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FILTERING FREQUENCIES IN A SHIFT-AND-INVERT LANCZOS
ALGORITHM FOR THE DYNAMIC ANALYSIS OF STRUCTURES ∗

MANTE ZEMAITE† , FRANÇOISE TISSEUR†‡ , AND RAMASESHAN KANNAN§

Abstract. The shift-and-invert Lanczos algorithm is a commonly used solution procedure to
compute the eigenpairs of large, sparse eigenvalue problems that arise when approximating the elastic
dynamic response of large structures under the influence of seismic forces. Not all eigenvectors are
equally important to the response when the structure is exposed to a mass-dependent external force
of the form g(t)Mb, where M is the mass matrix of the system and b the rigid body vector. Structural
engineers select eigenvectors xj , j = 1, . . . , `, such that their cumulative mass participation, measured

as
∑`

j=1(xTj Mb)2/(bTMb), is above a target threshold ξ. We show that when the starting vector
for the unshifted Lanczos algorithm is the spatial distribution vector b, the Lanczos procedure can
be used to provide an estimate of the cumulative mass participation. This allows us to identify
intervals containing eigenvalues whose eigenvectors have a large contribution to the cumulative mass
participation and filter out intervals containing eigenvalues whose eigenvectors have a negligible
contribution. We use this information to devise a sequence of shifts σ1, . . . , σp for the shift-and-invert
Lanczos algorithm as well as a stopping criterion for the iteration with shift σi so that the cumulative
mass participation of the computed eigenvectors reaches the required level ξ. Numerical experiments
on real engineering problems show that our approach computes up to 80% fewer eigenvectors and
requires fewer shifts, on average, than the more general shifting strategy proposed by Ericsson and
Ruhe (Math. Comp., 35 (1980)).

Key words. Shifting strategy, shift-and-invert Lanczos algorithm, orthogonal polynomials,
symmetric generalised eigenvalue problem, structural analysis.

1. Introduction. A structural dynamics problem consists of finding the re-
sponse of a structure, for instance, a building or a bridge, given some dynamic loading.
Such problems may be written in the form of a system of second order differential
equations

(1.1) Mü(t) +Du̇(t) +Ku(t) = f(t)

that results from the finite element discretization of the equation of motion, together
with some initial conditions. The mass matrix M ∈ Rn×n is usually symmetric
positive semidefinite (denoted by M ≥ 0), the stiffness matrix K ∈ Rn×n is symmetric
positive definite (K > 0), the damping matrix D is symmetric and often positive
definite, u(t) is the displacement, and f(t) is the time-dependent external load on the
given structure. Here, we concentrate on external forces of the form

(1.2) f(t) = g(t)Mb,

where g(t) is a scalar function and 0 6= b ∈ Rn is the spatial distribution vector (also
called rigid body vector or spatial vector of loading patterns). External forces of the
form (1.2) are particular to earthquake loading, where g(t) is the input earthquake
acceleration.

Projection methods are usually employed to reduce the dimension n of the system
(1.1). These methods consist of constructing a matrix X` ∈ Rn×` of full rank and
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transforming (1.1) into the reduced system

(1.3) XT
` MX`v̈(t) +XT

` DX`v̇(t) +XT
` KX`v(t) = g(t)XT

` Mb,

which is then solved for v(t). An approximate solution to (1.1) is obtained as
u(t) ≈ X`v(t). In the mode superposition method, the columns x1, . . . , x` of X` are
eigenvectors corresponding to finite eigenvalues of the associated generalized eigen-
value problem (GEP)

(1.4) (K − λM)x = 0,

where we assume generalized proportional damping, so that the damping matrix D
in (1.1) is diagonalizable by the matrix of eigenvectors of (1.4). If the columns of X`

are M -orthonormal, i.e., xTi Mxj = δij with δij the Kronecker delta, then the reduced
system (1.3) can be rewritten as ` decoupled second order differential equations,

(1.5) v̈j(t) + 2ζjωj v̇j(t) + ω2
j vj(t) = g(t)xTj Mb, j = 1, . . . , `,

where ωj =
√
λj , λj > 0 is an eigenvalue of (1.4) with corresponding eigenvector xj

and xTi Dxj = 2ζjωjδij for some ζj ≥ 0 [16, Chap. 18].
Not all eigenvectors are equally important to a given system of differential equa-

tions and it is clear from (1.5) that the response vj depends on both the frequencies
ωj and the magnitude of xTj Mb, which is called the mass participation factor of xj .
They satisfy

(1.6)

n∑
j=1

(xTj Mb)2

bTMb
= 1

(see Section 2.1). Within the context of seismic analysis and design, structural en-
gineers aim to achieve 80 to 90% of mass participation in (1.6) using only a subset
of the eigenvectors (see the justification in section 2.1). This leads to the following
problem.

