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Chamber Graphs of Minimal Parabolic
Geometries of Type M24

Emily L. Carr, Peter J. Rowley

Abstract

This paper investigates the structure of the chamber graph associated with
the minimal parabolic geometries of rank 3 for the groups M24, the Mathieu

group of degree 24, He, Held’s simple group, and 37̇Sp6(2), a non-split
extension of an elementary abelian 3-group with Sp6(2). These three minmal
parabolic geometries all have the same diagram. Executable files containing

data describing the disc structure of a fixed chamber of these graphs
accompany this paper. Those chambers at maximal distance from a given
chamber are studied, as are the maximal opposite sets. Also the geodesic

closure of opposite chambers are described for each of these three geometries.

1 Introduction

The finite non-abelian simple groups, excluding the twenty six sporadic simple groups,
display a number of unifying features. Firstly, and also historically, some of them may
be viewed as, essentially, matrix groups defined over finite fields which preserve some
form. A very different viewpoint emerged in the middle of the twentieth century,
as well as some further then unknown families of simple groups, with the work of
Chevalley, Steinberg, Ree and others (see for example Carter [6], Steinberg [19] and
Wilson [23]). This perspective revealed these groups as automorphism groups of Lie
algebras or fixed points of automorphisms of algebraic groups. Hence their description
as groups of Lie type. Then, at the hands of Tits [20], there emerged a geometric
description in the guise of buildings. These combinatorial objects have had a con-
siderable impact on the study of finite simple groups. Subsequently Tits [21] recast
the theory of buildings, placing the emphasis on chamber graphs. All the essential
features of a building are encapsulated in the chamber graph of a building.

To this day, the sporadic simple groups stubbornly refuse to fit into any discernable
overall pattern. This is despite a considerable amount of effort being put into the
study of this ramshackle, yet fascinating, collection of groups. One approach to try-
ing to produce a conceptual framework which will also include the sporadic simple
groups has been to weaken the concept of a building. Such combinatorial structures
are loosely referred to as geometries or group geometries. There is now a vast array of
different sorts of geometries, a selection of which may be seen in [2], [3] and [4]. One
species of geometry attempts to parallel the theory of parabolic subgroups in groups
of Lie type, resulting in the so-called minimal parabolic geometries. Such geometries
for the sporadic simple groups were catalogued by Ronan and Stroth in [14]. Closely
related to these are the maximal parabolic geometries as introduced in [13] by Ronan
and Smith. Geometries give rise to chamber systems and then to chamber graphs.
The study of chamber graphs related to the minimal parabolic and maximal parabolic
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geometries for the sporadic groups has been limited so far. This is undoubtedly due
to the fact that we have little understanding of these structures and the number of
chambers for these geometries is very large. Some preliminary investigations into the
chamber graphs of a number of small geometries are recorded in [18], see also [16].
While a very detailed analysis of the chamber graph of the maximal parabolic geom-
etry for the Mathieu group M24 is presented in [17].

Associated to minimal and maximal parabolic geometries is the notion, modeled on
that of a Dynkin diagram, of a diagram. Here we shall be examining the chamber
graphs of minimal parabolic geometries whose diagram is

e e e
1 2 3

∼ .

Parabolic systems which give rise to such geometries were first studied in Rowley[15]
and then later in Heiss [10]. Together these papers showed that, essentially, there are
three such systems, to be observed in the sporadic simple groups M24 (Mathieu group
of degree 24) and He (Held’s group) together with 37Ṡp6(2) (a non-split extension of
an elementary abelian 3-group of order 37 and Sp6(2)). These are the three examples
we shall be scrutinizing in this paper. A more detailed discussion of these will be
given Section 2 along with notation relating to geometries and their chamber graphs.
For γ ∈ C, C a chamber graph, we recall that the ith disc of γ, where i ∈ N ∪ {0}, is
the set

∆i(γ) = {γ′ ∈ C | d(γ, γ′) = i}.
Here d( , ) is the usual graph theoretic distance on C. Our first result concerns the
disc structure of the chamber graphs around a fixed chamber.

Theorem 1.1 Let G denote one of the three groups M24, He and 37Ṡp6(2) and let Γ
be the rank 3 geometry of G with diagram

e e e
1 2 3

∼ ,

with C being the chamber graph of Γ. Let γ0 be a fixed chamber of C, and put B =
StabG(γ0).

