Cuspidal Characters of Sporadic Simple Groups

Rowley, Peter and Ward, David

2018

MIMS EPrint: 2018.19

Manchester Institute for Mathematical Sciences
School of Mathematics
The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097
Cuspidal Characters of Sporadic Simple Groups

Peter Rowley and David Ward

July 30, 2018

Abstract

In this paper the notion of an irreducible cuspidal character for finite groups of Lie type is generalized to any finite group. All the irreducible cuspidal characters for the finite sporadic simple groups are then determined.

1 Introduction

For a finite group G, its complex irreducible character table encodes a diverse range of details relating to the structure and properties of G. For example the structure constants may be extracted from the character table (see [7, Theorem 4.2.12]). While there are results connecting character values with the orders of various subgroups of G (see [7, Theorems 4.2.8 and 4.2.11]). Since the birth and rapid development of character theory by Frobenius, Schur and Burnside ([5]), there has been a fruitful interplay between characters and finite groups. A particular jewel in the crown being Frobenius’s theorem ([7, Theorem 5.1]), for which no proof without characters is known. This has resulted in extensive efforts to calculate character tables of “interesting” finite groups. Tables for all the sporadic simple groups are to be found in the ubiquitous ATLAS ([4]). While the case when G is a Lie type group is the subject of the mammoth text by Carter ([3]), and continues to be a very active area of research.

When G is a group of Lie type, a particular type of irreducible character, called a cuspidal character, plays an important role. This is because of the fact that every irreducible character of G is a constituent of the induced character ϕ^G_P for some cuspidal character ϕ of some P_J, where P_J is a proper parabolic subgroup of G (see [3, Chapter 9] for more details). The aim of the present paper is to generalize the notion of a cuspidal character to an arbitrary finite group, and then to determine all irreducible characters for the sporadic simple groups. Since the complex irreducible character tables are known for all the sporadic simple groups, this begs the question as to whether this is a worthwhile enterprise. Unlike the situation of groups of Lie type where the cuspidal characters are being used to determine further irreducible characters, our motivation here is to better understand the sporadic simple groups in a wider context. We shall return to this issue shortly.

The generalization of cuspidal characters is set against the following backdrop.
Definition 1.1. Suppose that G is a finite group, X a subgroup of G and I an index set with $|I| = n$. Then an X-parabolic system of rank n is a set of pairs of subgroups of G, (P_J, Q_J), indexed by subsets J of I such that

(i) for each $J \subseteq I$, $X \leq P_J$, $Q_J \leq P_J$;

(ii) for $K \subseteq J \subseteq I$, $Q_J \leq Q_K$;

(iii) $P_I = G$ and $Q_I = 1$; and

(iv) $X = P_\emptyset$.

We shall write $\mathcal{X} = \{(P_J, Q_J)\}_{J \subseteq I}$ and note that by part (iii) of Definition 1.1, all Q_J are subgroups of \emptyset and that $Q_\emptyset \leq P_\emptyset = X$. We allow the possibility that $(P_J, Q_J) = (P_K, Q_K)$ with $J \neq K$, but this will not arise in most of the cases that follow. If our index set is $I = \{1, 2, \ldots, n\}$ for some $n \geq 1$, then given a subset $\{i_1, i_2, \ldots, i_r\} \subseteq I$ with $i_j < i_{j+1}$ for all j, we will often denote the subgroups $P_{\{i_1, i_2, \ldots, i_r\}}$ and $Q_{\{i_1, i_2, \ldots, i_r\}}$ by $P_{i_1 \ldots i_r}$ and $Q_{i_1 \ldots i_r}$, respectively. Given an X-parabolic system $\mathcal{X} = \{(P_J, Q_J)\}_{J \subseteq I}$ of a finite group G and $J \subseteq I$, we set $\mathcal{P}_J := P_J/Q_J$. Furthermore, for any subgroup $Q_J \leq Y \leq P_J$, we use the standard bar notation $\bar{Y} := Y/Q_J$. We may use \mathcal{X} to form an X-parabolic system, \mathcal{X}_J, of rank $|J|$ for \mathcal{P}_J given by

$$\mathcal{X}_J = \{(\mathcal{P}_J \cap \mathcal{P}_K, \mathcal{Q}_K)| (P_K, Q_K) \in \mathcal{X}, K \subseteq J\}.$$

We now describe a particular type of X-parabolic system of interest here. Suppose that G is a finite group, p a prime and $S \in \text{Syl}_p(G)$. Set $B = N_G(S)$. A subgroup P of G is called p-minimal (with respect to B) if B is a proper subgroup of P and B is contained in a unique maximal subgroup of P. We recall that for H a finite group, $O_p(H)$ is the largest normal p-subgroup of H, and we shall refer to $O_p(H)$ as the p-core of H.

Defining

$$\mathcal{M}(G, B) = \{P|P \text{ is a } p\text{-minimal subgroup of } G \text{ (with respect to } B)\},$$

then a set

$$\mathcal{M}_0 = \{P_i| P_i \in \mathcal{M}(G, B), i \in I\}$$

is called a minimal parabolic system of characteristic p for G or a p-minimal parabolic system of G, if $G = \{P_i|i \in I\}$ and $G \neq \{P_j|j \in I \setminus \{i\}\}$ for any $i \in I$. The rank of \mathcal{M}_0 is $|I|$. We call \mathcal{M}_0 a geometric p-minimal parabolic system if for all $J, K \subseteq I$ we have $P_{J \cap K} = P_J \cap P_K$. Otherwise \mathcal{M}_0 is called non-geometric.

Provided $B \neq G$, we always have $G = \langle \mathcal{M}(G, B) \rangle$ and so there is always at least one minimal parabolic system of characteristic p for G.

Now suppose that $O_p(G) = 1$. For a minimal parabolic system $\mathcal{M}_0 = \{P_i|P_i \in \mathcal{M}(G, B), i \in I\}$ of G we define a B-parabolic system $\mathcal{X} = \{(P_J, Q_J)\}_{J \subseteq I}$ by

$$P_J = \begin{cases} \{P_j| j \in J\} & \text{if } \emptyset \neq J \subseteq I; \\ B & \text{if } J = \emptyset. \end{cases}$$
and \(Q_J = O_p(P_J) \) for all \(J \subseteq I \). Should \(G \) be a simple group of Lie type of characteristic \(p \), then \(B \) would be the Borel subgroup of \(G \) and \(\{ P_J, J \subseteq I \} \) the parabolic subgroups of \(G \) (containing \(B \)). Further, \(Q_J \) would be the unipotent radical of \(P_J \) for \(J \subseteq I \). Turning to the sporadic simple groups, the \(p \)-minimal parabolic systems were catalogued by Ronan and Stroth [14] for groups whose Sylow \(p \)-subgroups are non-cyclic. (We note that in [14] they require their \(p \)-minimal subgroups to have a non-trivial \(p \)-core, which we do not need to assume here.)

For \(G \) a finite group, \(\text{Irr}(G) \) will denote the set of complex irreducible characters of \(G \). We now give the promised generalization of cuspidal characters.

Definition 1.2. Let \(X \) be an \(X \)-parabolic system of \(G \) where \(X \subseteq G \), and let \(\chi \in \text{Irr}(G) \). Then \(\chi \) is called \(X \)-cuspidal if for all \((P_J, Q_J) \in X \) with \(Q_J \neq 1 \) we have

\[
\sum_{g \in Q_J} \chi(g) = 0. \tag{1}
\]

The condition (1) will be known as the cuspidal condition on \(Q_J \) and is equivalent to \((\chi_{Q_J}, 1_{Q_J}) = 0 \). In an abuse of terminology, we will also sometimes refer to the cuspidal relation holding for \(P_J \) when (1) occurs. Clearly, when the index set \(I = 0 \), we have \(G = P_0 = X \) and \(Q_0 = 1 \), and hence every irreducible character is vacuously \(X \)-cuspidal. When \(X \) is a \(B \)-parabolic system associated to a \(p \)-minimal parabolic system of \(G \), then any \(X \)-cuspidal character will also be called a \(p \)-cuspidal character of \(G \). Consulting [3] Proposition 9.1.1 we see that this generalizes the situation when \(G \) is a simple Lie type group of characteristic \(p \).

Our main theorem is as follows – in its statement the names for the sporadic simple groups and their irreducible characters are as they appear in [4].

Theorem 1.3. Suppose that \(G \) is a finite sporadic simple group with \(X \) an \(X \)-parabolic system of \(G \) given by one of the \(p \)-minimal parabolic systems of \(G \). Let \(\chi \in \text{Irr}(G) \). Then \(\chi \) is \(X \)-cuspidal for the following pairs \((G, \{\chi_J\})\).

(i) \(p = 2 \). \((M_{11}, \{\chi_3, \chi_4\}), (M_{22}, \{\chi_3, \chi_4\}), (M_{23}, \{\chi_3, \chi_4\}), (M_{24}, \{\chi_3, \chi_4\}), (Co_2, \{\chi_3, \chi_{10}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{16}, \chi_{31}, \chi_{32}\}), (Co_1, \{\chi_2, \chi_8, \chi_{11}\}), (Ru, \{\chi_2, \chi_3\}), (Th, \chi_2), (J_4, \{\chi_2, \chi_3\})\).

(ii) \(p = 3 \). \((M_{11}, \{\chi_6, \chi_7\}), (M_{12}, \{\chi_4, \chi_5\}), (Fi_{22}, \{\chi_2\}), (Th, \{\chi_2\})\).

(iii) \(p \geq 5 \). \((J_2, \{\chi_6\}), (HN, \{\chi_4\}), (Th, \{\chi_2\}), (Ly, \{\chi_2, \chi_3\}) (p = 5); (He, \{\chi_2, \chi_3\}) (p = 7); (M_{11}, \{\chi_2, \chi_3, \chi_4\}) (p = 11); (M_{23}, \{\chi_2\}) (p = 23)\).

We direct the reader to Tables [1] [2] and [3] for which \(X \)-parabolic systems arise in Theorem 1.3 as well as the degrees of the various irreducible \(X \)-cuspidal characters. Note that in these tables we have used the same notation for the \(p \)-minimal subgroups as in [14] when the Sylow \(p \)-subgroup of \(G \) is non-cyclic.

We now return to the question of motivation for this study. As we note shortly, the existence of a number of the \(X \)-cuspidal irreducible characters for the sporadic simple groups coincides with interesting and exceptional behaviour.
For example, when \(p = 3 \) and \(G \cong \text{Th} \), we have that \(\chi_2 \) is an irreducible 3-cuspidal character of degree 248. This representation was instrumental in the original construction of \(\text{Th} \) in which \(\text{Th} \) was shown to be a subgroup of \(E_6(3) \), but not a subgroup of \(E_6(q) \) for any other prime \(q \neq 3 \) (see [10], [17]). In [11], Margolin looked at a geometry for the Mathieu group \(M_{24} \). Margolin’s interest stemmed from the two 1333-dimensional irreducible \(GF(2)J_4 \)-representations. Since \(2^{11} : M_{24} \) is a maximal subgroup of \(J_4 \), Margolin considered the restriction of these representations to \(2^{11} : M_{24} \), namely as a faithful 1288-dimensional representation and a 45-dimensional representation having kernel \(2^{11} \). Hence Margolin sought to find a simple explanation for this 45-dimensional representation and this resulted in the construction of a geometry. We note that both 1333-dimensional \(J_4 \)-characters are 2-cuspidal, as are both of the resulting irreducible \(M_{24} \)-characters of degree 45, along with their irreducible restrictions to \(M_{22} \) and \(M_{23} \). So the work presented here, may further highlight certain characters and/or \(\mathcal{X} \)-parabolic systems (and associated geometries) where one might prospect for interesting nuggets.

The sporadic simple groups are something of an unruly bunch, so we can not expect the light cuspidal characters shines on them to reveal all their secrets. Indeed, looking at Theorem 1.3(i) we see that though \(M^{o}L \) (and to a lesser extent \(Fi_{24}^{+} \)) has more minimal parabolic systems than you can shake a stick at, it (and \(Fi_{23} \)) fail to have any cuspidal characters. Moreover, the minimal parabolic systems for \(M_{24} \) and \(He \) (with \(p = 2 \)) have the same diagram (see [14]) yet \(M_{24} \) has 2-cuspidal characters, but \(He \) does not. For the tuples \((G, p) \) given by \((M_{11}, 11) \) and \((M_{23}, 23) \), it is unlikely that the \(p \)-cuspidal characters of \(G \) will give rise to any interesting geometries. Indeed, in both cases a Sylow \(p \)-subgroup of \(G \) is cyclic of order \(p \), and the resulting \(p \)-cuspidal characters have degree \(p-1 \). Similarly, when \((G, p) \) is \((M_{11}, 3) \) or \((Th, 5) \), there is a unique class of elements of order \(p \), and a Sylow \(p \)-subgroup has exponent \(p \). Hence it is improbable that the resulting \(p \)-cuspidal characters lead to interesting geometries. As an aside, we mention that representation theory and minimal parabolic systems have interacted in the modular case (see [13]). Finally we note that \(Co_1 \) and \(Co_2 \) are the proud owners of many irreducible cuspidal characters for \(p = 2 \), and these are definitely worthy of further scrutiny.

