∑
j=0
csi+ jAj, i = 0, 1, . . . , ν − 1,

∣k∣s
∑
j=0
csi+ jAj, i = ν,

Here ∣a∣b denotes, for two integers a and b, the reminder of the integer division of a by b. In
other words, if ∣a∣b = δ ∈ N, then a = γb + δ for some γ ∈ N. If δ = 0, that is, if a is an integer
multiple of b, we write b ∣ a.
�e scheme (3) requires k − r + 1 matrix scalings and sums, and r + 1 diagonal updates;

computing A2, A3, . . . , As requires s − 1matrix multiplications, and, at the price of storing these

2

s − 1 additional matrices, no extra multiplication is needed to compute B[p]
i (A), for i = 0, . . . , ν.

By evaluating (3) à la Horner, we obtain the recursion

P̃ν−1 =
⎧⎪⎪⎨⎪⎪⎩

ckAs + B[p]
ν−1(A), s ∣ k,

AsB[p]
ν (A) + B[p]

ν−1(A), s ffl k,
(4)

P̃j = AsPj+1 + B[p]
j (A), j = ν − 2, ν − 3, . . . , 0,

and computing p(A) = P̃0 requires ν − 1 additional matrix products if k is a multiple of s, and ν
if it is not. �erefore, evaluating (1) by means of (3) requires

Cp
s (k) ∶= s − 1 + ⌊k

s
⌋ − [s ∣ k] (5)

matrix multiplications, where [⋅] denotes the Iverson bracket, de�ned, for a proposition P , by

[P] = {
1, if P is true,
0, if P is false.

Taking the derivative of (5) with respect to s shows that the continuous relaxation of Cp
s (k) is

minimized by taking
s⋆ =

√
k. (6)

As s must be integer, we can choose either s = ⌊
√
k⌋ or s = ⌈

√
k ⌉. �ese two choices, together

with the evaluation scheme in (3), give two variants of the Paterson–Stockmeyer method. Note
that this evaluation scheme is not de�ned for k = 0. Hargreaves [12, �m. 1.7.4] proved that, in
fact, these two algorithms have the same cost for any k ∈ N. In the next section, we provide a
new proof of this result, in which we establish the notation and present techniques we will rely
on later on.
We remark that, in fact, this algorithm trades o�memory for computational e�ciency, since

s + 1 additional matrices need to be stored, for a space complexity of O(
√
kn2). Van Loan [21]

showed that, by computing p(A) one column at a time, it is possible to reduce the storage
requirement of the algorithm to 3n2 additional elements, at the price of (α log2 s − 1)n3 addi-
tional ops, where α is a small constant that depends only on s. How to implement the original
Paterson–Stockmeyer algorithm and this variant in amemory and communication e�cient way
has been recently discussed by Ho�man, Schwartz, and Toledo [15].
Polynomials of the form (1) o�en arise when computingmatrix functions by relying on Padé

approximation. A rational function rkm = pkm/qkm, for k,m ∈ N, is the [k/m] Padé approximant
to f at 0 if pkm and qkm are polynomials of degree k and m, respectively, qkm(0) = 1, and the
�rst k +m terms in the series expansion of f (x) − rkm(x) at 0 are zero. In particular, we focus
on truncated Taylor series, for whichm = 0, and diagonal Padé approximants, for whichm = k,
since these are the two families of Padé approximants most commonly encountered in the lit-
erature. Subdiagonal Padé approximants are also considered [11], [16], but the partial fraction
form is usually preferred for their evaluation.
�e scheme (3) generalizes readily to the evaluation of a rational matrix function: a�er com-

puting the �rst s powers of A, for some s ∈ N+, one can evaluate numerator and denominator
separately, by means of (3), and then solve a multiple right-hand side linear system. An approx-
imately optimal value for s can be determined by minimizing the continuous relaxation of the
corresponding cost function.

3

�e goal of this work is twofold. On the one hand, we study the optimality of the Paterson–
Stockmeyer method amongst all methods of the form (3); on the other, we give several results
that can aid in the development of numerical algorithms for computing matrix functions in
an arbitrary precision setting. Now we summarize our main contributions while outlining the
structure of the following sections.
It has been observed [14, p. 74] that the Paterson–Stockmeyermethodminimizes the number

of matrix multiplications required to evaluate polynomials of degree between 2 and 16 by means
of the scheme (3). In section 2.1 we show that this is in fact the case for polynomials of any
degree.
When matrix functions are approximated by means of polynomials, it is customary not to

consider all possible approximants, but only those that maximize the approximation degree for
a given number of matrix multiplications. For example, since for any s ∈ N+ we have that
Cp
s (11) ≥ 5 and Cp

s (12) ≥ 5, there is little point in considering an approximant of degree 11,
since that of degree 12 is likely to deliver a more accurate approximation at the same cost. �e
following de�nition allows us to make this notion precise and extend it to the case of rational
approximants.

De�nition 1 (Optimal orders of an evaluation scheme). Let C(k), for k ∈ N, be the number of
matrix products required by a scheme S to evaluate an approximant of order k. �en k′ ∈ N is
an optimal order (or degree, if the approximant is a polynomial) for S if there exists ζ ∈ N such
that

k′ = argmax
k∈N

{C(k) = ζ}.