(i) If G = M24, then the disc structure of C is

Disc 1 2 3 4 5 6 7 8 9
Size 6 20 56 144 368 848 1800 3810 8040

Number of B-orbits 3 5 7 9 13 18 24 31 39

10 11 12 13 14 15 16 17
16920 32832 55200 62336 47616 6656 2048 384

53 71 93 78 47 10 6 2
.
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(ii) If G = He, then the disc structure of C is

Disc 1 2 3 4 5 6 7 8 9
Size 6 20 56 144 368 848 1800 3810 8040

Number of B-orbits 3 5 7 9 13 18 24 31 39

10 11 12 13 14 15 16 17
16920 32832 62496 118048 222048 401688 614768 869376

53 71 107 189 321 528 761 994

18 19 20 21
965376 562432 54784 64
1015 569 72 1

.

(iii) If G = 37Ṡp6(2), then the disc structure of C is

Disc 1 2 3 4 5 6 7 8 9
Size 6 20 56 144 368 848 1800 3810 8040

Number of B-orbits 3 5 7 9 13 18 24 31 43

10 11 12 13 14 15 16 17
16920 32832 62496 118048 222048 404248 632744 951564

68 112 191 340 594 1011 1516 2146

18 19 20 21 22 23 24 25
1243568 1145744 769696 399856 150016 33128 2016 128

2713 2549 1868 1131 550 185 20 2
.

So, the chamber graph for the groups M24, He and 37Ṡp6(2) has diameter equal to,
respectively, 17, 21 and 25. The information presented in Theorem 1.1 is just the tip
of the iceberg – much more detail is obtained. See Sections 3 and 4.

In order to compare and contrast the data given in Theorem 1.1 we amplify our earlier
remarks on the chamber graphs of buildings associated with finite groups of Lie type.
Suppose that G is a finite group of Lie type defined over GF (q) where q = pa, p a
prime, and let W be its Coxeter group. We denote the chamber graph of the building
of G by C. Let γ0 be a chamber of C. The Coxeter group of G has a heavy influence
on the disc structure of C. For example,

|∆i(γ0)| = qi × (size of the ithdisc of the chamber graph of W ),

and the diameter of C, d, is the Coxeter number of W . Moreover |∆d(γ0)| = |U |
where U is the unipotent radical of B = StabG(γ0). Recall that U ∈ Sylp(G), B is
the Borel subgroup of G and NG(U) = B. Also we have that B acts transitively on
∆d(γ0). Apartments play a central role in buildings and may be realized, via their
chambers, as the geodesic closure of γ0 and γ, where γ ∈ ∆d(γ0). See Section 4 for
the definition of geodesic closure, and consult Ronan[12] for the results on buildings
mentioned above, and much more.

We now return to the three chamber graphs featuring in Theorem1.1. Sharing the
same diagram means all three geometries are ”locally” similar. It is surprising (to the
authors) how much this similarity persists in the chamber graphs. We have that the
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sizes of ∆i(γ0) for i = 1, . . . , 11 are the same in all three cases. For G ∼= M24 and
G ∼= He, the number of B-orbits in each of these discs are the same. While for G ∼= He
and G ∼ 37Ṡp6(2) the phenomena of the same size of discs ∆i(γ0) even persists up to
i = 14. The last disc of C (that is ∆i(γ0), i = 17(M24), 21(He), 25(37Ṡp6(2)) is either
the union of two B-orbits or is a B-orbit (where B = StabG(γ0)). This is very rem-
iniscent of the situation observed in the chamber graph of a building. Chambers at
maximal possible distance distance in our three geometries appear worthy of further
study. Borrowing from the lexicon of buildings we call two chambers of C opposite
chambers if their distance apart is the diameter of C. So, in Section 4, we examine
geodesic closures of opposite chambers. Our group theoretic notation is standard as
given in [1] and [9].

A related quest is the study of maximal opposite sets of chambers. By a maximal
opposite set of chambers we mean a set of chambers of maximal size subject to having
the property that any two chambers are opposite to each other. In Section 4 we dis-
cover that for all three chamber graphs in Theorem 1.1, the size of a maximal opposite
set is always 3. When G ∼= He or 37Ṡp6(2) there is only one G-orbit of maximal op-
posite sets (see Theorem 4.3) while for G ∼= M24 things are much more complicated.
In this case, in Theorem 4.2 we show that there are 14 G-orbits on maximal opposite
sets of C. We note that for the M24 maximal 2-local geometry maximal opposite sets
have size 5 – see [16] for a detailed analysis of such sets.

It is intended that this paper is a first step in analysing these chamber graphs in
extensive detail. Accordingly we have made available various files and programs with
this paper. More details of these files may be found in Section 3. One final (comfort-
ing) point is that the disc sizes for M24 here agree with those in [18], where a much
more primitive program was used.

2 The Minimal Parabolic Geometries

We begin this section recapping the definitions of geometries and their chamber graphs
while also introducing relevant notation. Then we take a detailed look at the three
minimal parabolic geometries we shall be interested in.

