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BRIDGING THE GAP BETWEEN FLAT AND HIERARCHICAL LOW-RANK MATRIX1

FORMATS: THE MULTILEVEL BLR FORMAT2

PATRICK R. AMESTOY∗, ALFREDO BUTTARI†, JEAN-YVES L’EXCELLENT‡, AND THEO MARY§3

Abstract. Matrices possessing a low-rank property arise in numerous scientific applications. This property can be4
exploited to provide a substantial reduction of the complexity of their LU or LDLT factorization. Among the possible low-5
rank formats, the flat Block Low-Rank (BLR) format is easy to use but achieves superlinear complexity. Alternatively, the6
hierarchical formats achieve linear complexity at the price of a much more complex, hierarchical matrix representation. In7
this paper, we propose a new format based on multilevel BLR approximations: the matrix is recursively defined as a BLR8
matrix whose full-rank blocks are themselves represented by BLR matrices. We call this format multilevel BLR (MBLR).9
Contrarily to hierarchical matrices, the number of levels in the block hierarchy is fixed to a given constant; while this10
format can still be represented within the H formalism, we show that applying the H theory to it leads to very pessimistic11
complexity bounds. We therefore extend the theory to prove better bounds, and show that the MBLR format provides a12
simple way to finely control the desired complexity of dense factorizations. By striking a balance between the simplicity13
of the BLR format and the low complexity of the hierarchical ones, the MBLR format bridges the gap between flat and14
hierarchical low-rank matrix formats. The MBLR format is of particular relevance in the context of sparse direct solvers,15
for which it is able to trade off the optimal dense complexity of the hierarchical formats to benefit from the simplicity16
and flexibility of the BLR format while still achieving O(n) sparse complexity. We finally compare our MBLR format with17
the related BLR-H (or Lattice-H ) format; our theoretical analysis shows that both formats achieve the same asymptotic18
complexity for a given top level block size.19

Key words. low-rank approximations, matrix factorization, sparse linear algebra, hierarchical matrices20
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1. Introduction. Efficiently computing the solution of a dense linear system is a fundamental22

building block of numerous scientific computing applications. Let us refer to such a system as23

FuF = vF , (1.1)24

where F is a dense matrix of order m, uF is the unknown vector of size m, and vF is the right-hand25

side vector of size m.26

This paper focuses on solving (1.1) with direct approaches based on Gaussian elimination,27

which consist in factorizing matrix F as F = LU or F = LDLT , depending on whether the matrix is28

unsymmetric or symmetric, respectively.29

In many applications (e.g., Schur complements arising from the discretization of elliptic partial30

differential equations), the matrix F has been shown to have a low-rank property: many of its off-31

diagonal blocks can be approximated by low-rank matrices [9].32

Several formats have been proposed to exploit this property. The simplest one is the Block33

Low-Rank (BLR) format [2], which partitions the matrix with a flat, 2D blocking and approximates34

its off-diagonal blocks by low-rank submatrices, as illustrated in Figure 1.1a. Compared with the35

cubic O(m3) complexity of the dense full-rank LU or LDLT factorizations, the complexity of the36

dense BLR factorization can be as low as O(m2) [4].37

More advanced formats are based on a hierarchical partitioning of the matrix: the matrix F is38

partitioned with a 2×2 blocking and the two diagonal blocks are recursively refined, as illustrated39

in Figures 1.1c and 1.1d. Different hierarchical formats can be defined depending on whether40

the off-diagonal blocks are directly approximated (so-called weakly-admissible formats) or further41

refined (so-called strongly-admissible formats). The most general of the hierarchical formats is the42

strongly-admissible H -matrix format [9, 19, 10]; the HODLR format [5] is its weakly-admissible43

counterpart. These hierarchical formats can factorize a dense matrix in near-linear complexity44

O(m logq m), where q is a small integer that depends on which factorization algorithm is used; in45

the following, we will consider q = 2. The log factor can be removed by using a so-called nested-basis46
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(a) BLR partitioning
(weak admissibility).

(b) BLR partitioning
(strong admissibility).

(c) HODLR partitioning
(weak admissibility)

(d) H partitioning (strong
admissibility)

Fig. 1.1: Illustration of different low-rank formats. Gray blocks are stored in full-rank whereas
white ones are approximated by low-rank matrices.

structure. The strongly-admissible H 2-matrix format [10] and the weakly-admissible HSS [29, 11]47

and HBS [17] formats exploit such nested basis structures to achieve linear complexity O(m).48

In this paper, we propose a new format based on multilevel BLR approximations. The matrix49

F is recursively represented as a BLR matrix whose full-rank blocks are themselves BLR matrices.50

We call this format multilevel BLR (MBLR). In the hierarchical format, the matrix is refined until51

the diagonal blocks are of constant size; this therefore leads to a number of levels in the block52

hierarchy which is nonconstant (usually O(log2 m)). With the MBLR format, we propose to make53

this number of levels a tunable parameter to be set to a given value ` that does not asymptotically54

depend on the matrix size m. We prove that this parameter provides a simple way to finely control55

the complexity of the dense MBLR factorization. The complexity varies from O(m2) for monolevel56

BLR down to nearly O(m) for an infinite number of levels. By striking a balance between the57

simplicity of the BLR format and the low complexity of the hierarchical ones, the MBLR format58

bridges the gap between flat and hierarchical low-rank matrix formats.59

We will show that the MBLR format is of particular relevance in the context of sparse direct60

solvers, which aim to compute the solution of a sparse linear system61

AuA = vA , (1.2)62

where A is a sparse matrix of order n, uA is the unknown vector of size n, and vA is the right-hand63

side vector of size n. Two widely studied classes of sparse direct methods are the multifrontal [13,64

22] and supernodal [8, 12] approaches.65

Sparse direct methods rely on a sequence of partial factorizations of dense matrices F, referred66

to as supernodes or fronts. Therefore, the complexity of sparse direct methods is directly derived67

from the complexity of the factorization of each dense matrix F. For example, with an adequate68

reordering, a well-known result is that the dense standard full-rank O(m3) factorization leads to a69

O(n2) sparse complexity for regular 3D problems [14]. The low-rank formats described above can70

be efficiently exploited within sparse solvers to provide a substantial reduction of their complexity.71

The potential of BLR sparse solvers has been first investigated in [2]; the simplicity and flexi-72

bility of the BLR format makes it easy to use in the context of a general purpose, algebraic solver,73

as presented in [?, 3, 26, 24]. [?] focuses on the multicore performance of BLR multifrontal solvers,74

while [3] and [26] present their use in two real-life industrial applications coming from geosciences.75

[24] present the use of the BLR format in supernodal solvers. Furthermore, it has been proved in [4]76

that the theoretical complexity of the BLR multifrontal factorization may be as low as O(n4/3) (for77

3D problems with constant ranks).78

Alternatively, most sparse solvers based on the more complex hierarchical formats have been79

shown to possess near-linear complexity. To cite a few, [28, 27, 16, 15] are HSS-based, [17] is80

HBS-based, [6] is HODLR-based, and [25] is H 2-based.81

However, a critical observation is that achieving O(n) sparse complexity does not actually82

require a linear dense complexity O(m). For instance, for 3D problems, all that is required is a83

dense complexity lower than O(m1.5). Therefore, we will prove that the MBLR format is able to84
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THE MULTILEVEL BLR FORMAT 3

trade off the optimal dense complexity of the hierarchical formats to benefit from the simplicity85

and flexibility of the flat BLR format while still achieving O(n) sparse complexity.86

We now describe the organization of the rest of this paper. In Section 2, we provide some87

background on the BLR factorization and its complexity and we motivate the key idea behind88

MBLR approximations. We explain in Section 3 how the MBLR format can be described using the89

cluster tree representation commonly used in the H literature; this provides a convenient way to90

explain the key difference between the MBLR and H formats. We show that, similarly to the BLR91

case, the H theoretical formalism leads to MBLR complexity bounds that are very pessimistic. We92

therefore extend the theory, beginning by the two-level case in Section 4. We prove that two levels93

can already significantly improve the theoretical complexity of the factorization. In Section 5, we94

generalize the previous proof to the MBLR format with an arbitrary number of levels; we prove95

that, for constant ranks, only four levels are already enough to reach O(n) sparse 3D complexity96

(and three levels already achieve near-linear O(n logn) complexity). In Section 6, we validate our97

theoretical results with numerical experiments. We provide our concluding remarks in Section 7.98

In the main body of this article, we consider for the sake of simplicity the weakly-admissible case, in99

which only the diagonal blocks are refined. In the appendix, we provide the extension of the MBLR100

format to the strongly-admissible case, in which off-diagonal full-rank blocks are also recursively101

refined. We prove that our complexity bounds remain valid in this context.102

2. Background and motivation.103

2.1. Block Low-Rank approximations. The BLR format is based on a flat, non-hierarchical104

blocking of the matrix which is defined by conveniently clustering the associated unknowns. A BLR105

representation F̃ of a dense matrix F is shown in (2.1), where we assume that p×p blocks have been106

defined. Off-diagonal blocks Fi j (i 6= j) of size mi ×n j and numerical rank kεi j are approximated by107

a low-rank matrix F̃i j = X i jY T
i j at accuracy ε, where X i j is a mi × kεi j matrix and Yi j is a n j × kεi j108

matrix. The diagonal blocks Fii are stored as full-rank matrices (F̃ii = Fii).109

F̃ =


F̃11 F̃12 · · · F̃1p

F̃21 · · · · · · ...
... · · · · · · ...

