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Abstract

The matrix equation f(X) = A, where f is an analytic function and A is a square matrix,
is considered. Some results on the classification of solutions are provided. When f is
rational, a numerical algorithm is proposed to compute all solutions that can be written
as a polynomial of A. For real data, the algorithm yields the real solutions using only real
arithmetic. Numerical experiments show that the algorithm performs in a stable fashion
when run in finite precision arithmetic.
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1 Introduction

We consider the matrix equation
f(X) = A, (1)

where A,X ∈ CN×N and f is a complex function applied to a matrix (in the sense of primary
matrix functions, see Section 2). Remarkable examples of (1) are the matrix equations Xk = A,
eX = A, and XeX = A, which define the matrix kth root [22, 16], the matrix logarithm [1],
and the matrix Lambert W function [8], respectively. Existence and finiteness of real and
complex solutions to (1) are discussed, along with other properties of this matrix equation, in
the excellent treatise by Evard and Uhlig [7].

In order to better understand the computational properties of the matrices that satisfy (1),
it is useful to distinguish the solutions that can be written as a polynomial of A, or primary
solutions, from those that cannot, called nonprimary. A useful characterization of primary
solutions in terms of their eigenvalues is provided in [7].

After discussing some further properties of primary solutions, we focus our attention on iso-
lated solutions, that is, solutions that are unique in a neighborhood. We show that nonprimary
solutions are not isolated, characterize isolated solutions in terms of their eigenvalues, and show
that they are in fact primary solutions with some additional properties.

∗Version of November 22, 2018. Funding: This work was supported by the Istituto Nazionale di Alta Matem-
atica, INdAM–GNCS Project 2017; and MathWorks. The opinions and views expressed in this publication are
those of the authors, and not necessarily those of the funding bodies.
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‡Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

(bruno.iannazzo@unipg.it).
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Turning to numerical computation, we restrict our attention to the equation

r(X) = A, (2)

where r = p/q, and p and q are polynomials. The algorithm we propose is designed in the spirit
of and generalizes the method developed by Björk and Hammarling [3] for the square root of a
matrix, tailored for the real case by Higham [13] and extended to the kth root by Smith [22].

First, we consider the case of block upper triangular A and develop an algorithm that, using
a sequence of substitutions, computes a primary solution to (2) given its diagonal blocks. Next
we discuss how the Schur decomposition, which reduces any matrix to block upper triangular
form with a similarity transformation, can be exploited to extend our approach to general
matrices, and show that the algorithm, if no breakdown occurs, computes a primary solution,
given its eigenvalues. Finally, we show that the algorithm is applicable with no breakdown
if and only if there exists a unique solution with given diagonal blocks (which correspond to
a given set of eigenvalues), which, moreover, is proved to be equivalent to requiring that the
solution is isolated.

Being restricted to isolated solutions is not a severe limitation, since solutions that are not
isolated are typically of little or no computational interest. Indeed a solution X̃ that is not
isolated is either nonprimary or ill-posed, in the sense that there exists a neighborhood U

X̃
of

X̃ and a matrix E, such that the perturbed equation r(X) = A+ tE has no solution in U
X̃

for
any sufficiently small t > 0. For instance, when computing the square root of a matrix A with
the algorithm of Björk and Hammarling, one requires that, if A is singular, then the eigenvalue
zero is simple [3], which is a necessary and sufficient condition for a primary solution to X2 = A
to be isolated. Primary square roots can exist when the zero eigenvalue has multiplicity larger
than one, but in this case they are not isolated, and there exist arbitrarily small perturbations
of A having no square root.

In the next section, we provide some background material, and in the following we give some
theoretical results regarding the solutions of matrix equations of the type (1). In Section 4, we
consider (2) and present our algorithm for block upper triangular matrices, discussing both the
complex and the real Schur form. Section 5 is devoted to numerical experiments that illustrate
the numerical behavior of our algorithm, and in Section 6 we draw some conclusions and discuss
lines of future research.

2 Background and notation

Polynomials and rational functions. By convention, a summation is equal to zero if the
starting index exceeds the ending one. We denote by C[x] the polynomials of the complex
variable x with complex coefficients, and by Ck[x] ⊂ C[x] the complex polynomials of degree
at most k. Let p(x) :=

∑m
k=0 ckx

k ∈ Cm[x] and q(x) :=
∑n

k=0 dkx
k ∈ Cn[x] be coprime

polynomials with nonzero leading coefficients. The quotient r(x) := p(x)q(x)−1 is a rational
function of type [m,n]. In the following sections, when using p, q or r, we will always refer to
the functions defined above, and in particular, c0, . . . , cm will denote the coefficients of p and
d0, . . . , dn those of q.

In order to evaluate a polynomial p at a point x0, we make use of Horner’s evaluation
scheme [10, Alg. 9.2.1], that is, we define the polynomials p[j](x) =

∑m−j
i=0 ci+jx

i, for j = 0, . . . ,m,
and evaluate p[0](x0) = p(x0) by means of the recursion

p[m](x0) = cm,

p[j](x0) = x0p
[j+1](x0) + cj , for j = 0, . . . ,m− 1.
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Let f : Ω→ C, where Ω ⊂ C, and let x, y ∈ Ω. We denote by f [x, y] the divided difference
operator, defined by

f [x, y] =


f ′(x), x = y,

f(x)− f(y)

x− y
, x 6= y,

which implicitly requires f to be differentiable at x, when x = y. The divided differences over
k + 1 numbers, ordered so that equal numbers are contiguous, are

f [x0, . . . , xk] =


f (k)(x0)

k!
, x0 = x1 = · · · = xk,

f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
, otherwise.

This definition can be extended to any set of k + 1 numbers by assuming that the divided
differences are symmetric functions of their arguments. For the construction above to make
sense, the function has to be differentiable t times at any point repeated t+ 1 times.

Primary matrix functions. Let A ∈ CN×N and let Z ∈ CN×N be such that Z−1AZ = J =
diag(J(λ1, τ1), . . . , J(λν , τν)) is the Jordan canonical form of A, with

J(λ,m) :=


λ 1

λ
. . .
. . . 1

λ

 ∈ Cm×m,

where missing entries should be understood as zeros. In order to simplify the notation, we will
often omit the diagonal element and the size of the Jordan block and write Ji for J(λi,mi).
The index of the eigenvalue λ, denoted by ι(λ), is the size of the largest Jordan block where
λ appears. An eigenvalue with index one is said to be semisimple, otherwise it is said to be
defective; a semisimple eigenvalue appearing in only one block is said to be simple.

Let the complex function f and its derivatives up to the order ι(λk)− 1 be defined at λk for
k = 1, 2, . . . , ν. Then we can define the primary matrix function

f(A) := Zf(J)Z−1 = Z diag(f(J1), f(J2), . . . , f(Jν))Z−1, (3)

where

f(Jk) =


f(λk) f ′(λk) . . . f (mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 .
This definition does not depend on the matrix Z, and it can be shown that if f is a primary
matrix function then f(M−1AM) = M−1f(A)M for any M invertible and A such that f(A) is
well-defined. We will refer to this fundamental property as commutativity with similarities, and
it will be used throughout the paper. A consequence is that if A = diag(A1, . . . , Aν) is block
diagonal, then f(A) = diag(f(A1), . . . , f(Aν)).

Moreover, it is easy to show that f(A) as defined in (3) coincides with a polynomial that in-
terpolates f in the Hermite sense on the spectrum of A [14, Rem. 1.10]. Therefore, if T ∈ CN×N
is block upper triangular, then f(T ) has the same block structure as T , and if T11, . . . , Tνν are
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the diagonal blocks of T , then the diagonal blocks of f(T ) are f(T11), . . . , f(Tνν). An explicit
formula for the function of an upper triangular matrix is [10, Thm. 9.1.4]

(f(T ))ii = f(tii), 1 ≤ i ≤ n,

(f(T ))ij =
∑

i1=i<i2<···<i`=j
ti1i2ti2i3 · · · ti`−1i`f [ti1i1 , . . . , ti`i` ], 1 ≤ i < j ≤ n, (4)

where the sum is over all increasing sequences of integers starting with i and ending with j.
Let J be a nontrivial Jordan block in which the eigenvalue λ appears. The Jordan canonical

form of f(J) consists of:

1. only one Jordan block associated with f(λ), if f ′(λ) 6= 0;

2. two or more Jordan blocks associated with f(λ), if f ′(λ) = 0.