A geometry over a set I is a triple (Γ, τ, ?) where Γ is a non-empty set, τ is an onto
map from Γ to I and ? is a symmetric relation on Γ with the property that for x, y ∈ Γ,
x ? y implies τ(x) 6= τ(y). The relation ? is called the incidence relation of Γ and for
x ∈ Γ with τ(x) = i we say x has type i (or is an object of type i). We shall use Γi,
i ∈ I, to denote the set of objects of type i. So Γ =

⋃
i∈I Γi. Rather than referring to

the triple we just say Γ is a geometry. For x ∈ Γ the residue of x, Γx, is defined to be

Γx = {y ∈ Γ | x ? y},

and this is also a geometry. Some of the most interesting geometries are intimately
connected with groups. We give details of this only in the context of minimal parabolic
systems as this is our principal interest here. First we recall the definition of a minimal
parabolic system. Suppose that G is a finite group and p is a prime. Let S ∈ SylpG,
and set B = NG(S). A subgroup P of G containing B is called a minimal parabolic
subgroup of G (with respect to B) if B is contained in a unique maximal subgroup
of P . Let {P1, . . . , Pn} be a set of minimal parabolic subgroups of G with respect to
B, and set I = {1, . . . , n}. Then {P1, . . . , Pn} is a minimal parabolic system for G
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if G = 〈Pi | i ∈ I〉 6= 〈Pi | i ∈ J〉 for each proper subset J of I. We refer to n as
the rank of this system and p as its characteristic. For J a subset of I let PJ denote
〈Pi | i ∈ J〉. Then taking the right cosets of P(I\{i}) to be the type i elements and
the incidence relation between two such cosets to be given by having a non-empty
intersection in G, yields a geometry over I.

Suppose that Γ is a geometry over I. A set F of pairwise incidence elements of Γ is
called a flag and its type, τ(F ), is {τ(x) | x ∈ F}. A maximal flag is a flag F such
that τ(F ) = I, and such flags are sometimes also called chambers of Γ. Let C(Γ)
denote the set of chambers of Γ. Two chambers F and F ′ are said to be i-adjacent if
either F = F ′ or τ(F ∩ F ′) = I \ {i}. The chamber graph of Γ has as its vertex set
C(Γ) with chambers F and F ′ adjacent if F 6= F ′ with F and F ′ being i-adjacent for
some i ∈ I. Returning to the situation when our geometry Γ has been obtained from
a minimal parabolic system {P1, . . . , Pn} of a group G, as above. In the geometries
we consider here we shall have B =

⋂
i∈I Pi, and we shall assume that to be the case

now. As a consequence the chambers of Γ may be identified with the set of right
cosets of B in G with two chambers Bg and Bh being i-adjacent whenever gh−1 ∈ Pi.
Thus the chamber graph may be analysed within the group G, which is the strategy
we employ here.

The three geometries whose chamber graphs we are investigating have rank 3 (so
I = {1, 2, 3}) and arise from a minimal parabolic system. So let G be one of M24, He
and 37Ṡp6(2), with {P1, P2, P3} the minimal parabolic system, B = P1∩P2∩P3, Γ the
associated geometry and C its chamber graph. We have that Pi/O2(Pi) ∼= SL2(2) ∼=
Sym(3), i = 1, 2, 3. For i, j ∈ I, i 6= j set Pij = 〈Pi, Pj〉 and Qij = O2(Pij). Then
P12/Q12

∼= L3(2), P13/Q13
∼= Sym(3) × Sym(3) and P23/Q23

∼= 3̇Sym(6) (the triple
cover 3̇Alt(6) extended by an involution inverting the central element of order 3).
From a geometric point of view, Γx is the generalized Sp4(2) quadrangle when x is of
type 1 (see [15] for more details on this geometry), it is a 3-gon for x of type 2 and
the projective plane over GF (2) when x is of type 3.

2.1 G ∼= M24

So |G| = 210.33.5.7.11.23, [G : B] = |C| = 239, 085 and the permutation rank
of G on C is 510. The shapes of P12, P13, P23 are as follows: P12 ∼ 21+3+3L3(2),
P13 ∼ 22+(2+4)(Sym(3)×Sym(3)) and P23 ∼ 26 : 3̇Sym(6). Employing Curtis’s MOG
[8] on the 24 element set Ω we may give an explicit description of Γ. For the objects
of type 1 we take all the sextets of Ω, the objects of type 2 we take all fours groups of
G whose non-trivial elements y1, y2, y3 are such that FixΩ(y1), F ixΩ(y2), F ixΩ(y3) are
the octads of a trio while type 3 objects are the involutions of G which fix an octad
point-wise. (For the definitions of sextets, trios and octads and much more consult
[8].) An object of type 1, a sextet S is incident with an object of type 2, a fours group
F = {1, y1, y2, y3} if the yi stabilize S and the trio {FixΩ(y1), F ixΩ(y2), F ixΩ(y3)}
may be obtained from S by pairing the tetrads of S. An object of type 3, an involu-
tion y, is incident with a fours group F if y ∈ F and is incident with a sextet S if it
stabilizes S and FixΩ(y) is an octad which is the union of two tetrads of S.