F̃p1 · · · · · · F̃pp

 . (2.1)110

Throughout this article, we will note Fi j the (i, j)-th block of F and F:,k its k-th block-column.111

We will also assume that all blocks have a size of order b, i.e., mi = n j =O(b).112

Computing the low-rank approximation F̃i j to each block, referred to as the compression step,113

can be performed in different ways. We have chosen to use a truncated QR factorization with114

column pivoting; this corresponds to a QR factorization with pivoting which is truncated as soon115

as a diagonal coefficient of the R factor falls below the prescribed threshold ε. For a block of size116

b×b and rank r, the cost of the compression is O(b2r), whereas computing the exact singular value117

decomposition of the block would require O(b3) operations. This choice thus allows for a convenient118

compromise between cost and accuracy of the compression operation.119

2.2. Block Low-Rank dense factorization. We describe in Algorithm 2.1 the CUFS variant120

(the “CUFS” acronym is explained below) of the BLR factorization algorithm for dense matrices,121

introduced in [4]. Algorithm 2.1 is presented in its LU version, but it can easily be adapted to the122

symmetric case.123

In order to perform the LU or LDLT factorization of a dense BLR matrix, the standard block124

LU or LDLT factorization has to be modified so that the low-rank blocks can be exploited to per-125

form fast operations. Many such algorithms can be defined depending on where the compression126

step is performed. As described in [4], the CUFS variant achieves the lowest complexity of all BLR127

variants by performing the compression as early as possible.128

This algorithm is referred to as CUFS (standing for Compress, Update, Factor, and Solve), to129

indicate the order in which the steps are performed. All low-rank updates of a given block F̃ik are130

accumulated together before being recompressed, in order to achieve the smallest rank possible for131

F̃ik.132
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Algorithm 2.1 Dense BLR LU factorization: CUFS variant.
Input: a p× p block matrix F of order m.
Output: F overwritten by its BLR LU factors F̃.

1: for k = 1 to p do
2: for i = k+1 to p do
3: Compress (L): Fik ← F̃ik = X ikY T

ik
4: Compress (U): Fki ← F̃ki =Yki X T

ki
5: end for
6: for i = k to p do
7: for j = 1 to k−1 do
8: Update (L): F̃ik ← F̃ik − X i jY T

i j Y jk X T
jk

9: Update (U): F̃ki ← F̃ki − Xk jY T
k jY ji X T

ji
10: end for
11: F̃ik ←Recompress

(
F̃ik

)
12: F̃ki ←Recompress

(
F̃ki

)
13: end for
14: Factor: Fkk = LkkUkk
15: for i = k+1 to p do
16: Solve (L): F̃ik ← F̃ikU−1

kk = X ikY T
ikU−1

kk
17: Solve (U): F̃ki ← L−1

kkF̃ki = L−1
kk XkiY T

ki
18: end for
19: end for

The CUFS BLR variant is referred to as fully-structured, which means the off-diagonal low-133

rank blocks F̃ik are never stored in full-rank again after being initially compressed. Furthermore,134

in the rest of this article, we will assume that the matrix is already available under compressed135

form, that is, that the cost of the Compress step is negligible with respect to the total complexity of136

the factorization. This is for example the case when the blocks of the original matrix F are sparse,137

since their low-rank representation can be computed in only O(br) flops.138

One of the main results of [4] is that the storage complexity of the factorization of a dense139

matrix of order m with off-diagonal blocks of rank at most r is equal to140

S 1
ds(m, r)=O(m1.5pr) (2.2)141

and the flop complexity is142

F 1
ds(m, r)=O(m2r). (2.3)143

The proof of this result will be recalled in Section 2.4. The 1 superscript refers to the monolevel144

BLR factorization. This notation will be generalized in the next sections.145

2.3. BLR sparse factorization. Because sparse direct factorizations such as multifrontal146

or supernodal approaches rely on dense factorizations, block low-rank approximations can easily147

be incorporated into the sparse factorization by representing the fronts (or supernodes) with the148

chosen low-rank format. For example, in the BLR case, the fronts are represented as defined149

by (2.1), and Algorithm 2.1 is adapted to perform their partial factorization. This is described in150

detail in [2, 23].151

As a consequence, the complexity of the sparse factorization can be directly computed from152

the complexity of the dense factorization. We consider a matrix of order n = Nd , where d denotes153

the problem dimension, that is reordered using nested dissection [14]: the domain is recursively154

partitioned by so-called separators. The sparse complexity is then computed as follows (assuming155

cross-shaped separators): at each level ` of the separator tree, we need to factorize (2d)` fronts of156

order O((N/2`)d−1), for ` ranging from 0 to L = log2(N). Therefore, the flop complexity Fsp(N) is157

equal to158

Fsp(N)=
L∑
`=0

(2d)`Fds((
N
2`

)d−1), (2.4)159
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Table 2.1: Flop and storage complexities of the factorization of a sparse system of n = N ×N (2D
case) or n = N ×N ×N (3D case) unknowns, assuming a dense factorization complexity O(mβ).

2D 3D

β> 2 O(nβ/2) β> 1.5 O(n2β/3)
β= 2 O(n logn) β= 1.5 O(n logn)
β< 2 O(n) β< 1.5 O(n)

Table 2.2: Flop and storage complexities of the FR, BLR, and H factorizations of a sparse system
of n = N ×N (2D case) or n = N ×N ×N (3D case) unknowns, derived from the complexities of the
factorization of a dense matrix of order m and with a rank bound r. The BLR variant considered is
CUFS.

Fds(m, r) Fsp(n, r) Sds(m, r) Ssp(n, r)
2D 3D 2D 3D

FR O(m3) O(n3/2) O(n2) O(m2) O(n logn) O(n4/3)
BLR O(m2r) O(nmax(r, logn)) O(n4/3r) O(m3/2r1/2) O(n) O(nmax(r1/2, logn))
H O(mr2 log2 m) O(max(n,n1/2r2)) O(max(n,n2/3r2)) O(mr logm) O(n) O(max(n,n2/3r))

where Fds(m) is the dense flop complexity. In BLR, it is given by (2.3). Similarly, the storage160

complexity Ssp(N) is equal to161

Ssp(N)=
L∑
`=0

(2d)`Sds((
N
2`

)d−1), (2.5)162

where Sds(m) is the dense storage complexity. In BLR, it is given by (2.2).163

Assuming a dense complexity O(mβ), it can easily be shown from (2.4) and (2.5) that the sparse164

complexities only depend on the dense complexity exponent β and the dimension d. This correspon-165

dence is reported in Table 2.1. The key observation is that a linear O(m) dense complexity is not166

required to achieve a linear O(n) sparse complexity. In fact, a dense complexity lower than O(m2)167

and O(m1.5) suffices for 2D and 3D problems, respectively.168

Then, the sparse complexities are reported in Table 2.2, for the FR, BLR, and H factorizations.169

Thanks to the key observation above, the BLR sparse complexities are not that far from the H170

complexities. For example, the BLR 2D storage complexity is already optimal; furthermore, the 2D171

flop and 3D storage complexities are nearly linear, with only an additional factor depending only172

on r and logn compared with H . More importantly, thanks to the same key observation, we only173

need a modest improvement of the dense complexity to reach O(n) complexity. Specifically:174

• To drop the max(r, logn) factor in the 2D flop complexity, the dense complexity Fds(m) only175

needs to be strictly inferior to O(m2);176

• Similarly, to drop the max(r1/2, logn) factor in the 3D storage complexity, the dense com-177

plexity Sds(m) only needs to be strictly inferior to O(m1.5);178

• Finally, the superlinear 3D flop complexity can be made linear with a dense complexity179

Fds(m) strictly inferior to O(m1.5).180

The main motivation behind the MBLR format is to find a simple modification of the BLR fac-181

torization that preserves its simplicity and flexibility, while improving the complexity just enough182

to get the desired exponent. We will prove in Section 5 that this complexity improvement can be183

controlled by the number of levels.184

2.4. Complexity analysis for BLR. To motivate the key idea behind MBLR, let us sum-185

marize the dense storage and flop complexity analysis found in [4] that leads to the formulas (2.2)186

and (2.3). We consider the CUFS variant of the BLR factorization. As indicated in the introduction,187

we first consider the weakly-admissible case: we assume that all off-diagonal blocks are low-rank.188

The extension to the strongly-admissible case is provided in the appendix.189
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Table 2.3: Main operations for the BLR factorization of a dense matrix of order m, with blocks of
size b, and low-rank blocks of rank at most r. We note p = m/b. Type: type of the block(s) on which
the operation is performed. cost1

Step: cost of performing the operation once. numberStep: number
of times the operation is performed. F 1

Step: obtained by multiplying the cost1
Step and numberStep

columns (equation (2.11)). The first expression is given as a function of b, p, and r, while the
second is obtained with the assumption that b = O(mx) (and thus p = O(m1−x)) and r = O(mα), for
x,α ∈ [0,1].