When working with �xed precision arithmetic, the order of the highest approximant that
may be needed to achieve the required accuracy, kmax say, is typically knownwhen the algorithm
is being designed, and only the optimal orders smaller than kmax are needed. �ese can be found
by inspecting the values of C(k) for k ≤ kmax, as was done in [14, Table 4.1] and [6, Table 1] for
polynomial approximants and in [14, Table 10.3] for the diagonal Padé approximants to the expo-
nential. When developing algorithms for arbitrary precision oating-point arithmetic, however,
depending on theworking precision and the desired accuracy, an approximant of arbitrarily high
order may be needed, and alternative techniques to e�ciently �nd all optimal degrees become
necessary.
In section 2.2, we derive a formula for the sequences of optimal degrees for the Paterson–

Stockmeyer method for polynomial evaluation. We obtain closed formulae for the optimal or-
ders of the Paterson–Stockmeyer-like scheme for evaluating rational functionswhose numerator
and denominator have same degree in section 3, and in section 4, we consider the special case
of the diagonal Padé approximants to the exponential.
Finally, in section 5 we summarize our �ndings and outline possible directions for future

work.

2 Evaluation of matrix polynomials

Figure 1 shows the value of the cost function (5) for the two canonical variants of the Paterson–
Stockmeyer method, which di�er only in the direction

√
k is rounded in order to obtain the

parameter s in (3). It is well known that both choices yield the same computational cost for the
evaluation of a polynomial of any degree, and in section 2.1 we show that this is the minimum

4

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

18

k

C
p s
(k

)

s = ⌊

√

k ⌋ ⌊

√

k ⌋ ∣ k

s = ⌈

√

k ⌉ ⌈

√

k ⌉ ∣ k

s = ⌊

√

k ⌋, k = api in (13)

Figure 1: Number of matrix multiplications required to evaluate a polynomial of degree k, for k
between 1 and 50, by means of the scheme (3) with s = ⌊

√
k ⌋ and s = ⌈

√
k ⌉. Dashed and dotted

lines mark the values of k that are integer multiples of ⌊
√
k ⌋ and ⌈

√
k ⌉, respectively; the circles

mark the number of matrix multiplications required to evaluate polynomials of optimal degree
(in the sense of De�nition 1) for the Paterson–Stockmeyer method.

value for Cp
s (k) among all choices of s ∈ N+. �e values marked with a red circle are discussed

in section 2.2.

2.1 Optimality of the Paterson–Stockmeyer method

Most of the results that follow stem from a couple of simple observations. If s = ⌊
√
k ⌋, then by

de�nition of the oor operator, we have that

s ≤ k
s
< (s + 1)2

s
= s + 2 + 1

s
, (7)

where the �rst inequality holds strictly if ⌊
√
k ⌋ ≠ ⌈

√
k ⌉. It follows that ⌊ ks ⌋ = s + t, where t can

only be 0, 1, or 2, and in fact it is convenient to split (7) into the three subcases

s + t ≤ k
s
< s + t + 1, t = 0, 1, 2. (8)

In particular, combining (7) and (8) for t = 2with the fact that k is integer reveals that ⌊ ks ⌋ = s+2
only if s ∣ k, that is, only if k = s(s + 2).

�eorem 1 (Hargreaves, [12,�m. 1.7.4]). Let A ∈ Cn×n and let p be a polynomial of degree k ∈ N+.
�e twomethods obtained by setting s in (3) to s f = ⌊

√
k ⌋ and sc = ⌈

√
k ⌉ require the same number

of matrix multiplications to evaluate p(A).

5

Proof. We need to prove that Cp
s f (k) = Cp

sc(k), for any k ∈ N+. If k is a perfect square, then
s f = sc and the result follows immediately. Otherwise, one has that s ∶= s f = sc − 1, and thus that

∆(k) ∶= Cp
s f (k) − C

p
sc(k) = ⌊k

s
⌋ − [s ∣ k] − 1 − ⌊ k

s + 1
⌋ + [s + 1 ∣ k]. (9)

If s ∣ k and k ≠ s2, then (7) implies that ν = ⌊ ks ⌋ =
k
s is either s + 1 or s + 2. If ν = s + 1, then

k = s(s + 1) and s + 1 ∣ k, and substituting into (9) gives ∆(k) = 0. If ν = s + 2, then

k
s + 1

= s(s + 2)
s + 1

= s + 1 − 1
s + 1

,

hence ⌊ k
s+1⌋ = s and s + 1 ffl k, and once again substituting into (9) shows that ∆(k) = 0. When

s + 1 ∣ k, multiplying (7) by s
s+1 gives

s − 1 + 1
s + 1

< k
s + 1

< s + 1,

which leads back to the case k = s(s + 1).
Finally, if s ffl k and s + 1 ffl k, then ⌊ ks ⌋ = s + t, where t is either 0 or 1, and multiplying (8)

by s
s+1 gives

s + t − 1 − t − 1
s + 1

≤ k
s + 1

< s + t − t
s + 1

,

which implies that

⌊ k
s + 1

⌋ = s + t − 1 = ⌊k
s
⌋ − 1.

Substituting into (9) concludes the proof.

In view of the result in �eorem 1, we can drop the subscript and adopt the notation Cp(k)
to indicate the number of matrix multiplications required by the Paterson–Stockmeyer method.
Next, we show that the Paterson–Stockmeyer method is the cheapest algorithm that arises

from the evaluation scheme (3). Note that this result is not an obvious consequence of the op-
timality of s⋆ in (6), since the continuous relaxation of (5) does not take into account the dis-
continuities induced by the oor operator in ⌊ ks ⌋ and the non-continuous term [s ∣ n].

Proposition 1. Let A ∈ Cn×n and let p be a polynomial of degree k ∈ N+. �e Paterson–Stockmeyer
methodminimizes the number of matrix multiplications required to evaluate p(A) bymeans of the
evaluation scheme (3).