In the latter case, we say that the function f splits the Jordan block J . A complete description
of the Jordan canonical form of f(A) in terms of that of A is given in [15, sect. 6.2.25].

The Frechét derivative of a matrix function f : Ω → CN×N at a point A ∈ Ω ⊂ CN×N is
the linear functional Df(A) : CN×N → CN×N that satisfies

f(A+ E) = f(A) +Df(A)[E] + o(‖E‖),

for any E ∈ CN×N with sufficiently small norm.
A measure of the sensitivity of matrix function, with respect to perturbation of the argument

A, is given by the relative condition number, which, for any subordinate norm ‖ · ‖, is defined
as [14, eq. (3.2)]

κf (A) = lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖

. (5)

We conclude this section with a lemma and a corollary that will be useful later on.

Lemma 1. Let A ∈ CN×N be upper bidiagonal, let ei, for i = 1, . . . , N , be the standard basis
of CN , and let f(A) and f [a11, aNN ] be well-defined. Then for any δ ∈ C we have that

f(A+ δe1e
T
N ) = f(A) + δf [a11, aNN ]e1e

T
N . (6)

Proof. Let T := A+δe1e
T
N and F = f(T ). Partitioning T =

[
T1 v
0 tNN

]
, with T1 ∈ C(N−1)×(N−1),

from the properties of primary matrix functions, we have that F =
[
f(T1) ṽ

0 f(tNN )

]
and thus that

(F )ij = (f(A))ij , for j < N . Using the partition T =
[ t11 w

0 T2

]
, with T2 ∈ C(N−1)×(N−1), we get

that (F )ij = (f(A))ij for i < N . By using (4), for the top right element of the matrix we have

(F )1N =
∑

i1=1<i2<···<i`=N
ti1i2ti2i3 · · · ti`−1i`f [ti1i1 , ti2i2 , . . . , ti`i` ].

Since tij = 0 for i < j − 1 and (i, j) 6= (1, N), the sum can be restricted to the two sequences
i1 = 1, i2 = 2, . . . , iN = N and i1 = 1, i2 = N , giving

(F )1N = t12 . . . tN−1,Nf [t11, . . . , tNN ] + t1Nf [t11, tNN ] = (f(A))1N + δf [a11, aNN ],

which concludes the proof of the identity (6).

Corollary 2. We have the following relations, with δ ∈ C:

(a) if A = λI ∈ CN×N , and f is differentiable at λ, then f(A+ δe1e
T
N ) = f(A) + δf ′(λ)e1e

T
N ;

(b) if A = J(λ,N), and f is differentiable at λ, then f(A+ δe1e
T
N ) = f(A) + δf ′(λ)e1e

T
N ;

(c) if A = diag(J(λ, k), J(µ,N − k)), with λ 6= µ and 1 ≤ k < N , and f is well-defined at A,
then f(A+ δe1e

T
N ) = f(A) + δf [λ, µ]e1e

T
N .
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3 Classification of the solutions

The matrix equation f(X) = A, with f analytic, may have zero, finitely many, or infinitely many
solutions. All these scenarios are possible, and here we are concerned with a classification of the
solutions in terms of properties that are relevant from a computational viewpoint. In Section 3.1
we relate the notion of primary solution to that of primary matrix function, in Section 3.2, we
consider isolated solutions and characterize them in several ways, and we conclude by briefly
discussing critical solutions in Section 3.3.

3.1 Primary solutions

The matrices that satisfy (1) may define a function of the matrix A, but in general solutions
to (1) need not be primary functions of A, in the sense of Section 2. The matrix [ 0 1

0 0 ], for
instance, satisfies the 2 × 2 matrix equation X2 = 0, but is not a primary function of the
zero matrix. Broadly speaking, solutions to a matrix equation can be divided into two classes,
those that are primary functions of A and those that are not. In this section, we give some
clarifications on this topic.

Let A ∈ CN×N , let f : Ω → C be a function analytic on the open set Ω ⊆ C and let
X ∈ CN×N be a solution to f(X) = A such that f is defined on the spectrum of X. A solution
is primary if it can be written as a polynomial of A, and nonprimary otherwise.

A necessary and sufficient condition for a solution to be primary is provided by the following
result, where an eigenvalue ξ of the solution X is said to be critical if f ′(ξ) = 0.

Theorem 3 (Evard and Uhlig [7, Thm. 6.1]). A solution X ∈ CN×N to the equation f(X) = A
is primary if and only if the following two conditions are true:

1. for any two distinct eigenvalues ξ1 and ξ2 of X, we have f(ξ1) 6= f(ξ2);

2. all critical eigenvalues of X (if any) are semisimple.

The definition of primary solution as a polynomial of A is related to the concept of primary
function of a matrix. Informally, we could say that any primary solution is obtained as “an
inverse of f applied to the matrix A”. We now make this notion precise.

Let λ1, . . . , λs be the distinct eigenvalues of A, ordered so that the first t are semisimple
and the remaining are not. We say that a solution X is primary in the sense of functions if
X = f̂−1(A) where f̂−1 : {λ1, . . . , λt} ∪ U → C is analytic on an open set U ⊇ {λt+1, . . . , λs}
and is such that (f ◦ f̂−1)(z) = id(z) for any z ∈ {λ1, . . . , λt} ∪ U .

Requiring that f̂−1 is analytic on the eigenvalues that correspond to nontrivial Jordan blocks
of A guarantees that f̂−1 is defined on the spectrum of A and thus that f̂−1(A) is well-defined
in the sense of (3). These two definitions are in fact the same, as the following proposition
shows.

Proposition 4 (Equivalence of definitions of primary solution). Let f be a complex function
analytic on Ω ⊂ C and let A ∈ CN×N . A solution X ∈ CN×N to f(X) = A with eigenvalues
in Ω can be written as a polynomial of A if and only if it is primary in the sense of functions,
i.e., if and only if X = f−1(A), where f−1 is an inverse of f defined on the spectrum of A and
analytic at the defective eigenvalues of A.

Proof. Assume that X = f−1(A) for some inverse of f . Since f−1(A) is a primary function of
A, there exists a polynomial p ∈ C[x] such that X = f−1(A) = p(A), which implies that X is a
primary solution to f(X) = A.
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Conversely, suppose that X = p(A) for some p ∈ C[x]. From f(X) = f(p(A)) = A, it follows
that f(p(λ)) = λ for any eigenvalue λ of A. By taking f̂−1(λ) = p(λ) for any λ, it is enough to
show that if λ is not semisimple, then f̂−1(λ) can be extended analytically in a neighborhood
of λ to an inverse of f , and that X = f̂−1(A).

Let J be a nontrivial Jordan block of A in which the eigenvalue λ appears. From f(p(A)) = A
it follows that f(p(J)) = J , which entails that (f ◦ p)′(λ) 6= 0, as f ◦ p would otherwise split
the Jordan block. The latter inequality implies, in turn, that f ′(p(λ)) 6= 0 and thus that f is
invertible in a neighborhood of p(λ) = f̂−1(λ) with analytic inverse [9, sect. 4.6]. Thus, we can
extend f̂−1 in an open neighborhood of λ to a function such that f ◦ f̂−1 = id.

In order to prove that X = f̂−1(A), it suffices to show that (f̂−1)(k)(λ) = p(k)(λ) for
k = 1, . . . , `− 1, where ` is the size of J̃ , the largest Jordan block in which λ appears. First
observe that f(p(J̃)) = J̃ implies that (f ◦ p)(k)(λ) = id(k)(λ) and thus that (f ◦ p)(k)(λ) =
(f ◦ f̂−1)(k)(λ), for k = 1, . . . , `− 1, since (f ◦ f̂−1)(k)(λ) = id(k)(λ).