Step Type cost1
Step numberStep F 1

Step(b, p, r) = F 1
Step(m, x,α)

Factor FR O(b3) O(p) O(pb3) = O(m1+2x)
Solve FR-LR O(b2r) O(p2) O(p2b2r) = O(m2+α)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

We consider a dense BLR matrix of order m. We note b the block size and p = m/b the number190

of blocks per row and/or column. The amount of storage required to store the factors of such a191

matrix can be computed as the sum of the storage for the full-rank diagonal blocks and that for the192

low-rank off-diagonal blocks:193

S 1
ds(b, p, r)=O(pb2)+O(p2br). (2.6)194

Then, we assume that the block size b is of order O(mx), where x is a real value in [0,1], and thus195

the number of blocks p per row and/or column is of order O(m1−x). We also assume that the rank196

bound is of the form r = O(mα). By replacing b, p, and r by their expression in (2.6), we obtain an197

expression of S 1
ds which depends on (m, x,α) instead of (b, p, r):198

S 1
ds(m, x,α)=O(m1+x)+O(m2−x+α). (2.7)199

We then define x∗ as the optimal choice of x which minimizes the asymptotic complexity of (2.7).200

x∗ can be computed as the value which makes each term in (2.7) asymptotically equal. We obtain201

x∗ = (1+α)/2, (2.8)202

which means the optimal choice of block size is203

b∗ =O(
p

mr). (2.9)204

This leads to the final dense complexity (already given in (2.2))205

S 1
ds(m, r)=O(m1.5pr). (2.10)206

Next, to compute the flop complexity, we compute the cost of the Factor, Solve, Product, and207

Recompress steps and report them in Table 2.3 (third column). This cost depends on the type (full-208

rank or low-rank) of the block(s) on which the operation is performed (second column). Note that209

the Product operation can only take the form of a product of two low-rank blocks (LR-LR), because210

it involves only off-diagonal blocks, which are low-rank in the weakly-admissible case. We also211

remind that we have assumed that the matrix is already available under compressed form and212

thus we do not report the Compress step in Table 2.3.213

In the weakly-admissible case, there is only one full-rank block on each block-row (the diagonal214

one); therefore, we can easily count the number of blocks on which each step is performed; we report215

it on the fourth column of Table 2.3. The BLR factorization cost of each step is then equal to216

F 1
Step = cost1

Step ×numberStep (2.11)217

and is reported in the fifth and sixth columns of Table 2.3. In the fifth column, its expression218

depends on b, p, and r, while in the sixth column it is given as a function of m, x, and α by by219

substituting b, p, and r by O(mx), O(m1−x), and O(mα), respectively.220
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(a) Monolevel BLR partitioning. (b) Two-level BLR partitioning. (c) HODLR partitioning

Fig. 2.1: Comparison of BLR, MBLR, and hierarchical formats in the weakly-admissible case.

The total flop complexity of the dense BLR factorization is equal to the sum of the cost of all221

steps222

F 1
ds(m, x,α)=O(m1+2x +m2+α+m3−2x+2α). (2.12)223

We compute x∗, the optimal choice of x which minimizes the complexity, and find again x∗ = (1+224

α)/2, which means that the same x∗ value minimizes both the storage and flop complexities, a225

valuable property. We finally obtain226

F 1
ds(m, r)=O(m2r). (2.13)227

2.5. Key idea of the MBLR format. Let us now consider each step of Table 2.3 with the228

objective of reducing the total cost of the factorization. The Product and Recompress steps involve229

exclusively low-rank blocks and their cost is already optimal as it is linear with respect to the block230

size b. Therefore, we focus on the Factor and Solve steps. These steps have superlinear cost with231

respect to b because they involve the diagonal full-rank blocks.232

Thus, the key idea of the MBLR format is to further refine these full-rank diagonal blocks by233

replacing them by BLR matrices. This is illustrated in Figure 2.1b. Compared with the BLR format234

(Figure 2.1a), we will show in Section 4 that this more compressed representation decreases the235

cost of performing the Factor and Solve steps, which allows to increase the block size to achieve a236

lower complexity. However, it also remains very different from a hierarchical format (Figure 2.1c).237

First, the diagonal blocks are represented by the simple BLR format, rather than a more complex238

hierarchical format. Second, while larger than in the BLR case, the off-diagonal blocks are in239

general still much smaller than in the H case. This has several advantages:240

• No relative order is needed between blocks; this allows the clustering to easily be computed241

and delivers a great flexibility to distribute the data in a parallel environment.242

• The size of the blocks can be small enough to fit on a single shared-memory node; there-243

fore, in a parallel environment, each processor can efficiently and concurrently work on244

different blocks.245

• To perform numerical pivoting, the quality of the pivot candidates in the off-diagonal246

blocks Fik can be estimated with the entries of its low-rank basis Yik, provided that X ik247

is an orthonormal matrix. However, as explained in [23], the quality of this estimation248

depends on the size of the block; smaller blocks lead to a tighter estimate. This makes the249

BLR format particularly suitable to handle numerical pivoting, a critical feature lacking250

in most hierarchical solvers presented in the literature.251

While many advantages of the BLR and MBLR formats lie in their efficiency and flexibility in252

the context of a parallel execution, the parallel implementation of the MBLR format is out of the253

scope of this paper. Similarly, we omit a detailed description of the algorithms designed to handle254

numerical pivoting; see [23] for a thorough discussion. In this paper, we focus on the theoretical255

complexity analysis of the MBLR factorization.256

3. Difference between MBLR and H matrices. In this section, we first explain how257

MBLR matrices can be represented using the cluster tree modelization typically used in the H258
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(a) Cluster tree.
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(b) HODLR block-clustering.

Fig. 3.1: An example of cluster tree and its associated HODLR block-clustering.

literature; this provides a convenient tool to formalize the key difference between the MBLR and259

hierarchical formats that was informally presented in the previous section: the number of levels260

in the cluster tree is a constant in the MBLR format, while it is logarithmically dependent on the261

problem size in the H format.262

Using this formalism, H theory is thus applicable to the MBLR format; however, we show in263

Section 3.3 that it leads to very pessimistic complexity bounds. We must therefore develop a new264

theory to compute satisfying bounds, which is the object of Sections 4 and 5. Since the proofs and265

computations in these sections are not based on the H theory, this section may be skipped by the266

reader, at least on a first read.267

3.1. The hierarchical case. Here, we briefly remind the definition of cluster trees, and how268

they are used to represent hierarchical partitionings. We refer to [9, 20] for a formal and detailed269

presentation.270

Let us note I the set of unknowns. We assume that the sets of row and column indices of the271

matrix are the same, for the sake of simplicity, and because we do not need to distinguish them for272

the purpose of this section.273

Computing a recursive partition S(I ) of I can be modeled with a so-called cluster tree.274

DEFINITION 3.1 (Cluster tree). Let I be a set of unknowns and TI a tree whose nodes v are275

associated with subsets σv of I . TI is said to be a cluster tree iff:276

• The root of TI , noted r, is associated with σr =I ;277

• For each non-leaf node v ∈ TI , with children noted CTI
(v), the subsets associated with the278

children form a partition of σv, that is, the σc subsets are disjoint and satisfy279 ⋃
c∈CTI

(v)
σc =σv.280

An example of cluster tree is provided in Figure 3.1a. As illustrated, cluster trees establish a281

hierarchy between clusters. A given cluster tree uniquely defines a weakly-admissible, hierarchical282

block-clustering (so-called HODLR matrix), as illustrated in Figure 3.1b.283

Note that the cluster tree is not enough to define general, strongly-admissible hierarchical284

block-clusterings such as an H block-clustering. In that case, a new tree structure, so-called285

block-cluster tree, must be introduced. For the sake of simplicity, we do not discuss them here,286

since cluster trees (and weakly-admissible hierarchical block-clusterings) are enough to explain287

the difference between MBLR and hierarchical matrices.288

3.2. The BLR and MBLR formats, explained with cluster trees. It is interesting to first289

mention how the BLR format can be viewed as a very particular kind of H -matrix. In [4], we290

made a first attempt to model BLR partitionings with cluster trees, where the BLR partitioning291

is defined using only the leaves of the cluster tree. However, this model is inadequate because292

the other nodes of the tree are unnecessary (and thus there are several possible cluster trees for a293

unique BLR partitioning).294
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I

I1 I2 I3 I4 I5

(a) Flat cluster tree.