This paper is organized as follows. Section 2 consists of some general results on cuspidal characters. Theorem 2.3 and Proposition 2.5 are the exact analogues of [3] 9.1.3 and [3] 9.1.2 respectively. But other results do not generalize from the Lie type group case (see Example 2.4). The last two results of this section are useful for our later calculations. Sections 3, 4, 5 and 6 determine the \(p \)-cuspidal characters for the sporadic groups in the cases where, respectively, \(p = 2 \), \(p = 3 \), \(p = 5 \) and \(p > 5 \).
<table>
<thead>
<tr>
<th>Family</th>
<th>Group</th>
<th>2-Minimal Parabolic System</th>
<th>Rank</th>
<th>Geometric/Non-Geometric</th>
<th>2-Cuspidal Characters (character degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathieu Groups</td>
<td>M_{11}</td>
<td>${ P_1 \sim 2^{1+2}, \text{Sym}(3), P_2 \sim 3^2, S D_{16} }$</td>
<td>2</td>
<td>2</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>M_{12}</td>
<td>${ P_1 \sim 2^{1+2}, \text{Sym}(3), P_3 \sim 3^2, \text{Alt}(6) }$</td>
<td>2</td>
<td>2</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>M_{22}</td>
<td>${ P_1 \sim 2^{1+2}, \text{Sym}(3), P_2 \sim 3^2, \text{Alt}(6) }$</td>
<td>2</td>
<td>2</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>M_{23}</td>
<td>${ P_1 \sim 2^{1+2}, \text{Sym}(3), P_2 \sim 3^2, \text{Sym}(5) }$</td>
<td>2</td>
<td>2</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>M_{24}</td>
<td>${ P_1 \sim 2^{1+2}, \text{Sym}(3), P_2 \sim 3^2, \text{Sym}(5) }$</td>
<td>2</td>
<td>2</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>$M^* L$</td>
<td>${ P_2 \sim 2^{1+2}, \text{Sym}(3), P_3 \sim 2^4, \text{Sym}(5) }$</td>
<td>3</td>
<td>3</td>
<td>Non-Geometric</td>
</tr>
<tr>
<td></td>
<td>C_{01}</td>
<td>${ P_1 \sim [2^2]^{m}, \text{Sym}(3), P_2 \sim [2^2]^{m}, \text{Sym}(3), P_3 \sim [2^2]^{m}, \text{Sym}(3) }$</td>
<td>4</td>
<td>4</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>C_{02}</td>
<td>${ P_1 \sim [2^{15}], \text{Sym}(5), P_2 \sim [2^{17}], \text{Sym}(3), P_3 \sim [2^{17}], \text{Sym}(3) }$</td>
<td>3</td>
<td>3</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>C_{03}</td>
<td>${ P_1 \sim 2^{1+3}, \text{Sym}(3), P_2 \sim 2^{1+3}, \text{Sym}(3), P_3 \sim 2^{1+3}, \text{Sym}(3) }$</td>
<td>3</td>
<td>3</td>
<td>Geometric</td>
</tr>
<tr>
<td></td>
<td>C_{04}</td>
<td>${ P_1 \sim 2^{1+3}, \text{Sym}(5), P_2 \sim 2^{1+3}, \text{Sym}(5), P_3 \sim 2^{1+3}, \text{Sym}(5) }$</td>
<td>3</td>
<td>3</td>
<td>Geometric</td>
</tr>
<tr>
<td>Leech Lattice</td>
<td>$S U_{2}$</td>
<td>${ P_1 \sim 2^{1+3} L_2(4), P_2 \sim 2^{1+3}, (3 \times \text{Sym}(3)), P_3 \sim 2^{1+3} (3 \times \text{Sym}(3)) }$</td>
<td>3</td>
<td>3</td>
<td>Geometric</td>
</tr>
<tr>
<td>and Conway</td>
<td>Groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The 2-minimal parabolic systems and their associated 2-cuspidal characters for the Mathieu, Leech Lattice and Conway sporadic simple groups.
<table>
<thead>
<tr>
<th>Family</th>
<th>Group</th>
<th>2-Minimal Parabolic System</th>
<th>Rank</th>
<th>Geometric/Non-Geometric</th>
<th>2-Cuspidal Characters (character degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td></td>
<td>{P_1 \sim 2^{6+3}.\text{Sym}(3), P_2 \sim 2^{6+3}.\text{Sym}(3), P_3 \sim 2^{6+3}.\text{Sym}(3)}</td>
<td>3</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{P_1 \sim 2^{6+3}.\text{Sym}(3), P_1 \sim 2^{6+3}.\text{Sym}(3), P_1 \sim 2^{6+3}.\text{Sym}(3)}</td>
<td>3</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>HN</td>
<td></td>
<td>{P_1 \sim 2^{1+5}.\text{Alt}(5) \times \mathbb{Z}_2, P_2 \sim 2^{1+5+2+2},\text{Sym}(3)}</td>
<td>2</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td>{P_1 \sim 2^{1+5}, \text{Alt}(9), P_2 \sim 2^{1+5+2+1}.\text{Sym}(3)}</td>
<td>2</td>
<td>Geometric</td>
<td>\chi_2 (248)</td>
</tr>
<tr>
<td>Fi_{22}</td>
<td></td>
<td>{P_1 \sim [2^{15}], \text{Sym}(3), P_2 \sim [2^{10}], \text{Sym}(3), P_3 \sim [2^{4}],\text{Sym}(5)}</td>
<td>3</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>Fi_{23}</td>
<td></td>
<td>{P_1 \sim [2^{17}], \text{Sym}(3), P_1 \sim [2^{17}], \text{Sym}(3), P_2 \sim [2^{17}], \text{Sym}(3), P_3 \sim [2^{15}],\text{Sym}(5)}</td>
<td>4</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{P_1 \sim [2^{17}], \text{Sym}(3), P_2 \sim [2^{17}], \text{Sym}(3), P_3 \sim [2^{17}], \text{Sym}(3), P_4 \sim [2^{17}],\text{Sym}(5)}</td>
<td>4</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{P_1 \sim [2^{17}], \text{Sym}(3), P_2 \sim [2^{17}], \text{Sym}(3), P_3 \sim [2^{17}], \text{Sym}(3), P_4 \sim [2^{17}],\text{Sym}(5)}</td>
<td>4</td>
<td>Non-Geometric</td>
<td>None</td>
</tr>
<tr>
<td>Fi_{24}</td>
<td></td>
<td>{P_1 \sim [2^{20}], L_2(2), P_2 \sim [2^{6}], L_2(2), P_3 \sim [2^{6}], L_2(2), P_4 \sim [2^{6}], L_2(2)}</td>
<td>4</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>J_4</td>
<td></td>
<td>{P_1 \sim [2^{20}], P_2 \sim [2^{8}], P_2 \sim [2^{8}], L_2(2), P_3 \sim [2^{8}], L_2(2)}</td>
<td>5</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>{J_1}</td>
<td>1</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{J_1}</td>
<td>1</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>O’N</td>
<td></td>
<td>{P_1 \sim 4^{*}, 2^{4}, \text{Sym}(3), P_2 \sim 4.L_3(4),2}</td>
<td>2</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>J_3</td>
<td></td>
<td>{P_1 \sim 2^{4+1}.(3 \times \text{Sym}(3)), P_2 \sim 2^{4+1}, L_2(4)}</td>
<td>2</td>
<td>Geometric</td>
<td>None</td>
</tr>
<tr>
<td>R_8</td>
<td></td>
<td>{P_1 \sim 2^{8+4}, \text{Sym}(5), P_2 \sim 2^{8+4},\text{Sym}(3)}</td>
<td>2</td>
<td>Geometric</td>
<td>\chi_2 (378), \chi_3 (378)</td>
</tr>
<tr>
<td>J_4</td>
<td></td>
<td>{P_1 \sim [2^{4}], \text{Sym}(3), P_2 \sim [2^{4}], \text{Sym}(3), P_3 \sim [2^{4}],\text{Sym}(5)}</td>
<td>3</td>
<td>Geometric</td>
<td>\chi_2 (1333), \chi_3 (1333)</td>
</tr>
<tr>
<td>L_2y</td>
<td></td>
<td>{P_1 \sim [2^{4}], \text{Sym}(3), P_2 \sim [2^{4}], \text{Sym}(5)}</td>
<td>2</td>
<td>Geometric</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 2: The 2-minimal parabolic systems and their associated 2-cuspidal characters for the Monster group, its subquotients and the pariah sporadic simple groups.
<table>
<thead>
<tr>
<th>Family</th>
<th>Group</th>
<th>Prime, p</th>
<th>p-Minimal Parabolic System</th>
<th>Rank</th>
<th>Geometric/Non-Geometric</th>
<th>p-Cuspidal Characters (character degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathieu Groups</td>
<td>M_{11}</td>
<td>3</td>
<td>{ M_{11} }</td>
<td>1</td>
<td>Geometric</td>
<td>χ_6 (16), χ_7 (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>{ M_{11} }</td>
<td>1</td>
<td>Geometric</td>
<td>χ_8 (10), χ_9 (10), χ_4 (10)</td>
</tr>
<tr>
<td></td>
<td>M_{12}</td>
<td>3</td>
<td>{ $P_1 \sim 3^2.GL_2(3), P_2 \sim 3^2.GL_2(3)$ }</td>
<td>2</td>
<td>Geometric</td>
<td>χ_4 (16), χ_5 (16)</td>
</tr>
<tr>
<td></td>
<td>M_{23}</td>
<td>23</td>
<td>{ M_{23} }</td>
<td>1</td>
<td>Geometric</td>
<td>χ_2 (22)</td>
</tr>
<tr>
<td>Leech Lattice and Conway Groups</td>
<td>J_2</td>
<td>5</td>
<td>{ J_2 }</td>
<td>1</td>
<td>Geometric</td>
<td>χ_6 (36)</td>
</tr>
<tr>
<td>Monster Group and Subquotients</td>
<td>He</td>
<td>7</td>
<td>{ He }</td>
<td>1</td>
<td>Geometric</td>
<td>χ_2 (51), χ_3 (51)</td>
</tr>
<tr>
<td></td>
<td>HN</td>
<td>5</td>
<td>{ $P_1 \sim 5^{1+4} + 4.A(5), P_2 \sim 5^{1+4} + 4.A(5)$ }</td>
<td>2</td>
<td>Geometric</td>
<td>χ_4 (760)</td>
</tr>
<tr>
<td></td>
<td>Th</td>
<td>3</td>
<td>{ $P_1 \sim 3^{1+2} + 4 + 3^{1+2} + 4.GL_2(3), P_2 \sim 3^{1+2} + 4 + 3^{1+2} + 4.GL_2(3)$ }</td>
<td>2</td>
<td>Geometric</td>
<td>χ_2 (248)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>{ Th }</td>
<td>1</td>
<td>Geometric</td>
<td>χ_2 (248)</td>
</tr>
<tr>
<td></td>
<td>Fi_{22}</td>
<td>3</td>
<td>{ $P_1 \sim 3^3 + 2.GL_2(3), P_2 \sim 3^3 + 2.GL_2(3), P_3 \sim 3^3 + 2.GL_2(3)$ }</td>
<td>3</td>
<td>Geometric</td>
<td>χ_2 (78)</td>
</tr>
<tr>
<td></td>
<td>Ly</td>
<td>5</td>
<td>{ $P_1 \sim 5^{1+4} + 4.A.PGL_2(5), P_2 \sim 5^{1+4} + 4.A.PGL_2(5), P_3 \sim 5^{1+4} + 4.A.PGL_2(5)$ }</td>
<td>3</td>
<td>Geometric</td>
<td>χ_2 (2480), χ_3 (2480)</td>
</tr>
</tbody>
</table>

Table 3: The p-cuspidal characters and associated p-minimal parabolic systems of the sporadic simple groups in the case that $p > 2$.
2 Elementary Properties of \mathfrak{X}-Cuspidal Characters

We recall the notion of the intertwining number of two modules.

Definition 2.1. [10] Let F be a field of characteristic 0, with algebraic closure F^c, let G be a finite group and let V and W be FG-modules. The intertwining number, denoted $i(V,W)$, is defined by

$$i(V,W) := \dim_F \text{Hom}_{FG}(V,W)$$

The intertwining number of modules will be of importance due to its connection with the inner product of the associated characters.

Theorem 2.2. [10, Chapter 3, Theorem 1.1] Let F be an arbitrary field of characteristic 0 and let λ and μ be arbitrary characters of G afforded by FG-modules V and W respectively. Then

$$(\lambda,\mu) = i(V,W).$$

We may use Theorem 2.2 to prove an analogue of Proposition 9.1.3 of [3], the proof of which is almost identical to that used in Carter’s Proposition.

Theorem 2.3. Let \mathfrak{X} be an X-parabolic system of G and $\chi \in \text{Irr}(G)$. Then there exists $(P_J,Q_J) \in \mathfrak{X}$ and an \mathfrak{X}_J-cuspidal character ψ of $P_J = P_J/Q_J$ such that $$(\chi,\psi) \neq 0.$$ We may use Theorem 2.2 to prove an analogue of Proposition 9.1.3 of [3], the proof of which is almost identical to that used in Carter’s Proposition.

Proof. Let $S = \{ J \subseteq I | (\chi_{Q_J},1_{Q_J}) \neq 0 \}$. Note that $S \neq \emptyset$ as $Q_I = 1$. Let J be a minimal element of S and let V be an irreducible C_G-module that affords χ.

Define

$$V' = \{ v \in V | v \cdot u = v \text{ for all } u \in Q_J \}.$$

By Theorem 2.2 as $(\chi_{Q_J},1_{Q_J}) \neq 0$, there exists a non-zero C_{Q_J}-homomorphism from the trivial C_{Q_J}-module to V, and hence V' is non-empty.