Next, we show by induction that for any k > 0 and any function g such that f ◦g is analytic
in a neighborhood of λ, one has that (f ◦ g)(k)(λ) = f ′(g(λ))g(k)(λ) + hk(g;λ), where hk is a
polynomial in f ′′(g(λ)), . . . , f (k)(g(λ)), g(λ), g′(λ), . . . , g(k−1)(λ). Choosing h1(g;λ) = 0 verifies
the equality for k = 1, whereas for the inductive step we have

(f ◦ g)(k+1)(λ) = f ′(g(λ))g(k+1)(λ) + f ′′(g(λ))g′(λ)g(k)(λ) + h′k(g;λ)

=: f ′(g(λ))g(k+1)(λ) + hk+1(g;λ),

where hk+1(g;λ) is a polynomial in f ′′(g(λ)), . . . , f (k+1)(g(λ)), g(λ), . . . , g(k)(λ).
Finally, we can prove that (f̂−1)(k)(λ) = p(k)(λ) for k = 0, . . . , ` − 1. For k = 0, this

holds by definition of f̂−1, while for k < `− 1, from (f ◦ p)(k+1)(λ) = (f ◦ f̂−1)(k+1)(λ) we have
that f ′(p(λ))p(k+1)(λ) +hk+1(p;λ) = f ′(f̂−1(λ))(f̂−1)(k+1)(λ) +hk+1(f̂

−1;λ). By the inductive
hypothesis hk+1(g;λ) = hk+1(f̂

−1;λ), and since f ′(f̂−1(λ)) = f ′(p(λ)) 6= 0, we can conclude
that p(k+1)(λ) = (f̂−1)(k+1)(λ).

Another property of nonprimary solutions is that they are not isolated, as we show in the
next section.

3.2 Isolated solutions

A solution X to f(X) = A is isolated if there exists a neighborhood U of X where the matrix
equation has a unique solution. We will characterize isolated solution in several ways, and will
start by showing that nonprimary solutions are not isolated.

Theorem 5. Let A ∈ CN×N , and let X ∈ CN×N be a nonprimary solution to the matrix
equation f(X) = A where f is a complex function analytic at the spectrum of X. Then X is
not isolated. Moreover, the set of solutions is unbounded and there are infinitely many solutions
having the same spectrum as X.

Proof. In view of Theorem 3, if X is nonprimary, then necessarily either one of its critical
eigenvalues, ξ say, is defective, or f takes the same value at two distinct eigenvalues ξi 6= ξj .

If ξ is defective, then there exists an invertible matrix M such that M−1XM =
[
J1 0
0 J2

]
,

where J2 = J(ξ, k) is a Jordan block of size k > 1 associated with ξ. Using the notation of
Corollary 2, define the parametrized matrix

X(δ) := M

[
J1 0
0 J2 + δe1e

T
k

]
M−1,
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with δ ∈ C. Noticing that

f(X(δ)) = M

[
f(J1) 0

0 f(J2 + δe1e
T
k )

]
M−1 = M

[
f(J1) 0

0 f(J2)

]
M−1 = f(X),

where the second equality follows from Corollary 2(b) with f ′(ξ) = 0, shows that X(δ) is a
solution to f(X) = A for any δ, and since limδ→0X(δ) = X, we conclude that X is not isolated.

If the matrix has two distinct eigenvalues ξi 6= ξj such that f(ξi) = f(ξj), the proof is

similar, and it suffices to consider the block J2 =
[
J(ξ1,k1) 0

0 J(ξ2,k2)

]
, with k1, k2 ≥ 1, and use

Corollary 2(c) with f [ξi, ξj ] = 0.
In both cases, for any δ ∈ C the matrix X(δ) has the same spectrum as X by construction,

and the set {X(δ) : δ ∈ C} is infinite and unbounded.

The converse of the Theorem 5 is not true. Indeed, the set of isolated solutions may be a
strict subset of primary solution. The next results provides several interesting characterizations
of the isolated solutions of f(X) = A. As we will see, the algorithm we introduce in Section 4
to solve (2), can compute a solution if and only if it is isolated.

Theorem 6. Let f : Ω → C be an analytic non-constant function in the domain Ω ⊂ C. Let
A ∈ CN×N , and let X ∈ CN×N be a solution to f(X) = A, with eigenvalues ξ1, . . . , ξN in Ω.
The following are equivalent:

(a) X is isolated;

(b) X is primary with simple or no critical eigenvalues, that is,

1. for any two distinct eigenvalues ξi and ξj of X, we have f(ξi) 6= f(ξj);

2. all critical eigenvalues of X (if any) are simple;

(c) X is the unique solution with eigenvalues ξ1, . . . , ξN ;

(d) f [ξi, ξj ] 6= 0 for i, j = 1, . . . , N , with i 6= j.

Proof. (a)⇒ (b). By Theorem 5, if X is isolated, then it is primary, and we need to prove only
that all its critical eigenvalues are simple (we know that they are semisimple by Theorem 3). By
contradiction, assume that ξ is a semisimple critical eigenvalue of X with multiplicty at least 2.

Then there exists an invertible matrix M such that M−1XM =
[
J1 0
0 J2

]
, where J2 = ξI, where

I has size ` > 1. With the notation of Corollary 2, the matrix

X(δ) = M

[
J1 0
0 J2 + δe1e

T
`

]
M−1

is a solution to f(X) = A for any δ ∈ C, since

f(X(δ)) = M

[
f(J1) 0

0 f(J2 + δe1e
T
` )

]
M−1 = M

[
f(J1) 0

0 f(J2)

]
M−1 = f(X)

where the second equality follows from Corollary 2(a) with f ′(ξ) = 0. Since limδ→0X(δ) = X,
X is not isolated.

(b)⇒ (c). The eigenvalues of A are the image under f of the eigenvalues of any solution, in
particular, they are f(ξ1), . . . , f(ξN ). Assume that X is primary with simple critical eigenvalues,
and let Y be a solution with the same eigenvalues as X. This implies that Y has simple critical
eigenvalues, and that f(ξi) 6= f(ξj) for any pair of distinct eigenvalues ξi 6= ξj . Therefore, by
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Theorem 3, Y must be primary with simple critical eigenvalues; moreover, the images of these
critical eigenvalues are simple eigenvalues of A as well. In particular, the defective eigenvalues
of A (if any) are image of noncritical eigenvalues of X. By Proposition 4, Y = f̂−1(A) and
X = f−1(A), where both f̂−1 and f−1 are inverses of f and are analytic at the images of
noncritical eigenvalues of X (and Y ), and thus are analytic at the defective eigenvalues of A.
Since f̂−1(λ) = f−1(λ) for any eigenvalue λ of A, and the two functions are analytic and
coincide in a neighborhood of λ if the eigenvalue is defective (the inverse of an analytic function
is unique), we have that Y = f̂−1(A) = f−1(A) = X.

(c)⇒ (a). Without loss of generality, we may assume that if ξi 6= ξk then f(ξi) 6= f(ξk), since
otherwise the solution X would be nonprimary and, by Theorem 5, there would be solutions
other than X, but with the same spectrum as X.

Since the eigenvalues of A are f(ξ1), . . . , f(ξN ), any solution to f(X) = A has eigenvalues

ζ1, . . . , ζN such that f(ζ1) = f(ξ1), . . . , f(ζN ) = f(ξN ). Let {τ (i)j }j∈Ji be the (possibly empty)
set of solutions to f(x) = f(ξi) other than ξi. If Ji is empty for each i, then the eigenvalues of
any solution must be ξ1, . . . , ξN and X is the unique solution, hence it is isolated.