Problem 1.1. For a given proportion ξ ∈ (0, 1) and a spatial distribution vector
b, find the smallest number of M -orthonormal eigenvectors xik , k = 1, . . . , `, of (1.4)
such that

(1.7)
∑̀
k=1

(xTikMb)2

bTMb
≥ ξ,

where {i1, . . . , i`} ⊆ {1, . . . , n}.
Problem 1.1 is easy to solve if we can compute all the eigenvectors of the GEP

(1.4), but this is not feasible for problems of large dimensions. It is usually the
eigenvectors corresponding to small eigenvalues that contribute the most to the total
mass participation (see for example [2] or Section 2.1), so in previous work Problem 1.1
was relaxed to the following problem.

Problem 1.2. For a given proportion ξ ∈ (0, 1) and a spatial distribution vector
b, find the M -orthonormal eigenvectors xi, i = 1, . . . , ` associated with the ` smallest
eigenvalues of (1.4), where ` is the smallest integer such that

(1.8)
∑̀
i=1

(xTi Mb)2

bTMb
≥ ξ.

2



Fig. 1. The eigenvectors (modes of vibration) of a tall building structure. From left to right:
the undeformed shape of the structure; its first eigenvector, x1 corresponding to the smallest eigen-
value, which is predominantly a “sway mode” (i.e., large mass participation factor in the cartesian
x-direction); and another eigenvector, x20, which is a “bouncing mode”(large participation along
cartesian z-direction). Deformations are exaggerated.

Table 1
Mass participation factors for M-orthonormal eigenvectors x1 and x20 from Figure 1.

Eigenvector xj Mass participation factor (xTj Mb)2/(bTMb)

b along cartesian x b along cartesian z

x1 0.199 10−6

x20 10−8 0.209

Recovering sufficient mass participation can be a challenge depending on the
geometry of the structure and orientation of b. The vector b represents the “rigid
body” deformation of the structure in cartesian x-, y-, and z-directions. For instance
a given structure may have a geometry that makes it easy to solve Problem 1.2 with
only a handful of smallest eigenvectors (i.e., ` is small) when b is along the x-direction
but might require a large value of ` when b is along z. This is graphically illustrated
in Figure 1 which shows the first and twentieth eigenvectors, x1 and x20, overlaid as
displacements on the structure’s geometry. As can be seen from the diagram in the
middle, x1 is a sway mode wherein large parts of the structure deform in the cartesian
x-direction. By contrast, x20 (right of middle) is a bouncing mode and therefore the
structure deforms significantly in the z-direction. The mass participations of these
eigenvectors are tabulated in Table 1 for b in the x- and z-directions.

A natural approach to solve Problem 1.2 is to apply the shift-and-invert Lanczos
algorithm (see [1], [17] and references therein) to K − λM with or without shifts
depending on how many eigenvectors will be needed to satisfy (1.8). Instead of using
eigenvectors in (1.8), Wilson et al. [20] proposed to use the Ritz vectors resulting
from a variant of the Arnoldi algorithm later known as the WYD algorithm [9], [19].
The use of the Lanczos vectors was later suggested by Nour-Omid and Clough [13].
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But as noted in [2], there is no analysis to support the use of Lanczos vectors and
Ritz vectors (unless they have converged to eigenvectors of K − λM). In particular,
we show in section 2 that under suitable conditions on g(t) and the initial conditions
for (1.1), the quantity (1− ξ)2 provides an upper bound on the relative error between
the response u(t) to the ODE (1.1) and its approximation by X`v(t) when the columns
of X` are eigenvectors chosen such that (1.7) or (1.8) holds. So we concentrate here
on the computation of eigenvectors for Problems 1.1–1.2.