I

I1

I2

I3

I4

I5

(b) BLR block-clustering.

Fig. 3.2: An example of flat cluster tree and its associated BLR block-clustering.

I

I1 I2 I3

I4 I5 I6 I7 I8 I9 I10 I11 I12

(a) Cluster tree of depth 2.

I

I1

I2

I3

I4
I5
I6
I7
I8
I9
I10
I11
I12

(b) Two-level BLR block-clustering.

Fig. 3.3: An example of cluster tree of depth 2 and its associated two-level BLR block-clustering.

Therefore, we newly propose to define a given BLR partitioning with a unique, flat cluster tree295

of depth 1, as illustrated in Figure 3.2.296

With this definition, it is straightforward to extend the model to the MBLR format. An `-297

level BLR block-clustering can be represented by a cluster tree of depth `. This is illustrated in298

Figure 3.3 in the two-level case.299

It is thus clear that, just like the BLR format, the MBLR one can also be viewed as a very300

particular kind of H -matrix, since any MBLR matrix can be represented with a cluster tree that301

satisfies Definition 3.1. However, while H -matrices are indeed also represented by cluster trees,302

in practice, they are virtually always built with an implicit assumption: the number of children303

of any node in the cluster tree is constant with respect to the size of the matrix. Most commonly,304

cluster trees are binary trees, and thus this number is 2. Since the diagonal blocks of an H -matrix305

are of constant size, this leads to O(logm) levels in the cluster tree.306

The MBLR format is based on the converse approach: the number of levels is fixed to some307

constant ` = O(1), which in turn leads to a number of children per node that is asymptotically308

dependent on m. For example, assuming a constant rank r =O(1), we will prove in Section 4 that a309

two-level BLR matrix is represented by a cluster tree with O(m1/3) nodes on the first level (children310

of the root node), and each of these nodes has O((m2/3)1/2)=O(m1/3) children on the second level.311

While this is technically not prohibited by the general H -format definition, it has, to the best312

of our knowledge, never been considered in the H literature. As a matter of fact, in his recent313

book, Hackbusch writes ([20], p.83): ‘The partition should contain as few blocks as possible since314

the storage cost increases with the number of blocks”. While that is true, we believe that the315

smaller size and greater number of blocks can provide a gain in flexibility that can be useful in a316

parallel solver.317

One may in fact find it surprising that this simple idea of having a constant number of levels318

has never been proposed before. We believe that this is mainly explained by the fact that the319

H theoretical formalism does not provide a satisfying result if applied to the MBLR format, as320

explained in the following.321
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3.3. H theory leads to pessimistic MBLR complexity bounds. In [4, Section 3.2], we322

explained that applying the H theoretical complexity formulas to the BLR format does not provide323

a satisfying complexity bound. Here, we show this remains the case for the MBLR format.324

The storage and flop complexities of the factorization of a dense H -matrix of order m have325

been shown [18] to be326

S H
ds (m)=O(mLcsp max(rmax,bdiag)), (3.1)327

FH
ds (m)=O(mL2c3

sp max(rmax,bdiag)2). (3.2)328329

L is the depth of the cluster tree. csp is the so-called sparsity constant, defined as the maximum330

number of blocks of a given level in the cluster tree that are in the same row or column of the331

matrix; it is a measure of how much the original matrix has been refined. rmax is the maximal332

rank of all the blocks of the matrix, while bdiag is the size of the diagonal blocks.333

Under some assumptions on how the partition S(I ) is built [18, Lemma 4.5], the sparsity334

constant can be bounded by O(1) in the H case. By recursively refining the diagonal blocks until335

they become of constant size, we have bdiag =O(1) and L =O(logm). Therefore, (3.1) and (3.2) lead336

to S H
ds (m)=O(rm logm) and FH

ds (m)=O(r2m log2 m).337

In the BLR case, we have L = 1 and bdiag = b; the sparsity constant is equal to the number of338

blocks per row m/b, a high value that translates the fact that BLR matrices are much more refined339

than hierarchical ones. This leads to S
H ,1

ds (m) = O(m2) and F
H ,1
ds (m) = O(m4/b) ≥ O(m3), where340

the notation S
H ,1

ds and F
H ,1
ds signifies “H complexity formula applied to the monolevel BLR case”.341

We thus obtain a very pessimistic complexity bound, which is due to the fact that the diagonal342

blocks are of the same size as all the other blocks, i.e., bdiag = b.343

Applying the formulas to the MBLR case leads to the same problem. Assuming that r = O(1)344

for the sake of simplicity, let us consider the two-level case and denote by b1 and b2 the outer and345

inner blocks sizes, respectively. We have L = 2, bdiag = b2, and csp =max(m/b1,b1/b2). The storage346

complexity347

S
H ,2

ds (m)=O(max(m2b2/b1,mb1))348

is minimized for b1 = O(
p

m) and b2 = O(1), and equal to O(m3/2), which is not a satisfying result349

since we have proven in Section 2.4 that this is the BLR complexity. A similarly unsatisfying result350

is obtained for the flop complexity, again minimized for b1 =O(
p

m) and b2 =O(1) and equal to351

F
H ,2
ds (m)=O(max(m4b2

2/b3
1,mb3

1/b2))=O(m5/2).352

Does the problem persist with a higher number of levels `? The answer is unfortunately positive.353

Indeed, we have354

S
H ,`

ds (m)=O( max
i=0,`−1

(
mbib`
bi+1

)),355

with the notation b0 = m. To minimize the expression, we equilibrate each term in the maximum,356

which leads to the recursive relation b2
i = bi−1bi+1. Noting b1 = b the outer block size, it is clear357

that the closed-form expression of bi is bi = bi/mi−1. Since the smallest block size bl must be at358

least O(1), this leads to359
b`

m`−1 ≥O(1)360

and thus b ≥O(m(`−1)/`), which in turn leads to the complexity bound361

S
H ,`

ds (m)≥O(
m2b`

b1
)≥O(m(`+1)/`).362

In Section 5, we will prove that for r = O(1) we have S `
ds(m) = O(m(`+2)/(`+1)), which is a better363

bound, especially when considering a small number of levels `. The analysis for the flop complexity364

leads to the same expression of bi and to the complexity bound F
H ,`
ds (m) ≥ O(m(`+3)/`), which is365

again overly pessimistic compared with the bound F `
ds(m) = O(m(`+3)/(`+1)) that we will prove in366

Section 5.367
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Table 3.1: Applying the H theoretical complexity formulas to the BLR or MBLR cases does not
provide a satisfying result. We have assumed that r = O(1) for the sake of clarity, but the bounds
would remain pessimistic for general ranks.

H BLR MBLR

L O(logm) 1 `

csp O(1) m/b maxi=1,`
bi−1
bi

∗

bdiag O(1) b b`
S H

ds O(m logm) O(m2) O(m(`+1)/`)
FH

ds O(m log2 m) O(m3) O(m(`+3)/`)
∗with the notation b0 = m

We summarize the result of applying the H complexity formulas in Table 3.1.368

It is therefore clear that we must develop a new theory extending the H formalism to be able369

to prove better MBLR complexity bounds, just as we did in [4] for the BLR case. We begin by the370

two-level case in the next section.371

4. Two-level BLR matrices. In this section, we compute the theoretical complexity of the372

two-level BLR factorization. The proofs and computations on this particular two-level case are373

meant to be illustrative of those of the general multilevel case with an arbitrary number of levels,374

which is discussed in Section 5.375

We remind that in this section, we are considering the weakly-admissible case only.376

4.1. Two-level kernels description. In order to adapt Algorithm 2.1 to two-level BLR ma-377

trices, two modifications must be performed.378

First, the Factor kernel is not a full-rank factorization of the diagonal blocks Fkk anymore, but379

a BLR factorization. Thus, line 14 must be replaced by380

F̃kk = L̃kkŨkk =BLR-Factor (Fkk) , (4.1)381

where BLR-Factor refers to the BLR factorization described in Algorithm 2.1.382

Second, the FR-LR Solve kernel at lines 16 and 17 must be changed to a BLR-LR Solve:383

F̃ik ←BLR-LR-Solve
(
Ũkk, F̃ik

)
(4.2)384

F̃ki ←BLR-LR-Solve
(
L̃kk, F̃ki

)
, (4.3)385386

where F̃ik and F̃ki are LR matrices and L̃kk and Ũkk are lower and upper triangular BLR matrices.387

We describe in Algorithm 4.1 the BLR-LR-Solve kernel, in the upper triangular case, omitting388

the lower triangular case which is very similar. The kernel consists in applying a triangular solve389

with a upper triangular BLR matrix Ũ to a low-rank matrix B̃ =ΦΨT . We remind that Ũi j denotes390

the (i, j)-th low-rank sub-block of Ũ (with the notation Ũ j j = U j j), and that Ψ j,: denotes the j-th391

block-row of Ψ.392

Algorithm 4.1 BLR-LR-Solve kernel (upper triangular case)

Input: a p× p block upper triangular BLR matrix Ũ ; Ũ = [
Ũi j

]
i=1: j, j=1:p such that Ũi j =Yi j X T

i j for
i 6= j and Ũ j j =U j j is a full-rank matrix; a LR matrix B̃ =ΦΨT .
Output: overwritten Ψ (modified in-place) corresponding to the operation B̃ ← B̃Ũ−1.