Let us now assume that some of the Ji are nonempty. If Ji is nonempty, then τ
(i)
j 6= ξk for

each j and k: this is true by definition when ξi = ξk, and when ξi 6= ξk, by the assumption

above, since f(τ
(i)
j ) = f(ξi) 6= f(ξk). Moreover, since the zeros of a non-constant analytic

function cannot have accumulation points in the domain of analyticity [4, sect. 143], ξk cannot

be an accumulation point of the set {τ (i)j }j∈Ji and hence εi,k := infj∈Ji |τ
(i)
j − ξk| must be

positive for each k. Set ε := mini :Ji 6=∅mink=1,...,N εi,k > 0.

A solution Y 6= X, must have at least one eigenvalue of the type τ̂ := τ
(i)
j for some i and j.

If that is the case, then mink=1,...,N |τ̂ − ξk| ≥ ε or, in other words, at least one eigenvalue of Y
has distance at least ε from any eigenvalue of X. On the other hand, since the eigenvalues are
continuous functions of the entries of a matrix, there exists a neighborhood U of X, such that
for any Z ∈ U , we have maxη∈σ(Z) mink=1,...,N |η − ξk| < ε/2, where σ(Z) is the spectrum of Z.
Therefore Y does not belong to U , and X is isolated.

(b) ⇔ (d). A necessary and sufficient condition for f [ξi, ξj ] = 0 for i 6= j, is that either
ξi 6= ξj , with f(ξi) = f(ξj) or ξi = ξj and f ′(ξi) = 0. These two conditions are equivalent to X
being either nonprimary or primary with multiple critical eigenvalues.

We observe that, when a primary solution X of f(X) = A is not isolated, the corresponding
solution X is ill-posed, that is, a small perturbation of A may produce an equation that has no
solutions near X.

By Theorem 6, a primary solution X that is not isolated has at least one semisimple eigen-
value ξ with multiplicity k > 1 and such that f ′(ξ) = 0. Hence λ = f(ξ) is a semisimple
eigenvalue of A, with the same multiplicity as ξ since X is primary. There exists a nonsingular
matrix M such that M−1AM =

[
J 0
0 λIk

]
, where λ is not an eigenvalues of J . For ε > 0, the

perturbed equation f(X) = A(ε) where

A(ε) = M diag

J,

λ ε

. . .
. . .

λ ε
λ



M−1,

has no solutions with eigenvalue ξ. Indeed, since primary matrix functions split Jordan blocks
in presence of critical eigenvalues, if there exists X(ε) such that f(X(ε)) = A(ε), it must have
an eigenvalue µ, such that f(µ) = λ and f ′(µ) 6= 0, which in turn implies that µ 6= ξ. Therefore,
the solution X(ε) can be ruled out from a sufficiently small neighborhood of X.
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3.3 Critical solutions

Let f be an analytic complex function and let Df(M) : CN×N → CN×N be the Frechét
derivative of f at the matrix M ∈ CN×N . A solution X to the equation f(X) = A is said to
be critical if Df(X) is singular, and noncritical otherwise. We may easily characterize critical
solutions.

Proposition 7. Let f be a complex function, let A ∈ CN×N , and let X ∈ CN×N be a solution
to the matrix equation f(X) = A. If f is differentiable at X, then the derivative Df(X) is
nonsingular if and only if the following two conditions are fulfilled:

1. for any two distinct eigenvalues ξi and ξj of X, we have f(ξi) 6= f(ξj);

2. none of the eigenvalues of X is critical for f .

Moreover, these conditions are equivalent to the condition that f [ξi, ξj ] 6= 0, for i, j = 1, . . . , N ,
where ξ1, . . . ξN are the eigenvalues of X.

Proof. Observe that the two conditions hold if and only if the divided differences of any two
eigenvalues of X is not zero. Since the the eigenvalues of Df(X) are the divided differences of
eigenvalues of X [14, Thm. 3.9], this is equivalent to requiring that Df(X) is nonsingular.

A further property of nonprimary solutions is that of being critical.

Proposition 8. Let f be an analytic complex function, let A ∈ CN×N , and let X ∈ CN×N be
a nonprimary solution to the matrix equation f(X) = A. Then Df(X) is singular.

Proof. In view of Theorem 3, if X in not primary, then X has either two distinct eigenvalues
ξi and ξj such that f(ξi) = f(ξj) and thus f [ξi, ξj ] = 0, or a defective eigenvalue ξ such that
f [ξ, ξ] = f ′(ξ) = 0. Since the eigenvalues of Df(X) are the divided differences of two eigenvalues
of X [14, Thm. 3.9], both cases yield a singular derivative.

Notice that there might be primary or even isolated solutions that are critical: those with
critical eigenvalues.

4 A substitution algorithm for rational equations

Given A ∈ CN×N , we want to find the primary solutions X ∈ CN×N to (2). To this end, we
first reduce this equation to

p(X) = Aq(X), (7)

then consider a (block) triangular form of A, such as the Schur form, and devise an algorithm
to compute the entries of X. We begin by showing that (2) and (7) are equivalent.

In the scalar case, if p and q are coprime, then a root of p cannot be a root of q and vice
versa, and thus that the scalar equation p(x)

q(x) = a has a solution if and only if p(x) = aq(x) does.
The matrix version of this implication is also true, as the following result shows.

Proposition 9. Let p ∈ Cm[x], q ∈ Cn[x] be coprime. Then X ∈ CN×N is a solution to
p(X)q(X)−1 = A if and only if it satisfies p(X) = Aq(X).

Proof. If X is such that p(X)q(X)−1 = A, then p(X) = Aq(X). For the other implication, first
note that if X is such that p(X) = Aq(X) and q(X) is nonsingular, then p(X)q(X)−1 = A,
hence it is enough to show that q(X) is nonsingular.
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For the sake of contradiction, assume that q(X) is singular. Then there exists a nonzero
vector b ∈ CN , such that q(X)b = 0, and thus p(X)b = Aq(X)b = 0. Since the set I =
{s ∈ C[x] : s(X)b = 0} is an ideal in a principal ideal domain, it is generated by a minimal
polynomial s(x) ∈ C[x], that is not constant since b 6= 0 and thus I 6= C[x]. Hence, s(x)|q(x)
and s(x)|p(x), which leads to a contradiction since p(x) and q(x) are coprime.

Let us consider a similarity transformation that reduces A to a block upper triangular matrix
U−1AU =: T = [Tij ]i,j=1,...,ν ∈ CN×N , where Tij ∈ Cτi×τj , with

∑ν
i=1 τi = N and Tij = 0 for

i > j.
We are mostly interested in the Schur decomposition, where U is unitary and T is upper

triangular, and, for A ∈ RN×N , in the the real Schur decomposition, where U is real orthogonal
and T is upper quasi-triangular. Nevertheless, we prefer to work in greater generality, as a
different blocking strategy may allow for more efficient implementations of the algorithms (for
instance, in order to exploit caching and parallelism in modern computer architectures).

Since matrix polynomials commute with similarities, X is a solution to (2) if and only if
Y := U−1XU satisfies r(Y ) = T , and in view of Proposition 9, in order to solve (2) we can work
with the simpler matrix equation p(Y ) = Tq(Y ). By exploiting Horner’s scheme for polynomial
evaluation [10, Alg. 9.2.1], we can rewrite the latter equation as P [0] = TQ[0], where P [0] = p(Y )
and Q[0] = q(Y ), are defined recursively by

P [0] = c0I + Y P [1], Q[0] = d0I + Y Q[1],

P [1] = c1I + Y P [2], Q[1] = d1I + Y Q[2],

...
...

P [m−1] = cm−1I + Y P [m], Q[n−1] = dn−1I + Y Q[n],

P [m] = cmI, Q[n] = dnI.

(8)

If we look for primary solutions only, we may assume that Y is block upper triangular with
the same block structure as T , which implies in turn that all P [u]s and Q[v]s have the same
block upper triangular structure. We adopt the following notation: for a matrix M with the
same block structure as T , we denote by Mij the block in position (i, j) of M .

We assume that the ν blocks along the diagonal of Y are known, for instance they can be
deduced by a direct formula when the size is 1 or 2. Note that in most cases the diagonal blocks
can be chosen in several ways, and that this choice determines what solution the algorithm
will compute among all those that are primary. We discuss these points in details in the next
section.