Given an initial shift σ1, a common strategy to determine the sequence of shifts
σ2, σ3, . . . to be employed in a shift-and-invert Lanczos process for symmetric GEPs
is to choose the new shift σi, i > 1, such that the largest converged eigenvalue λmax is
halfway between the old shift σi−1 and the new shift σi, namely σi = 2λmax−σi−1 [5].
This way, if the eigenvalues are roughly evenly distributed across the spectrum then
the same number of eigenvalues is expected to converge to the left of the new shift
as the number of eigenvalues that have converged to the right of the old shift. The
Lanczos iteration with shift σi is then stopped when the smallest converged eigenvalue
in that iteration coincides with the largest converged eigenvalue with shift σi−1. One
issue with this shifting strategy for Problem 1.2 is that the shift-and-invert Lanczos al-
gorithm may return too many eigenvectors with small normalized mass participation.
As a result, the number ` of returned eigenpairs may be unnecessarily large, whereas
eigenvectors with large normalized mass participations corresponding to eigenvalues
that are not in the lower end of the spectrum may not be detected.

Our main contribution is the presentation of a new shifting strategy for the shift-
and-invert Lanczos algorithm together with a stopping criterion for the iteration with
shift σi that are specifically designed to approximate the solution to Problem 1.1.
For this, we use the theory of orthogonal polynomials to show that a few steps of
the unshifted inverse Lanczos algorithm applied to K−1M with starting vector b pro-
vides, at no additional cost, information about the location of the eigenvalues whose
corresponding eigenvectors have non-negligible mass participation and also helps to
identify intervals where eigenvalues have negligible mass participation. We use this in-
formation to devise a shifting strategy for the shift-and-invert Lanczos process so that
condition (1.7) holds, albeit perhaps not for the smallest number ` of eigenvectors.
This shifting strategy performs especially well in the cases where the eigenvectors
with non-negligible mass participation correspond to larger eigenvalues while there
are intervals of smaller eigenvalues whose corresponding eigenvectors have negligible
contribution to the overall response of the structure. These are the cases that are the
most problematic for available methods.

Numerical experiments performed on real structural engineering problems show
an often large reduction in the number ` of eigenvectors computed to approximate
the solution to Problem 1.1 using our new shifting strategy as opposed to the number
of eigenvectors computed to approximate the solution to Problem 1.2 using the more
general shifting strategy of Ericsson and Ruhe. The use of a new shift in the shift-
and-invert Lanczos process has a cost since it leads to a new matrix factorization. For
our set of test problems, our numerical experiments show that the number of shifts
used with our new shifting strategy is, on average, smaller than with Ericsson and
Ruhe’s strategy.

Unlike previous attempts to solve Problems 1.1–1.2, we pay special attention
to issues that can occur when the mass matrix M is singular. In this case, the
Lanczos process proceeds with a quasi-inner product. In finite precision arithmetic,
the computed Lanczos vectors and Ritz vectors have components in the null space
of M and the magnitude of these unwanted components grows during the iterations.
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This can either delay or prevent convergence of the Ritz vectors [4]. These issues are
overcome with the use of an appropriate starting vector and implicit filtering [12].

In the next section we give some preliminary material that includes a justification
of Problem 1.1 and a discussion of issues that arise when using a quasi-inner product
in a shift-and-invert Lanczos process, as well as possible remedies. We describe and
justify our new shifting strategy in section 3, and illustrate its performance on a
number of real structural engineering problems in section 4.

2. Preliminaries. Following [2], we show in section 2.1 that, under some as-
sumptions on the initial conditions and the input function g(t), choosing ξ close to 1
in (1.7) guarantees a small error between the exact response u(t) and its approxima-
tion as a linear combination of the eigenvectors xik , k = 1, . . . , ` satisfying (1.7).

We recall in section 2.2 the shift-and-invert Lanczos process for the GEP (1.4)
and discuss issues related to the use of a quasi-inner product defined by the symmetric
semidefinite matrix M .