1: for j = 1 to p do
2: ΨT

j,: ←ΨT
j,: −

∑ j−1
i=1Ψ

T
i,:Yi j X T

i j
3: ΨT

j,: ←ΨT
j,:U

−1
j j

4: end for

Two main operations must be performed: a triangular solve using the full-rank diagonal blocks393

U j j of Ũ , and an update using the low-rank off-diagonal blocks Ũi j =Yi j X T
i j of Ũ . Both are applied394
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Φ

ΨT
1,: ΨT

2,: ΨT
3,:

B̃:,1 B̃:,2 B̃:,3 ×

U11

U22

U33

−1

Ũ12 Ũ13

Ũ23

Fig. 4.1: The BLR-LR-Solve kernel

on the low-rank block-columns B̃:, j =ΦΨT
j,: of B̃. These two operations take place at lines 3 and 2395

of Algorithm 4.1, respectively.396

The FR-LR triangular solve can be written as397

B̃:, j ← B̃:, jU−1
j j =Φ

(
ΨT

j,:U
−1
j j

)
(4.4)398

and thus only ΨT
j,: needs to be updated, as shown at line 3.399

The LR-LR update takes the following form:400

B̃:, j ← B̃:, j −∑ j−1
i=1 B̃:,iŨi j =ΦΨT

j,: −
∑ j−1

i=1Φ
(
ΨT

i,:Yi j X T
i j

)
=Φ

(
ΨT

j,: −
∑ j−1

i=1Ψ
T
i,:Yi j X T

i j

) (4.5)401

and thus, again, only ΨT
j,: needs to be updated, as shown at line 2.402

The BLR-LR-Solve kernel is illustrated in Figure 4.1.403

It can easily be computed that the cost of applying the BLR-LR-Solve kernel once is equal to404

the storage complexity times the rank bound r:405

cost2
Solve =O(r)×S 1

ds(b, r). (4.6)406

Injecting (2.10) into (4.6) leads to407

cost2
Solve =O(b3/2r3/2). (4.7)408

4.2. Two-level complexity analysis. We now compute the complexity of the two-level BLR409

factorization of a dense matrix F of order m. We reuse the monolevel notations for the top level.410

We denote by b the size of the first-level blocks and p = m/b the number of of block-rows and block-411

columns. We assume that b is of the form b = mx, for x ∈ [0,1]. We also assume that the ranks of412

the off-diagonal blocks are bounded by r =O(mα).413

The size required to store the factors is again the sum of the storage for the diagonal and off-414

diagonal blocks, as in (2.6). The difference is that the diagonal blocks are not full-rank but BLR415

matrices. They are further refined into smaller blocks whose size should be chosen of order O(
p

br),416

as determined by (2.9) in the BLR complexity analysis. Therefore, in the two-level case, (2.6)417

becomes418

S 2
ds(b, p, r)= p×S 1

ds(b, r)+O(p2br). (4.8)419

By replacing S 1
ds(b, r) by its second expression computed in (2.10), we obtain420

S 2
ds(b, p, r)=O(pb3/2r1/2)+O(p2br) (4.9)421

Finally, we replace b, p, and r by their expression O(mx), O(m1−x), and O(mα), respectively, to422

obtain423

S 2
ds(m, x,α)=O(m1+(x+α)/2 +m2−x+α). (4.10)424

This leads to425

x∗ = (2+α)/3, (4.11)426
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Table 4.1: Two-level equivalent of Table 2.3. The legend of the table is the same. The differences
between the two tables are highlighted in gray.

Step Type cost2
Step numberStep F 2

Step(b, p, r) = F 2
Step(m, x,α)

Factor BLR O(b2r) O(p) O(pb2r) = O(m1+x+α)
Solve BLR-LR O(b3/2r3/2) O(p2) O(p2b3/2r3/2) = O(m2−x/2+3α/2)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

where x∗ defines the optimal choice of the first-level block size b. We thus obtain a final two-level427

storage complexity of428

S 2
ds(m, r)=O(m4/3r2/3). (4.12)429

We now compute the flop complexity F 2
ds(m, r) of the two-level BLR dense factorization. We430

compute the cost of each step and report it in Table 4.1, which is the two-level equivalent of Ta-431

ble 2.3; the differences between the two tables are highlighted in gray. The Product and Recom-432

press steps have not changed and thus have the same cost. The Factor step consists in factorizing433

the p diagonal blocks which are now represented by BLR matrices; thus its cost is directly derived434

from the BLR complexity computed in (2.13):435

F 2
Factor(b, p, r)= p×F 1

ds(b, r)=O(pb2r). (4.13)436

It remains to compute the cost of the Solve step, which now takes the form of O(p2) calls to the437

BLR-LR-Solve kernel whose cost is given by (4.7). Thus, the overall cost of the Solve step is438

F 2
Solve(b, p, r)=O(p2b3/2r3/2). (4.14)439

This concludes the computations for the third, fourth, and fifth columns of Table 4.1. Just as440

in the monolevel case, the sixth column is obtained by replacing b, p, and r by their expression441

O(mx), O(m1−x), and O(mα), respectively.442

We can finally compute the total flop complexity as the sum of the costs of all steps443

F 2
ds(m, x,α)=O(m1+x+α+m2−x/2+3α/2 +m3−2x+2α) (4.15)444

We then compute x∗ which is again equal to the same value as the one that minimizes the storage445

complexity, x∗ = (2+α)/3. Therefore, the final two-level dense flop complexity is446

F 2
ds(m, r)=O(m5/3r4/3). (4.16)447

The two-level BLR format therefore significantly improves the asymptotic storage and flop448

complexity compared with the monolevel format. Our analysis shows that the top level block449

size should be set to b∗ = O(mx∗ ) = O(m2/3r1/3). This is an asymptotically larger value than the450

monolevel optimal block size computed in (2.9), which translates the fact that by refining the diag-451

onal blocks, we can afford to take a larger block size to improve the overall asymptotic complexity.452

However, contrarily to hierarchical matrices, b∗ remains asymptotically much lower than O(m);453

this makes the format much more flexible for the reasons described in Section 2.5. In short, we454

have traded off some of the flexibility of the monolevel format to improve the asymptotic complexity.455

This improvement of the dense flop and storage complexities is translated into an improvement456

of the sparse complexities. Assuming a rank bound in O(1), we quantify this improvement in457

Table 4.2. Compared with the monolevel BLR format, the two-level BLR format drops the O(logn)458

factor in the 2D flop and 3D storage complexities, which become linear and thus optimal. The two-459

level BLR format can thus achieve, in these two cases, the same O(n) complexity as the hierarchical460

formats while being almost as simple and flexible as flat formats.461

Finally, the 3D flop complexity remains superlinear but is significantly reduced, from O(n4/3)462

to O(n10/9). As the problem size gets larger and larger, even small asymptotic improvements can463

make a big difference. Therefore, we now generalize the two-level analysis to the multilevel case464

with an arbitrary number of levels.465
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Table 4.2: Flop and storage complexities of the monolevel and two-level BLR factorizations of a
sparse system of n = N × N (2D case) or n = N × N × N (3D case) unknowns, derived from the
complexities of the factorization of a dense matrix of order m. We consider a constant rank bound
r =O(1). The BLR variant considered is CUFS.