Proof. Let s = ⌊
√
k ⌋. In view of �eorem 1, it su�ces to show that Cp

s+ℓ(k) ≤ Cp
s (k), for all

ℓ ∈ Z such that ℓ > −s. �e proof is by exhaustion since, by (7), ν can take only the three values
s, s + 1, and s + 2. For t = 0, 1, or 2, we have that

Cp
s (k) = 2s + t − 1 − [s ∣ k], (10)

and since
k

s + ℓ
≥ s(s + t)

s + ℓ
= s − ℓ + t + ηℓt , ηℓt ∶=

ℓ(ℓ − t)
s + ℓ

, (11)

we can conclude that

Cp
s+ℓ(k) = s + ℓ − 1 + ⌊ k

s + ℓ
⌋ − [s + ℓ ∣ k] ≥ 2s + t − 1 + ⌊ηℓt⌋ − [s + ℓ ∣ k].

6

For ν = s, ηℓ0 is nonnegative, and C
p
s+ℓ(k) can be strictly smaller than C

p
s (k) only if s + ℓ ∣ k

and ⌊ηℓ0⌋ = 0 but s ffl k. By taking the oor of (11), we see that the �rst condition is satis�ed only
if k = (s + ℓ)(s − ℓ) = s2 − ℓ2 for some ℓ. However, k cannot be smaller than s2, thus the only
admissible value for ℓ is 0, in which case Cp

s (k) = Cp
s+ℓ(k).

For ν = s + 1, ηℓ1 is nonnegative, and C
p
s+ℓ(k) < C

p
s (k) only if k = (s + ℓ)(s − ℓ + 1) and s ffl k.

Since k must be larger than s(s + 1), the only two admissible values for ℓ are 0 and 1, but in both
cases we have that k = s(s + 1), and thus that s ∣ k.
Finally, for t = 2 and k = s(s+2), observe that Cp

s+ℓ(k) ≥ C
p
s (k) unless ⌊ηℓ2⌋ = −1 and s+ℓ ∣ k.

�e former condition is satis�ed if and only if ℓ = 1, but in this case s + 1 ffl s(s + 2), since

s(s + 2)
s + 1

= s + s
s + 1

cannot be integer for s > 0.

2.2 Optimal degrees for the Paterson–Stockmeyer method

We can characterize the degrees that are optimal for the Paterson–Stockmeyer method in the
sense of De�nition 1. In order to accomplish this task, we need to show that the cost function (5)
is non-decreasing in k. Again, this result is not obvious because of the terms ⌊ ks ⌋ and [s ∣ k]
in (5).

Lemma 1. �e number of matrix multiplications required by the Paterson–Stockmeyer method to
evaluate a matrix polynomial is non-decreasing in the degree of the polynomial.

Proof. We want to show that, for k ∈ N+,

Cp(k) ≤ Cp(k + 1). (12)

As oor and ceiling yield the same operation count, we can restrict ourselves to considering only
s = ⌊

√
k ⌋ and s′ = ⌊

√
k + 1⌋. If s = s′, then we only need to prove that ⌊ ks ⌋ ≤ ⌊ k+1s ⌋. By adding 1

s
to all the terms in (8), we get that that, if ⌊ ks ⌋ = s + t, then

s + t + 1
s
≤ k + 1

s
< s + t + 1 + 1

s
,

and thus that ⌊ k+1s ⌋ is either s+ t or s+ t+ 1, and cannot be smaller than ⌊ ks ⌋. Otherwise, we must
have that s′ = s + 1.
If s ∣ k, then k = s(s + t), for t = 0, 1, or 2, and observing that

k + 1
s + 1

= s2 + st + 1
s + 1

= s + t − 1 + 2 − t
s + 1

,

we can conclude that ⌊ k+1s+1 ⌋ = s + t − 2. �erefore, if t = 0 or 1, then s + 1 ffl k + 1 and the
inequality (12) holds strictly, whereas if t = 2, then k + 1 = (s + 1)2 and the equality is satis�ed.
If s + 1 ∣ k + 1, then ⌊

√
k + 1⌋ = s + 1 and ⌊

√
k ⌋ = s, which implies that (s + 1)2 ≤ k + 1 and

k + 1 < (s + 1)2 + 1, respectively. By dividing both inequalities by s + 1, we get that k+1s+1 = s + 1,
which can be rewritten as k = (s + 1)2 − 1, and readily implies that ks = s + 2. Substituting these
values into (12) shows that equality holds in this case.

7

Finally, when s ffl k and s + 1 ffl k + 1, by multiplying all the terms in (8) by s, incrementing
them by one, and dividing them by s + 1, one gets

s + t − 1 + s
s + 1

≤ k + 1
s + 1

< s + t + 1 − t
s + 1

,

which implies that ⌊ k+1s+1 ⌋ can be either s+ t−1 or s+ t. Substituting into (12) shows that the former
satis�es the equality and the latter the strict inequality.

Recall that an integer a is a quarter-square, a perfect square, or an oblong number, if there
exists b ∈ N such that a = ⌊b2/4⌋, a = b2, or a = b(b + 1), respectively.

Proposition 2. �e degree of a polynomial is optimal for the Paterson–Stockmeyer algorithm if
and only if it is a positive quarter-square.

Proof. By Lemma 1, a degree k ∈ N+ is optimal if and only if Cp(k) < Cp(k + 1). Since positive
quarter-squares are either positive perfect squares or positive oblong numbers, we need to prove
only that Cp(k) < Cp(k + 1) if and only if k = s2 or k = s(s + 1) for some s ∈ N+. We have that
⌊
√
k ⌋ = ⌊

√
k + 1⌋ = s, and it is straightforward to verify that Cp(s2) = 2s− 2 < 2s− 1 = Cp(s2 + 1)

and Cp(s(s+ 1)) = 2s− 1 < 2s = Cp(s(s+ 1)+ 1), and thus that s2 and s(s+ 1) are optimal degrees
for all s ∈ N+.
Conversely, let k ∈ N+ be an optimal degree for the Paterson–Stockmeyer method, and let

s = ⌊
√
k⌋. Note that if k is not an integer multiple of s, then a polynomial with s − (k mod s)

more terms can be evaluated with the same number of matrix multiplications. �erefore, if k is
optimal, then s ∣ k and, as a consequence of (7), k must be of the form s(s + t), where t = 0, 1,
or 2. We already known that if t = 0 or t = 1, then k is optimal, and we need to show only
that k′ ∶= s(s + 2) is not. Since k′ + 1 = (s + 1)2, we have that

√
k′ + 1 ∣ k′ + 1, and thus that

Cp(k′) = 2s = Cp(k′ + 1), which shows that k′ is not optimal.