The blocks along the diagonal of P [u], for u = 0, . . . ,m − 1, and Q[v], for v = 0, . . . , n − 1,
can be uniquely determined by means of (8), and in order to compute the blocks in the upper
triangular part of Y , P [u] and Q[v], note that for 1 ≤ i < j ≤ ν, we have

P
[u]
ij =

j∑
k=i

YikP
[u+1]
kj = YiiP

[u+1]
ij + YijP

[u+1]
jj +

j−1∑
k=i+1

YikP
[u+1]
kj , u = 0, . . . ,m− 1,

Q
[v]
ij =

j∑
k=i

YikQ
[v+1]
kj = YiiQ

[v+1]
ij + YijQ

[v+1]
jj +

j−1∑
k=i+1

YikQ
[v+1]
kj , v = 0, . . . , n− 1.

(9)

By substituting (9) for P
[u+1]
ij andQ

[v+1]
ij into those for P

[u]
ij andQ

[v]
ij , respectively, and recursively

repeating this procedure, we get, as shown in the following proposition, an expression where Yij
appears together with blocks of Y , P [u], and Q[v] lying to the left of the block in position (i, j)
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or below it. This discussion translates immediately into a two-step algorithm for computing Y :
first compute the diagonal blocks and then compute the off-diagonal blocks a superdiagonal at
a time.

Proposition 10. Let p ∈ Cm[x] and q ∈ Cn[x] be coprime, let T ∈ CN×N be block upper
triangular, let Y ∈ CN×N be a solution to the matrix equation p(Y ) = Tq(Y ) with the same
block structure as T , and let P [u], Q[v] ∈ CN×N , for u = 0, . . . ,m and v = 0, . . . , n, be as
in (8). Then P [u] and Q[v] have the same block structure as T , and their off-diagonal blocks,
for 1 ≤ i < j ≤ ν, are given by the formulae

P
[u]
ij =

m−u∑
e=1

Y e−1
ii YijP

[u+e]
jj +

m−u−1∑
f=1

Y f−1
ii C

[u+f ]
ij , u = 0, . . . ,m− 1,

Q
[v]
ij =

n−v∑
g=1

Y g−1
ii YijQ

[v+g]
jj +

n−v−1∑
h=1

Y h−1
ii D

[v+h]
ij , v = 0, . . . , n− 1,

(10)

where

C
[u]
ij =

j−1∑
k=i+1

YikP
[u]
kj , D

[v]
ij =

j−1∑
k=i+1

YikQ
[v]
kj .

Moreover, one has the following

m∑
e=1

Y e−1
ii YijP

[e]
jj − Tii

n∑
g=1

Y g−1
ii YijQ

[g]
jj =

j∑
k=i+1

TikQ
[0]
kj −

m−1∑
f=1

Y f−1
ii C

[f ]
ij + Tii

n−1∑
h=1

Y h−1
ii D

[h]
ij . (11)

Proof. The two claims in (10) can be proved by induction on an auxiliary variable k. We
limit ourselves to the recurrence for P [u], the proof for Q[v] being analogous. For u = m − 1,

equation (10) reduces to P
[m−1]
ij = cmYij , which follows directly from the definition of P [m−1]

in (8). For the inductive step, we have, for 1 < k ≤ m,

P
[m−k]
ij = YiiP

[m−k+1]
ij + YijP

[m−k+1]
jj +

j−1∑
k=i+1

YikP
[m−k+1]
kj

=
k∑
e=2

Y e−1
ii YijP

[m−k+e]
jj +

k−1∑
f=2

Y f−1
ii C

[m−k+f ]
ij + Y 0

iiYijP
[m−k+1]
jj + Y 0

iiC
[m−k+1]
ij

=
k∑
e=1

Y e−1
ii YijP

[m−k+e]
jj +

k−1∑
f=1

Y f−1
ii C

[m−k+f ]
ij .

In order to establish (11), note that one can rewrite P [0] = TQ[0] as

P
[0]
ij − TiiQ

[0]
ij =

j∑
k=i+1

TikQ
[0]
kj .

Substituting (10) for P
[0]
ij and Q

[0]
ij and rearranging the terms concludes the proof.

11



4.1 Complex Schur form

When T ∈ CN×N is upper triangular, the blocks along the diagonal of T are of size 1 × 1 and
ν = N . Equation (11) involves just scalars and can be written as ψijyij = ϕij , where

ψij :=
m∑
e=1

ye−1ii p
[e]
jj − tii

n∑
g=1

yg−1ii q
[g]
jj , (12)

and

ϕij :=

j∑
k=i+1

tikq
[0]
kj −

m−1∑
f=1

yf−1ii C
[f ]
ij + tii

n−1∑
h=1

yh−1ii D
[h]
ij . (13)

If tii is a diagonal element of T , then for i = 1, . . . , N , yii will be any of the at most max(m,n)
distinct roots of the polynomial p(x)−tiiq(x) = 0. In order to compute the off-diagonal elements
of Y , we can see the relation ψijyij = ϕij as an equation

ψijx = ϕij , (14)

whose unique solution is yij when ψij 6= 0 and the values yhk with h − k < i − j are known
quantities.

We give necessary and sufficient conditions for (14) to have unique solution, and relate
them to the characterization of isolated solutions given in Section 3. We start with a couple of
technical lemmas, then we give the main theorem.

Lemma 11. Let p(x) =
∑m

i=0 cix
i, let a, b ∈ C and let p[k](x) =

∑m−k
i=0 ck+ix

i, for k = 0, . . . ,m,
be the sequence of stages of Horner’s rule applied to p. Then

χ :=
m∑
k=1

ak−1p[k](b) = p[a, b]. (15)

Proof. By definition of p[a, b], we have to prove that χ = p′(a) if a = b and χ = p(a)−p(b)
a−b if

a 6= b. In both cases we have

m∑
k=1

ak−1p[k](b) =
m∑
k=1

ak−1
(m−k∑

i=0

ck+ib
i

)
=

m∑
`=1

c`

( `−1∑
k=0

akb`−k−1
)
.

If a = b, then we get
m∑
k=1

ak−1p[k](b) =
m∑
`=1

c``a
`−1 = p′(a),

whereas, for a 6= b we have

m∑
k=1

ak−1p[k](b) =

m∑
`=1

c`
a` − b`

a− b
=

1

a− b

( m∑
`=0

c`a
` −

m∑
`=0

c`b
`

)
=
p(a)− p(b)
a− b

.

Lemma 12. Let p(x) =
∑m

i=0 cix
i and q(x) =

∑n
j=0 djx

j, let r = p/q, and let a, b ∈ C be such
that q(a) 6= 0 and q(b) 6= 0. Then

ψ :=
m∑
i=1

ai−1p[i](b)− r(a)
n∑
j=1

aj−1q[j](b) 6= 0

if and only if either a 6= b and r(a) 6= r(b) or a = b and r′(a) 6= 0.
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Proof. By Lemma 11, when a 6= b we have that

ψ =
p(a)− p(b)− r(a)(q(a)− q(b))

a− b
, (16)

which is nonzero if and only if

p(a)− p(b)− p(a)

q(a)
(q(a)− q(b)) 6= 0, (17)

or equivalently
r(a) 6= r(b).

On the other hand, if a = b, then

ψ = p′(a)− r(a)q′(a) =
p′(a)q(a)− p(a)q′(a)

q(a)
= r′(a)q(a), (18)

which is nonzero if and only if r′(a) 6= 0.

Theorem 13. Let T ∈ CN×N be upper triangular, let p, q, Y , P [u], for u = 0, . . . ,m, and Q[v],
for v = 0, . . . , n, be as in Proposition 10, and let r(x) = p(x)q(x)−1. Then equation (14) has a
unique solution yij for all 1 ≤ i < j ≤ N if and only if r[yii, yjj ]q(yjj) 6= 0.