2.1. Upper bound on the response error. The n×n mass matrix M in (1.1)
is often singular in applications. As a result, the GEP (1.4) has the eigendecomposition

XT (K − λM)X = Λ− λ
[
Ir

0

]
,

where Ir is the r × r identity matrix with

r := rank(M) ≤ n,

Λ = diag(λ1, λ2, . . . , λn) has real positive diagonal entries displaying the r finite eigen-
values as λj , j = 1, . . . , r (the remaining n − r eigenvalues being at infinity), and X
is a nonsingular matrix containing the corresponding eigenvectors x1, . . . , xn. Note
that the eigenvectors xj , j = r + 1, . . . , n associated with the eigenvalues at infinity
belong to the null space of M , i.e.,

(2.1) Mxj = 0, j = r + 1, . . . n.

Let

(2.2) u(t) = Xv(t) =

n∑
j=1

vj(t)xj ,

where vj(t) is the jth entry of the vector v(t). We assume generalized damping so
that XTDX = 2diag(ζ1ω1, . . . ζnωn) for some ζj ≥ 0 and ωj =

√
λj , j = 1, . . . , n,

and rewrite (1.1) as

v̈j(t) + 2ζjωj v̇j(t) + ω2
j vj(t) = g(t)xTj Mb, j = 1, . . . , r,(2.3)

vj(t) = 0, j = r + 1, . . . , n.

The system of uncoupled equations (2.3) can then be solved by direct integration,
yielding

vj(t) = (xTj Mb)

∫ t

0

e−ζjωj(t−s)

ω̃j
sin
(
ω̃j(t− s)

)
g(s)ds, j = 1, . . . , r,(2.4)

vj(t) = 0, j = r + 1, . . . , n,
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where we let ω̃j = ωj(1 − ζj)1/2 and assume for simplicity that u(0) = u̇(0) = 0 so
that v(0) = v̇(0) = 0.

As mentioned in the introduction, in practical applications, n is large and it is
infeasible to compute all n eigenpairs of (1.4) so the solution u(t) in (2.2) is approxi-
mated instead by

(2.5) ũ(t) =
∑̀
j=1

vj(t)xj , ` ≤ r.

We use the M -quasi vector norm,

‖y‖M = 〈y, y〉1/2M = (yTMy)1/2,

to measure the relative error between the exact solution and its approximation,

(2.6)
‖u(t)− ũ(t)‖M
‖u(t)‖M

=

(∑r
j=`+1 v

2
j (t)

)1/2(∑r
j=1 v

2
j (t)

)1/2 .

We rewrite vj(t) in (2.4) as vj(t) = hj(t)x
T
j Mb. If the spatial distribution vector b has

no components in the null space of M (this is usually the case), i.e., b =
∑r
j=1 bjxj ,

then

(2.7)

r∑
j=1

(xTj Mb)2 =

r∑
j=1

b2j = bTMb,

which on using (2.1) is equivalent to (1.6). Now if we assume that hmin ≤ |hj(t)| ≤
hmax for t > 0, j = 1, . . . , r, and some positive scalars hmin, hmax, then it follows from
(2.6) and (2.7) that

‖u(t)− ũ(t)‖M
‖u(t)‖M

≤ hmax

hmin

(∑r
j=`+1(xTj Mb)2

)1/2(∑r
j=1(xTj Mb)2

)1/2 =
hmax

hmin

(
1−

∑`
j=1(xTj Mb)2

bTMb

)1/2

≤ hmax

hmin
(1− ξ)1/2,

where ξ is as in (1.7). Thus, under the above assumptions on the initial conditions
u(0), u̇(0), and the functions hj , choosing a ξ close to 1 guarantees a small relative
error between the exact solution u and its approximation ũ. We refer to section 4 for
an illustration of the above analysis.

Finally, we note that the factor 1/ωj in (2.4) suggests that the eigenvectors cor-
responding to smaller eigenvalues ω2

j (i.e., lower frequencies) are more likely to have
a larger contribution to the response u(t) in (2.2) than those corresponding to the
higher frequencies.