Fds(m) Fsp(n) Sds(m) Ssp(n)
2D 3D 2D 3D

Monolevel BLR O(m2) O(n logn) O(n4/3) O(m1.5) O(n) O(n logn)
Two-level BLR O(m5/3) O(n) O(n10/9) O(m4/3) O(n) O(n)

5. Generalization to `-level BLR matrices. In this section, we generalize two-level proof466

and computations of the previous section to an arbitrary number of levels ` by computing recursive467

complexity formulas. We remind that in this section, we are still considering the weakly-admissible468

case only.469

5.1. Recursive complexity analysis. Just as for the two-level case, one can compute the470

three-level asymptotic complexities, and so on until the general formula becomes clear. We state471

the result for an arbitrary number of levels ` in the following theorem. Note that it is important to472

assume that the number of levels ` is constant (`= O(1)), since the constants hidden in the big O473

depend on `.474

THEOREM 5.1 (Storage and flop complexity of the `-level BLR factorization). Let us consider475

a dense `-level BLR matrix of order m. We note b the size of the top level blocks, and p = m/b. Let476

r = O(mα) be the bound on the maximal rank of any block on any level. Then, the optimal choice of477

the top level block size is b = O(mx∗ ), with x∗ = (`+α)/(`+1), which leads to the following storage478

and flop complexities:479

S `
ds(m, r)=O(m(`+2)/(`+1)r`/(`+1)); (5.1)480

F `
ds(m, r)=O(m(`+3)/(`+1)r2`/(`+1)). (5.2)481482

483

Proof. The proof is inductive. We carefully track the constants hidden in the big O so as to484

check their asymptotic dependence on `. We therefore seek to prove the recursive bounds485

S `
ds(m, r)≤ C`m(`+2)/(`+1)r`/(`+1),486

F `
ds(m, r)≤ C′

`m(`+3)/(`+1)r2`/(`+1),487488

where C` and C′
`

are constants independent of m. The formulas hold for ` = 1 with C1 = 1 and489

C′
1 = 4. Let us assume that they are true for the (`−1)-level BLR factorization and prove that they490

still hold for the `-level one.491

S `
ds(m, r) can be computed as the storage cost for the off-diagonal low-rank blocks (whose num-

ber is less than p2) plus that of the p diagonal blocks, which are represented as (`−1)-level BLR
matrices. Therefore, by induction,

S `
ds(b, p, r)≤ p×S `−1

ds (b, r)+ p2br ≤ pC`−1b(`+1)/`r(`−1)/`+ p2br.

We replace b, p, and r by their expression mx, m1−x, and mα, respectively, to obtain

S `
ds(m, x,α)≤ C`−1m1−x+(`+1)x/`+α(`−1)/`+m2−x+α.

For x∗ = (`+α)/(`+1), we obtain

S `
ds(m, r)≤ C`m(`+2)/(`+1)r`/(`+1),

with C` = C`−1 +1 (and thus C` = `).492
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Table 5.1: `-level equivalent of Tables 2.3 and 4.1. The legend of the table is the same. The
differences between this table and the previous two are highlighted in gray.

Step Type cost`Step numberStep F`
Step(b, p, r) = F`

Step(m, x,α)

Factor BLR(`−1) O(b(`+2)/`r2(`−1)/`) O(p) O(pb(`+2)/`r2(`−1)/`) = O(m1+2x/`+2α(`−1)/`)
Solve BLR(`−1)-LR O(b(`+1)/`r(2`−1)/`) O(p2) O(p2b(`+1)/`r(2`−1)/`) = O(m2+(1−`)x/`+α(2`−1)/`)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

We now consider the flop complexity. F `
ds(m, r) can be computed as the sum of the costs of

the Factor, Solve, Product and Recompress steps. We provide the `-level equivalent of Tables 2.3
and 4.1 in Table 5.1. We now consider the flop complexity. The Product and Recompress steps do not
depend on ` and their cost is less than p3br2 ≤ m3−2x+2α. The Solve step consists in applying less
than p2 times the BLR(`−1)-LR-Solve kernel, described in Algorithm 5.1, where BLR(`−1) denotes
a (`− 1)-level BLR matrix (with the convention that BLR0 denotes a FR matrix). It can easily
be proven by induction that the cost of applying the BLR(`−1)-LR-Solve kernel is less than r ×
S `−1

ds (b, r). Therefore, it holds

F `
Solve(p,b, r)≤ p2r×S `−1

ds (b, r)≤ C`−1 p2b(`+1)/`r(2`−1)/`,

and thus
F `

Solve(m,α, x)≤ C`−1m2+(1−`)x/`+α(2`−1)/`.

The Factor step consists in factorizing p diagonal (`− 1)-level BLR matrices and therefore, by
induction,

F `
Factor(p,b, r)≤ pC′

`−1b(`+2)/`r2(`−1)/` ≤ C′
`−1m1+2x/`+2α(`−1)/`.

Finally, summing the cost of all steps and taking x∗ = (`+α)/(`+1), we obtain

F `
ds(m, r)≤ C′

`m(`+3)/(`+1)r2`/(`+1),

with C′
`
= C′

`−1 +C`−1 +2 (and thus C′
`
= `2 +3). Since the number of levels ` is assumed to be493

constant, we have C` =O(C′
`
)=O(1) which concludes the proof.494

Algorithm 5.1 BLR`-LR-Solve kernel, `> 1 (upper triangular case)

Input: a p×p block upper triangular BLR` matrix Ũ ; Ũ = [
Ũi j

]
i=1: j, j=1:p such that Ũi j =Yi j X T

i j for
i 6= j and Ũ j j is a BLR(`−1) matrix; a LR matrix B̃ =ΦΨT .
Output: overwritten Ψ (modified in-place) corresponding to the operation B̃ ← B̃Ũ−1.

1: for j = 1 to p do
2: ΨT

j,: ←ΨT
j,: −

∑ j−1
i=1Ψ

T
i,:Yi j X T

i j

3: BLR(`−1)-LR-Solve
(
Ũ j j,ΦΨT

j,:

)
4: end for

5.2. Influence of the number of levels `. With the formulas from Theorem 5.1 proven, we495

now analyze their practical implications. It is clear that both the storage and flop asymptotic com-496

plexities decrease monotonically with the number of levels, while the top level block size increases.497

In Figure 5.1, we plot the value of the exponent of the asymptotic complexities as a function of498

the number of levels, for different rank bounds r =O(mα).499

Let us first consider the case of r =O(1) (i.e., α= 0). We have already shown that, in this case,500

the two-level BLR factorization has O(m5/3) flop complexity, which leads to O(n10/9) 3D sparse501

complexity. With a third level, the dense complexity decreases to O(m3/2), which is precisely the502

3D sparse breaking point (see Table 2.1), and thus leads to O(n logn) complexity. The log factor can503
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Fig. 5.1: Theoretical asymptotic exponent of the storage and flop complexity of the dense MBLR
factorization

be dropped by adding a fourth level. The dense complexity tends towards O(m) as the number of504

levels increases, but the sparse complexity cannot be further improved after the optimal O(n) has505

been reached. This illustrates that only a small number of levels is necessary to reach low sparse506

complexity. In particular, with four levels, the number of blocks on the top level is p = O(m1/5),507

which is still a quite large number which, as previously described, provides more flexibility to508

address issues such as data distribution, parallel implementation, numerical pivoting, etc.509

The picture is different with higher rank bounds. Indeed, the higher the rank, the more diffi-510

cult it is to reach a low complexity and thus more levels are required. For example, with r =O(
p

m)511

(α= 1/2), it is actually not possible to reach a O(n) 3D flop complexity since the dense complexity is512

at best O(mr2)=O(m2). This is the dense complexity achieved by the hierarchical formats, as well513

as the MBLR format with an infinite number of levels, and leads to O(n4/3) sparse complexity. It is514

therefore not possible to achieve this complexity with a constant number of levels. However, a cru-515

cial observation is that the rate of improvement of the exponent, which follows (`+3+2α`)/(`+1),516

is rapidly decreasing as ` increases. For example, with α = 1/2, one level decreases the full-rank517

O(m3) complexity to the BLR O(m2.5) complexity; it would require an infinite number of levels to518

achieve another O(m0.5) factor of gain. Similarly, adding two more levels leads to O(m2.25), achiev-519

ing a O(m0.25) gain which can only be achieved again with infinitely more levels! This illustrates520

the critical observation that the first few levels achieve most of the asymptotic gain. We therefore521

believe that the MBLR factorization with only a small number of levels can be of practical interest,522

even for problems with larger ranks.523

5.3. Comparison with the BLR-H format. We conclude this section by comparing our524

MBLR format to the related BLR-H format, sometimes also referred to as “Lattice-H ”. It consists525

in representing the matrix using the BLR format, and then approximating its diagonal blocks with526

H -matrices. The BLR-H format has been considered as a simple way to use hierarchical matrices527

in a distributed-memory setting [21, 1] but has been little studied from a theoretical standpoint.528

The question is whether refining the diagonal blocks with additional levels (as H rather than529

MBLR matrices) improves the asymptotic complexity of the format. In the following, we prove that530

this is not the case and therefore recommend the use of the MBLR format over that of the BLR-H531

one.532

The complexity of the BLR-H format is entirely determined by the block size b used for the533