Clearly V' is a linear subspace of V, and given $g \in P_J$ and $u \in Q_J$ we have that

$$(vg)u = vg^{-1}g = vg,$$

as $Q_J \leq P_J$. Hence V' is a CP_J-module.

Consider V' as a CP_J-module, having associated character $\phi = \sum_i \phi_i$ (with the ϕ_i irreducible C_{P_J}-characters). So V' affords $\phi_{P_J} = \sum_i (\phi_i)_{P_J}$ and V affords the character χ_{P_J}. Now V' is a CP_J-submodule of V, hence each $(\phi_i)_{P_J}$ is a component of χ_{P_J}. Consequently

$$(\phi_{P_J},\chi) = ((\phi_i)_{P_J},\chi_{P_J}) \neq 0,$$

and χ is a component of $(\phi_i)^G$. Thus it remains to prove that ϕ_i is a cuspidal character.

If ϕ_i is not cuspidal, then $((\phi_i)_{Q_K},1_{Q_K}) \neq 0$ for some $K \subsetneq J$. It follows that $\dim_C \text{Hom}_{Q_K}(1,V) \neq 0$ and hence $(\chi_{Q_K},1_{Q_K}) \neq 0$. Hence $K \in S$, contradicting the minimality of J. Thus the result holds true. □
We illustrate this behaviour with an example.

Example 2.4. $G = \text{Alt}(7)$ has a 2-minimal parabolic system of rank 2 given by $\{P_1, P_2\} \subseteq \mathcal{P}(G, B)$ with $B \cong \text{Dih}(8)$, $P_1 \cong \text{Dih}(3)$ and $P_2 \cong \text{Sym}(4)$. Take $B = \langle (1, 2), (3, 4), (1, 3)(5, 6) \rangle$, $P_1 = \langle (5, 6, 7) \rangle$ and $P_2 = \langle (1, 2, 5)(3, 4, 6) \rangle$. Let X be the B-parabolic system given by $\{\langle P_J, Q_J \rangle | J \subseteq \{1, 2\}\}$ where $P_0 = B$. So $Q_0 = B$, $Q_1 = \langle (1, 2)(3, 4), (1, 3)(2, 4) \rangle$, $Q_2 = \langle (1, 3)(5, 6), (2, 4)(5, 6) \rangle$ and $Q_{\{1, 2\}} = 1$. It follows using $[\mathfrak{B}]$ that for $i = 1, 2$ we have

$$\sum_{g \in Q_i} \chi(g) = \chi(1) + 3\chi(2A) \neq 0$$

for any $\chi \in \text{Irr}(G)$. Thus G has no X-cuspidal characters.

For $\mathcal{P}_i = P_i/Q_i \cong \text{Sym}(3)$ we have that $\mathcal{Q}_0 \cong C_2$. It follows that there is one \mathcal{X}_i-cuspidal character, namely the sign character. We denote this character by ϕ_1 and also think of it as a P_i-character. Using the notation from $[\mathfrak{B}]$, calculations show that the constituent characters of ϕ_1^G are $\chi_3, \chi_4, \chi_7, \chi_9$. Meanwhile the constituent characters of ϕ_2^G are $\chi_3, \chi_4, \chi_5, \chi_7, \chi_8, \chi_9$.

For $\mathcal{P}_0 = 1$ we note that trivial character will be \mathcal{X}_0-cuspidal, and it lifts to the trivial character 1_B. We have that the constituent characters of 1_B^G are $\chi_1, \chi_2, \chi_5, \chi_6, \chi_7, \chi_8, \chi_9$. Thus we observe - not very surprisingly - that Proposition 9.1.5 of $[\mathfrak{B}]$ does not extend to our more general situation, since $(\phi_1^G, \phi_2^G) = 5$, whilst $\phi_1^G \neq \phi_2^G$.

Although by definition, to determine whether or not a character is cuspidal we must check the cuspidal condition for every subgroup in the X-parabolic system, we shall shortly see that this is not actually necessary. First we give the analogue of $[\mathfrak{B}]$ Proposition 9.1.2.

Proposition 2.5. Let G be a group, $X \leq G$ and $\chi \in \text{Irr}(G)$. If X is an X-parabolic system of G of rank n having underlying indexing set I, then the following are equivalent:

(i) χ is a X-cuspidal character of G.

(ii) $(\chi_{Q_J}, 1_{Q_J}) = 0$ for all $J \subseteq I$ such that $Q_J \neq 1$.

(iii) $(\chi, 1^G_J) = 0$ for all $J \subseteq I$ such that $Q_J \neq 1$.

(iv) $\sum_{x \in Q_J} \chi(xg) = 0$ for all $J \subseteq I$ such that $Q_J \neq 1$ and all $g \in G$.

(v) $\sum_{x \in Q_J} \chi(xg) = 0$ for all $J \subseteq I$ such that $Q_J \neq 1$ and all $g \in G$.

Proof. (i) \Rightarrow (ii). Assume that χ is a X-cuspidal character of G. Thus for each pair of subgroups (P_J, Q_J) for $J \subseteq I$ we have that either $Q_J = 1$ or

$$\sum_{x \in Q_J} \chi(x) = 0.$$

In particular

$$\sum_{x \in Q_J} \chi(x)1_{Q_J}(x) = 0$$

and hence \((\chi_{Q_J}, 1_{Q_J}) = 0\) for all \(J \subseteq I\) such that \(Q_J \neq 1\).

(ii) \(\Rightarrow\) (iv) Let \(Q_J\) be such that \(Q_J \neq 1\) (if no such \(Q_J\) exists, the result is vacuously true). Let \(\rho\) be an irreducible representation corresponding to \(\chi\), let \(\rho'\) be an irreducible constituent of \(\rho|_{Q_J}\) and let \(d\) denote the degree of \(\rho'\). The module corresponding to \(\rho'\) has basis \(\{e_1, \ldots, e_d\}\) and hence we may define coefficient functions \(\rho'_{ij}\) for \(i, j = 1, \ldots, d\) by

\[
e_i g = \sum_{j=1}^d \rho'_{ij}(g)e_j.
\]

By the orthogonality relations for the coefficient functions (as given in [3, Section 6.1]), it follows that

\[
(\rho'_{ij}, (1_{Q_J}, 1_{Q_J})) = 0
\]

for all \(i, j = 1, \ldots, d\), as \(1_{Q_J}\) is not an irreducible constituent of \(\chi_{Q_J}\). Thus

\[
\sum_{x \in Q_J} \rho'_{ij}(x) = 0
\]

for all \(i, j\) and hence

\[
\sum_{x \in Q_J} \rho'(x) = 0
\]

for all \(i, j\). Since this holds for all irreducible components \(\rho'\) of \(\chi_{Q_J}\) we deduce that

\[
\sum_{x \in Q_J} \rho(x) = 0.
\]

(2)

Now let \(g \in G\) be given. Multiplying (2) on the right by \(\rho(g)\) gives

\[
\sum_{x \in Q_J} \rho(xg) = \left(\sum_{x \in Q_J} \rho(x)\right) \rho(g) = 0.
\]

Consequently, taking traces we obtain

\[
\sum_{x \in Q_J} \chi(xg) = 0.
\]

(iv) \(\Rightarrow\) (i) Taking \(g = 1\) we see that \(\chi\) is a \(\mathfrak{X}\)-cuspidal character of \(G\).

(ii) \(\Rightarrow\) (v) \(\Rightarrow\) (i) This follows analogously by multiplying on the left by \(\rho(g)\) in (2).

(ii) \(\Leftrightarrow\) (iii) This follows by Frobenius reciprocity.

Proposition 2.5 infers that we only have to check that the cuspidal condition holds for certain “maximal” subgroups of a parabolic system to ascertain whether a character is cuspidal.
Corollary 2.6. Let G be a group, $X \leq G$, $I = \{1, \ldots, n\}$ and let $\mathcal{X} = \{(P_J, Q_J)|J \subseteq I\}$ be an X-parabolic system of G. Define
$$\mathfrak{Y} := \{J \subseteq I|Q_J \neq 1 \text{ and if } J \subseteq K \subseteq I, \text{ then } Q_K = 1\}.$$ Then $\chi \in \text{Irr}(G)$ is cuspidal precisely when
$$\sum_{x \in Q_J} \chi(x) = 0$$
for all Q_J such that $J \in \mathfrak{Y}$.

Proof. The condition is clearly necessary. To see that it is sufficient, let $J' \subseteq I$ be such that $Q_{J'} \neq 1$. We shall show that
$$\sum_{x \in Q_{J'}} \chi(x) = 0. $$
Since $Q_{J'} \neq 1$, we see that $J' \subseteq I$ and there exists some $J \in \mathfrak{Y}$ such that $J' \subseteq J$. Consequently $Q_J \leq Q_{J'}$. By assumption
$$\sum_{x \in Q_J} \chi(x) = 0,$$
and so $(\chi|_{Q_J}, 1_{Q_J}) = 0$. The proof of Proposition 2.5 asserts that
$$\sum_{x \in Q_J} \chi(xg) = 0$$
for all $g \in G$.

Let T denote a right transversal of Q_J in $Q_{J'}$. Then
$$\sum_{x \in Q_{J'}} \chi(x) = \sum_{t \in T} \left(\sum_{x \in Q_J} \chi(xt) \right) = 0$$
as required. \hfill \qed

The final result that we will use in classifying the p-cuspidal characters of the sporadic simple groups concerns irreducible characters of odd degree.

Lemma 2.7. Let G be a finite group and p an odd prime such that $|G| = p^a m$ for some $a \geq 1$ with $(p, m) = 1$. Assume that G has a p-minimal parabolic system containing a parabolic subgroup with non-trivial p-core. If for each G-conjugacy class, C, of elements of order p^b for $b \leq a$ and all $g \in C$ we have that
$$\langle g \rangle \cap \{g \in G \mid |g| = p^b\} \subseteq C,$$
then every p-cuspidal character of G has even degree.

Proof. Assume that condition (3) holds for all non-trivial powers of p. Then a non-trivial p-core, Q, of a parabolic subgroup will intersect every conjugacy class of p-elements in a set of even order. Thus if the degree of $\chi \in \text{Irr}(G)$ is odd, then the same is true of
$$\sum_{g \in Q} \chi(g),$$
and hence χ is not a p-cuspidal character of G. \hfill \qed
We now work systematically through the sporadic simple groups, determining for each group \(G \) and each 2-minimal parabolic system of \(G \), which characters \(\chi \in \text{Irr}(G) \) are 2-cuspidal. A summary of our results is given in Tables 1 and 2. Throughout, the notation \(\chi_i \in \text{Irr}(G) \) is the same as that used in [4]. We shall also use the standard notation from [4] for the conjugacy classes of \(G \).

3.1 The Mathieu Groups

\(M_{11} \)

There are three 2-minimal parabolic subgroups of \(M_{11} \), namely

\[
P_1 \sim 2^{1+2} \cdot \text{Sym}(3), \quad P_2 \sim 3^2 \cdot \text{SD}_{16}, \quad \text{and} \quad P_3 \sim \text{Alt}(6) : 2,
\]

(where \(\text{SD}_{16} \) is the semidihedral group of order 16) and these give rise to three 2-minimal parabolic systems, each of rank 2. Since \(O_2(P_2) = O_2(P_3) = 1 \), we must consider a Sylow 2-subgroup of \(M_{11} \). Such a subgroup will intersect the \(M_{11} \)-conjugacy classes 1, 2, 4, 8 and 8 in 1, 5, 6, 2 and 2 elements respectively. It follows that the cuspidal relation for a Sylow 2-subgroup holds for \(\chi_3, \chi_4 \in \text{Irr}(M_{11}) \) (both of degree 10). Consequently, \(\chi_3 \) and \(\chi_4 \) are 2-cuspidal characters of the minimal parabolic system \(\{P_2, P_3\} \). Finally, as \(O_2(P_1) \) contains 1, 1 and 6 elements from the classes 1, 2 and 4 respectively and \(\chi_i(1A) + 12 \cdot \chi_i(2A) + 7 \cdot \chi_i(4A) + 6 \cdot \chi_i(4B) = 64 \), for \(i = 3, 4 \), we see that the minimal parabolic systems containing \(P_1 \) admit no 2-cuspidal characters.

\(M_{12} \)

There are no 2-cuspidal characters for the unique 2-minimal parabolic system of \(M_{12} \) given by

\[
\{ P_1 \sim 4^2 \cdot \text{Sym}(3), P_2 \sim 2^{1+4} \cdot \text{Sym}(3) \}.
\]

To see this, we observe that \(O_2(P_1) \) intersects the \(M_{12} \)-conjugacy classes 1, 2, 2, 4 and 4 in 1, 4, 15, 6 and 6 elements respectively, whilst \(O_2(P_2) \) intersects these classes in 1, 12, 7, 6 and 6 elements respectively. Consequently the only character satisfying the cuspidal relation for \(O_2(P_1) \) is \(\chi_{13} \) (of degree 120). However

\[
\chi_{13}(1A) + 12 \cdot \chi_{13}(2A) + 7 \cdot \chi_{13}(2B) + 6 \cdot \chi_{13}(4A) + 6 \cdot \chi_{13}(4B) = 64.
\]

\(M_{22} \)

There is a unique 2-minimal parabolic system for \(M_{22} \), namely

\[
\{ P_1 \sim 2^{4+2} \cdot \text{Sym}(3), P_2 \sim 2^4 \cdot \text{Sym}(5) \}.
\]
The 2-minimal parabolic systems are given by those subgroups which feature in 2-minimal parabolic systems of M_{24}. For each sub-maximal parabolic, the only irreducible characters of degree 45, χ, are the two characters of degree 45, χ_3 and χ_4.