2.2. Shift-and-invert Lanczos process with semi-definite inner product.
Applying the Lanczos algorithm with an M -quasi inner product to compute approx-
imate eigenpairs of the definite pencil K − λM with M ≥ 0 was first suggested by
Scott [18]. Given a shift σ near the eigenvalues of interest and a starting vector w,
this Lanczos procedure constructs a matrix Qk whose columns, called the Lanczos
vectors, form an M -orthonormal basis for the kth order Krylov subspace

Kk(A,w) = span{w,Aw, . . . , Ak−1w} = span{q1, q2, . . . , qk},
6



where A = (K − σM)−1M . Given the first k ≥ 1 M -orthonormal Lanczos vectors
q1 = w/‖w‖M , . . . , qk and q0 = 0, the next Lanczos vector qk+1 is obtained from the
three-term recurrence

(2.8) βk+1qk+1 = (K − σM)−1Mqk − αkqk − βkqk−1,

where αk = qTkM(K − σM)−1Mqk, β1 = ‖w‖M = wTMw, and βk for k > 1 is
such that ‖qk‖M = qTkMqk = 1. The three-term recurrence (2.8) can be rewritten in
matrix form as

(2.9) (K − σM)−1MQk = QkTk + βk+1qk+1e
T
k ,

where Qk = [q1, . . . , qk] ∈ Rn×k and Tk ∈ Rk×k is symmetric tridiagonal with

(Tk)jj = αj , j = 1, . . . , k, (Tk)j,j+1 = βj+1, j = 1, . . . , k − 1.

Since, by construction, qk+1 is M -orthogonal to the columns of Qk and QTkMQk = Ik,
it follows from (2.9) that

(2.10) QTkM(K − σM)−1MQk = Tk.

Now, for an eigenpair (θ
(k)
j , s

(k)
j ) of Tk, the pair

(2.11) (λj , xj) := (1/θ
(k)
j + σ,Qks

(k)
j )

is called a Ritz pair for K − λM and is considered as an approximate eigenpair of
K − λM if the scaled residual (which approximates the backward error for (λj , xj)
[10, Thm. 2.1])

(2.12) η(λj , xj) =
‖(K − λjM)xj‖2

(‖K‖1 + |λj |‖M‖1)‖xj‖2

is below a given tolerance.
An algorithm implementing the three-term recurrence (2.8) is provided in Algo-

rithm 2.1. This is essentially the algorithm provided in [14]. Breakdown occurs when
βk+1 ≤ 0 in step 10. The number ` of eigenpairs returned will depend of the conver-
gence criterion in step 3. We discuss the latter in section 3.3. Some more comments
follow.

(a) Choice of starting vector and implicit filtering. When M is singular,
Nour-Omid et al [14, Sec. 2.2] recommend choosing a starting vector w in
the range of (K − σM)−1M . Indeed, since Rn = range((K − σM)−1M) ⊕
null((K − σM)−1M) and null((K − σM)−1M) = null(M), we have that

range((K − σM)−1M) ∩ null(M) = {0}.

For an eigenvector xi of K − λM with finite eigenvalue λi, we have that

(2.13) xi ∈ range(K−1M) = range((K − σM)−1M).

If the starting vector w for the shift-and-invert Lanczos procedure is in the
range of (K − σM)−1M then so is the first Lanczos vector q1 and the sub-
sequent Lanczos vectors q2, . . . , qk if operations are performed in exact arith-
metic. As a result, the Ritz vectors lie in range((K − σM)−1M). Now if
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Algorithm 2.1 Shift-and-invert Lanczos algorithm

This algorithm takes as input two n×n symmetric matrices M ≥ 0 and K > 0, a shift
σ ≥ 0 such that K − σM is nonsingular, and a starting vector 0 6= w ∈ range((K −
σM)−1M). It returns ` eigenpairs (converged Ritz pairs) (λij , xij ), j = 1, . . . , `.

1 q0 = 0, z = Mw, β1 =
√
wT z

2 Factor K − σM .
3 for k = 1, 2, . . ., until convergence
4 z = z/βk, qk = w/βk
5 v = (K − σM)−1z − βkqk−1
6 αk = vT z
7 w = v − αkqk
8 Reorthogonalize w against q1, . . . , qk with respect to 〈·, ·〉M if necessary.
9 z = Mw

10 βk+1 =
√
wT z

11 Compute the k eigenpairs (θ
(k)
j , s

(k)
j ), j = 1, . . . , k of Tk = tridiag(β, α, β)

with α = [α1, . . . , αk] and if k > 1, β = [β2, . . . , βk].