BLR partitioning. Indeed, the storage complexity can be computed as the sum of the storage for534

the off-diagonal low-rank blocks and that of the diagonal H blocks:535

S BLR−H
ds (p,b, r)=O(p2br)+O(pbr logb)=O(p2br),536
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where p = m/b. Thus, the term corresponding to the off-diagonal low-rank blocks is dominant and537

we obtain538

S BLR−H
ds (m,b, r)=O(

m2r
b

). (5.3)539

Similarly, the flop complexity of the BLR-H factorization is dominated by the LR-LR-Product and540

Recompress steps which cost541

F BLR−H
ds (m,b, r)=O(p3br2)=O(

m3r2

b2 ). (5.4)542

Applying (5.3) and (5.4) with the optimal choice of block size for the `-level BLR format, b =543

O(m`/(`+1)r1/(`+1)), we obtain the same asymptotic complexity as that proved in Section 5 (Theo-544

rem 5.1):545

S BLR−H
ds (m, r)=S `

ds(m, r)=O(m(`+2)/(`+1)r`/(`+1));546

F BLR−H
ds (m, r)=F `

ds(m, r)=O(m(`+3)/(`+1)r2`/(`+1)).547548

This result can be interpreted as follows: for any given block size b, there exists a constant number
of levels `b such that representing the diagonal blocks of the matrix as `b-level BLR matrices
suffices to achieve the lowest possible complexity. As far as asymptotic complexity is concerned, it
is thus not necessary to represent these diagonal blocks with the H format. Note that the value of
`b can easily be computed as

`b =min
{
` : m`/(`+1)r1/(`+1) ≥ b

}
−1.

6. Numerical experiments. In this section we compare the experimental complexities of the549

full-rank, BLR, and MBLR formats (with different numbers of levels) for the factorization of dense550

matrices arising from Schur complements of sparse problems.551

We have developed a MATLAB code to perform the BLR and MBLR factorization of a dense552

matrix, which we use to run all experiments. The objective of this experimental section is purely to553

validate the theoretical complexity bounds that we have computed in Theorem 5.1. Assessing the554

practical performance of the MBLR factorization is complex, not our focus in this paper and will be555

the objective of future work; numerical experiments with sparse matrix factorizations are also out556

of the scope of this article.557

6.1. Experimental setting. All the experiments were performed on the brunch computer558

from the LIP laboratory (ENS Lyon), a shared-memory machine equipped with 24 Haswell proces-559

sors and 1.5 TB of memory.560

To validate our theoretical complexity results, we use a Poisson problem, which generates the561

symmetric positive definite matrix A from a 7-point finite-difference discretization of equation562

∆u = f563

on a 3D domain of size n = N ×N ×N with Dirichlet boundary conditions. We compute the dense564

MBLR factorization of the matrices F corresponding to the root separator of the nested dissection565

partitioning, which are of order m = N2.566

We compute the experimental asymptotic complexities by means of the least-squares estima-567

tion of the coefficients {βi}i of a regression function f such that X f it = f (N, {βi}i) fits the observed568

data Xobs. We use the following regression function:569

X f it = eβ
∗
1 Nβ∗2 with β∗

1 ,β∗
2 = argmin

β1,β2
‖ log Xobs −β1 −β2 log N‖2.570

To compute the low-rank form of the blocks, we perform a truncated QR factorization with571

column pivoting (i.e., a truncated version of LAPACK’s [7] _geqp3 routine). We use a a mix of572

fixed-accuracy and fixed-rank truncation: we stop the factorization after either an accuracy of ε573

has been achieved or at most rmax columns have been computed. In the following experiments, we574

have set ε= 10−14 and rmax = 10.575
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(a) Storage complexity. (b) Flop complexity.

Fig. 6.1: Experimental complexity of the dense MBLR factorization of the root separator of order
m = N2 of a 3D Poisson problem of order n = N3.

Table 6.1: Comparison between theoretical and experimental complexities.

`= 1 `= 2 `= 3 `= 4

Storage complexity
Theoretical O(m1.50) O(m1.33) O(m1.25) O(m1.20)
Experimental O(m1.47) O(m1.36) O(m1.32) O(m1.27)

Flop complexity
Theoretical O(m2.00) O(m1.67) O(m1.50) O(m1.40)
Experimental O(m1.97) O(m1.68) O(m1.62) O(m1.51)

Note that in the weakly admissible context, fixing the rank to 10 yields a limited accuracy576

(measured by the quantity ‖F −LU‖) of the order of 10−1. While this could be enough to build a577

preconditioner, achieving a higher accuracy would require a strongly admissible implementation.578

The generalization of the MBLR format to the strongly admissible case is therefore of great im-579

portance and, while its practical implementation is outside the scope of this article, we provide its580

algorithmic description in the appendix. We prove that its theoretical complexity is identical to581

that of the weakly admissible case; we also include some very preliminary experiments showing582

that its complexity is in agreement with the theory while leading to a much higher accuracy.583

6.2. Experimental complexity results. We report in Figure 6.1 the experimental storage584

and flop complexity of the dense MBLR factorization, using a number of levels ` varying from 1 to585

4. We summarize the asymptotic exponents obtained by fitting the data points in Table 6.1. The586

experimental complexities are in relatively good agreement with the theoretical ones.587

While there is an almost perfect match for the first two levels, the gap between theory and588

practice increases as more levels are added. This is due to the increasing difficulty of tuning the589

different block sizes at each level. This is a practical limitation that should be further investigated.590

Nevertheless, an asymptotic gain is achieved by each addition of a new level, at least up to `= 4.591

Overall, these experimental results therefore support the capacity of the MBLR format to592

significantly reduce the asymptotic complexity of the factorization, even when only a small number593

of levels is used.594

7. Conclusion. We have proposed a new multilevel BLR (MBLR) format to bridge the gap be-595

tween flat and hierarchical low-rank matrix formats. Contrarily to hierarchical formats for which596
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the number of levels in the block hierarchy is logarithmically dependent on the size of the problem,597

the MBLR format only uses a constant number of levels `.598

We had previously explained why the H -matrix theory, while applicable to the BLR format,599

leads to very pessimistic complexity bounds and is therefore not suitable. Here, we have shown600

that this remains true for the MBLR format and we therefore extended the theory to compute bet-601

ter bounds. We proved that both the storage and flop complexities of the factorization can be finely602

controlled by `. We theoretically showed that the first few levels achieve most of the asymptotic603

gain that can be expected. In particular, for a sparse 3D problem with constant ranks, two lev-604

els suffice to achieve O(n) storage complexity and three levels achieve O(n logn) flop complexity,605

suggesting that a small number of levels may be enough in practice. Our numerical experiments606

confirm this trend.607

Having a small number of levels leads to a greater freedom to distribute data in parallel;608

in particular blocks are small enough for several of them to fit in shared-memory, allowing an609

efficient parallelization. Finally, a small number of levels greatly simplifies the implementation610

of the format, making it easy to handle important features such as dynamic data structures and611

numerical pivoting. The related BLR-H (or Lattice-H ) format targets a similar objective; however,612

our theoretical analysis shows that using more levels to refine the diagonal blocks actually does613

not improve the asymptotic complexity with respect to the MBLR format.614

In short, the MBLR format aims to strike a balance between asymptotic complexity and actual615

performance on parallel computers by trading off the optimal hierarchical complexity to retrieve616

some of the simplicity and flexibility of flat monolevel formats. We believe that this increased617

simplicity and flexibility will prove to be useful in a parallel, algebraic, fully-featured, general618

purpose sparse direct solver. The implementation of the MBLR format in such a solver will be the619

object of future work.620
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Appendix A. Appendix: extension to the strongly-admissible case. In Sections 4 and 5,690

we were considering the weakly-admissible case only. In this section, we extend the proofs and com-691

putations to the strongly-admissible case. This requires the introduction of new kernels involving692

computations on off-diagonal non-admissible blocks that are represented as MBLR matrices. We693

prove that the theoretical complexity results established in the weakly-admissible case still hold694

in the strongly-admissible one. The proof involves two main ingredients. First, the fact that the695

number of non-admissible blocks per row or column on any level of the block hierarchy can be696

bounded by a constant. Second, the computation of the cost of the new kernels, which we show do697

not asymptotically increase the overall cost of the factorization.698

A.1. New kernels description. In the strongly admissible case, some off-diagonal blocks699

may be non-admissible and therefore represented as MBLR matrices. This introduces five new700

kernels: the BLR`-LR and BLR`-BLR` additions, the BLR`-LR and BLR`-BLR` products, and the701

BLR`-BLR` triangular solve. These are described in Algorithms A.1 through A.5.702

Note that the BLR`-LR (addition or product) algorithms can easily be adapted to define similar703

LR-BLR` algorithms. The BLR`-BLR` triangular solve (Algorithm A.5) is described in its upper704

triangular version; the lower triangular version is similar and is omitted for the sake of concise-705

ness.706

To avoid a profusion of different test cases, we use the compact notation Ã ⊗ B̃ and Ã ⊕ B̃ to707

denote the product and addition of two matrices Ã and B̃ that may be either LR or MBLR. If at708

least one of the two is MBLR, then ⊕ corresponds to a recursive call to Algorithms A.1 or A.2, while709

⊗ corresponds to a recursive call to Algorithms A.3 or A.4. If both Ã and B̃ are LR, then ⊗ simply710

corresponds to a regular LR-LR product, while ⊕ corresponds to accumulating the two LR matrices711

together and recompressing the result.712

To prove that the strong admissibility case does not increase the asymptotic complexity of the713

`-level BLR factorization, we thus need to compute the cost of these new kernels. To do so, two714
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Algorithm A.1 BLR`-LR-Addition kernel

Input: a p× p BLR` matrix Ã and a LR matrix B̃ =ΦΨT .
Output: a BLR` matrix C̃ = Ã+ B̃

1: for i = 1 to p do
2: for j = 1 to p do
3: if Ã i j is LR then
4: C̃i j ←Recompress(Ã i j +ΦiΨ

T
j )

5: else
6: C̃i j ←BLR(`−1)-LR-Addition(Ã i j,ΦiΨ

T
j )

7: end if
8: end for
9: end for

Algorithm A.2 BLR`-BLR`-Addition kernel

Input: two p× p BLR` matrices Ã and B̃.
Output: a p× p BLR` matrix C̃ = Ã+ B̃.