Proof. It is enough to show that for ψij defined in (12), we have that ψij = r[yii, yjj ]q(yjj). If
yii = yjj , then the proof is the same as in (18). When yii 6= yjj , by using (16), we get that

ψij =
−p(yjj) + p(yii)q(yjj)/q(yii)

yii − yjj
=
r(yii)− r(yjj)
yii − yjj

q(yjj) = r[yii, yjj ]q(yjj).

Corollary 14 (Applicability of the Schur algorithm for isolated solutions). Let r = p/q be a
rational function, with p ∈ Cm[x] and q ∈ Cn[x] coprime, and let Y ∈ CN×N be a solution to
r(Y ) = T , with T ∈ CN×N upper triangular. Let P [u] for u = 0, . . . ,m, and Q[v] for v = 0, . . . , n,
be as in (9). Then the following two conditions are equivalent:

(a) Y is an isolated solution;

(b) the Schur algorithm is applicable and computes Y , if we choose yii as solution of the
equation p(x) − tiiq(x) = 0, for i = 1, . . . , N , that is, equation (14) has yij as unique
solution, for 1 ≤ i < j ≤ N .

Proof. By Theorem 13, (14) has unique solution if and only if r[yii, yjj ]q(yjj) 6= 0, for 1 ≤ i <
j ≤ N . Proposition 9 ensures that q(yjj) 6= 0, for j = 1, . . . , N , since q(Y ) is nonsingular (recall
that the eigenvalues of q(Y ) are q(y11), . . . , q(yNN )). Thus, equation (14) has a unique solution
if and only if r[yii, yjj ] 6= 0 for 1 ≤ i < j ≤ N , which in turn, by the symmetry of divided
differences, is equivalent Theorem 6(d), that is equivalent to requiring that Y is isolated.

These results show that if we focus on a primary solution with simple critical eigenvalues,
then we can compute the solution to the triangular equation r(Y ) = T , by first computing the
diagonal elements of Y , taking care of choosing the same branch for the same eigenvalue of T ,
and then computing the elements yij , for i < j, by means of (14), one superdiagonal at a time.
This is the basis of Algorithm 1, which we call the Schur algorithm.

We now discuss the cost of the algorithm. Computing the Schur decomposition of a square
matrix of size N and recovering the result require 25N3 and 3N3 flops, respectively. The for
loop at line 2 requires O

(
(m + n)N

)
flops, those on line 13 and 15 require (m − 1)N3/3 and

(n− 1)N3/3, respectively, and evaluating the expression on line 17 requires N3/3 flops. All the
other operations within the loop on line 10 require O

(
(m + n)N2

)
. Therefore the asymptotic

cost of the algorithm is
(
28 + m+n−1

3

)
N3.
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Algorithm 1: Schur algorithm for rational matrix equations.

Input : A ∈ CN×N , c ∈ Cm+1 coefficients of p, d ∈ Cn+1 coefficients of q.
Output: X ∈ CN×N such that p(X)q−1(X) ≈ A.

1 Compute the complex Schur decomposition A := UTU∗.
2 for i = 1 to N do
3 yii ← a solution to p(x)− tiiq(x) = 0

4 p
[m−1]
ii ← cm−1 + cmyii

5 for u = m− 2 down to 0 do

6 p
[u]
ii ← cu + yiip

[u+1]
ii

7 q
[n−1]
ii ← dn−1 + dnyii

8 for v = n− 2 down to 0 do

9 q
[v]
ii ← dv + yiiq

[v+1]
ii

10 for ` = 1 to N − 1 do
11 for i = 1 to N − ` do
12 j ← i+ `
13 for f = 1 to m− 1 do

14 C
[f ]
ij =

∑j−1
k=i+1 yikp

[f ]
kj

15 for h = 1 to n− 1 do

16 D
[h]
ij =

∑j−1
k=i+1 yikq

[h]
kj

17 rhs←
∑j

k=i+1 tikq
[0]
kj −

∑m−1
f=1 y

f−1
ii C

[f ]
ij + tii

∑n−1
h=1 y

h−1
ii D

[h]
ij

18 lhs←
∑m

e=1 y
e−1
ii p

[e]
jj − tii

∑n
g=1 y

g−1
ii q

[g]
jj

19 yij ← rhs/lhs

20 p
[m−1]
ij ← cmyij

21 for u = m− 2 down to 1 do

22 p
[u]
ij ← yiip

[u+1]
ij + yijp

[u+1]
jj + C

[u+1]
ij

23 q
[n−1]
ij ← dnyij

24 for v = n− 2 down to 0 do

25 q
[v]
ij ← yiiq

[v+1]
ij + yijq

[v+1]
jj +D

[v+1]
ij

26 X ← UY U∗

Remark. Corollary 14 shows that our algorithm cannot compute primary solutions with semisim-
ple critical eigenvalues with multiplicity greater than one. We now describe how the algorithm
can be modified in order to compute these ill-posed solutions.

Let Y be a primary solution to r(Y ) = T and let ξ1, . . . , ξs, with s > 0, be its critical,
and thus semisimple, eigenvalues with multiplicities ν1, . . . , νs, greater than one. We have that
λ` = r(ξ`), for ` = 1, . . . , s, is a semisimple eigenvalue of T with the same multiplicity as ξ` (the
multiplicity cannot be larger since Y is primary).

Using the procedure described in [2], it is possible to reorder the matrix T so that, for
` = 1, . . . , s, the occurrences of λ` are adjacent along the diagonal of T . By doing so, we get a
new matrix T̃ = Q∗TQ, where Q is the unitary matrix that performs the reordering. Since λ`
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is semisimple, the diagonal block of T̃ corresponding to λ` is λ`I, and we get

T̃ =


T̃11 ∗ · · · ∗

λ1I
. . .

...
. . . ∗

λsI

 ,

where the asterisks represent possibly nonzero blocks and T̃11 is a triangular block collecting all
the eigenvalues other than λ1, . . . , λs.

Any solution Ỹ to r(Ỹ ) = T̃ yields the solution Y = QỸ Q∗ of r(Y ) = T , with the same
eigenvalues. Moreover, since Ỹ is a primary function of T̃ , it has the structure

Ỹ =


Ỹ11 ∗ · · · ∗

ξ1I
. . .

...
. . . ∗

ξsI

 ,

where, ξi 6= ξj for i 6= j, and Ỹ11 collects all the eigenvalues not in the set {ξ1, . . . , ξs}.
This implies that ỹij = 0 when ỹii = ỹjj = ξ` for some `, and thus we can determine ỹij ,

without solving (11), while (11) can be used for all other entries of the upper triangular part
of Ỹ , for which the solution is unique. Therefore, in principle, any primary solution could be
computed using (a variation) of Algorithm 1, but in practice, the problem is ill-posed and we
focus our attention on solutions with simple critical eigenvalues.

4.2 Real Schur form

When A ∈ RN×N and one is interested in real solutions to (2), in order to use real arithmetic
only, we consider the real Schur decomposition A := UTUT , where U ∈ RN×N is orthogonal,
and T ∈ RN×N is upper quasi-triangular and has ν ≤ N diagonal blocks of size either 1× 1 or
2× 2. In the former case, the diagonal block Yii can be computed as discussed in the previous
section. Otherwise, we can rely on the following result.

Proposition 15. Let M ∈ R2×2, and let V ∈ R2×2 be such that V −1MV = diag(µ, µ), for
some µ = a + ib, with b 6= 0. Let f : {µ, µ} → C be a function such that f(µ) = f(µ), and let
f(µ) = c+ id. Then

f(M) =
d

b
M +

(
c− ad

b

)
I. (19)

Proof. It is well known [14, Thm. 1.12] that f(M) coincides with the interpolating polynomial
of f at the eigenvalues of M , that is

p(x) = f(µ)
x− µ
µ− µ

+ f(µ)
x− µ
µ− µ

=
f(µ)− f(µ)

µ− µ
x+

µf(µ)− µf(µ)

µ− µ
. (20)

By replacing the definitions of µ and f(µ) and simplifying, one obtains (19).