12 Check for convergence of the Ritz pairs (λj , xj) = ( 1

θ
(k)
j

+ σ,Qks
(k)
j ),

j = 1, . . . , k, where Qk = [q1, . . . , qk].
13 end

w /∈ range((K − σM)−1M) then the Ritz vectors may have unwanted com-
ponents in the null space of M , which in turn slows down their convergence.
Note that in finite precision arithmetic, even if w ∈ range((K − σM)−1M),
rounding errors prevent the computed Lanczos vectors from staying in the
range of (K − σM)−1M . The unwanted components in null(M) are mainly
introduced when solving the linear systems with K−σM . Since this operation
is performed at each iteration, the accumulation can be rapid. The latter is
set off at the beginning when the starting vector w is constructed as the
product of (K − σM)−1M with some y ∈ Rn, since this operation itself can
introduce a null space component. The starting vector can be put in the right
space explicitly by forming a particular projection matrix [4, Section 2.3], or
solving the linear system to higher precision, however both methods come
at a substantial cost. Instead, as suggested by Meerbergen [12], we apply
an implicit filter that alters the starting vector implicitly, producing Lanczos
vectors lying in range((K − σM)−1M). This approach is briefly discussed
below.
For q = qR + qN ∈ Rn with qR ∈ range(M) and qN ∈ null(M), we have that
‖q‖M = ‖qR‖M , i.e., the components in the null space of M are undetectable
by the M -norm. So ‖qN‖2 can be arbitrarily large even when ‖q‖M = 1.
Hence, if at step k of the Lanczos process we have

(2.14) ‖qk‖2 > tol‖q1‖2,

for some tolerance tol � 1 (we choose tol = 104) then we apply implicit
filtering. For this let

(2.15) Tk = VkRk

be the QR factorization of Tk = [Tk, βk+1ek]T ∈ Rk+1×k with Rk ∈ Rk×k

upper triangular and Vk ∈ Rk+1×k with orthonormal columns. Then Q̃k =

8



Qk+1Vk has M -orthonormal columns, and if we let

T̃k−1 = RkVk−1

then it is not difficult to show that the matrix T̃k−1 obtained from T̃k−1 by
deleting its last row is tridiagonal and satisfies the Lanczos recurrence

(2.16) (K − σM)−1MQ̃k−1 = Q̃k−1T̃k−1 + β̃kq̃ke
T
k−1,

where β̃k is such that ‖q̃k‖M = 1. It is shown in [12, Theorem 3.1] that

range(Q̃k) = range((K − σM)−1MQk). The implicit filter implicitly pre-
multiplies the Lanczos vectors by K−1M , thereby removing any components
in null(M). Since the dimension of the projection space is reduced by one,
we continue the Lanczos algorithm by forming the next Lanczos vector q̃k+1

from q̃k as well as updating Tk in step 11 with T̃k−1. Note that the implicit
filtering described above is essentially one step of the unshifted QR algorithm
applied to Tk. A Lanczos vector qk with a large 2-norm means that qk has
large components in the null space of M . As a result, the smallest eigenvalue
of Tk becomes close to zero and the unshifted QR step pushes that very small
eigenvalue to the bottom of the tridiagonal matrix. Indeed, if Tk had a zero
eigenvalue then after one step of unshifted QR, the last row of Tk would be
zero. The construction of T̃k−1 corresponds to a deflation of the eigenpair of
Tk with smallest eigenvalue, thereby removing the Ritz pair in (2.11) with a
large (possibly infinite) eigenvalue.