M_{23}

The group M_{23} has seven conjugacy classes of 2-minimal parabolic subgroups, six of which feature in 2-minimal parabolic systems of M_{23}. Using the notation of [14], these subgroups are

$$P_1 \sim 2^{4+2}, \text{Sym}(3), \quad P_5 \sim 2^{4+2}, \text{Sym}(3), \quad P_3 \sim 2^{4+2}, \text{Sym}(3)$$

The 2-minimal parabolic systems are given by $\{P_1, P_3, P_7\}, \{P_3, P_4, P_7\}, \{P_2, P_3, P_7\}, \{P_1, P_6, P_7\}, \{P_2, P_6, P_7\}, \{P_3, P_6, P_7\}$ and $\{P_4, P_6, P_7\}$.

Considering the maximal 2-parabolic subgroups of these systems, we see that the maximal 2-parabolic subgroups involving P_6 and P_7 have trivial 2-cores. Thus we need to check sub-maximal parabolics in order to apply Corollary 2.6.

The 2-cores $O_2(P_i)$ and $O_2(P_7)$ intersect the M_{22}-conjugacy classes 1A, 2A, 4A and 4B in 1, 27, 12, 24 and 1, 15, 0 and 0 elements respectively. The only elements $\chi \in \text{Irr}(M_{22})$ satisfying

$$\chi(1A) + 27 \cdot \chi(2A) + 12 \cdot \chi(4A) + 24 \cdot \chi(4B) = \chi(1A) + 15 \cdot \chi(2A) = 0$$

are the two characters of degree 45, χ_3 and χ_4.

M_{24}

The Mathieu group M_{24} has a unique 2-minimal parabolic system given by

$$\{P_1 \sim 2^{6+3}, \text{Sym}(3), P_2 \sim 2^{6+3}, \text{Sym}(3), P_3 \sim 2^{6+3}, \text{Sym}(3)\}.$$

The maximal parabolic subgroups P_{12}, P_{13} and P_{23} all have non-trivial 2-cores, and their intersections with the M_{24}-conjugacy classes are summarised in Table 4. It follows that the characters χ_3, χ_4, χ_{12}, χ_{13}, χ_{15} and χ_{16} satisfy the cuspidal relation for P_{12}, as do χ_3, χ_4, χ_5, χ_6, χ_{12}, χ_{13}, χ_{15} and χ_{16} for P_{13} and χ_3, χ_4, χ_5, χ_6 and χ_8 for P_{23}. We conclude that χ_3 and χ_4 - both of degree 45 - are the only 2-cuspidal characters of M_{24}.

<table>
<thead>
<tr>
<th>Parabolic Subgroup</th>
<th>2-core</th>
<th>Order of intersection with M_{24}-class</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{12}</td>
<td>2^9</td>
<td>1 45 18 0 0</td>
</tr>
<tr>
<td>P_{13}</td>
<td>2^{6+2}</td>
<td>1 57 54 72 72</td>
</tr>
<tr>
<td>P_{23}</td>
<td>2^{4+3}</td>
<td>1 29 42 56 0</td>
</tr>
</tbody>
</table>

Table 4: The 2-cores of maximal parabolic subgroups of M_{24}.
The intersections of the 2-cores of the maximal 2-parabolic subgroups of Co_1 with the Co_1-conjugacy classes.

Table 5: The intersections of the 2-cores of the maximal 2-parabolic subgroups of Co_1 with the Co_1-conjugacy classes.

<table>
<thead>
<tr>
<th>Conjugacy Class</th>
<th>1A</th>
<th>2A</th>
<th>2B</th>
<th>2C</th>
<th>4A</th>
<th>4B</th>
<th>4C</th>
<th>4D</th>
<th>4E</th>
<th>4F</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{123}</td>
<td>1</td>
<td>1095</td>
<td>1344</td>
<td>4984</td>
<td>336</td>
<td>22512</td>
<td>18816</td>
<td>38976</td>
<td>0</td>
<td>43008</td>
</tr>
<tr>
<td>P_{124}</td>
<td>1</td>
<td>1095</td>
<td>576</td>
<td>6264</td>
<td>720</td>
<td>13680</td>
<td>17280</td>
<td>25920</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_{134}</td>
<td>1</td>
<td>759</td>
<td>0</td>
<td>1288</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_{234}</td>
<td>1</td>
<td>551</td>
<td>0</td>
<td>2520</td>
<td>240</td>
<td>15120</td>
<td>896</td>
<td>13440</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2 The Leech Lattice and Conway Groups

HS

The Higman-Sims group has a unique 2-minimal parabolic system of the form

$$\{ P_1 \sim 4.2^4.\text{Sym}(5), P_2 \sim 4^3.2^2.\text{Sym}(3) \}.$$

Considering $O_2(P_1)$, we see that it intersects the HS-conjugacy classes $1A$, $2A$, $2B$, $4A$, $4B$ and $4C$ in 1, 31, 0, 2, 30 and 0 elements respectively. Consequently, there are no 2-cuspidal characters of HS, as the cuspidal relation does not hold for P_1.

J2

There is a unique 2-minimal parabolic system of J_2 given by

$$\{ P_1 \sim 2^{2+4}.3.\text{Sym}(3), P_2 \sim 2^{1+4}.L_2(4) \}.$$

The intersections of $O_2(P_1)$ with the J_2-classes $1A$, $2A$, $2B$ and $4A$ have orders 1, 3, 24 and 36 respectively. Consequently, the cuspidal relation on P_1 holds for the irreducible characters χ_4, χ_5, χ_{14} and χ_{15}. Meanwhile, the 2-core $O_2(P_2)$ intersects the given J_2-classes in 1, 11, 0 and 20 elements respectively, meaning that the cuspidal relation holds on P_2 for the characters χ_8, χ_9 and χ_{18}. We conclude that J_2 admits no 2-cuspidal characters.

Co1

The largest Conway group, Co_1, admits a unique 2-minimal parabolic system, having rank 4. Its minimal parabolic subgroups are given by $P_i \sim [2^{20_i}].\text{Sym}(3)$ for $i = 1, \ldots, 4$ and the corresponding 2-maximal parabolic subgroups have the form $P_{123} \sim 2^{2+12+3}.(\text{Sym}(3) \times L_3(2))$, $P_{124} \sim 2^{4+12}.(\text{Sym}(3) \times 3.\text{Sp}_4(2))$, $P_{134} \sim 2^{11}.M_{24}$ and $P_{234} \sim 2^{1+8+6}.L_4(2)$. The orders of the intersections of the 2-cores of the maximal parabolic subgroups with the Co_1-conjugacy classes are given in Table 5. A summary of the elements of $\text{Irr}(Co_1)$ which satisfy the cuspidal relation for each of the maximal parabolics is given in Table 6. We conclude that Co_1 admits three 2-cuspidal characters, namely χ_2, χ_8 and χ_{11}.

Co2

The group Co_2 has a 2-minimal parabolic system of the form $\{ P_1, P_2, P_3 \}$, where $P_1 \sim [2^5].\text{Sym}(5)$ and $P_i \sim [2^{17_i}].\text{Sym}(3)$ for $i = 2, 3$. This system has maximal
Parabolic Subgroup	Characters satisfying the cuspidal relation (character degrees)
P_{23} | $\chi_2 (276), \chi_4 (1771), \chi_5 (8855), \chi_8 (37674), \chi_{11} (94875), \chi_{13} (345345), \chi_{15} (483000), \chi_{21} (1434510), \chi_{23} (1771000), \chi_{27} (2464749), \chi_{29} (2464749)$
P_{24} | $\chi_2 (276), \chi_8 (37674), \chi_{11} (94875), \chi_{21} (1434510), \chi_{27} (2464749), \chi_{29} (2464749)$
P_{34} | $\chi_2 (276), \chi_4 (1771), \chi_5 (8855), \chi_8 (37674), \chi_{11} (94875), \chi_{13} (345345), \chi_{15} (483000), \chi_{21} (1434510), \chi_{23} (1771000), \chi_{27} (2464749), \chi_{29} (2464749)$
P_{234} | $\chi_2 (276), \chi_4 (1771), \chi_8 (37674), \chi_9 (44275), \chi_{11} (94875), \chi_{13} (345345)$

Table 6: The elements of $\text{Irr}(Co_1)$ satisfying the cuspidal relation for each maximal 2-parabolic subgroup of Co_1.

<table>
<thead>
<tr>
<th>2-core</th>
<th>Order of intersection with Co_2-conjugacy class</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_2(P_{12})$</td>
<td>1 125 490 2328 240 1440 2400 1680 1920 5760 0 0</td>
</tr>
<tr>
<td>$O_2(P_{13})$</td>
<td>1 77 330 616 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>$O_2(P_{23})$</td>
<td>1 141 634 1848 240 3808 2464 336 8064 8064 0</td>
</tr>
</tbody>
</table>

Table 7: The 2-cores of the maximal parabolic subgroups of Co_2.

parabolic subgroups $P_{12} \sim 2^{4+10} \cdot \text{Sym}(3) \times \text{Sym}(5)$, $P_{13} \sim 2^{10} \cdot M_{22}, 2$ and $P_{23} \sim 2^{1+8+6} \cdot L_3(2)$. The orders of the intersections of the 2-cores of these maximal parabolics with the relevant Co_2-conjugacy classes are given in Table 7.

It follows that the cuspidal relation holds on P_{12} for the characters $\chi_2, \chi_3, \chi_10, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{16}, \chi_{21}, \chi_{22}, \chi_{23}, \chi_{31}, \chi_{32}$ and χ_{37}, it holds on P_{13} for $\chi_3, \chi_5, \chi_9, \chi_{10}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{16}, \chi_{25}, \chi_{31}$ and χ_{32}, and the cuspidal relation holds on P_{23} for the irreducible characters $\chi_2, \chi_3, \chi_5, \chi_7, \chi_8, \chi_9, \chi_{10}, \chi_{11}, \chi_{12}, \chi_{13}, \chi_{16}, \chi_{20}, \chi_{21}, \chi_{22}, \chi_{23}, \chi_{25}, \chi_{31}, \chi_{32}, \chi_{36}, \chi_{37}$ and χ_{40}. Consequently, Co_2 admits eight 2-cuspidal characters namely χ_3 (of degree 253), χ_{10} (9625), χ_{11} (9625), χ_{12} (10395), χ_{13} (10395), χ_{16} (31625), χ_{31} (239085) and χ_{32} (239085).

Co_3

There is a unique 2-minimal parabolic system of Co_3 given by

$$\{ P_1 \sim 2^{4+4+1} \cdot \text{Sym}(3), P_2 \sim 2^{4+4+1} \cdot \text{Sym}(3), P_3 \sim 2^{4+4+1} \cdot \text{Sym}(3) \},$$

which has maximal parabolic subgroups $P_{12} \sim 2^{2+6} \cdot (\text{Sym}(3) \times \text{Sym}(3))$, $P_{13} \sim 4^3.2.L_3(2)$ and $P_{23} \sim 4^3.2.\text{Sp}_4(2)$. We have that $O_2(P_{23})$ intersects the Co_3-conjugacy classes $1A, 2A, 2B, 4A$ and $4B$ in 1, 31, 0, 2 and 30 elements respectively, and hence the cuspidal condition does not hold for P_{23}. Thus Co_3 admits no 2-cuspidal characters.

$M^\sigma L$

The McLaughlin group has a multitude of 2-minimal parabolic systems comprising of the 2-minimal parabolic subgroups P_i and P_i^σ for $i = 1, \ldots, 5$, where σ is a non-trivial outer automorphism of $M^\sigma L$ of order 2. Here $P_3^\sigma = P_3, P_4^\sigma = P_4,$
rise to the minimal parabolic systems

\[\{ P_i, P_5, P_5^5 \}, \{ P_5^2, P_5, P_5^7 \}, \{ P_5^2, P_5, P_5^7 \}, \{ P_5^2, P_5, P_5^7 \}. \]

There is a unique 2-minimal parabolic system of \(HN \) in \([8, \text{Table IV}]\), and we adopt the notation given in \([8]\) for the 2-minimal parabolic subgroups satisfying

\[\{ P_1, P_5, P_5^7 \}, \{ P_1^2, P_2, P_5 \}, \{ P_1, P_3, P_5^2 \}, \{ P_1, P_3, P_5^5 \}, \{ P_1, P_3, P_5^{25} \}, \{ P_1, P_1^2, P_2 \}, \{ P_1, P_1^2, P_2^3 \}, \{ P_1, P_1^2, P_3 \}. \]

Since the 2-cores of \(P_5 \) and \(P_5^5 \) are elementary abelian of rank 4, we see that any minimal parabolic system containing either of these minimal parabolics will not admit a 2-cuspidal character. Conversely, any 2-minimal parabolic system not containing these subgroups will contain the parabolic subgroup \(P_{11^r} := (P_1, P_1^r) \). Since \(O_2(P_{11^r}) \) intersects the \(M^e L \)-conjugacy classes 1A, 2A and 4A in 1, 19 and 12 elements respectively, we see that the cuspidal relation does not hold for \(P_{11^r} \) and hence none of the 2-minimal parabolic systems of \(M^e L \) admit a 2-cuspidal character.