We label the elements of Ω as in Curtis [8]. Thus we think of Ω as
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Ω =

∞ 14 17 11 22 19
0 8 4 13 1 9
3 20 16 7 12 5
15 18 10 2 21 6

=
O1 O2 O3 ,

where O1, O2 and O3 are the heavy bricks. In our calculations we shall take B (our
initial chamber) to be the one for whom

y = y1 =

s s s s s ss s s s s ss s s s s ss s s s s s
, y2 =

s s s s s ss s s s s ss s s s s ss s s s s s
,

y3 =

s s s s s ss s s s s ss s s s s ss s s s s s
,

and S is the standard sextet. So

S :=

1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

,

the positions labelled i where i = 1, . . . , 6 indicating the tetrads of S. (Also note that,
for example,

2 1 3 3 3 3
1 2 4 4 4 4
1 2 5 5 5 5
1 2 6 6 6 6

and

5 4 1 1 1 1
4 5 2 2 2 2
4 5 3 3 3 3
4 5 6 6 6 6

describe the same sextet.) We may describe chambers of C in the following concise
manner, similar to that used in [17]. We illustrate this notation with an example by
describing B as follows

1∗ 2∗ 3∗ 4∗ 5∗ 6∗

1∗ 2∗ 3∗ 4∗ 5∗ 6∗

1 2 3 4 5 6
1 2 3 4 5 6

12|34|56

The positioning of 1, 2, 3, 4, 5, 6 indicates the sextet, and the partition underneath
gives the trio (which here consists of the three octads O1, O2, O3). The ∗ gives a
partition of each tetrad and tells us which pairs are interchanged by the involutions
yi and, finally, the underlining of 1 and 2 identify y1 = y by giving the octad of fixed
points of y, namely O1 (the union of tetrads 1 and 2).
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2.2 G ∼= He

Here we have |G| = 210.33.52.73.17, [G : B] = |C| = 3, 935, 925 with the permutation
rank of G on C being 4, 831. In this case the shapes of P12, P13 and P23 are the same as
in (2.1). The smallest non-trivial permutation representation of G has degree 2, 058
(with point stabilizer isomorphic to Sp4(4) : 2). Let Ω be a 2, 058 set upon which G
acts (in our calculations we employ the representation available from [22]). We may
give an alternative description of Γ, using certain subsets of Ω which we now define.

Γ1 = {Fix(Q23)g | g ∈ G}

Γ2 = {Fix(Z(Q13))g | g ∈ G}

Γ3 = {Fix(Z(P12))g | g ∈ G}

Subsets in Γ1 have size 6, those in Γ2 size 18 and those in Γ3 size 42. The sym-
metric incidence relation is just (symmetrized) containment. Thus a chamber γ may
be identified with a triple of subsets of Ω which we denote by {F1(γ), F2(γ), F3(γ)}
where F1(γ) ⊆ F2(γ) ⊆ F3(γ), Fi(γ) the appropriate fixed point set with |F1(γ)| =
6, |F2(γ)| = 18 and |F3(γ)| = 42. For two chambers γ, γ′ of C we may define the inter-
section matrix I(γ, γ′) to be the 3× 3 matrix whose (i, j)th – entry is |Fi(γ)∩Fj(γ′)|.

2.3 G ∼ 37Ṡp6(2)

In this case we have |G| = 29.311.5.7 with [G : B] = |C| = 6, 200, 145. The per-
mutation rank of G on C is 15, 150. The shape of P12, P13 and P23 are as follows:
P12 ∼ 23+3L3(2), P13 ∼ 22+1+4(Sym(3) × Sym(3)) and P23 ∼ 21+43̇Sym(6). For
our calculations we obtain a copy of G by first availing ourselves of the construction
given in Section 3 of [10]. Specifically, we take the presentation given in Lemma
12 of [10] for, in the notation there, G0. We have that G ∼= G0 and by selecting
H = 〈u1, . . . , u9, w2, w3 > (notation as in [10]) we get [G0 : H] = 38.7 = 45, 927 with
coreG0(H) = 1. Hence we have a 45, 927 degree permutation representation of G.
Further in G (or more accurately in G0) we have another core-free subgroup, of shape
36U4(2)2, which then yields a permutation representation for G of degree 84, and this
is the representation we employ in our calculations.