(b) Testing for convergence of eigenpairs. As explained earlier, we consider

the Ritz pair (λj , xj) := (1/θ
(k)
j +σ,Qks

(k)
j ), where (θ

(k)
j , s

(k)
j ) is an eigenpair

of Tk, to have converged if its backward error η(λj , xj) in (2.12) is below a
given tolerance.
We suggest to only compute η(λj , xj) when the Ritz pair (λj , xj) is likely to
have converged. This can be checked as follows. On using (2.9), we have that

(K − λjM)xj = (K − σM)xj −
1

θ
(k)
j

Mxj

=
1

θ
(k)
j

(K − σM)(θ
(k)
j xj − (K − σM)−1Mxj)

=
1

θ
(k)
j

(K − σM)(QkTk − (K − σM)−1MQk)s
(k)
j

= − 1

θ
(k)
j

(K − σM)βk+1qk+1(eTk s
(k)
j )

so that

‖(K − λjM)xj‖2 ≤
‖K‖2 + |σ|‖M‖2

|θ(k)j |
|eTk s

(k)
j ||βk+1|‖qk+1‖2.

If s
(k)
j is normalized such that ‖s(k)j ‖2 = 1 then

‖xj‖2M = xTj Mxj = s
(k)T
j QTkMQks

(k)
j = s

(k)T
j s

(k)
j = 1

9



and

1 = ‖xj‖2M = |xTj Mxj | ≤ ‖xj‖2‖Mxj‖2 ≤ ‖xj‖22‖M‖2 ≤
√
n‖xj‖22‖M‖1,

where we used Cauchy-Schwarz for the first inequality. Without loss of gen-
erality, we can assume that ‖M‖1 = ‖K‖1 = 1 (if not replace K − λM by
K/‖K‖1 − λ̃M/‖M‖1 with λ̃ = λ‖M‖1/‖K‖1). Hence, ‖xj‖2 ≥ n−1/2 and
‖K‖2 + |σ|‖M‖2 ≤ n1/2(‖K‖1 + |σ|‖M‖1). Now if |λj | ≈ |σ| then

(2.17) η(λj , xj) <∼ n
1/4|eTk s

(k)
j ||βk+1|‖qk+1‖2/|θ(k)j |.

All the quantities in the above approximate upper bound are readily available
during the Lanczos steps including ‖qk+1‖2 (see point (a) and (2.14)). Hence,
we suggest to only compute η(λj , xj) when the upper bound in (2.17) is below,
say, 10× tol.

3. Shifting strategies for an approximate solution to problems 1.1–1.2.
A considerable number of eigenvectors may be required to solve Problem 1.2 for
problems where there are large normalized mass participation factors

(3.1) m(xj) :=
(xTj Mb)2

bTMb

corresponding to eigenvalues λj that lie further away from the lower end of the spec-
trum. In this case, the Lanczos algorithm (Algorithm 2.1 with σ = 0 as we are aiming
for the small eigenvalues first) becomes increasingly slow and memory intensive. So
if condition (1.8) is not satisfied by the converged eigenvectors after a given number,
say kmax, steps of Algorithm 2.1 with zero shift, we then restart Algorithm 2.1 with a
sequence of shifts. As mentioned in the introduction, Ericsson and Ruhe [5] propose
to use the following sequence:

(3.2) σ1 = λmax +
λmax

2
, σi = 2λmax − σi−1, i ≥ 2,

where λmax is the largest converged eigenvalue. Algorithm 2.1 with shift σi is stopped
when the smallest converged eigenvalue coincides with the largest converged eigenvalue
with the shift σi−1, or once condition (1.8) is satisfied, in which case we terminate
the computation. The shift-and-invert Lanczos algorithm with this shifting strategy,
which we refer to as SIL, approximates the solution to Problem 1.2.

An issue with Problem 1.2 is that its solution may include many eigenvectors
with very small or negligible normalized mass participation factors. Also, the shifting
strategy (3.2) is not as effective when K − λM has clustered eigenvalues, as is the
case for the real structural engineering problems we consider in section 4.

In what follows, we show that Algorithm 2.1 with σ = 0 and starting vector
w equal to the spatial distribution vector b provides at almost no additional cost
information about where the eigenvalues associated with eigenvectors of non negligible
normalized mass participation lie, while at the same time identifies the parts of the
spectrum that do not contribute much to the total mass participation. We use this
information to devise a new shifting strategy.