�erefore, the sequence of optimal degrees for the Paterson–Stockmeyer method is (api)i∈N,
where

api = ⌊(i + 2)
2

4
⌋ . (13)

By observing that Cp(api) = i, we can conclude that the polynomial of highest degree that can
be evaluated with i matrix multiplications is that of degree api .

3 Rational matrix functions of order [k/k]

A rational function is the quotient of two polynomials and, in the matrix case, it can be inter-
preted as the solution to a multiple right-hand side linear system whose coe�cients and con-
stant term are both matrix polynomials. �erefore, the value of a rational function at a matrix
argument can be computed by relying on a suitable modi�cation of the scheme (3) capable of
minimizing the number of matrix multiplications required to evaluate at once two polynomials
at the same matrix argument.
Since in algorithms for computingmatrix functions the evaluation of diagonal approximants

is typically needed in this section we focus on the evaluation of rational matrix functions of
order [k/k]. Let us consider the task of evaluating r(A) = q(A)−1p(A), where both p and q

8

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

18

k

C
r s(
k)

s = ⌊

√

2k⌋ ⌊

√

2k⌋ ∣ k

s = ⌈

√

2k⌉ ⌈

√

2k⌉ ∣ k

s = srk in (16), k = ari in (18)

Figure 2: Number of matrix multiplications required to evaluate a rational function of order
[k/k], for k between 1 and 50, by means of the scheme (14), for s = ⌊

√
2k⌋ and s = ⌈

√
2k⌉. �e

dotted and dashed lines mark the values of k that are integer multiples of ⌊
√
2k⌋ and ⌈

√
2k⌉,

respectively; the circles mark the number of matrix multiplications required to evaluate rational
matrix functions of optimal order (in the sense of De�nition 1) for the evaluation scheme (14).

are polynomials of degree k ∈ N+. We can rewrite numerator and denominator of this rational
function as polynomials in As, which gives

p(A) =
ν

∑
i=0
B[p]
i (A)(As)i , q(A) =

ν

∑
i=0
B[q]
i (A)(As)i , ν = ⌊k

s
⌋ . (14)

If this scheme is used and A2, A3, . . . , As are computed only once, then evaluating r(A) requires
the solution of one multiple right-hand side linear system and

Cr
s(k) ∶= s − 1 + 2 ⌊

k
s
⌋ − 2[s ∣ k] (15)

matrix multiplications. �e continuous relaxation of (15) is minimized by taking s =
√
2k, but,

as Figure 2 shows, depending on k, either taking the oor or the ceiling of this quantity may
yield the lowest op count. �erefore, for k ∈ N+, we de�ne use of

srk ∶= argmin{Cr
⌊√2k⌋(k),C

r
⌈√2k⌉(k)} . (16)

Figure 2 seems to suggests that if either rounding of ⌊
√
2k⌋ divides k, then setting s to it

in (14) will give Cr
srk
(k). In the following we prove that, when that happens, srk in fact minimizes

the cost function Cr
s(k) among all possible choices of s.

9

Lemma 2. Let A ∈ Cn×n and let p and q be polynomials of degree k ∈ N+. If ⌊
√
2k⌋ ∣ k or

⌈
√
2k⌉ ∣ k, then setting s in (14) to ⌊

√
2k⌋ or ⌈

√
2k⌉, respectively, minimizes the number of matrix

multiplications required to evaluate both p(A) and q(A) by the scheme (14).

Proof. Let s = ⌊
√
2k⌋. By de�nition of the oor operator, s2 ≤ 2k < (s + 1)2, and thus

s
2
≤ k
s
< s
2
+ 1 + 1

2s
.

Since s ∣ k, we have that ks =
s+t
2 , where t = 0 or 2 if s is even and t = 1 if s is odd, and thus that

Cr
s(k) = 2s + t − 3. In order to determine the number of multiplications required when setting

s ≠ s in (14), note that for ℓ ∈ N such that ℓ > −s, we have

k
s + ℓ

= s(s + t)
2(s + ℓ)

= 1
2
(s − ℓ + t + ηℓt) , ηℓt ∶=

ℓ2 − tℓ
s + ℓ

. (17)

If s + ℓ ∣ k, then ηℓt ≥ − 1
s+1 > −1, thus ⌊

k
s+ℓ⌋ ≥

s−ℓ+t
2 and Cr

s+ℓ(k) ≥ 2s + t − 3 = Cr
s(k). On the other

hand, if s + ℓ ffl k, then ⌊ k
s+ℓ⌋ ≥

s−ℓ−t−1
2 , and Cr

s+ℓ(k) ≥ 2s + t − 2 > Cr
s(k).

�e proof for s = ⌈
√
2k⌉ is rather similar. From (s − 1)2 < k ≤ s2 we have that

s
2
− 1 − 1

2s
< k
s
≤ s
2
,

and since s ∣ k, that ks =
s+t
2 , for t = 0, 1, or 2. For ℓ > −s, one has that k

s+ℓ =
1
2(s − ℓ − t + ηℓ−t),

and we can argue as above that if s + ℓ ∣ k then Cr
s+ℓ(k) ≥ 2s − t − 3 = Cr

s(k), while if s + ℓ ffl k,
then Cr

s+ℓ(k) ≥ 2s − t − 2 > Cr
s(k).

