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The accumulation of boundary doubling
for modified tent maps

Paul Glendinning

Abstract. We describe the transition to chaos via boundary doubling for a
particularly simple class of map. In this two parameter family of maps the
accumulation of boundary doubling occurs on a curve in parameter space. We
characterize this curve and use relate the form of this curve to a novel set of
difference equations with proportional delay.

1. Introduction

The transition to chaos in the sense of positive topological entropy is one of the
fundamental problems of applied dynamical systems. In [5] (see also [7]) we showed
that if fµ : I → R is a family of unimodal, or one hump, maps of the interval such
that the image of the critical point of the map lies outside the interval for all rele-
vant values of the parameter µ, then the transition to chaos can be via an infinite
sequence of boundary bifurcations. At the boundary bifurcation, the boundary of
the interval is periodic, creating periodic orbit of period 2n. If these bifurcations
occur at parameter values µn, then under some fairly weak assumptions about the
maps being considered

|µn+1 − µn| → C|µn − µn−1|2 (1)

as n →∞ where the constant C depends on the family of maps being considered.
It was also pointed out that such maps might find application in models with
some catastrophic breakdown threshold above which the model ceases to be a
good description of the phenomenon. The simplest examples of these bifurcations
arises in modified tent maps, and it is these which we consider in more detail
below.

A tent map with threshold is a standard tent map [3, 8] with the added
restriction that the map is undefined if x > µ for some µ ∈ (0, 1), i.e.

Tµ,s(x) =





sx if 0 ≤ x ≤ s−1µ
undefined if s−1µ < x < s−1(s− µ)
s(1− x) if s−1(s− µ) ≤ x ≤ µ

(2)

with s > 1 and 0 < µ ≤ 1. It is these maps which will be the focus of our attention
in the remainder of this paper. Note that the boundary bifurcations will occur
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through the right hand end point of the interval [0, µ], i.e. the point x = µ will
become periodic.

The maps Tµ,s with the slight modification that Tµ,s(x) = µ on the central
interval, which makes the map a continuous map of the interval into itself, were
considered briefly by Derrida, Gervois and Pomeau [4] in the context of period-
doubling, and the renormalization argument of the next section can be found there.
I suspect that little of what is contained here, except perhaps the last section,
would be new to them. The special case of s = 2 is considered in [9] and related
results can be found in [1].

2. Renormalization

If µ < s−1(s − µ) then the only recurrent dynamics in [0, 1] is the fixed point at
x = 0. As µ increases through µ0 = s(s + 1)−1 a new fixed point, x0 is created,
and this fixed point has a unique preimage y0 in x < s−1µ. An easy calculation
yields

x0 = s(s + 1)−1, y0 = (s + 1)−1 (3)

If µ > µ0 then we can consider the second iterate, T1, of the map on the two
intervals in [y0, x0] on which it is well defined, and these branches of the second
iterate map the intervals they are defined on into [y0, x0] provided µ < µ̃1 where

µ̃1 =
s2 + s− 1
s(s + 1)

. (4)

After an affine, orientation reversing change of variable so that the induced map
is now defined on the interval [0, 1] it is easy to show that if µ ∈ (µ0, µ̃1] then the
induced map T1 is again a map of the form (2), TM,S , where

M =
s− s(s + 1)(1− µ)

s− 1
and S = s2 (5)

Note that if limµ↓µ0 then M = 0 and if µ = µ̃1 then M = 1 so the entire range
of dynamics available to TM,S is realised by the induced map T1. In particular,
there is µ1 at which an orbit of period one for the induced map (period two for
the original map) is created by boundary bifurcation, and a new induced map T2

(the second iterate of the second iterate of Tµ,s) can be defined on (µ1, µ̃2], where
µ̃2 is the analogous parameter value to µ̃1.

We now use the standard bootstrap argument as is used in the case of period-
doubling cascades. Set µ̃0 = 1. Then proceeding inductively we see that if µ ∈
[µn, µ̃n] then the induced map Tn (made up of parts of the 2nth iterate of T )
is well defined on an interval which has a point xn−1 of period 2n−1 at one end
point. If µ = µn, an orbit of period 2n is created by boundary bifurcation, and if
µ = µ̃n the two branches of the induced map stretch over the interval on which
the map is defined and so, by standard arguments [8], the topological entropy of
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the original map is 2−n log 2. The intervals In = [µn, µ̃n] form a nested sequence
of closed intervals, and so

µ∞ =
∞⋂

n=0

In (6)

is non-empty, and is the accumulation point of the two sequences, (µn) and (µ̃n)
(strictly speaking we have not shown that µ∞ is a singleton). If µ = µ∞ then the
renormalization process (the process of defining induced maps) can be repeated
infinitely often. If µ < µ∞ then the only periodic orbits of Tµ,s have periods 2n,
n = 0, 1, . . . , N , for some finite N and so the topological entropy of the map is
zero, whilst if µ > µ∞, then µ > µ̃m for some m and so the entropy of the map is
greater than or equal to 2−m log 2.

