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A Note on Involution Centralizers in
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Abstract

Here we note a minor variation on the method in [1] which enables
calculations of CH(t) for H a subgroup of a black box group G and t an

involution of G.

In [1] Bray revealed a method for calculating centralizers of involutions in black box
groups with an order oracle. This method extended one introduced earlier by R.
Parker (see [9]). In recent times the Bray method has had many ramifications in
computational group theory (for a fraction of these consult [2], [3], [4], [5], [6], [7], [8],
[10], [12], [13]). The purpose of this short note is to observe a further twist to this
story.
Suppose G is a black box group with an order oracle. Assume t is an involution of G.
In [1] the elements K(t, g) of G are key. For g ∈ G and letting n be the order of [t, g]
we define

K(t, g) =

{
[t, g]m if n = 2m

[t, g]m if n = 2m + 1.

These elements K(t, g) supply elements in CG(t). Those K(t, g) obtained when n is
odd have the property observed by R. Parker that they are uniformly distributed
throughout CG(t).

For H ≤ G, set OH = {h | h ∈ H and [t, h] is of odd order}.

Lemma 0.1 Suppose t is an involution in G, H ≤ G and let c ∈ CH(t). Then
|{h ∈ OH | K(t, h) = c}| is independent of c.

Proof Since c ∈ CH(t), [t, h] = [t, ch] for all h ∈ H, so we only need prove the lemma
for each right coset CH(t)h (h ∈ H) for which [t, h] has odd order. For eh ∈ CH(t)h,
we have

K(t, eh) = eh[t, eh]m = eh[t, h]m = eK(t, h),

where [t, h] has order 2m + 1. Hence each such coset contributes 1 to
|{h ∈ OH | K(t, h) = c}|, so giving the lemma. �

Theorem 3.1 of [1] is the case H = G, and its proof is virtually identical to that for
Lemma 0.1. The point is that t does not need to be in H. So to compute CH(t) we
may proceed as follows.

1. Fix S := { }.

2. Choose a random element h ∈ H.

3. Compute K(t, h).
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4. Check whether K(t, h) ∈ H; if yes then add K(t, h) to S.

5. Go to step 2.

Then 〈S〉 will be a subgroup of CH(t). All the analysis and caveats discussed in [1] will
apply here. Lemma 0.1 shows that the set of elements passing test 4 will be uniformly
distributed in CH(t). Also the membership problem raises its head in step 4 and the
exact nature of H may help in resolving this. For example we may have H = CG(X)
(X ≤ G) in which case step 4 can be settled by checking whether K(t, h) commutes
with a generating set for X. Suppose H = CG(s) where s is an involution of G (in
fact, the situation that sparked this note), experimentally the following works well.
In place of 2-5 do

2′. ComputeK(s, g) where g is a random element of G (so applying the Bray method
for CG(s)).

3′. Compute K(t,K(s, g)).

4′. Check whether s and K(t,K(s, g)) commute; if yes then add K(t,K(s, g)) to S.

5′. Go to step 2′.

Observe that Lemma 0.1 applied twice shows that these will be uniformly distributed
in CG(t) ∩ CG(s). Of course we could determine generating sets for CG(t) and CG(s)
using the Bray method and then attempt to compute CG(t)∩CG(s). In computation-
ally hard groups the latter step may prove impossible.

To illustrate this with an example, take G = E6(2), as given in the electronic
ATLAS [14] in its 27-dimension GF (2) representation. There G = 〈a, b〉 where a has
order 2, b has order 3 with ab of order 62. So taking t = a and s = (ab)31, using
the method discussed here (that is, steps 1, 2′, 3′, 4′, 5′) with 10000 random elements
g ∈ G we get 〈S〉 = CG(s)∩CG(t) with |〈S〉| = 212.3.7. This is done in the blink of an
eye whereas first calculating CG(s) and CG(t) (which is quick) and then CG(s)∩CG(t)
takes forever (1552 seconds on a 16 × 1248MHz machine running Magma version
222-10). This disparity will be even greater for larger groups.

Finally, we observe that the above process for the centralizer of two involutions may
be iterated so as to find CG(H) where H is generated by involutions.
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