3 Structure of the Chamber Graphs

As indicated earlier we will carry out our calculations in each of the three target groups
whose minimal parabolic geometry were detailed in Section 2. Let G denote any one
of those three groups with {P1, P2, P3} the rank 3 minimal parabolic system for G with
diagram as in Theorem 1.1. We use all the associated notation introduced in Section
2. In particular, Γ will denote the minimal parabolic geometry over I = {1, 2, 3} and
C its chamber graph. We recall that B = NG(S) = S ∈ Syl2(G). Since the right
cosets of B in G are in one-to one correspondence with the chambers of Γ, we identify
the vertices (chambers) of C with this set of right cosets. Employing the Magma
command DoubleCosetRepresentation(G,B,B) delivers these as an ordered sequence,
which we denote by DB. In order to save on storage space we now further identify a
vertex (chamber) of C with i ∈ {1, . . . , `} where ` is the length of DB. So we have
chambers Bg identified by i where g = DB[i]. And we take B (which corresponds to
i = 1) as our fixed vertex (chamber) of C whose discs we determine. First we itemize
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the neighbours of B in C as an ordered sequence thus (recall for C we have that the
valency is 6):

[Tr1[2], T r1[3], T r2[2], T r2[3], T r3[2], T r3[3]].

Here Tri for i = 1, 2, 3 denotes the ordered sequence Transversal(Pi, B). Since
Tri[1] is the identity element, this gives the chambers incident with B in C. We
call this sequence NeighboursofB, and have put this data in a sequence so as to
keep track of i-adjacency (i ∈ I). The first two entries are 1-adjacent to B, the
next two are 2-adjacent to B and the final two are 3-adjacent to B. The sequence
Neighbours captures the essential structure of C. So the ith entry concerns the
neighbours of Bg where g = DB[i] and is a sequence of length 6, [j1, j2, j3, j4, j5, j6]
(j1, j2, j3, j4, j5, j6 ∈ {1, . . . , `}) and tells us, where gi = DB[ji], that the chambers
Bg1 and Bg2 are both 1-adjacent to Bg, Bg3 and Bg4 are 2-adjacent to Bg while
Bg5 and Bg6 are 3-adjacent to Bg. Along the way we also assemble BorbitsDiscs, a
sequence whose ith entry is a set {j1, . . . , jr} which indicates that the ith disc of B is
the union of the B-orbits of Bgjk (1 ≤ k ≤ r) where gjk = DB[jk]. From this infor-
mation the size of the ith disc of B is easily obtained and the length of the sequence
BorbitsDiscs is the diameter of C.

The files accompanying this paper contain the following information and programs.
First there are three files, one for each of M24, He and 37Ṡp6(2), and called, respec-
tively, ChamberGraphM24, ChamberGraphHe and ChamberGraph37Sp(6, 2). Each
contains permutations which generate G, along with generators for P1, P2, P3 and B
(of degree 24, 2058 and 84 respectively). These permutation representations are the
ones used in our calculations. Next we give DB, the sequence of double coset represen-
tatives for B in G. This is followed by the ordered sequences TrP1, TrP2 and TrP3
which are then used to define the ordered sequence NeighboursofB. The last two
pieces of data are the output from running the the programs, namely Neighbours and
BorbitsDiscs. Then there is one further file, ProgramsDiscStructureandGeodesicClosure,
in which is to be found the programs for determining the disc structure and the
geodesic closure of maximal opposite chambers. There are four programs for calcu-
lating geodesic closures. The first is a generic version which may give duplication of
some of the chambers. The other three programs (taking the first program output as
their input) removes these possible duplicates for each of the three geometries, and
describes the chambers in a more combinatorial fashion. For G ∼= M24, chambers are
displayed using the MOG, for G ∼= He we use the fixed-point sets mentioned in (2.2)
and for G ∼ 37Ṡp6(2) the orbits of Bg (for the coset Bg) on Ω, where |Ω| = 84. We
do not record the output from the geodesic closure programs as this is easily (and
quickly) obtained by running the programs.

4 The Last Disc and Geodesic Closures

We first look at the structure of the last disc of C, that is the disc of maximal distance
from our initial chamber γ0 (which corresponds to B).

Theorem 4.1 Let G be one of M24, He and 37Ṡp6(2), and C the chamber graph of Γ.

1. If G = M24, then the last disc of C is the union of two B-orbits ∆1
17(γ0) and

∆2
17(γ0) with |∆1

17(γ0)| = 128 and |∆2
17(γ0)| = 256. Further every chamber in

∆1
17(γ0) is 1-adjacent to two chambers in ∆2

17(γ0)
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2. If G = He, then the last disc of C, ∆21(γ0), is a B-orbit. Moreover, ∆21(γ0) is
a co-clique.