3. Scaling

Equation (5) makes it relatively straightforward to verify the scaling, (1). We
have already shown that µ0 = s(s + 1)−1. If T has parameter µ = µn, with
µn defined in section 2, then the induced map Tn has parameters (Mn, Sn) with
Mn = Sn(Sn + 1)−1. Similarly, if T has µ = µn+1 then Tn+1 has parameters
(Mn+1, Sn+1) with Sn+1 = S2

n by (5) and Mn+1 = Sn+1(Sn+1 + 1)−1. Setting
µ = Mn, s = Sn and M = Mn+1 in the first equation of (5) we find

Mn =
S2

n + (Sn − 1)Mn+1

Sn(Sn + 1)
(7)

where we think of Mn+1 as a function of S2
n.

Now, at the parameter values µn, µn+1 and µn+2, Tn is well defined and the
corresponding parameters for this induced map are Mn,0, Mn,1 and Mn,2 where

Mn,0 =
Sn

Sn + 1
, Mn,1 =

S2
n

S2
n + 1

, and Mn,2 =
Sn(S3

n − Sn + 1)
S4

n + 1
(8)

as is verified using the expression already given for µ0 and two applications of (7).
Now let

∆n,m = Mn,m+1 −Mn,m (9)

and think of ∆n,m as a function of Sn = S2
n−1, cf. (11). Defining T0 to be the

original map (2) we see that equation (1) is equivalent to

∆0,n → C∆2
0,n−1 as n →∞ (10)

and it is this which we wish to demonstrate now.
If Tn has a boundary bifurcation which creates an orbit of period 2m at

Mn,m then Tn−1 has a boundary bifurcation creating an orbit of period 2m+1 at
Mn−1,m+1 which can be obtained from Mn,m using (7). Hence

∆n−1,m+1 =
Sn−1 − 1

Sn−1(Sn−1 + 1)
∆n,m(S2

n−1) (11)
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In other words, if n is large, so Sn is large, and ∆n,m ∼ S
−rn,m
n then ∆n−1,m+1 ∼

S
−rn−1,m+1
n−1 where rn−1,m+1 = 2rn,m + 1, i.e.

rn−k,n+k = 2kA− 1, with A = rn,m + 1. (12)

for k = 0, . . . , n. A simple calculation using (8) shows that

∆n,1 =
Sn(Sn − 1)

(S2
n + 1)(Sn + 1)

∆n,2 =
Sn(Sn − 1)2

(S4
n + 1)(S2

n + 1)
(13)

so rn,1 = 1 and rn,2 = 3, and hence r0,n+1 = 2.2n − 1 and r0,n+2 = 4.2n − 1.
Equation (10) now follows since

∆2
0,n+1 ∼ s−4.2n+1 and ∆2

0,n+1 ∼ s−4.2n+2 = s.s−4.2n+1 (14)

Note that a similar argument gives the same scaling result for the parameters µ̃n

and this, together with the remarks on entropy at the end of section two show that
the entropy increases like the reciprocal of the logarithm of |µ̃n − µ∞|, a result
known to Derrida et al [4], see also [5, 9].

4. The accumulation curve

The accumulation of boundary doublings occurs at a parameter µ∞ which is a
function of s. The locus of this accumulation in the full two parameter space (µ, s)
will be discussed here. On this locus, the map T0 can be renormalized infinitely
many times, and hence so can the induced map T1. Hence, if the locus takes the
form µ = F (s) then from (5) we find that

(s− 1)F (s2) = s− s(s + 1)(1− F (s)) (15)

with s > 0. Note that lims→1 F (s) = 1
2 and lims→∞ F (s) = 1 as we would expect.

It is easier to approach (15) using the inverse of s, so if G(s−1) = F (s) and t = s−1

then (15) may be rewritten as

G(t) =
1

1 + t
+

t(1− t)
1 + t

G(t2) (16)

Replacing t by t2 throught to obtain an expression for G(t2) in terms of G(t4) and
so

G(t) =
1

1 + t
+

t(1− t)
(1 + t)(1 + t2)

+
t3(1− t)(1− t2)
(1 + t)(1 + t2)

G(t4). (17)

It is now relatively straightforward to repeat this process, giving

G(t) =
∞∑

n=0

an(t)t2
n−1 (18)

where

a0 =
1

1 + t
, a1 =

1− t

(1 + t)(1 + t2)
, an =

(1− t)
∏n−2

r=0 (1− t2
r

)

(1 + t2
n−1

)(1 + t2
n

)
, n ≥ 2. (19)
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An alternative approach to the solution of (16) is to pose a formal power series
solution G(t) =

∑∞
0 yntn. After rewriting (16) as (1 + t)G(t) = 1 + t(1− t)G(t2),

substitution of this formal power series solution gives a linear differnece equation
with proportional delay for the coefficients:

y2n+1 = −y2n + yn, y2n+2 = −y2n+1 − yn (20)

with the initial condition y0 = 1. These equations differ to those studied by Buh-
mann and Iserles [2, 6] for a discretized model of the pantograph equation on the
boundary of stability of the trivial solution only in the sign of yn in the second
equation. Equations (20) have a curious self-similarity property. If zk = yk+1 + yk

then z2n+1 = −z2n, so we need only consider the odd or the even zk. Consider
the even case and let z2k = bk. Then, noting that z2n+2 + z2n = zn we find that
the difference equation for bk is precisely (20) – even the initial condition is the
same! I have been unable to find a simple interpretation of this result, but the
coefficients of the solutions to the discretized pantograph equations also have a
fractal structure [6].
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