\(Suz \)

The group \(Suz \) has a unique 2-minimal parabolic system, which has rank 3. Its minimal parabolic subgroups satisfy \(P_1 \sim 2^{4+6+1}.L_2(4) \), \(P_2 \sim 2^{4+6+2}.(3 \times L_2(2)) \) and \(P_3 \sim 2^{6+4+2}.(3 \times L_2(2)) \). The maximal parabolic subgroups are given by \(P_{12} \sim 2^{1+6}.U(2) \), \(P_{13} \sim 2^{1+8}.(\text{Sym}(3) \times L_2(4)) \) and \(P_{23} \sim 2^{1+6}.3.3p_4(2)' \). The 2-core \(O_2(P_{12}) \) intersects the \(Suz \)-conjugacy classes 1A, 2A and 4A in 1, 55 and 72 elements respectively. We deduce that there are no 2-cuspidal characters of \(Suz \).

3.3 The Monster Group and its Subquotients

\(He \)

There are four 2-minimal parabolic subgroups of \(He \) given by \(P_1 \cong P_4 \sim 2^{6+3}.\text{Sym}(3) \) and \(P_2 \cong P_5 \sim 2^{6+3}.\text{Sym}(3) \). These give rise to the 2-minimal parabolic systems \(\{ P_1, P_2, P_4 \} \) and \(\{ P_1, P_3, P_4 \} \). Considering the maximal parabolic subgroups \(P_{14} \) and \(P_{13} \cong P_{24} \) we see that \(O_2(P_{14}) \) intersects the \(He \)-conjugacy classes 1A, 2A, 2B, 4A, 4B and 4C in 1, 18, 45, 0, 0 and 0 elements respectively, whilst \(O_2(P_{13}) \) intersects the respective conjugacy classes in 1, 42, 29, 0, 56 and 0 elements. It follows that the cuspidal relation for \(P_{14} \) holds for the characters \(\chi_7, \chi_8 \in \text{Irr}(He) \), whilst for \(P_{13} \cong P_{24} \) the cuspidal relation holds for \(\chi_4, \chi_5 \in \text{Irr}(He) \). Since each 2-minimal parabolic system contains \(P_{14} \) and either \(P_{13} \) or \(P_{24} \), we conclude that there are no 2-cuspidal characters of \(He \).

\(HN \)

There is a unique 2-minimal parabolic system of \(HN \) given by

\[\{ P_1 \sim 2^{1+8}.\text{Alt}(5) \wr \mathbb{Z}_2, P_2 \sim 2^{2+3+6+2}.3.\text{Sym}(3) \}. \]

We consider the minimal parabolic subgroup \(P_1 \), whose character table is given in \([8, \text{Table IV}]\), and we adopt the notation given in \([8]\) for the \(P_1 \)-conjugacy
classes. We have that each P_i-class is either contained in, or is disjoint from $O_2(P_i)$. It follows that

$$O_2(P_i) = 1_1 \cup 2_1 \cup 2_2 \cup 2_3 \cup 4_1.$$

Considering the centralizer orders of 1_1, 2_1, 2_2, 2_3 and 4_1 in P_i and the orders of the centralizers of 2-elements in HN, we see that the P_i-classes 2_1 and 2_2 are contained in the HN-class $2B$, the P_i-class 2_3 lies in either HN-class $2A$ or $2B$, and the P_i-class 4_1 is contained in the HN-class $4A$. It follows that $|O_2(P_i) \cap 2A| = 0$ or 120, $|O_2(P_i) \cap 2B| = 151$ or 271 and $|O_2(P_i) \cap 4A| = 240$. It follows that the cuspidal relation on P_i does not hold for any $\chi \in \text{Irr}(HN)$, and hence there are no 2-cuspidal characters of HN.

Th

The 2-minimal parabolic system

$$\{P_1 \sim 2^{1+8}, \text{Alt}(9), P_2 \sim 2^{5+6+2+1}.\text{Sym}(3)\}$$

of Th is unique. Considering fusion within the maximal subgroup $2^5\cdot L_5(2) > P_2$ we find that $O_2(P_2)$ intersects the Th-conjugacy classes 1A, 2A, 4A, 4B, 8A and 8B in 1, 687, 656, 7104, 4864 and 3072 elements respectively. It follows that the cuspidal relation holds on P_2 for $\chi_2, \chi_6 \in \text{Irr}(Th)$. Considering the normal subgroups of a Sylow 2-subgroup of $2^5\cdot L_5(2)$ having order 2^9 and exponent 4, we see that for each such subgroup the only element of $\text{Irr}(Th)$ for which the cuspidal relation holds is χ_2 of degree 248. Thus χ_2 is the unique 2-cuspidal character of Th.

Fi_{22}

There is a unique 2-minimal parabolic system of Fi_{22} given by $\{P_1, P_2, P_3\}$ where $P_i \sim [2^{16}].\text{Sym}(3)$ for $i = 1, 2$ and $P_3 \sim [2^{14}].\text{Sym}(5)$. This system has maximal parabolic subgroups $P_{12} \sim 2^{9+4+2}.(\text{Sym}(3) \times \text{Sym}(3))$, $P_{13} \sim 2^{4+8}.U_4(2).2$ and $P_{23} \sim 2^{10}.M_{22}$. The 2-core $O_2(P_{13})$ intersects the Fi_{22}-conjugacy classes 1A, 2A, 2B, 2C, 4A, 4B, 4C, 4D and $4E$ in 1, 2, 271, 270, 480, 0, 0, 0 and 0 elements respectively. We see that the cuspidal relation does not hold on P_{13} and hence Fi_{22} admits no 2-cuspidal characters.

Fi_{23}

The group Fi_{23} has eight 2-minimal parabolic subgroups, seven of which feature in 2-minimal parabolic systems.Using the notation of [14] these have the form $P_i \sim [2^{17}].\text{Sym}(3)$ for $i = 1, \ldots, 5$ and $P_i \sim [2^{15}].\text{Sym}(5)$ for $i = 7, 8$. These give rise to the geometric 2-minimal parabolic systems $\{P_1, P_3, P_5, P_8\}$ and $\{P_1, P_4, P_5, P_8\}$ and the non-geometric systems $\{P_1, P_2, P_3, P_8\}$ and $\{P_1, P_7, P_8\}$.

The maximal parabolic subgroups of these systems are

$$P_{325} \sim 2^{10+4}.(\text{Sym}(3) \times \text{Alt}(7)), \quad P_{128} = P_{129} = P_{148} \sim 2^2 \times 2^{1+8}.(3 \times U_4(2)).2,$$
$$P_{135} \sim [2^{14}].(\text{Sym}(3) \times L_3(2)), \quad P_{345} \sim [2^{14}].(\text{Sym}(3) \times L_3(2)),$$
$$P_{158} \sim 2.Fi_{22}, \quad P_{17} \sim [2^{14}].(\text{Sym}(3) \times \text{Sym}(5)),$$
$$P_{18} \sim [2^{11}].U_4(2).2, \quad P_{258} = P_{368} = P_{258} \sim 2^{11}.M_{23},$$
$$P_{28} \sim 2^{11}.M_{21}.2.$$
It is easy to check that the cuspidal relation does not hold for P_{18}. and hence the three 2-minimal parabolic systems of rank 4 do not admit any 2-cuspidal characters.

Finally, we consider the maximal parabolic subgroup $P_{18} < P_{158}$. We see that the 2-core $O_2(P_{18})$ intersects the Fi_{24}-conjugacy classes $1A, 2A, 2B, 2C, 4A, 4B, 4C$ and $4D$ in 1, 3, 273, 811, 0, 960, 0 and 0 elements respectively. Consequently, the cuspidal relation does not hold for P_{18}, and hence there are no 2-cuspidal characters of Fi_{24}.

Fi_4

There is a unique 2-minimal parabolic system of Fi_4, which has rank 4. The maximal parabolic subgroups are $P_a \sim 2^{1+12}.(3.U_4(3).2)$, $P_b \sim 2^{3+12+2}.(\text{Sym}(3) \times Sp_4(2^4))$, $P_c \sim 2^{8+6+3}.(L_3(2) \times \text{Sym}(3))$ and $P_d \sim 2^{11}.M_{24}$. Since $O_2(P_d)$ is elementary abelian, we consider the minimum value that each $\chi \in \text{Irr}(Fi_4)$ takes on elements of order 2. We immediately deduce that the only possible 2-cuspidal character of Fi_4 is χ_2 of degree 8671. For χ_2 to be 2-cuspidal, we would require an integer solution to

$$\chi_2(1A) + j \cdot \chi_2(2A) + (2^{11} - j - 1) \cdot \chi_2(2B) = 0.$$

Since no such solution exists, we conclude that there are no 2-cuspidal characters of Fi_4.

B

The baby monster has five conjugacy classes of 2-minimal parabolic subgroups having representatives $P_i \sim [2^{4i}], \text{Sym}(3)$ for $i = 1, \ldots, 4$ and $P_5 \sim [2^{38}], \text{Sym}(5)$. These give rise to a unique 2-minimal parabolic system $\{P_1, P_2, P_3, P_4\}$. The maximal parabolic subgroups of this system are given by $P_{123} \sim 2^{9+16+6+4}.L_4(2)$, $P_{125} \sim 2^{3+32}.(L_3(2) \times \text{Sym}(5))$, $P_{135} \sim 2^{2+10+20}.(\text{Sym}(3) \times M_{24})$ and $P_{235} \sim 2^{1+22}.C_{O_2}$. All of these maximal parabolic subgroups are 2-radical. Indeed, from [20] we observe that all 2-parabolic subgroups generated by P_1, \ldots, P_5 are 2-radical with the exception of P_3, P_4 and P_{34}. The reader can find further information regarding the structure of the 2-radical parabolic subgroups in [20].

The fusion of elements within the 2-cores of P_{125}, P_{135} and P_{235} is given in [15]. We see that there are no characters of B satisfying the cuspidal condition for the 2-core $O_2(P_{335})$ and hence the baby monster admits no 2-cuspidal characters.

M

The monster group has a unique 2-minimal parabolic system, $\{P_1, P_2, P_3, P_4, P_5\}$, where $P_i \sim [2^{4i}].L_2(2)$ for $i = 1, \ldots, 5$. The maximal parabolic subgroups are given by $P_{1234} \sim 2^{3+5+16+10}.L_5(2)$, $P_{1235} \sim 2^{4+1+2+8+8+12+4}.(L_4(2) \times \text{Sym}(3))$, $P_{1245} \sim 2^{3+36}.(L_3(2) \times 3.Sp_4(2))$, $P_{1345} \sim 2^{2+11+22}.(\text{Sym}(3) \times M_{24})$ and $P_{2345} \sim 2^{1+24}.C_{O_1}$.

We observe that there is no $\chi \in \text{Irr}(M)$ that satisfies the cuspidal relation for $O_2(P_{2345})$. Indeed, let z be an involution of M in class $2B$ and let Λ be the Leech lattice as defined in [1]. Moreover, let Λ_i be the set of all vectors in Λ of
type i defined as

$$\Lambda_i := \{v \in \Lambda | (v, v)/16 = i \}.$$

Then calculations in \cite{1} show that

- $|\Lambda_2| = 196,560 = 2^4 \cdot 3^3 \cdot 5 \cdot 7 \cdot 13$,
- $|\Lambda_3| = 2^{12}(2^{12} - 1) = 2^{12} \cdot 3^2 \cdot 5 \cdot 7 \cdot 13$, and
- $|\Lambda_4| = 398,034,000 = 2^4 \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 13$.

Let $G := G/\langle \varepsilon_X \rangle$ (where ε_X is the scalar map defined on Λ by -1). Thus \widetilde{G} is equal to CO_1. Since ε_X acts trivially on $\Lambda := \Lambda/2\Lambda$, and G acts transitively on the set Λ (Lemma 22.12(1)) and on each of the sets $\Lambda_2, \Lambda_3, \Lambda_4$ (Lemma 22.14(1)), it follows that \widetilde{G} acts transitively on the sets $\Lambda_2, \Lambda_3, \Lambda_4, \Lambda_5$ (where Λ_i is the image of Λ_i in Λ).

Without loss, we may assume that z is the central involution of the extraspecial group $O_2(2345)$ and we define $P_{2345} := P/\langle z \rangle$. By considering the action of G on Λ we have that

$$\begin{align*}
|\text{Stab}_G(\lambda_2)| & = 2^{17} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23, \\
|\text{Stab}_G(\lambda_3)| & = 2^{9} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23, \\
|\text{Stab}_G(\lambda_4)| & = 2^{17} \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23
\end{align*}$$

(4)

(where $\lambda_i \in \Lambda_i$). It follows that

$$\begin{align*}
|\text{Stab}_{P_{2345}}(\lambda_2)| & = 2^{41} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23, \\
|\text{Stab}_{P_{2345}}(\lambda_3)| & = 2^{43} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23, \\
|\text{Stab}_{P_{2345}}(\lambda_4)| & = 2^{41} \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23.
\end{align*}$$

The question remains, how does the element λ_i lift to the extraspecial group $2^{1+24} = O_2(2345)$? Once this is established, we may then use the centralizer orders

$$\begin{align*}
|C_M(2A)| & = 2^{42} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47, \\
|C_M(2B)| & = 2^{46} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23, \\
|C_M(4A)| & = 2^{34} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23, \\
|C_M(4B)| & = 2^{27} \cdot 3^6 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17, \\
|C_M(4C)| & = 2^{24} \cdot 3^4 \cdot 5^7, \text{ and} \\
|C_M(4D)| & = 2^{27} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13
\end{align*}$$

(5)

to determine the fusion within $O_2(2345)$. Indeed, we have that $C_{P_{2345}}(\lambda_2) \sim 2^{24}.CO_2$, $C_{P_{2345}}(\lambda_3) \sim 2^{24}.CO_3$ and $C_{P_{2345}}(\lambda_4) \sim 2^{24}.(2^{11} : M_{24})$.