In order to compute the off-diagonal blocks of Y , we need to solve for the block Yij the
matrix equation (11), which, by using the vec operator, can be rewritten as the linear system

Mij vec(Yij) = vec

(
j∑

k=i+1

TikQ
[0]
kj −

m−1∑
f=1

Y f−1
ii C

[f ]
ij + Tii

n−1∑
h=1

Y h−1
ii D

[h]
ij

)
,
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Algorithm 2: Real Schur algorithm for rational matrix equations.

Input : A ∈ CN×N , c ∈ Cm+1 coefficients of p, d ∈ Cn+1 coefficients of q.
Output: X ∈ CN×N such that p(X)q−1(X) ≈ A.

1 Compute the real Schur decomposition A := UTU∗.
2 for i = 1 to ν do
3 Yii ← a solution to p(X)− Tiiq(X) = 0

4 P
[m−1]
ii ← cm−1Iτi + cmYii

5 for u = m− 2 down to 0 do

6 P
[u]
ii ← cuIτi + YiiP

[u+1]
ii

7 Q
[n−1]
ii ← dn−1Iτi + dnYii

8 for v = n− 2 down to 0 do

9 Q
[v]
ii ← dvIτi + YiiQ

[v+1]
ii

10 for ` = 1 to N − 1 do
11 for i = 1 to N − ` do
12 j ← i+ `
13 for f = 1 to m− 1 do

14 C
[f ]
ij =

∑j−1
k=i+1 YikP

[f ]
kj

15 for h = 1 to n− 1 do

16 D
[h]
ij =

∑j−1
k=i+1 YikQ

[h]
kj

17 sij ← vec
(∑j

k=i+1 TikQ
[0]
kj −

∑m−1
f=1 Y

f−1
ii C

[f ]
ij + Tii

∑n−1
h=1 Y

h−1
ii D

[h]
ij

)
18 Mij ←

∑m
e=1

(
P

[e]
jj

)T ⊗ Y e−1
ii −

∑n
g=1

(
Q

[g]
jj

)T ⊗ (TiiY g−1
ii

)
19 vec(Yij)←M−1ij sij

20 P
[m−1]
ij ← cmYij

21 for u = m− 2 down to 1 do

22 P
[u]
ij ← YiiP

[u+1]
ij + YijP

[u+1]
jj + C

[u+1]
ij

23 Q
[n−1]
ij ← dnYij

24 for v = n− 2 down to 0 do

25 Q
[v]
ij ← YiiQ

[v+1]
ij + YijQ

[v+1]
jj +D

[v+1]
ij

26 X ← UY UT

where the coefficient matrix

Mij =

m∑
e=1

(
P

[e]
jj

)T
⊗ Y e−1

ii −
n∑
g=1

(
Q

[g]
jj

)T
⊗
(
TiiY

g−1
ii

)
(21)

can be of size 1, 2, or 4, depending on the size of the blocks Yii and Yjj . In the following, we
give necessary and sufficient conditions for M to be nonsingular.

Theorem 16. Let T ∈ CN×N be upper quasi-triangular, let p, q, Y , P [u], for u = 0, . . . ,m, and
Q[v], for v = 0, . . . , n, be as in Proposition 10, and let r(x) = p(x)q(x)−1. Then Mij in (21)
is nonsingular for all 1 ≤ i < j ≤ ν if and only if Y is a primary solution to (2) with simple
critical eigenvalues (if any).

Proof. Let (ξi, ui) be an eigenpair of Yii and let (ξj , uj) be an eigenpair of Yjj . Then by using
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the properties of the Kronecker product, we observe that

Mij(uj ⊗ ui) =

(
m∑
e=1

(
P

[e]
jj

)T
⊗ Y e−1

ii −
n∑
g=1

(
Q

[g]
jj

)T
⊗
(
TiiY

g−1
ii

))
(uj ⊗ ui)

=

(
m∑
e=1

p[e](ξj) ξ
e−1
i − r(ξi)

n∑
g=1

q[g](ξj) ξ
g−1
i

)
(uj ⊗ ui) =: ζ(uj ⊗ ui),

and conclude that (ζ, uj ⊗ ui) is an eigenpair of Mij . Since the eigenpairs of Yii and Yjj are
chosen arbitrarily and everything is diagonalizable, all the eigenvalues of Mij have this form,
and we can conclude that the matrix Mij is nonsingular if and only if ζ 6= 0, which is guaranteed
by Lemma 12, since Y is a primary solution to (2) with simple or no critical eigenvalues.

Conversely, let ξi, ξj be eigenvalues of different diagonal blocks of Y , Yii and Yjj say, then
there exist (ξi, ui) and (ξj , vj) eigenpairs of Yii and Yjj , respectively. Since Mij is nonsingular,

its eigenvalue
∑m

e=1 p
[e](ξj) ξ

e−1
i − r(ξi)

∑n
g=1 q

[g](ξj) ξ
g−1
i is nonzero, thus by Lemma 12 either

ξi 6= ξj and r(ξi) 6= r(ξj) or ξi = ξj and r′(ξi) 6= 0. If ξi and ξj belong to the same block, then
either the block is of size 1 × 1 or ξi is the complex conjugate of ξj , and again, ξi 6= ξj and
r(ξi) 6= r(ξj). Since ξi and ξj were chosen arbitrarily, the same relation is true for any chosen
pair of eigenvalues, and Y is thus a primary solution to (2).

5 Numerical experiments

To the best of our knowledge, no algorithm exists for the solution of the general matrix equation
r(X) = A, thus we compare our approach with well-established techniques for the computation
of primary matrix functions. We consider the (approximate) diagonalization method [5] and
the Schur–Parlett algorithm [6, 20], applied to the function r−1(z), that is, the chosen inverse
of r(z) in a neighborhood of the eigenvalues of A.

If A is a normal, then its Schur form T = U∗AU = diag(λ1, . . . , λN ) is diagonal, and the
solution to r(X) = A is X = U diag

(
r−1(λ1), . . . , r

−1(λN )
)
U∗, and in this case our algorithm

coincides with the diagonalization. If A is nonnormal, then the diagonalization algorithm cannot
be applied if A does not have a basis of eigenvectors. In principle, this is not a severe restriction,
since a small perturbation can make it diagonalizable, but the eigenvectors can still be severely
ill-conditioned, and this may lead to a significant loss of accuracy, as shown in Test 1.

On the other hand, the Schur–Parlett algorithm is a suitable choice for entire functions,
but none of the branches of r−1(z) is. This algorithm, reduces the computation of a primary
matrix function to the evaluation of the same function on matrices whose eigenvalues lie in a
small ball, and the latter evaluation is performed by using a truncation of the Taylor series
expansion of f . This is a severe restriction, as the Taylor series of r−1(x) in a neighborhood of
the eigenvalue λi of A need not converge to r−1(λj), where λj is another eigenvalue of A near
λi. For instance, the Taylor series expansion of the square root z1/2 at z0 = −10 − i, when
evaluated at z = −10 + i, converges to −(−10 + i)1/2 rather than to (−10 + i)1/2. Moreover, if
r−1(λi) is a critical point of r, then there exists no differentiable inverse of r extending r−1(λ)
in a neighborhood of λi. For these reasons, we cannot consider the Schur–Parlett method in
our experiments, and instead we focus our attention on the following algorithms.

• invrat: an implementation of Algorithm 1.

• diag: an implementation of the diagonalization approach to the evaluation of matrix
functions. In order to evaluate f(A), this algorithm exploits the eigendecomposition
A =: UDU−1, with U ∈ CN×N nonsingular and D ∈ CN×N diagonal, and approximates
f(A) as Uf(D)U−1. This algorithm works for diagonalizable matrices only.
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Figure 1: Relative forward errors of invrat, diag, and approx_diag on the test set.

• approx_diag: the variant of diag discussed by Davies [5]. In order to improve the stability
of the diagonalization approach, this algorithm computes the eigendecomposition of a
nearby matrix A+ εI = ŨD̃Ũ−1 and then approximates f(A) as Ũf(D̃)Ũ−1.