3. If G = 37Ṡp6(2), then the last disc of C is the union of two B-orbits ∆1
25(γ0)

and ∆2
25(γ0) with |∆1

25(γ0)| = 64 = |∆2
25(γ0)|. Further, ∆25(γ0) is a co-clique.

As preparation for Theorem 4.2 where we look at G ∼= M24, we introduce some
chambers of C. Let γ0 be the chamber corresponding to B. Thus

γ0 :=

1∗ 2∗ 3∗ 4∗ 5∗ 6∗

1∗ 2∗ 3∗ 4∗ 5∗ 6∗

1 2 3 4 5 6
1 2 3 4 5 6

.

12|34|56

We have that ∆17(γ0) = ∆1
17(γ0)∪∆2

17(γ0) and we take γ1 ∈ ∆1
17(γ0) and γ2 ∈ ∆2

17(γo)
where

γ1 :=

5 6 2∗ 1∗ 6∗ 5
4∗ 4 4 3∗ 1∗ 1
3∗ 3 4∗ 3 2∗ 2
6∗ 5∗ 1 2 6 5∗

and γ2 :=

6∗ 6 1∗ 1 5∗ 6∗

3∗ 4∗ 4∗ 3 1 2
3 4 3∗ 4 1∗ 2∗

5∗ 5 2 2∗ 6 5

12|34|56 12|34|56

We shall also encounter the following batch of chambers.

γ3 :=

2∗ 6 6 2 5∗ 4
1∗ 1 4∗ 4 1∗ 3
3∗ 3 5 5∗ 1 3∗

6∗ 2 6∗ 2∗ 4∗ 5

γ4 :=

2∗ 5 3 1∗ 4∗ 4
1∗ 1 4∗ 6 2 5
3∗ 3 6∗ 4 2∗ 5∗

5∗ 2 3∗ 1 6 6∗

13|26|45 13|25|46

γ5 :=

5 2∗ 1∗ 3 6∗ 6
1∗ 1 4∗ 6 2∗ 5∗

3∗ 3 6∗ 4 2 5
2 5∗ 1 3∗ 4 4∗

γ6 :=

5∗ 2 1 3∗ 6 6∗

1∗ 1 4∗ 6 2∗ 5∗

3∗ 3 6∗ 4 2 5
2∗ 5 1∗ 3 4∗ 4

13|25|46 13|26|45

γ7 :=

2∗ 2 2 6 4 4∗

1∗ 5∗ 3∗ 4∗ 1∗ 5
1 5 3 4 5∗ 1
6∗ 6 6∗ 2∗ 3∗ 3

γ8 :=

5∗ 2∗ 1∗ 1 4 6∗

1∗ 3 4∗ 6∗ 2∗ 2
3∗ 1 4 6 5 5∗

5 2 3 3∗ 6 4∗

15|26|34 13|25|46
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γ9 :=

6∗ 6 3∗ 1 4∗ 5
1∗ 3∗ 4 4∗ 2∗ 6∗

1 3 5 5∗ 6 2
2∗ 2 1∗ 3 4 5∗

γ10 :=

2∗ 5 3∗ 3 6∗ 4∗

1∗ 3 4∗ 6 2∗ 2
3∗ 1 4 6∗ 5∗ 5
2 5∗ 1 1∗ 4 6

13|26|45 13|25|46

γ11 :=

2∗ 2 1∗ 5∗ 4 3∗

1 5∗ 3∗ 3 2∗ 6
1∗ 5 4∗ 4 6∗ 2
6 6∗ 5 1 4∗ 3

γ12 :=

5∗ 3∗ 5∗ 5 6 4
1∗ 2 4∗ 6 2∗ 2
2∗ 1 6∗ 4 1 1∗

5 3 3 3∗ 6∗ 4∗

15|26|34 12|35|46

γ13 :=

5∗ 2 1 1∗ 4∗ 6
1∗ 3 4∗ 6∗ 2∗ 2
3∗ 1 4 6 5∗ 5
5 2∗ 3∗ 3 6∗ 4

γ14 :=

5 2∗ 1∗ 1 4 6∗

1∗ 3∗ 4∗ 6∗ 2∗ 2
3 1 4 6 5∗ 5
5∗ 2 3∗ 3 6 4∗

13|25|46 13|25|46

γ15 :=

2∗ 5 3∗ 3 6∗ 4
1∗ 3∗ 4∗ 6∗ 2 2∗

3 1 4 6 5 5∗

2 5∗ 1∗ 1 4∗ 6

γ16 :=

2 5 3∗ 3 6 4∗

1∗ 3 4∗ 6∗ 2 2∗

3∗ 1 4 6 5∗ 5
2∗ 5∗ 1 1∗ 4 6∗

13|25|46 13|25|46

Theorem 4.2 Suppose G ∼= M24 and C is the chamber graph of Γ. Then a maximal
opposite set of chambers of C consists of three chambers. There are 14 G-orbits on
the set of maximal opposite sets of C with representatives {γ0, γ1, γi}(3 ≤ i ≤ 11) and
{γ0, γ2, γi}(12 ≤ i ≤ 16).