There are two possible ways in which a λ_i can lift into 2^{1+24}, namely to an abelian subgroup of order 4 of the form (λ_i, z) having exponent 2 or 4. The former case occurs when $|\Lambda_i| = 2$, whilst the latter case occurs when $|\Lambda_i| = 4$.

19
and hence $\lambda_3^2 = z$. Since $(4A)^3 = 4A$, $(4B)^3 = 4B$, $(4C)^3 = 4C$ and $(4D)^3 = 4D$, we may use the centralizer and stabilizer orders from [5] and [4] to see that the only possible elements of order 4 in P_{2345} must lie in the M-conjugacy class 4A. Since the exponent of 2^{1+24} is 4, we conclude that the elements of the orbit λ_3^G lift to cyclic groups of order 4 containing 1, z and two elements from the M-class 4A. This means that

$$|O_2(P_{2345}) \cap 4A| = 2 \cdot |\lambda_3| = 2^{12}(2^{12} - 1) = 2^{12} \cdot 3^2 \cdot 5 \cdot 7 \cdot 13 = 16,773,120.$$

Next we consider the lifts of λ_2 and λ_4. We see that these must lift to the elementary abelian subgroups $\langle \lambda_2, z \rangle$ and $\langle \lambda_4, z \rangle$ respectively. Since there are only two M-classes of involutions, we have that $(\lambda_2 z)^{g_2} = \lambda_2$ and $(\lambda_4 z)^{g_4} = \lambda_4$ for some $g_2, g_4 \in M$. To determine which element lifts to class 2A and which element lifts to 2B, we note that by [12, Lemma 4.4] for $x \neq z$ an involution of P_{2345}, either $C_{P_{2345}}(x) \approx 2^{1+23}.Co_2$ (if x is not 2-central) or $C_{P_{2345}}(x) \approx 2^{1+23}.(2^{11} : M_{24})$ if x is 2-central. Here

$$|2^{1+23}.Co_2| = 2^{42} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$$

$$|2^{1+23}.(2^{11} : M_{24})| = 2^{45} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23.$$

Combining [6] with [4] and the fact that the 2-central elements of P_{2345} lie in $2B$, we have that λ_2 lifts to an elementary abelian subgroup generated by z and an involution of the M-class 2A, whilst λ_4 lifts to a subgroup generated by z and an element of $2B$. Since z also lies in $2B$, we conclude that

$$|O_2(P_{2345}) \cap 2A| = 2 \cdot |\lambda_2| = |A_2| = 196,560,$$

$$|O_2(P_{2345}) \cap 2B| = 2 \cdot |\lambda_4| + 1 = |A_4|/24 + 1 = 16,584,751 \quad \text{and}$$

$$|O_2(P_{2345}) \cap 4A| = 2 \cdot |\lambda_3| = |A_3| = 16,773,120.$$

As there is no $\chi \in \text{Irr}(M)$ satisfying

$$\chi(1A) + 196560 \cdot \chi(2A) + 16584751 \cdot \chi(2B) + 16773120 \cdot \chi(4A) = 0,$$

it follows that there are no 2-cuspidal characters of M.

3.4 The Pariahs

J_1

The normalizer of a Sylow 2-subgroup of J_1 is maximal. Thus as the cuspidal relation does not hold for such a Sylow subgroup, J_1 has no 2-cuspidal characters.

$O'N$

The group $O'N$ admits a unique 2-minimal parabolic system of the form

$$\{P_1 \sim 4^3.2^2.\text{Sym}(3), P_2 \sim 4.L_3(4).2\}.$$

The generators of $O_2(P_2)$ are elements of the $O'N$-conjugacy class 4A. Thus we see that the cuspidal relation does not hold on P_2 for any $\chi \in \text{Irr}(O'N)$. Hence $O'N$ admits no 2-cuspidal characters.
Table 8: The intersections of the 2-cores of the maximal parabolic subgroups of J_4 with the J_4-conjugacy classes.

<table>
<thead>
<tr>
<th>J_4-conjugacy class, C'</th>
<th>$1A$</th>
<th>$2A$</th>
<th>$2B$</th>
<th>$4A$</th>
<th>$4B$</th>
<th>$4C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_2(P_{12}) \cap C$</td>
<td>1</td>
<td>3579</td>
<td>4868</td>
<td>22848</td>
<td>100800</td>
<td>72704</td>
</tr>
<tr>
<td>$O_2(P_{13}) \cap C$</td>
<td>1</td>
<td>3067</td>
<td>5892</td>
<td>21312</td>
<td>54720</td>
<td>46080</td>
</tr>
<tr>
<td>$O_2(P_{23}) \cap C$</td>
<td>1</td>
<td>1387</td>
<td>2772</td>
<td>4032</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

J_3

There is a unique 2-minimal parabolic system of J_3, given by

$$\{P_1 \sim 2^{2+4}, (3 \times \text{Sym}(3)), P_2 \sim 2^{1+4}, L_2(4)\}.$$

Considering the 2-core $O_2(P_2)$, it contains 1, 11 and 20 elements from the J_3-conjugacy classes $1A, 2A$ and $4A$ respectively. It follows that J_3 does not admit any 2-cuspidal characters.

Ru

There are three 2-minimal parabolic subgroups of Ru given by $P_1 \sim 2^{5+6}, \text{Sym}(5)$ and $P_i \sim 2^{5+6+2}, \text{Sym}(3)$ for $i = 2, 3$. Since $P_3 \leq P_1$, we obtain a unique 2-minimal parabolic system, namely $\{P_1, P_2\}$. Considering the 2-cores of P_1 and P_2, we see that $O_2(P_i)$ intersects the Ru-conjugacy classes $1A, 2A, 2B, 4A, 4B, 4C, 4D, 8A, 8B$ and $8C$ in 1, 271, 512, 64, 240, 960, 0, 0 and 0 respectively, whilst $O_2(P_2)$ intersects the given Ru-classes in respectively 1, 367, 192, 608, 448, 1296, 1440, 1536, 768 and 1536 elements. It follows that the cuspidal relation holds on P_1 for $\chi_2, \chi_3 \in \text{Irr}(Ru)$ and on P_2 for $\chi_2, \chi_3, \chi_4 \in \text{Irr}(Ru)$. We conclude that the two characters χ_2 and χ_3 of degree 378 are the only 2-cuspidal characters of Ru.

J_4

There is a unique 2-minimal parabolic system of J_4 given by $\{P_1, P_2, P_3\}$ where $P_i \sim [2^{20}], \text{Sym}(3)$ for $i = 1, 2$ and $P_3 \sim [2^{18}], \text{Sym}(5)$. The maximal 2-parabolic subgroups of this system are given by $P_{12} \sim [2^{18}], L_3(2)$, $P_{13} \sim [2^{17}], (\text{Sym}(3) \times \text{Sym}(5))$ and $P_{23} \sim 2^{1+12}.3.M_{22}.2$. By considering centralizer orders, powering up classes and conjugation of representatives of certain P_{12}, P_{13}- and P_{23}-conjugacy classes by random elements in J_4, we may determine the fusion of $O_2(P_{12})$-, $O_2(P_{13})$- and $O_2(P_{23})$-classes in J_4. We detail the orders of the intersections of the 2-cores of the maximal parabolic subgroups with the J_4-conjugacy classes in Table 8. Consequently, the cuspidal relation holds on P_{12} for the characters χ_2, χ_3, χ_4 and χ_5, it holds on P_{13} for χ_2, χ_3, χ_4, χ_5, χ_6, χ_7, χ_9, χ_{10}, χ_{12} and χ_{13}, whilst the cuspidal relation holds on P_{23} for the
irreducible characters χ_2 and χ_3. We conclude that J_4 admits two 2-cuspidal characters, χ_2 and χ_3, both of degree 1333.

L_y

There are six 2-minimal parabolic subgroups of L_y, three of which feature in the two 2-minimal parabolic systems of L_y. These are $P_1 \sim [2^7].\Sym(3)$, $P_2 \sim [2^5].\Sym(5)$, $P_3 \sim 2.\Sym(9)$ and they give rise to the systems $\{P_1, P_2\}$ and $\{P_1, P_3\}$. Since $|O_2(P_1)| = 2^7$, $|O_2(P_2)| = 2^5$ and $|O_2(P_3)| = 2$, it is easy to see that the cuspidal relation does not hold for any of the 2-minimal parabolic subgroups of L_y, and hence there are no 2-cuspidal characters of L_y.

4 3-Cuspidal Characters

We now describe the 3-cuspidal characters for each of the sporadic groups.

4.1 The Mathieu Groups

M_{11}

The normalizer of a Sylow 3-subgroup of M_{11} is the maximal subgroup $M_9 : 2$ of M_{11}. Consequently, we see that M_{11} admits two 3-cuspidal characters, χ_6 and χ_7, both of degree 16.

M_{12}

The group M_{12} has a unique 3-minimal parabolic system

$$\{ P_1 \sim 3^2.GL_2(3), P_2 \sim 3^2.GL_2(3) \}.$$

The non-trivial elements of the 3-cores $O_3(P_1)$ and $O_3(P_2)$ lie in the M_{12}-conjugacy class $3A$. It follows that the 3-cuspidal characters of M_{12} are χ_4 and χ_5, both of which have degree 16.

M_{22}

There is a unique 3-minimal parabolic system of M_{22}, namely

$$\{ P_1 \cong M_{11}, P_2 \cong L_3(4) \}.$$

Since $O_3(P_i) = 1$ for $i = 1, 2$, an element $\chi \in \Irr(M_{22})$ will be 3-cuspidal if and only if the cuspidal relation holds for a Sylow 3-subgroup. Since this is never the case, M_{22} has no 3-cuspidal characters.

M_{23}

The 3-cores of the two 3-minimal parabolic subgroups comprising the unique 3-minimal parabolic system

$$\{ P_1 \cong M_{11}, P_2 \sim L_3(4) : 2 \}$$

of M_{23} are both trivial. Since the cuspidal relation does not hold for a Sylow 3-subgroup, we conclude that M_{23} admits no 3-cuspidal characters.
There are three 3-minimal parabolic subgroups of M_{24} given by $P_1 \sim 3. \text{Sym}(6)$, $P_2 \sim 2^6.3^{1+2}.2_1^{1+2}$ and $P_3 \sim M_{12} : 2$. These give rise to two 3-minimal parabolic systems of M_{24}, namely $\{P_1, P_3\}$ and $\{P_2, P_3\}$. It is easy to observe that there is no $\chi \in \text{Irr}(M_{24})$ satisfying the cuspidal relation for a Sylow 3-subgroup of M_{24}. It follows that neither 3-minimal parabolic system of M_{24} admits a 3-cuspidal character.

4.2 The Leech Lattice and Conway Groups

HS

As a Sylow 3-subgroup of HS, it is easy to see that the cuspidal relation will not hold for such a subgroup, and hence HS admits no 3-cuspidal characters.

J$_2$

There is a unique 3-minimal parabolic system of J_2 given by $\{P_1 \sim 3. \text{Alt}(6), P_2 \cong U_3(3)\}$. The non-trivial elements of $O_3(P_1)$ are contained in the J_2-conjugacy class $3A$. We immediately see that J_2 has no 3-cuspidal characters.

Co$_1$

There is a solitary 3-minimal parabolic system of Co_1, which has rank 3. Its maximal parabolic subgroups are $P_{12} \sim 3^{1+4}.Sp_4(3).2$, $P_{13} \sim 3^{1+4}.GL_2(3)^2$ and $P_{23} \sim 3^6.2.M_{12}$.

The Co_1-fusion of the 3-core of P_{23} is described in [6]. We see that $O_3(P_{23})$ intersects the Co_1-conjugacy classes $1A, 3A, 3B, 3C$ and $3D$ in 1, 2, 240 and 0 elements respectively. It follows that the cuspidal relation does not hold for P_{23} and hence Co_1 admits no 3-cuspidal characters.

Co$_2$

The unique 3-minimal parabolic system of Co_2 has the form $\{P_1 \sim 3^{1+4}.2^{1+4}.\text{Sym}(5), P_2 \sim 3^4.L_2(9).\text{Dih}(8)\}$. Since $O_3(P_3)$ intersects the respective Co_2-conjugacy classes $1A, 3A$ and $3B$ in 1, 20 and 60 elements, we see that there are no 3-cuspidal characters of Co_2.

Co$_3$

There are two 3-minimal parabolic subgroups of Co_3 and they form the unique 3-minimal parabolic system $\{P_1 \sim 3^{1+4}.4.\text{Sym}(6), P_2 \sim 3^5.(M_{11} \times 2)\}$. The 3-cores $O_3(P_1)$ and $O_3(P_2)$ intersect the Co_3-classes $1A, 3A, 3B$ and $3C$ in 1, 2, 240 and 0 and 1, 110, 132 and 0 elements respectively. It follows that the cuspidal relation holds on P_1 for $\chi_6, \chi_7 \in \text{Irr}(Co_3)$ and on P_2 for $\chi_{10}, \chi_{11} \in \text{Irr}(Co_3)$. Consequently, there are no 3-cuspidal characters of Co_3.