1: for i = 1 to p do
2: for j = 1 to p do
3: C̃i j ← Ã i j ⊕ B̃i j
4: end for
5: end for

ingredients are necessary. First, we prove in Section A.2 that the number of non-admissible blocks715

at any level of the block hierarchy is bounded by a constant (Lemma A.1). Then, in Section A.3, we716

compute their cost by induction (Lemma A.2).717

A.2. Boundedness of the number of non-admissible blocks. In this section, we seek to718

compute a bound on Nna, the maximal number of non-admissible blocks per row and column at any719

level of the block-hierarchy.720

The result is directly derived from Lemma 2 in [4], whose result on BLR matrices we reproduce721

here.722

LEMMA A.1. For any BLR matrix, it is possible to build a partition such that the number of723

non-admissible blocks per row and column is bounded by Nna =O(1).724

Proof. See [4], Lemma 2.725

Since this result holds for any BLR matrix, it can be recursively applied to the non-admissible726

blocks of a `-level matrix, and therefore the result trivially holds at any level of the block hierarchy.727

As a consequence, the `-level BLR factorization of a dense matrix clustered into p = m/b blocks728

requires O(p2) BLR(`−1)-LR products and additions and O(p) BLR(`−1)-BLR(`−1) products, addi-729

tions, and triangular solves to be performed.730

Now that we have bounded the number of times these kernels are performed, let us bound the731

cost of performing them once.732

A.3. Recursive complexity analysis of the new kernels.733

LEMMA A.2. The costs of Algorithms A.1 through A.5 are734

F `
A.1(m, r)=F `

A.2(m, r)=F `
A.3(m, r)=O(r)×S `

ds(m, r), (A.1)735

F `
A.4(m, r)=F `

A.5(m, r)=F `
ds(m, r), (A.2)736737

where F `
ds(m, r) and S `

ds(m, r) are given by Theorem 5.1.738

Proof. We proceed by induction. Let us note b = O(mx) the top level block size of the matrices739

and p = m/b =O(m1−x). Let us also assume that r =O(mα).740
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Algorithm A.3 BLR`-LR-Product kernel

Input: a p× p BLR` matrix Ã and a LR matrix C̃ =ΦΨT .
Output: a LR matrix C̃out =ΦoutΨT = ÃC̃

1: for i = 1 to p do
2: Φout

i,: Ψ
T ←BLR(`−1)-LR-Product

(
Ã ii,Φi,:Ψ

T)
3: Φout

i,: ←Φout
i,: +∑p

j=1; j 6=i X i jY T
i jΦ j,:

4: end for

Algorithm A.4 BLR`-BLR`-Product kernel

Input: two p× p BLR` matrices Ã and B̃.
Output: a p× p BLR` matrix C̃ = ÃB̃.

1: for i = 1 to p do
2: for j = 1 to p do
3: C̃i j ← [ ] (rank-0 matrix)
4: for k = 1 to p do
5: C̃i j ← C̃i j ⊕ Ã ik ⊗ B̃k j
6: end for
7: end for
8: end for

We begin with the initial case ` = 1. Algorithm A.1 requires O(p2) LR-LR additions of cost741

O(br2) and O(p) LR-FR additions of cost O(b2r). Algorithm A.2 requires the same operations,742

plus O(p) FR-FR additions of cost O(b2). Algorithm A.3 requires O(p2) LR-LR products of cost743

O(br2) and O(p) FR-LR products of cost O(b2r). Therefore, all three algorithms have a total cost of744

O(p2br2 + pb2r) = r×S 1
ds(b, p, r). Algorithm A.4 requires O(p3) LR-LR additions and products of745

cost O(br2), O(p2) LR-FR additions and products of cost O(b2r), and O(p) FR-FR products of cost746

O(b3). Overall, the total cost of Algorithm A.4 is therefore O(p3br2 + p2b2r+ pb3) = F 1
ds(b, p, r).747

Algorithm A.5 requires the same computations and therefore has the same asymptotic cost.748

We now assume that the formulas hold for (`−1)-level BLR matrices and prove them for `-749

level ones. The previous analysis in the case ` = 1 still holds by replacing every “FR” occurence750

by “BLR(`−1)”. Thus, Algorithms A.1, A.2, and A.3 require O(p2) LR-LR additions and prod-751

ucts, O(p) BLR(`−1)-LR additions and products, and O(p) BLR(`−1)-BLR(`−1) additions. By in-752

duction, their cost is therefore O(p2br2)+O(pr)×S `−1
ds (b, r), which is equal to r ×S `

ds(m, r) for753

x = x∗ = (`+α)/(`+1). Similary, Algorithm A.4 requires O(p3) LR-LR additions and products, O(p2)754

BLR(`−1)-LR additions and products and O(p) BLR(`−1)-BLR(`−1) products. By induction, its cost is755

therefore O(p3br2)+O(p2r)×S `−1
ds (b, r)+O(p)×F `−1

ds (b, r), which is equal to F `
ds(m, r) for x = x∗.756

Algorithm A.5 requires the same computations and therefore has the same asymptotic cost.757

THEOREM A.3. The complexity formulas of Theorem 5.1 established in the weakly-admissible758

case also hold in the strongly-admissible case.759

Proof. Lemma A.1 states that there are only O(1) non-admissible blocks per row and column760

on any level of the block hierarchy. From this we can already deduce that the storage complexity761

S `
ds is asymptotically the same in the weakly- and strongly-admissible cases. Moreover, using the762

costs computed in Lemma A.2, we can compute the overall cost associated with the new kernels763

required to be performed in the strongly-admissible case as764

F `
New Kernels(b, p, r)=O(p)×F `−1

ds (b, r)+O(p2r)×S `−1
ds (b, r) (A.3)765

=F `
Factor(b, p, r)+F `

Solve(b, p, r) (A.4)766767

which clearly does not asymptotically increase the total, thus proving that F `
ds is also unchanged768

by the strong admissibility condition.769
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Algorithm A.5 BLR`-BLR`-Solve kernel (upper triangular case)

Input: two p× p BLR` matrices Ũ and Ã; Ũ is upper triangular.
Output: overwritten Ã (modified in-place) corresponding to the operation Ã ← ÃŨ−1.

1: for k = 1 to p do
2: for i = 1 to p do
3: if Ã ik is LR then
4: Ã ik ←BLR(`−1)-LR-Solve

(
Ũkk, Ã ik

)
5: else
6: Ã ik ←BLR(`−1)-BLR(`−1)-Solve

(
Ũkk, Ã ik

)
7: end if
8: for j = k+1 to p do
9: Ã i j ← Ã i j ⊕

(−Ã ik ⊗Ũk j
)

10: end for
11: end for
12: end for

A.4. Preliminary storage complexity experiments. The practical implementation of the770

kernels presented in this appendix are outside our scope and therefore, so is the experimental study771

of the flop complexity of the strongly admissible MBLR factorization. However, we can easily esti-772

mate its storage complexity by first factorizing the matrix with a weakly admissible partitioning,773

and then compressing it with a strongly admissible partitioning. Preliminary results are reported774

in Figure A.1, where the blocks are compressed at accuracy ε = 10−10 and with no limit on the775

rank r. This leads to an error ‖F −LU‖ of the order of 10−9, regardless of the number of levels `.776

As shown in the figure, the asymptotic storage complexity results lead to the same conclusions as777

those with the weak admissibility.778

Fig. A.1: Storage complexity of the strongly admissible MBLR format, on the root separator of size
m = N2 of a Poisson problem of size N3, and with ε= 10−10.
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