In order to characterize the optimal degrees for the scheme (14), we need to de�ne the cost
function Cr(k) = min1≤s≤k{Cr

s(k)}, which represents the number of matrix multiplications
needed to evaluate a diagonal rational function by means of (14) over all reasonable choices
of s. In analogy with quarter-squares, we say that a ∈ N is an eight-square if there exists b ∈ N
such that a = ⌊b2/8⌋.

Proposition 3. �e degree of numerator and denominator of a rational function is optimal for the
evaluation scheme (14) if and only if it is a positive eight-square.

Proof. Let r = p/q, where p and q are polynomials of degree k ∈ N+. Note that when s ffl k, then
adding s − (k mod s)more terms to p and q does not increase the number of matrix multiplic-
ations required by the scheme (14), thus we only need to consider cases where k is an integer
multiple of s.
Let us begin by showing that if k is a positive eight-square then it is optimal. Note that

k = x(2x + t), for some x ∈ N+, if k ≡ t (mod 4) and t = 0, 1, or 2, and that k = (2x + 1)(x + 1)
for some x ∈ N, if k ≡ 3 (mod 4). We consider the four cases separately. In the following, we
always assume that ℓ ∈ Z is such that ℓ > −s and that j ∈ N.
If k = 2x2, then s =

√
2k = 2x, and since s ∣ k, by Lemma 2 the minimum number of matrix

multiplications required to evaluate r(A) is Cr
s(k) = 2s − 3. Since

k + j
s + ℓ

= 1
2
(s − ℓ + ηℓj) , ηℓj ∶=

ℓ2 + 2 j
s + ℓ

,

and ηℓj > 0, we have that s+ℓ ∣ k+ j only if ηℓj ≥ 1, which implies that Cr
s+ℓ(k+ j) ≥ 2s−2 > Cr

s(k).

10

If k = x(2x + 1), then k is an integer multiple of s = ⌈
√
2k⌉ = 2x + 1, thus Cr

s(k) = 2s − 4 and

k + j
s + ℓ

= 1
2
(s − ℓ − 1 + ηℓj) , ηℓj ∶=

ℓ2 + ℓ + 2 j
s + ℓ

,

Since it is strictly positive, ηℓj must be at least 1 for s + ℓ to divide k + j, which implies that
Cr
s+ℓ(k + j) ≥ 2s − 3 > Cr

s(k).
If k = 2x(x + 1), then s = ⌊

√
2k⌋ = 2x, and Cr

s(k) = 2s − 1. On the other hand,

k + j
s + ℓ

= 1
2
(s − ℓ + 2 + ηℓj) , ηℓj ∶=

ℓ2 − 2ℓ + 2 j
s + ℓ

,

where as before ηℓj > 0. In order to have s + ℓ ∣ k + j, we have that ηℓj must be at least 1, which in
turn gives that Cr

s+ℓ(k + j) = 2s > Cr
s(k).

Finally, if k = (2x + 1)(x + 1), then s = ⌈
√
2k⌉ = 2x + 1 and Cr

s(k) = 2s − 2Moreover

k + j
s + ℓ

= 1
2
(s − ℓ + 1 + ηℓj) , ηℓj ∶=

ℓ2 − ℓ + 2 j
s + ℓ

,

where ηℓj > 0. As before, since s+ ℓ ∣ k+ j only if ηℓj ≥ 1, we have that Cr
s+ℓ(k+ j) = 2s−1 > Cr

s(k).
We have established that all eight-squares are optimal degrees for the evaluation scheme (14).

In order to prove that all optimal degrees are eight-squares, it su�ces to note that for all n ∈ N
there exists an eight-square k such that Cr(k) = n. By De�nition 1, optimal orders must be
unique, therefore all optimal degrees must be eight-squares.

In view of this result, the sequence of optimal orders for the evaluation scheme (14) with
s = srk in (16) is (ari)i∈N, where

ari = ⌊(i + 3)
2

8
⌋ . (18)

Moreover, since Cr(ari) = i, the rational function of highest order that can be evaluated with i
matrix multiplications is that of order [ari/ari].

4 Diagonal Padé approximants to the matrix exponential

Let r = p/q be the [k/k] diagonal Padé approximant to the exponential. �e evaluation of these
rational matrix functions deserves special attention, as the identity q(x) = p(−x) allows for a
much faster evaluation of r at a matrix argument. Let µek = ⌊k/2⌋ and µok = ⌊(k − 1)/2⌋. By
separating the µek + 1 powers of A of even degree from the µok + 1 powers of odd degree, we can
write

p(A) =
k

∑
i=0
ciAi =

µek
∑
i=0
c2iA2i + A

µok
∑
i=0
c2i+1A2i =∶ Ue (A2) + AUo (A2) ,

q(A) = p(−A) = Ue (A2) − AUo (A2) ,

which shows that once Ue (A2) and AUo (A2) are available, evaluating p(A) and q(A) requires
no additional matrix multiplication.

11

0 5 10 15 20 25 30 35 40 45 500

2

4

6

8

10

12

14

16

18

k

C
e s(
k)

s = ⌊

√

k − 1/2⌋ ⌊

√

k − 1/2⌋ ∣ k−1
2

s = ⌈

√

k − 1/2⌉ ⌈

√

k − 1/2⌉ ∣ k−1
2

s = sek in (21), k = aei in (24)

Figure 3: Number of matrix multiplications required to evaluate [k/k] Padé approximant to the
matrix exponential, for k between 1 and 50, by means of the scheme (19), for s = ⌊

√
k − 1/2⌋

and s = ⌈
√
k − 1/2⌉. �e dotted and dashed lines mark the values of k for which k−1

2 is an in-
tegermultiple of ⌊

√
k − 1/2⌋ and ⌈

√
k − 1/2⌉, respectively; the circlesmark the number ofmatrix

multiplications required to evaluate the diagonal Padé approximants to the matrix exponential
of optimal order (in the sense of De�nition 1) for the evaluation scheme (19).