23
\(M^cL\)

The McLaughlin group has a unique 3-minimal parabolic system given by
\[\{ P_1 \sim 3^4.M_{10}, P_2 \sim 3^{1+4} \cdot 2\cdot \Sym(5) \} . \]

The 3-core \(O_3(P_1)\) intersects the \(M^cL\)-conjugacy classes 1A, 3A and 3B in 1, 20 and 60 elements respectively. It follows that no \(\chi \in \Irr(M^cL)\) satisfies the cuspidal relation for \(P_1\) and hence \(M^cL\) has no 3-cuspidal characters.

\(Suz\)

The unique 3-minimal parabolic system
\[\{ P_1 \sim 3^2.M_{11}, P_2 \sim 3^{2+4} \cdot (\Alt(4) \times 2^2) \cdot 2 \} \]

of \(Suz\) does not admit any 3-cuspidal characters. To see this, we note that the 3-core \(O_3(P_1)\) intersects the \(Suz\)-classes 1A, 3A, 3B and 3C in 1, 22, 220 and 0 elements respectively, meaning that the cuspidal relation does not hold on \(P_1\) for any \(\chi \in \Irr(Suz)\).

4.3 The Monster Group and its Subquotients

\(He\)

Since a Sylow 3-subgroup of \(He\) has order 27 and exponent 3, we easily observe that there are no 3-cuspidal characters of \(He\).

\(HN\)

The unique 3-minimal parabolic system of \(HN\) is
\[\{ P_1 \sim 3^{1+4} \cdot 2\cdot \Sym(5), P_2 \sim 3^{4+2} \cdot (\Alt(4) \times \Alt(4)).4 \} . \]

The character table of the subgroup \(M = 3^{1+4} \cdot \SL_2(5) \leq HN\) is given as \([8\, \text{TABLE II}]\). Since \(M \leq P_1\), it follows that \(O_3(M) = O_3(P_1)\). Moreover, every \(M\)-conjugacy class is either contained in, or disjoint from \(O_3(M)\). Using the notation from \([8]\), we have that
\[O_3(M) = 1 \cup 3_1 \cup 3_2^\uparrow \cup 3_2 \cup 3_3. \]

Considering centralizer orders in \(M\) and \(HN\), we see that \(3_1\) and \(3_2^\uparrow\) are contained in the \(HN\)-class 3B, whilst \(3_2\) and \(3_3\) lie in either 3A or 3B. It follows that \(|O_3(P_1) \cap 3A| = |O_3(M) \cap 3A| = 0, 120\) or 240 and \(|O_3(P_1) \cap 3B| = |O_3(M) \cap 3B| = 2, 122\) or 242. For each of these possibilities, we see that the cuspidal relation would not hold for \(P_1\), and hence there are no 3-cuspidal characters of \(HN\).

\(Th\)

The Thompson group has a single 3-minimal parabolic system. It is of rank 2 and has the form
\[\{ P_1 \sim 3^{(1+2)+4+2} \cdot GL_2(3), P_2 \sim 3^{(2+3)+4} \cdot GL_2(3) \} . \]
The 3-cores $O_3(P_1)$ and $O_3(P_2)$ intersect the respective Th-conjugacy classes $1A$, $3A$, $3B$, $3C$, $9A$, $9B$ and $9C$ in 1, 270, 2186, 4104, 2106, 5184 and 5832 elements respectively. It follows that for both P_1 and P_2 there is a unique element of $\text{Irr}(Th)$ satisfying the cuspidal relation, namely χ_2 of degree 248. We conclude that χ_2 is the unique 3-cuspidal character of Th.

Fi_{22}

There is a unique 3-minimal parabolic system of Fi_{22}, which has rank 3 and minimal parabolic subgroups of the form $P_i \sim [3^8].2.PGL_2(3)$ for $i = 1, 2, 3$. The maximal parabolic subgroups of this system are

$P_{12} \cong P_{13} \sim 3^{4+2}.L_3(3)$ and $P_{23} \sim 3^{1+6}.2^2.SL_2(3).\text{Sym}(4)$.

The maximal parabolics P_{12} and P_{13} are submaximal subgroups of Fi_{22}, being contained in the maximal subgroups isomorphic to $O_7(3)$, and hence their 3-cores can be easily computed. Meanwhile, by [2, (39.6)], the 3-core $O_3(P_{23})$ is isomorphic to the Fitting subgroup of the normalizer in Fi_{22} of an element of the Fi_{22}-class $3B$. The orders of the intersections of the 3-cores of these maximal parabolics with the Fi_{22}-conjugacy classes is summarized in Table 9.

We see that the cuspidal relation holds on P_{12} and P_{13} for the characters $\chi_2, \chi_5 \in \text{Irr}(Fi_{22})$, and it holds on P_{23} for χ_2. Consequently, χ_2 (of degree 78) is the unique 3-cuspidal character of Fi_{22}.

Fi_{23}

The group Fi_{23} has a unique 3-minimal parabolic system given by

\[\{ P_1 \sim [3^{12}].2^2.PGL_2(3), P_2 \sim [3^{12}].2^2.PGL_2(3), P_3 \sim [3^9].2.L_2(3)^3.2.\text{Sym}(3) \}. \]

The corresponding 3-maximal parabolic subgroups are

$P_{12} \sim 3^{3+7}.GL_3(3)$, $P_{13} \sim 3^{1+8}.2^{1+6} : 3^{1+2} : 2.\text{Sym}(4)$ and $P_{23} \sim D_4(3).\text{Sym}(3)$.

Using the information on Fi_{23}-fusion within $O_3(P_{13})$ given in [13, Table 2], and the fact that the non-trivial elements of $Z(3^{1+8})$ lie in the Fi_{23}-class $3B$, we see that $O_3(P_{13})$ intersects the Fi_{23}-classes $3A$, $3B$, $3C$ and $3D$ in 864, 1538, 3456 and 13824 elements respectively. (We note that the above fusion can also be calculated within P_{23}. Indeed, there are nine P_{23}-classes of elements of order 3, say $3a, \ldots, 3i$, having centralizer orders in P_{23} of 408146688, 37791360, 37791360, 12737088, 2834352, 944784, 314928, 78732 and 17496 respectively.)
\[
\begin{array}{|c|c|c|c|}
\hline
\text{Element, } m & \text{Stab}_{U(2)}(m) & \text{Stab}_{\mathbb{A}}(m) & m_{\mathbb{A}}(2) \\
\hline
m_1 & 3^3, \text{Alt}(5) & 4860 & 2816 \\
m_2 & 3, \text{Alt}(6) & 1080 & 12672 \\
m_3 & 2^{1+3}.3^{1+2}.3 & 10368 & 1320 \\
m_4 & 3^3, \text{Alt}(4) & 324 & 42240 \\
\hline
\end{array}
\]

Table 10: The non-trivial orbits of the unique irreducible 10-dimensional \(GF(3)U_5(2)\)-module.

It follows that the \(P_{23}\)-classes satisfy the following inclusions: 3c, 3d \(\subset\) 3A, 3a, 3e \(\subset\) 3B, 3b, 3g \(\subset\) 3C and 3f, 3h, 3i \(\subset\) 3D. Consequently, the cuspidal relation does not hold on \(P_{13}\) for any \(\chi \in \text{Irr}(Fi_{23})\), and \(Fi_{23}\) admits no 3-cuspidal characters.

\(Fi_{24}\)

As with \(Fi_{23}\) we see that there is a unique 3-minimal parabolic system of \(Fi_{24}\), namely

\[
\{P_1 \sim [3^{15}].2^2.PGL_2(3), P_2 \sim [3^{15}].2^2.PGL_2(3), P_3 \sim [3^{15}].2.\text{Sym}(5)\},
\]

having maximal parabolics \(P_{12} \sim 3^{3+7+3}.L_3(3).2, P_{13} \sim 3^{2+4+8}.(SL_2(3) \times \text{Alt}(5))).2\) and \(P_{23} \sim 3^{1+10}.U_5(2).2\).

Consider the extra-special 3-core, \(O_3(P_{23}) \cong 3_+^{1+10}\). Since there is a unique irreducible 10-dimensional \(GF(3)U_5(2)\)-module, \(M\), we can explicitly determine the sizes of the orbits of elements of this module. These are summarized in Table 10. We see that there are at most four classes of non-central elements of \(3_+^{1+10}\).

Let \(z \in Z(3_+^{1+10}) \setminus \{1\}\) and let \(x \in 3_+^{1+10} \setminus Z(3_+^{1+10})\). Thus \(x\) represents a non-zero vector in \(M\). Then \(x, x^2, zx, z^2x, z^2x^2\) and \(z^2x^2\) are all \(Fi_{24}\)-conjugate. Indeed, from the ATLAS we have that for any 3-element \(w \in Fi_{24}\), the elements \(w\) and \(w^2\) are \(Fi_{24}\)-conjugate. Suppose that \(g \in Fi_{24}\) is such that \(x^9 = x^2\). Then \((zx)^9 = zx^2\) as \(z\) is central. Thus \(zx\) and \(zx^2\) lie in a common \(Fi_{24}\)-class, and are joined by \((zx)^2 = z^2x^2\) and \((zx)^2 = z^2x\). Finally, as \(zx\) and \(z^2x\) are \(Fi_{24}\)-conjugate, there exists \(h \in Fi_{24}\) satisfying \(z^2x = (zx)^h = zx^h\) and hence \(zx = zx^h\). We conclude that the orbits of \(m_1, m_2, m_3\) and \(m_4\) give rise to orbits of \(3_+^{1+10} \setminus Z(3_+^{1+10})\) of respective sizes 8448, 38016, 3960 and 126720.

Label the orbit of \(3_+^{1+10}\) arising from \(m_i\) by \(M_i\) for \(i = 1, \ldots, 4\). Considering the orders of stabilizers given in Table 10 together with the centralizer orders of elements of order 3 in \(Fi_{24}\) given in the ATLAS, we deduce that \(M_1, M_2, M_3 \subset 3A \cup 3B \cup 3C\), whilst elements in \(M_4\) could form a subset of \(3A, 3B, 3C, 3D\) or \(3E\). Since \(N(3B) \cong P_{23}\), it follows that the non-trivial central elements of \(3_+^{1+10}\) lie in the \(Fi_{24}\)-class \(3B\).

The menagerie of information obtained above results in 135 different possibilities for the fusion of 3-elements within \(O_3(P_{23}) \cong 3_+^{1+10}\). Feeding each possibility into MAGMA and allowing it to roam over all 108 complex characters of \(Fi_{24}\), we see that the cuspidal relation never holds for \(P_{23}\), and hence \(Fi_{24}\) admits no 3-cuspidal characters.
Aside 4.1. We note that the Fi'_{24}-fusion within the 3-core $O_3(P_{23})$ has previously been studied by Wilson. Indeed, in [18, Section 2.2] Wilson calculates that $O_3(P_{23})$ contains $3960, 8450, 38016$ and 126720 elements from the respective Fi'_{24}-classes $3A, 3B, 3C$ and $3D$. However, these calculations are based heavily on an unpublished preprint, and we have been unable to verify them.

B

There is a unique 3-minimal parabolic system of B, which has rank 3. The maximal parabolic subgroups of this system are $P_{12} \sim 3^{3+7}GL_3(3)$, $P_{13} \sim 3^{2+3+6}GL_2(3)\times M_{11}$ and $P_{23} \sim 3^{1+8}PSp_4(3)\times S_5$. Considering the minimum value that each $\chi \in \text{Irr}(B)$ takes on 3-elements, we see that the only possible 3-cuspidal character of B is χ_2 of degree 4371. However, as B satisfies the condition of Lemma 2.7, we see that χ_2 cannot be 3-cuspidal, and hence B admits no 3-cuspidal characters.

M

The monster group, M, has a unique 3-minimal parabolic system, which has rank 3. Its maximal parabolic subgroups are given by

$P_{12} \sim 3^{3+8+6}L_3(3)$, $P_{13} \sim 3^{2+5+10}(GL_2(3) \times M_{11})$ and $P_{23} \sim 3^{1+12}.2.Suz_2$.

By considering the 3-core $O_3(P_{23})$, we see that it has exponent 3. Moreover, appealing to [9, Lemma 1.5] we see that

$$|O_3(P_{23}) \cap 3A| = 196,560 \quad \text{and} \quad |O_3(P_{23}) \cap 3B| = 1,397,762.$$

It immediately follows that M admits no 3-cuspidal characters.

4.4 The Pariahs

J_1

The cuspidal relation does not hold for a Sylow 3-subgroup of J_1. Hence there are no 3-cuspidal characters for the unique 3-minimal parabolic system, $\{J_1\}$, of J_1.

$O'N$

A Sylow 3-subgroup of $O'N$ has order 81. Moreover, since there is a unique $O'N$-conjugacy class of non-trivial 3-elements, we see that the cuspidal relation does not hold for a Sylow 3-subgroup of $O'N$. Consequently, $O'N$ admits no 3-cuspidal characters.

J_3

The normalizer of a Sylow 3-subgroup of J_3 is maximal. Moreover, such a Sylow subgroup intersects the J_3-conjugacy classes $1A, 3A, 3B, 9A, 9B$ and $9C$ in $1, 18, 8, 72, 72$ and 72 elements respectively. Checking the cuspidal relation for each $\chi \in \text{Irr}(J_3)$ for a Sylow 3-subgroup, we see that there are no 3-cuspidal characters of J_3.

27
Since a Sylow 3-subgroup of Ru has order 27 and there is a unique Ru-conjugacy class of non-trivial 3-elements, it is easy to see that Ru admits no 3-cuspidal characters.