The experiments were performed using the 64-bit version of MATLAB 2017b on a machine
equipped with an Intel I5-5287U processor, running at 2.90GHz, and 8GiB of RAM. The accu-
racy of the algorithms is measured by the relative error, in the spectral norm, with respect to
a reference solution computed by running invrat with about 512 digits of accuracy using the
Advanpix Multiprecision Computing Toolbox [19]. We will denote the machine precision by u.

Test 1 (Forward stability). In this test, we investigate experimentally the forward stability of
invrat, diag, and approx_diag. We consider the matrix equation r(X) = A, where

r(z) =
z3

120 + z2

10 + z
2 + 1

− z3

120 + z2

10 −
z
2 + 1

is the [3/3] Padé approximant to the exponential at 0. For A, we consider a test set including
63 real and complex nonnormal matrices, of size between 2× 2 and 10× 10, from the MATLAB
gallery function and from the literature of the matrix logarithm.

Figure 1 compares the relative forward error of the three algorithms with the quantity
κr−1(A)u, the 1-norm condition number of a branch of r−1 that extends a real branch that
contains 0 to the whole complex plane, estimated by means of the funm_condest1 function
from Higham’s Matrix Function Toolbox [12].

Out of the three algorithms we consider, diag appears to be the most unreliable, as the
relative forward error is of the order of 1 on more than 10% of the data set, and often several
orders of magnitude larger than κr−1(A)u. The forward error of approx_diag is larger than
κr−1(A)u on almost 30% of the data set, but is of the order of 1 for four of the most ill-
conditioned matrices only. Finally, the forward error of invrat is approximately bounded by
κr−1(A)u, which seems to indicate that the algorithm behaves in a forward stable manner.

Test 2. Critical solutions to the scalar equation f(x) = y are ill-conditioned, and the effects
of the ill-conditioning become obvious as the derivative of f approaches zero. This is the
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Table 1: Solutions of the equation r(X) = A in Test 2. The three columns contain the spectrum
of X, the magnitude of the smallest eigenvalue of Dr(X), and the relative error of the solution
computed by invrat.

eigenvalues of X λmin(Dr(X)) ‖X̃ −X‖2/‖X‖2
{r−11 (λ1), r

−1
1 (λ2), r

−1
1 (λ3)} 1.29× 10−10 3.42× 10−06

{r−11 (λ1), r
−1
1 (λ2), r

−1
2 (λ3)} 5.77× 10−11 9.51× 10−06

{r−11 (λ1), r
−1
2 (λ2), r

−1
1 (λ3)} 5.77× 10−11 3.25× 10−06

{r−11 (λ1), r
−1
2 (λ2), r

−1
2 (λ3)} 1.73× 10+00 2.80× 10−16

{r−12 (λ1), r
−1
1 (λ2), r

−1
1 (λ3)} 1.73× 10+00 3.93× 10−16

{r−12 (λ1), r
−1
1 (λ2), r

−1
2 (λ3)} 5.77× 10−11 3.86× 10−06

{r−12 (λ1), r
−1
2 (λ2), r

−1
1 (λ3)} 5.77× 10−11 6.98× 10−06

{r−12 (λ1), r
−1
2 (λ2), r

−1
2 (λ3)} 1.29× 10−10 2.07× 10−06

case for matrices as well, thus the accuracy of our algorithm, as that of any stable algorithm,
will be affected by what solution is being computed. Since an isolated solution is uniquely
determined by its eigenvalues, choosing a solution of the scalar equation r(x) = λi, for each
distinct eigenvalue λi of A is enough to fix what solution to r(X) = A will be computed.
This is equivalent to choosing an inverse r−1 of r and computing X = r−1(A), as discussed in
Proposition 4.

In order to illustrate the numerical behavior of the Schur recurrence algorithm in com-
puting different solutions of a matrix equation, we consider the equation r(X) = A, where
r(z) = −z/(z2 + 1). This matrix equation is equivalent to AX2 + X + A = 0, which was
considered for theoretical purposes in [17] and [18].

It is easy to show [17, Lem. 3] that the equation r(z) = λ, with λ ∈ C has two distinct
solutions if and only if λ 6∈ {0,±1/2}, while

• if λ ∈ (−∞,−1/2] ∪ [1/2,+∞) then the solutions have modulus 1;

• if λ ∈ D := (C \R)∪ (−1/2, 0)∪ (0, 1/2), then one solution lies inside the unit disc, while
the other lies outside.

This allows one to identify two analytic branches for the inverse: r−11 : D → {z ∈ C : |z| > 1}
and r−12 : D ∪ {0} → {z ∈ C : |z| < 1}, with branch cuts (−∞,−1/2] ∪ [1/2,+∞). The points
z = ±1 are critical points for r(z), indeed r(±1) = ∓1/2.

We show how the accuracy of a solution X̃ to r(X) = A degrades as the derivative of the
function r at X̃ approaches a singular matrix. This can occur in two cases: when two eigenvalues
of A are close to each other but the corresponding eigenvalues of X are far apart (this may
happen also when we choose the same branch for two nearby eigenvalues, if there is a branch
cut in the middle); or when an eigenvalue of A is close to the image of a critical value of r and
the corresponding eigenvalue of X is close to a critical point of r. We will examine one example
for each situation.

Let us first consider the matrix A = M diag(1 − εi, 1 + 2ε + εi, 1 + 3ε + εi)M−1, where
ε = 10−10, and M ∈ R3×3 is a matrix with entries drawn from a standard normal distribution.
As one can choose two branches of the inverse of r for each of the eigenvalues of A, there exist
eight isolated primary solutions X. For each of them, we report in Table 1 the magnitude of the
smallest eigenvalue of Dr(X) and the forward error of the solution X̃ computed by invrat. The
solutions that select a different branch of the inverse of r for the eigenvalues on the opposite sides
of the branch cut lead to a better conditioned Frechét derivative, and the solution computed by
invrat in this case has almost perfect accuracy.
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Figure 2: Relative error of the Schur algorithm for computing the solution of the matrix equation
r(Xδ) = Aδ in Test 2 with spectrum {r−11 (λ1), r

−1
1 (λ2), r

−1
1 (λ3)}.

To show that the accuracy of the solution computed by invrat are influenced by the distance
of the eigenvalues of A from the images of critical points, we investigate the behavior of the
algorithm when trying to compute solutions with almost critical eigenvalues. We consider the
matrix Aδ = M diag(1/2 − δi, 1/2 − δ, 1 + δi)M−1, where M ∈ R3×3 is a random matrix as in
the previous test. Note that the eigenvalues of A tend to the image of the branch point of r as
δ > 0 tends to zero. Figure 2 shows the relative error of the primary solution to r(Xδ) = Aδ
computed by invrat, as δ varies between 2 × 10−16 and 2 × 10−1. As expected, the accuracy
of the solution is adversely affected by the proximity of the eigenvalues of A to the image of a
critical point of r.

6 Conclusions

After discussing some properties of the solutions to the matrix equation f(X) = A, with f
analytic, we developed an algorithm for computing primary solutions to the matrix equation
r(X) = A, where r is a rational function. Our approach relies on a substitution algorithm based
on Horner’s scheme for the evaluation of numerator and denominator of r.

In previous work [11, 16], we have shown that, for the kth root, the computational cost
of the straightforward algorithm [22] can be reduced by considering substitution algorithms
that exploit more efficient matrix powering schemes. However, a fraction can be evaluated in
several different ways, and some approaches require fewer matrix multiplications than applying
Horner’s method twice. One such example is the Paterson–Stockmeyer method [21], which can
require considerably fewer matrix multiplications for polynomials of high degree.

In principle, any of these alternative schemes could produce a substitution algorithm for
the solution of the matrix equation r(X) = A. The computational cost of the substitution
algorithm induced by a given evaluation scheme would be the same as the cost of the evaluation
scheme itself, since the number of intermediate matrices to be computed depends on the number
of matrix multiplications needed to evaluate numerator and denominator. Therefore, starting
with a cheaper evaluation scheme for rational functions, it might be possible to develop cheaper
algorithms for the solution of matrix functions of the form r(X) = A: this will be the subject
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of future investigation.
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