AsUe (A2) andUo (A2) are polynomials in A2, they can be evaluated bymeans of the scheme

Ue (A2) =
νe
∑
i=0
B[Ue]
i (A2) (A2s)i , Uo (A2) =

νo
∑
i=0
B[Uo]
i (A2) (A2s)i , (19)

where νe = ⌊µek/s⌋ and νo = ⌊µok/s⌋, and the powers of A2 are computed only once. Comput-
ing A2,A4, . . . ,A2s requires s matrix multiplications, evaluating the polynomials Ue (A2) and
Uo (A2) require ⌊ µ

e
k
s ⌋ − [s ∣ µek] and ⌊ µ

o
k
s ⌋ − [s ∣ µok], respectively, and one additional matrix

multiplication is needed to compute AUo (A2). �erefore evaluating r(A) requires one matrix
inversion and

Ce
s (k) ∶= s + 1 + ⌊

µek
s
⌋ + ⌊

µok
s
⌋ − [s ∣ µek] − [s ∣ µok] (20)

matrix multiplications. �e continuous relaxation of (20) is approximately minimized by tak-
ing s =

√
k − 1

2 , and as in (16) we de�ne

sek ∶= argmin{Ce
⌊
√
k− 1

2 ⌋
(k),Ce

⌈
√
k− 1

2 ⌉
(k)} . (21)

Lemma 3. Let A ∈ Cn×n, let k ∈ N+ be odd, let p and q be the numerator and denominator
of the [k/k] Padé approximant to the exponential, respectively, and let s f = ⌊

√
k − 1/2⌋ and

sc = ⌈
√
k − 1/2⌉. If s f ∣ k−1

2 or sc ∣
k−1
2 , then setting s to s f or sc, respectively, minimizes the number

of matrix multiplications required to evaluate both q(A) and p(A) by means of the scheme (19).

12

Proof. If k is odd, then µek = µok =
k−1
2 . For s f , we have

k − 1
2s f

=
s f + t
2

, (22)

where t = 0 or 2, if s f is even, and t = 1, if s f is odd, and it is easy to see that Ce
s f (k) = 2s f + t − 1.

From (22), we have that k − 1 = s f (s f + t), thus for ℓ > −s f

Ce
s f+ℓ(k) ≥

⎧⎪⎪⎨⎪⎪⎩

s f + ℓ + 2 ⌊θℓt ⌋ − 1, s f ∣ θℓt ,
s f + ℓ + 2 ⌊θℓt ⌋ + 1, s f ffl θℓt ,

θℓt ∶=
s f − ℓ + t + ηℓt

2
, ηℓt ∶=

ℓ2 − tℓ
s f + ℓ

.

If s f + ℓ ∣ θℓt , then Ce
s f+ℓ(k) ≥ C

e
s f (k) if and only if ⌊θ

ℓ
t ⌋ ≥

s f−ℓ+t
2 . Note that, for α, β ∈ R+, we

have that ⌊α⌋ < β if and only if α < ⌈β⌉, and since s f + t is even, s f − ℓ + t has the same parity as
ℓ. �erefore, we only need to show that there exists no ℓ > −s f such that

θℓt < ⌈
s f − ℓ + t

2
⌉ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s f − ℓ + t
2

, ℓ is even,

s f − ℓ + t + 1
2

, ℓ is odd.

�ese two conditions are equivalent to ηℓt being strictly smaller than 0 and 1, respectively. How-
ever, since s f + ℓ ∣ θℓt , the quantity ηℓt must be an integer and have the same parity as ℓ, and we
need to ensure only that there are no values of ℓ such that ηℓt ≤ −2 or ηℓt ≤ −1. It is easy to check
that for t between 0 and 2, ηℓt ≤ −2 is equivalent to ℓ2 + (2 − t) + 2s f ≤ 0, which has no even
solutions, whereas ηℓt ≤ −1 is equivalent to ℓ2 + (1 − t) + s f ≤ 0, which has no odd solutions.
If s f + ℓ ffl θℓt , then by the same argument we conclude that we need to prove that there exists

no ℓ > −s f such that

θℓt < ⌈
s f − ℓ + t − 2

2
⌉ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s f − ℓ + t − 2
2

, ℓ is even,

s f − ℓ + t − 1
2

, ℓ is odd.

�ese two conditions lead to the inequalities ηℓt < −2 and ηℓt < −1, which have no solution for t
between 0 and 2, as discussed above.
�e proof for sc is similar. In this case, we have that sc ∣ k−1

2 if and only if

k − 1
2sc

= sc − 1
2

,

and thus that Ce
sc(k) = 2sc − 2. It is easy to show that, for ℓ > −sc,

Ce
sc+ℓ(k) ≥

⎧⎪⎪⎨⎪⎪⎩

sc + ℓ + 2 ⌊θℓ⌋ − 1, sc ∣ θℓ ,
sc + ℓ + 2 ⌊θℓ⌋ + 1, sc ffl θℓ ,

θℓ ∶= sc − ℓ − 1 + ηℓ
2

, ηℓ ∶= ℓ2 + ℓ
sc + ℓ

.