Proof For these calculations, as we wish to express our chambers in terms of the
MOG, we identify γ0 (which corresponds to B) with the ordered triple

[〈y〉, 〈y, y2〉, O2(StabG(S))].

Recall that S is the standard sextet of the MOG. For an arbitrary chamber Bg we
identify it with

[〈y〉g, 〈y, y2〉g, O2(StabG(S))g].

We easily recover the combinatorial description of Bg from this, by examining yg, yg2
and the orbits of O2(StabG(S))g on Ω. Using the representatives γ1 ∈ ∆1

17(γ0)
and γ2 ∈ ∆2

17(γ0), applying B we calculate ∆1
17(γ0) and ∆2

17(γ0), whence we obtain
∆17(γ0) =∆1

17(γ0)∪∆2
17(γ0). Applying DB[388] (number 388 of the double coset rep-

resentatives) to ∆17(γ0) yields ∆17(γ1), and we then see that |∆17(γ0)∩∆17(γ1)| = 24.
First we examine those maximal opposite sets of chambers where two of its chambers
γ, γ′ are such that γ′ ∈ ∆1

17(γ). Up to G-action we may assume γ = γ0 and γ′ = γ1.
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Now |∆17(γ0) ∩∆1
17(γ1)| = 8 and |∆17(γ0) ∩∆2

17(γ1)| = 16. We have Gγ0γ1
∼= Dih(8),

and we consider the action of Gγ0γ1 on ∆17(γ0)∩∆1
17(γ1). There are four Gγ0γ1-orbits

on ∆17(γ0) ∩ ∆1
17(γ1), of sizes 4, 2, 1 and 1 with representatives being, respectively,

γ3, γ4, γ5, and γ6. Let γ′′ denote any of these four representatives. Calculation reveals
that

∆17(γ0) ∩∆17(γ1) ∩∆17(γ′′) = ∅

and so {γ0, γ1, γj} for j = 3, 4, 5, 6 are maximal opposite sets of chambers. Since
Gγ0γ1γ5 = Gγ0γ1γ6 = Gγ0γ1

∼= Dih(8), |Gγ0γ1γ4| = 4 and |Gγ0γ1γ3| = 2, only {γ0, γ1, γ5}
and {γ0, γ1, γ6} could possibly be in the same G-orbit. These two sets are in the same
G-orbit if and only if they are in the same NG(D)-orbit where D = Gγ0γ1 . Since
|NG(D)| = 26.3, we quickly check that they are not in the same NG(D)-orbit. Thus
{γ0, γ1,j } for j = 3, 4, 5, 6 are representatives from different G-orbits.

We repeat the above analysis looking first at the Gγ0γ1-orbits on ∆17(γ0) ∩ ∆2
17(γ1),

and calculate that there are five Gγ0γ1-orbits. Their sizes are 8, 2, 2, 2, 2 with repre-
sentatives, respectively, γ7, γ8, γ9, γ10, γ11. Since

∆17(γ0) ∩∆17(γ1) ∩∆17(γ′) = ∅

for γ′ any one of these five representatives, we obtain further maximal opposite sets
{γ0, γ1, γj}, j = 7, 8, 9, 10, 11. We claim that no two of {γ0, γ1, γj} and {γ0, γ1, γk}
(j, k ∈ {7, 8, 9, 10, 11}, j 6= k) are in the same G-orbit. For, if there exists g ∈ G such
that {γ0, γ1, γj}g = {γ0, γ1, γk}, then, as γ1 ∈ ∆1

17(γ0), γ1 ∈ ∆2
17(γj) ∩ ∆2

17(γk), γ0 ∈
∆2

17(γj) ∩ ∆2
17(γk) (and these are symmetric relations), we must have either γg0 =

γ0, γ
g
1 = γ1 or γg0 = γ1, γ

g
1 = γ0. Hence g ∈ NG(D) where D = Gγ0γ1 . Checking in

NG(D) we see that no such g exists, so establishing the claim. So {γ0, γ1, γj}, j =
7, 8, 9, 10, 11 are in different G-orbits.