The non-trivial elements of a Sylow 3-subgroup of J_4 lie in the J_4-class 3A. Since such a subgroup has order 27, it is easy to see that the cuspidal relation does not hold for a Sylow 3-subgroup of J_4. Hence, J_4 has no 3-cuspidal characters.

Ly

There is a unique 3-minimal parabolic system of Ly given by

$$\{ P_1 \sim 3^{2+4}.\Sym(5), P_2 \sim 3^5.(M_{11} \times 2) \}.$$

Considering the minimum value that each $\chi \in \Irr(Ly)$ takes on elements of order 3, we see that the only possible candidates for 3-cuspidal characters are χ_7 and χ_8 of degree 120064. However, these characters take strictly negative values on all 3-elements, and hence the cuspidal relation cannot hold for them for both $O_3(P_2)$ and a Sylow 3-subgroup of Ly. We conclude that there are no 3-cuspidal characters of Ly.

5 5-Cuspidal Characters

The groups M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, Suz, He, Fi_{22}, Fi_{23}, Fi'_{24}, J_1, $O'N$, J_3, Ru and J_4 have Sylow 5-subgroups of exponent 5 and of order at most 5^3. Thus, considering the minimal values that an irreducible character takes on elements of order 5 together with the character degree, we see that none of these groups admit a 5-cuspidal character. We now consider the remaining eleven sporadic groups in turn.

HS

A Sylow 5-subgroup of HS intersects the HS-conjugacy classes 1A, 5A, 5B and 5C in 1, 4, 40 and 80 elements respectively. It follows immediately that HS has no 5-cuspidal characters.

J_2

The normalizer in J_2 of a Sylow 5-subgroup, S, is maximal and S intersects each of the J_2-conjugacy classes 5A, 5B, 5C and 5D in 6 elements. From this we deduce that J_2 has a unique 5-cuspidal character given by χ_6 of degree 36.

Co_1

There is a unique 5-minimal parabolic system of Co_1 given by

$$\{ P_1 \sim 5^3.(4 \times \Alt(5)).2, P_2 \sim 5^{1+2}.GL_2(5) \}.$$
Considering the minimum value that each $\chi \in \text{Irr}(Co_1)$ takes on elements of order 5, and the order of the 5-cores of the minimal parabolic subgroups, we see that there are no 5-cuspidal characters of Co_1.

Co_2, Co_3, M^cL

If $G \in \{Co_2, Co_3, M^cL\}$, then a Sylow 5-subgroup of G intersects the G-conjugacy classes $1A$, $5A$ and $5B$ in 1, 4 and 120 elements respectively. It follows that the cuspidal relation does not hold for a Sylow 5-subgroup for any $\chi \in \text{Irr}(G)$ and hence G has no 5-cuspidal characters.

HN

There is a unique 5-minimal parabolic system of HN given by
\[
\{ P_1 \sim 5^{1+4} \cdot (2^{1+4} \cdot 5 \cdot 4), P_2 \sim 5^{2+1+2+4} \cdot \text{Alt}(5) \}.
\]
The character table of P_1 is given as [8, Table III], whilst a partial character table of P_2 - featuring the conjugacy classes of elements of order 2 and classes contained in $O_5(P_2)$ - is given in Table 11. By considering the restriction of $\chi_2 \in \text{Irr}(HN)$ to P_1 and P_2, we may calculate the HN-fusion within $O_5(P_1)$ and $O_5(P_2)$. We see that $O_5(P_1)$ intersects the HN-classes $1A$, $5A$, $5B$, $5C$, $5D$, and $5E$ in 1, 400, 324, 800, 800 and 800 elements respectively, whilst $O_5(P_2)$ intersects the given classes in 1, 0, 624, 650, 650, and 1200 elements respectively. Consequently, the cuspidal relation holds on P_1 for $\chi_4 \in \text{Irr}(HN)$ and on P_2 for $\chi_4, \chi_5 \in \text{Irr}(HN)$.

Th

The normalizer of a Sylow 5-subgroup of Th is a maximal subgroup. Thus a character $\chi \in \text{Irr}(Th)$ will be 5-cuspidal precisely when the cuspidal condition holds for the Sylow subgroup. Since Th has a unique conjugacy class of elements of order 5, we observe that there is a unique 5-cuspidal character of Th, namely χ_2 of degree 248.

B

There is a unique 5-minimal parabolic system of B given by
\[
\{ P_1 \sim 5^{1+4} \cdot 2^{1+4} \cdot \text{Sym}(5).2, P_2 \sim 5^{2+1+2}.\text{GL}_2(5) \}.
\]
Considering the minimum value that each $\chi \in \text{Irr}(B)$ takes on B-classes of 5-elements, we see that the only possible 5-cuspidal character of B is χ_2. However, $\deg(\chi_2) = 4371$, and B satisfies the conditions of Lemma 2.7. Thus there are no 5-cuspidal characters of B.

M

The monster has a unique 5-minimal parabolic system, namely
\[
\{ P_1 \sim 5^{1+6} \cdot (J_2 \times 2).2, P_2 \sim 5^{2+2+4}.\text{Sym}(3).\text{GL}_2(5) \}.
\]
Table 11: A partial character table of the 5-minimal parabolic subgroup $P_2 \sim 5^{2r+1+2}.A$. Alt(5) of HN (where $w = \exp(2\pi i/5)$).

<table>
<thead>
<tr>
<th>Class</th>
<th>1_1</th>
<th>2_1</th>
<th>2_2</th>
<th>5_1</th>
<th>5_2</th>
<th>5_3</th>
<th>5_4</th>
<th>5_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>χ1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ3</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>χ4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>χ5</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>χ6</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>χ7</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>χ8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>χ9</td>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>χ10</td>
<td>3</td>
<td>3</td>
<td>-1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>χ11</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>χ12</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>χ13</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>χ14</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>χ15</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>χ16</td>
<td>5</td>
<td>5</td>
<td>-1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>χ17</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>χ18</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>χ19</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>5 . w^2 + 5 . w^2</td>
<td>-5 . w^3 - 5 . w^2 - 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ20</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>-5 . w^3 - 5 . w^2 - 5</td>
<td>5 . w^3 + 5 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ21</td>
<td>20</td>
<td>-4</td>
<td>0</td>
<td>20</td>
<td>10 . w^3 + 10 . w^2</td>
<td>-10 . w^3 - 10 . w^2 - 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ22</td>
<td>20</td>
<td>-4</td>
<td>0</td>
<td>20</td>
<td>10 . w^3 - 10 . w^2 - 10</td>
<td>10 . w^3 + 10 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ23</td>
<td>20</td>
<td>-4</td>
<td>0</td>
<td>20</td>
<td>-10 . w^3 - 10 . w^2 - 10</td>
<td>10 . w^3 + 10 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ24</td>
<td>20</td>
<td>-4</td>
<td>0</td>
<td>20</td>
<td>10 . w^3 - 10 . w^2 - 10</td>
<td>-10 . w^3 + 10 . w^2 - 10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ25</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>χ26</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>χ27</td>
<td>30</td>
<td>6</td>
<td>0</td>
<td>30</td>
<td>-15 . w^3 - 15 . w^2 - 15</td>
<td>15 . w^3 + 15 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ28</td>
<td>30</td>
<td>6</td>
<td>0</td>
<td>30</td>
<td>-15 . w^3 - 15 . w^2 - 15</td>
<td>15 . w^3 + 15 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ29</td>
<td>30</td>
<td>6</td>
<td>0</td>
<td>30</td>
<td>15 . w^3 + 15 . w^2</td>
<td>-15 . w^3 - 15 . w^2 - 15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ30</td>
<td>30</td>
<td>6</td>
<td>0</td>
<td>30</td>
<td>15 . w^3 + 15 . w^2</td>
<td>-15 . w^3 - 15 . w^2 - 15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ31</td>
<td>40</td>
<td>-8</td>
<td>0</td>
<td>40</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>20 . w^3 + 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ32</td>
<td>40</td>
<td>-8</td>
<td>0</td>
<td>40</td>
<td>20 . w^3 + 20 . w^2</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ33</td>
<td>40</td>
<td>-8</td>
<td>0</td>
<td>40</td>
<td>20 . w^3 + 20 . w^2</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ34</td>
<td>40</td>
<td>8</td>
<td>4</td>
<td>40</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>20 . w^3 + 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ35</td>
<td>40</td>
<td>8</td>
<td>4</td>
<td>40</td>
<td>20 . w^3 + 20 . w^2</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ36</td>
<td>40</td>
<td>8</td>
<td>4</td>
<td>40</td>
<td>20 . w^3 + 20 . w^2</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ37</td>
<td>40</td>
<td>8</td>
<td>4</td>
<td>40</td>
<td>20 . w^3 + 20 . w^2</td>
<td>-20 . w^3 - 20 . w^2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ38</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>χ39</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>χ40</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>χ41</td>
<td>50</td>
<td>18</td>
<td>0</td>
<td>50</td>
<td>-25 . w^2 + 25 . w^2</td>
<td>-25 . w^3 - 25 . w^2 - 25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ42</td>
<td>50</td>
<td>18</td>
<td>0</td>
<td>50</td>
<td>-25 . w^2 + 25 . w^2</td>
<td>-25 . w^3 - 25 . w^2 - 25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ43</td>
<td>60</td>
<td>-12</td>
<td>0</td>
<td>60</td>
<td>30 . w^3 + 30 . w^2</td>
<td>-30 . w^3 - 30 . w^2 - 30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ44</td>
<td>60</td>
<td>-12</td>
<td>0</td>
<td>60</td>
<td>30 . w^3 + 30 . w^2</td>
<td>-30 . w^3 - 30 . w^2 - 30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>χ45</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 11: A partial character table of the 5-minimal parabolic subgroup $P_2 \sim 5^{2r+1+2}.A$. Alt(5) of HN (where $w = \exp(2\pi i/5)$).
Using a similar approach to that used for the baby monster, with the 5-core $O_5(P_1)$, we deduce that there are no 5-cuspidal characters of M.

Ly

From [14] we see that there is a unique 5-minimal parabolic system of Ly, having rank 3. Its minimal parabolic subgroups are $P_1 \sim 5^{1+2}_+ A.PGL_2(5)$, $P_2 \sim 5^{1+2}_+ A.PGL_2(5)$ and $P_3 \sim 5^{1+4}_+ A.PGL_2(5)$. The maximal 5-parabolic subgroups are given by

$$P_{12} \sim 5^3.SL_3(5), \quad P_{13} \sim 5^{1+4}.2.Alt(6).4 \quad \text{and} \quad P_{23} \cong G_2(5).$$

By considering the elementary abelian subgroup $O_5(P_{12}) \cong 5^3$, we see that the only possible 5-cuspidal characters of Ly are χ_2 and χ_3 (both of degree 2480), and that for these characters to be 5-cuspidal, we must have that the non-trivial elements of $O_5(P_{12})$ are contained in the Ly-conjugacy class 5A. Defining S to be our given Sylow 5-subgroup of Ly, we see that S has a unique normal elementary abelian 5-subgroup of order 5^3. Considering this within the maximal subgroup $G_2(5) \leq Ly$, we see that the non-trivial elements of $O_5(P_{12})$ are indeed contained in the Ly-class $5A$. It remains to check the cuspidal relation for χ_2 and χ_3 for the extra-special 5-core $O_5(P_{13})$ of order 5^5.

By constructing $O_5(P_{13})$ within both P_{13} and P_{23} we may deduce that it intersects the Ly-conjugacy classes $1A$, $5A$ and $5B$ in 1, 724 and 2400 elements respectively. It follows that the cuspidal relation holds on $O_5(P_{13})$ for both χ_2 and χ_3, and hence we see that χ_2 and χ_3 are 5-cuspidal characters of Ly.

6 p-Cuspidal Characters ($p > 5$)

In the case that $p > 5$, most sporadic groups with order divisible by p have a cyclic Sylow p-subgroup of order p. The exceptions are $(Co_1, p = 7)$, $(He, p = 7)$, $(Th, p = 7)$, $(Fi_{24}', p = 7)$, $(B, p = 7)$, $(M, p = 7, 11, 13)$, $(O'N, p = 7)$ and $(J_4, p = 11)$.

The normalizer of a Sylow 7-subgroup, S, of He is maximal in He, and hence there is a unique 7-minimal parabolic system given by $\{He\}$. Consequently, an element $\chi \in \text{Irr}(He)$ will be 7-cuspidal precisely when the cuspidal condition holds for S. We have that S contains 1, 42, 42, 132, 63 and 63 elements from the He-classes $1A$, $7A$, $7B$, $7C$, $7D$ and $7E$ respectively. It follows that the 7-cuspidal characters of He are χ_2 and χ_3 of degree 51.

In all other cases, since the sporadic group in question contains no elements of order p^a for $a > 1$, we may consider the minimum value that each irreducible character takes on elements of order p, to conclude that there are no p-cuspidal characters.

We conclude by considering the p-cuspidal characters arising from sporadic groups having a cyclic Sylow p-subgroup of order p. Since such a subgroup will necessarily be the p-core of its normalizer, it is easy to see that the cuspidal relation must hold for the Sylow subgroup. Moreover, a character will be cuspidal precisely when this is true. This gives an additional four cuspidal characters for the sporadic groups; the 10-dimensional characters $\chi_2, \chi_3, \chi_4 \in \text{Irr}(M_{11})$ are 11-cuspidal and the 22-dimensional character $\chi_2 \in \text{Irr}(M_{23})$ is 23-cuspidal.
References