�erefore, if sc ∣ θℓ, we only have to prove that there exists no ℓ > −sc such that

θℓ < ⌈ sc − ℓ − 1
2

⌉ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

sc − ℓ − 1
2

, ℓ is even,

sc − ℓ
2

, ℓ is odd,

13

or, in other words, that ηℓ < 0 if ℓ is even, and ηℓ < −1 if ℓ is odd. Both conditions are trivially
satis�ed, since ηℓ ≥ 0 for ∣ℓ∣ ≥ 1. Finally, if sc ffl θℓ, we obtain the conditions ηℓ < −1 if ℓ is even
and ηℓ < −2 if ℓ is odd, both of which clearly satisfy since ηℓ is nonnegative.

We are now ready to characterize the optimality of the Paterson–Stockmeyer method for the
diagonal Padé approximants to the matrix exponential.

Proposition 4. A degree k ∈ N+ is optimal for the evaluation scheme (19) if and only if k = 2 or

k = 2 ⌈ y
4
⌉ (y − 2 ⌊ y − 1

4
⌋) + 1, (23)

for some y ∈ N.
Proof. First, note that for k to be optimal, both µek and µ

o
k must be integer multiples of s, since

otherwise, we could add more terms at no cost until both conditions are satis�ed. �is implies
that, if either µek or µ

o
k is greater than 1, then k must be odd: if it were not, then s ∈ N+ could not

divide both µok and µ
e
k = µok + 1.

It is easy to show that k = 2 is an optimal degree for the evaluation scheme (19). We have
that s = 1, µok = 0, and µek = 1, which gives Ce

1 (2) = 1, and

2 + j
2(1 + ℓ)

= 1
2
(1 − ℓ + ηℓj) , ηℓj ∶=

2ℓ2 + j + 1
1 + ℓ

.

Since ηℓj is strictly positive, if 1+ ℓ ffl
2+ j
2 , then C

e
1+ℓ(2+ j) ≥ 2 > Ce

1 (2), whereas if 1+ ℓ ∣
2+ j
2 , then

ηℓj must be an integer larger than 2, which again gives C
e
1+ℓ(2 + j) ≥ 2 > Ce

1 (2).
It is convenient to split the expression for k into four cases that allow us to get rid of the oor

and ceiling operators in (23). To that end, we note that if k ≡ t̃ (mod 4), then k = 2x(2x + t)+ 1,
for some x ∈ N and t = t̃ − 2.
�e three cases ∣t∣ ≤ 1 can be addressed together. We have that s = 2x + t or, equivalently,

that x = s−t
2 , and since

k−1
2s = x, we can conclude that Ce

s (k) = 4x + t − 1. Now let ℓ ∈ Z be such
that ℓ > −s and let j ∈ N+. We have that

k + j − 1
2(s + ℓ)

= 1
2
(s(s − t) + j

s + ℓ
) = 1

2
(s − ℓ − t + ηℓt, j) , ηℓt, j ∶=

ℓ2 − tℓ + j
s + ℓ

.

Note that ηℓt, j > 0. If s + ℓ ffl
k+ j−1

2 , then Ce
s+ℓ(k + j) ≥ 4x + t + 1 > Ce

s (k). On the other hand, if
s + ℓ ∣ k+k−1

2 , then ηℓt, j must be a positive integer in order for
k+ j−1
2(s+ℓ) to be integer, which gives that

Ce
s+ℓ(k + j) = 4x + t > Ce

s (k).
Finally we consider the case t = 2. From s = 2x, we get that x = s

2 and k − 1 = s(s + 2), which
gives Ce

s (k) = 4x + 1. We have that

k + j − 1
2(s + ℓ)

= 1
2
(s(s + 2) + j

s + ℓ
) = 1

2
(s − ℓ + 2 + ηℓj), ηℓj ∶=

ℓ2 − 2ℓ + j
s + ℓ

.

It is easy to see that ηℓj is nonnegative, and in particular that η
ℓ
j = 0 only if j = 1 and ℓ = 1. �us,

if s + ℓ ffl
k+ j−1

2 , then Ce
s+ℓ(k + j) ≥ 4x + 3 > Ce

s (k). When s + ℓ ∣
k+ j−1

2 , on the other hand, since
s+1 ffl k

2 and η
ℓ
j is positive, in particular η

ℓ
j must be larger than 1 for

k+ j−1
2 to be an integermultiple

of s + ℓ. �erefore, we have that Ce
s+ℓ(k + j) ≥ 4x + 2 > Ce

s (k).
�e converse follows from the same argument as that used in the proof of the analogous

result in Proposition 3.

14

In view of Proposition 4, the sequence of optimal degrees for the evaluation scheme (19) is
(aei)i∈N, where

ae0 = 1,
ae1 = 2,

aei = 2 ⌈ i − 1
4

⌉ (i − 3 ⌊ i − 1
4

⌋) + 1, i ≥ 2.
(24)

Moreover, we have that Ce(aei) = i and that the diagonal Padé approximant to the matrix ex-
ponential of highest order that can be evaluated with i matrix multiplications is that of degree
[aei /aei].

5 Conclusion

�e scheme (3), which gives rise to the Paterson–Stockmeyermethod, and the related evaluation
schemes (14) and (19), are customary tools for evaluating truncated Taylor series and diagonal
Padé approximants. �ey all feature a parameter, s, which is usually chosen by approximately
solving an optimization problem over the integers. For the evaluation of matrix polynomials,
we showed that the Paterson–Stockmeyer choices s = ⌊

√
k ⌋ and s = ⌈

√
k ⌉ always minimize the

number of matrix multiplications required to evaluate a polynomial of degree k. For the other
two cases, we gave su�cient conditions for the parameter s to minimize the computational cost
of the evaluation of the diagonal approximants. Tests not reported here suggest that, for all
k ∈ N+, the choices s = srk in (16) and s = sek in (21) minimize the number of matrix multiplic-
ations required by the schemes (14) and (19), respectively. We believe that exploring this ques-
tion further might lead to results similar to that in Proposition 1 for the Paterson–Stockmeyer
method.
When relying on polynomial or rational approximation to evaluate matrix functions, one is

usually interested only in approximants whose order is maximal for a given computational cost.
By exploiting the results discussed above, we showed that the sequences of optimal orders (in the
sense of De�nition 1) for the three evaluation schemes (3), (14), and (19), are (13), (18), and (24),
respectively. We wonder whether similar results can be derived for rational functions of any
order, and more generally, for schemes that require the evaluation of three or more polynomials
of any degree. �is will be the subject of future work.