It remains to look at those maximal opposite sets where for any two different chambers
γ, γ′ in the set, γ′ ∈ ∆2

17(γ). Up to G-action, we may assume such sets contain γ0

and γ2. We have that Gγ0γ2
∼= Z2 × Z2. For further chambers to add to γ0 and γ2

we must look in ∆2
17(γ0) ∩∆2

17(γ2). Now |∆2
17(γ0) ∩∆2

17(γ2)| = 8 and this set has five
Gγ0γ2-orbits of sizes 4, 1, 1, 1, 1 with representatives, respectively, γ12, γ13, γ14, γ15, γ16.
Since

∆2
17(γ0) ∩∆2

17(γ2) ∩∆2
17(γj) = ∅

for j = 12, 13, 14, 15, 16, we get maximal opposite sets {γ0, γ2, γj}, j = 12, 13, 14, 15, 16.
Clearly any two of {γ0, γ2, γj}, j = 13, 14, 15, 16 are in the same G-orbit if and only if
they are in the same NG(E)-orbit where E = Gγ0γ2 . We have |NG(E)| = 29.32.5 and
we check that no two of these maximal opposite sets are in the same NG(E)-orbit.
Thus we obtain five further G-orbit representatives of maximal opposite sets and this
completes the census of G-orbit representatives and the proof of Theorem 4.2.

�

Theorem 4.3 Suppose G ∼= He or G ∼ 37Ṡp6(2)and C is the chamber graph of Γ.
Then a maximal opposite set of C consists of three chambers and the set of maximal
opposite sets of C form one G-orbit.
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Proof Suppose first that G ∼= He. Since Gγ0 is transitive on ∆21(γ0), we may
assume our maximal opposite set contains {γ0, γ1} where γ1 ∈ ∆21(γ0) is the chamber
corresponding to B ?DB[4556] (the right coset of B containing DB[4556]). For these
calculations we identify a chamber γ with {F1(γ), F2(γ), F3(γ)}, as detailed in (2.2).
Using the action of B, we determine ∆21(γ0) (as a set), and by applying DB[4556] to
this set we then obtain ∆21(γ1). As a consequence we see that |∆21(γ0) ∩∆21(γ1)| =
4. Put D = Gγ0γ1 . Now |D| = 24 (and D has nilpotency class 2) with D acting
transitively on ∆21(γ0) ∩∆21(γ1), Selecting γ2 ∈ ∆21(γ0) ∩∆21(γ1), we calculate that

∆21(γ0) ∩∆21(γ1) ∩∆21(γ2) = ∅.

Hence {γ0, γ1, γ2} is a maximal opposite set and there is just one G-orbit on the set
of maximal opposite chambers of C.

In the case when G ∼ 37Ṡp6(2), we choose γ′ ∈ ∆1
25(γ0), corresponding to the chamber

B ?DB[38]. Calculation shows that |∆25(γ0)∩∆25(γ′)| = 1 with ∆25(γ0)∩∆25(γ′) ⊆
∆2

25(γ0). From this we deduce that maximal opposite sets have size 3 and they form
a G-orbit.

�

If γ, γ′ ∈ C, then a geodesic between γ and γ′ is a path in C between γ and γ′ whose
length is d(γ, γ′). For X a set of chambers of C, we define the geodesic closure of
X, X̄, to be the set of chambers which are in a geodesic between γ and γ′ where γ
and γ′ are any chambers in X.

Our final result concerns geodesic closures of pairs of chambers at maximal distance
from each other.

Theorem 4.4 (i) Suppose that G = M24. Set n1,j = |{γ0, γ1} ∩ ∆j(γ0)| and n2,j =

|{γ0, γ2} ∩∆j(γ0)|. Then

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n1,j 1 4 8 24 24 16 16 16 24 24 16 16 16 24 24 8

j 16 17
n1,j 4 1

and

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n2,j 1 4 12 28 36 44 42 50 50 50 50 42 44 36 28 12

.

j 16 17
n2,j 4 1

.

Hence |{γ0, γ1}| = 266 and |{γ0, γ2}| = 534.

(ii) Suppose that G = He, and let γ′ ∈ ∆21(γ0). Set nj = |{γ0, γ′} ∩∆j(γ0)|. Then

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
nj 1 6 12 24 24 32 40 42 32 42 52 52 42 32 42 40

j 16 17 18 19 20 21
nj 32 24 24 12 6 1

.

So |{γ0, γ′}| = 614.
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(iii) Suppose that G = 37Ṡp6(2), and let γ′ ∈ ∆1
25(γ0). Set nj = |{γ0, γ′} ∩ ∆j(γ0)|.

Then

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
nj 1 6 18 25 36 64 88 128 160 168 180 176 184 192

j 14 15 16 17 18 19 20 21 22 23 24 25
nj 176 184 164 152 116 68 56 40 25 20 6 1

.

So |{γ0, γ′}| = 2, 434. The corresponding table for γ′ ∈ ∆2
25(γ0) is obtained by reading

the lower row in reverse order.
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