Acknowledgements

�eauthorwould like to thank StefanGüttel, Nicholas J.Higham, andBruno Innazzo for reading
early versions of the manuscript and providing feedback that greatly improved the presentation
of this work.

References

[1] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix
exponential, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970–989.

[2] , Improved inverse scaling and squaring algorithms for the matrix logarithm, SIAM J.
Sci. Comput., 34 (2012), pp. C153–C169.

15

http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/110852553

[3] A.H. Al-Mohy, N. J. Higham, and S. D. Relton,New algorithms for computing thematrix
sine and cosine separately or simultaneously, SIAM J. Sci. Comput., 37 (2015), pp. A456–
A487.

[4] P. Alonso, J. Ibáñez, J. Sastre, J. Peinado, and E. Defez, E�cient and accurate al-
gorithms for computing matrix trigonometric functions, J. Comput. Appl. Math., 309 (2017),
pp. 325–332.

[5] M. Aprahamian and N. J. Higham, Matrix inverse trigonometric and inverse hyperbolic
functions: �eory and algorithms, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1453–1477.

[6] M. Caliari and F. Zivcovich, On-the-y backward error estimate for matrix exponential
approximation by Taylor algorithm, J. Comput. Appl. Math., 346 (2019), pp. 532–548.

[7] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm of
a matrix to speci�ed accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112–1125.

[8] E. Defez, J. Ibáñez, J. Sastre, J. Peinado, and P. Alonso, A new e�cient and accurate
spline algorithm for the matrix exponential computation, J. Comput. Appl. Math., 337 (2018),
pp. 354–365.

[9] M. Fasi and N. J. Higham, An arbitrary precision scaling and squaring algorithm for the
matrix exponential, MIMS EPrint 2018.36, Manchester Institute forMathematical Sciences,
�e University of Manchester, UK, 2018.

[10] M. Fasi and N. J. Higham,Multiprecision algorithms for computing the matrix logarithm,
SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472–491.

[11] S. Güttel and Y. Nakatsukasa, Scaled and squared subdiagonal Padé approximation for
the matrix exponential, SIAM J. Matrix Anal. Appl., 37 (2016), p. 145�170.

[12] G.Hargreaves,Topics inMatrix Computations: Stability and E�ciency of Algorithms, PhD
thesis, University of Manchester, Manchester, England, 2005.

[13] N. J. Higham,�e scaling and squaring method for the matrix exponential revisited, SIAM
J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193.

[14] , Functions of Matrices: �eory and Computation, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2008.

[15] N. Hoffman, O. Schwartz, and S. Toledo, E�cient evaluation of matrix polynomials,
Lect. Notes Comput. Sci., (2018), p. 24�35.

[16] D. Kressner andR. Luce, Fast computation of thematrix exponential for a Toeplitz matrix,
SIAM J. Matrix Anal. Appl., 39 (2018), p. 23�47.

[17] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications neces-
sary to evaluate polynomials, SIAM J. Comput., 2 (1973), pp. 60–66.

[18] J. Sastre, J. Ibáñez, P. Alonso, J. Peinado, and E. Defez, Two algorithms for computing
the matrix cosine function, J. Comput. Appl. Math., 312 (2017), pp. 66–77.

16

http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1137/140973979
http://dx.doi.org/10.1016/j.cam.2016.05.015
http://dx.doi.org/10.1016/j.cam.2016.05.015
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1137/16M1057577
http://dx.doi.org/10.1016/j.cam.2018.07.042
http://dx.doi.org/10.1016/j.cam.2018.07.042
http://dx.doi.org/10.1137/S0895479899364015
http://dx.doi.org/10.1137/S0895479899364015
http://dx.doi.org/10.1016/j.cam.2017.11.029
http://dx.doi.org/10.1016/j.cam.2017.11.029
http://eprints.ma.man.ac.uk/2677
http://eprints.ma.man.ac.uk/2677
http://dx.doi.org/10.1137/17M1129866
http://dx.doi.org/10.1137/15m1027553
http://dx.doi.org/10.1137/15m1027553
http://eprints.maths.manchester.ac.uk/581/1/hargreaves05.pdf
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1007/978-3-319-78024-5_3
http://dx.doi.org/10.1137/16m1083633
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1016/j.amc.2017.05.019
http://dx.doi.org/10.1016/j.amc.2017.05.019

[19] J. Sastre, J. Ibáñez, and E. Defez, Boosting the computation of the matrix exponential, 340
(2019), p. 206�220.

[20] J. Sastre, J. Ibáñez, E. Defez, and P. Ruiz, New scaling-squaring Taylor algorithms for
computing the matrix exponential, SIAM J. Matrix Anal. Appl., 37 (2015), pp. A439–A455.

[21] C. Van Loan, A note on the evaluation of matrix polynomials, IEEE Trans. Automat. Con-
trol, 24 (1979), pp. 320–321.

17

http://dx.doi.org/10.1016/j.amc.2018.08.017
http://dx.doi.org/10.1137/090763202
http://dx.doi.org/10.1137/090763202
http://dx.doi.org/10.1109/tac.1979.1102005