3.1. Estimating the cumulative mass participation. Let q1, q2, . . . be the
Lanczos vectors generated by the three-term recurrence (2.8) with σ = 0 and 0 6=
q1 ∈ range(K−1M). Each Lanczos vector qi can be written as

(3.3) qi = pi(K
−1M)q1,

10



where pi is called the ith Lanczos polynomial. It is well known from the theory of or-
thogonal polynomials [6, Chap. 2], [8, Chap. 4] that these polynomials are orthogonal
with respect to the inner product defined in terms of the Riemann-Stieltjes integral

(3.4) 〈pi, pj〉φ :=

∫ b

a

pi(µ)pj(µ)dφ(µ),

where a ≤ µmin, and b ≥ µmax, with µmin and µmax the smallest and the largest
eigenvalues of K−1M , respectively (i.e., µmin = 1/λmax and µmax = 1/λmin where
λmax and λmin are the largest and smallest eigenvalues of K −λM). The distribution
function φ(µ) is a step function with jumps at the eigenvalues µi of K−1M , and is
given by

(3.5) φ(µ) =

n∑
i=1

φ2ih(µ− µi),

where

h(t) =

{
1 t ≥ 0,
0 otherwise,

is the Heaviside function and the φi’s are the coefficients of the first Lanczos vector q1
when expressed in the M -orthonormal basis x1, . . . , xr for range(K−1M), namely

(3.6) q1 =

r∑
i=1

φixi,

(and φi = 0 for i = r + 1, . . . , n).
It turns out that the step function φ(µ) coincides with the cumulative mass par-

ticipation sum when the starting vector for the Lanczos algorithm with zero shift is
the spatial distribution vector b in (1.2) with b ∈ range(K−1M), as we now show.

Proposition 3.1. Let 0 6= b be the spatial distribution vector in (1.2) and assume
that b ∈ range(K−1M). If w = b in Algorithm 2.1 with σ = 0, then for the step
function φ(λ) in (3.5) we have that

φ2i = m(xi), i = 1, . . . , n,

where m(xi) is the normalized mass participation of the eigenvector xi in (3.1).

Proof. The first Lanczos vector is given by q1 = b/‖b‖M and, for i = 1, . . . , r,

m(xi) =
(xTi Mb)2

‖b‖2M
=

(xTi Mq1‖b‖M )2

‖b‖2M
= (xTi Mq1)2 = (xTi M

n∑
j=1

φjxj)
2 = φ2i .

For i = r+ 1, . . . , n, xi ∈ null(M) so that Mxi = 0 and hence m(xi) = 0 = φ2i .

If the nonzero eigenvalues µj , j = 1, . . . , r, of K−1M are ordered by decreasing
values then it follows from (3.5) and Proposition 3.1 that

φ(µj) =

j∑
i=1

m(xi), j ≤ r.

11



Let (θ
(k)
i , s

(k)
i ), i = 1, . . . , k, be the eigenpairs of the tridiagonal matrix Tk result-

ing from k steps of the unshifted Lanczos algorithm (Algorithm 2.1 with σ = 0) and
ordered such that

θ
(k)
1 ≥ θ(k)2 ≥ · · · ≥ θ(k)k .

The Lanczos polynomials pi in (3.3) are not only orthogonal with respect to the inner
product (3.4), they are also orthogonal with respect to the inner product

(3.7) 〈pi, pj〉τk =

∫ b

a

pi(µ)pj(µ)dτk(µ), 1 ≤ i, j ≤ k

induced by the step function

(3.8) τk(µ) =

k∑
i=1

τ2k,ih(µ− θ(k)i ),

where τk,i is the first entry of the eigenvector s
(k)
i , namely

τk,i = eT1 s
(k)
i

(see [6, Chap. 2], [8]). As a result, τk(µ) and the distribution function φ(µ) in (3.5)
have the same modified moments up to degree 2k − 1, namely

(3.9) 〈1, pi〉φ = 〈1, pi〉τk , i = 1, . . . , 2k − 1.

In turn, by the following theorem due to Karlin and Shapley [11, Thm. 22.2], it follows
that τk(µ) serves as a good approximation to φ(µ).

Theorem 3.2. If φ(µ) in (3.5) and τk(µ) in (3.8) have the same modified mo-
ments up to degree 2k− 1 then, if not identically zero, the difference function φ(µ)−
τk(µ) has 2k − 1 sign changes.

Thus if τk and φ do not coincide, the vertical and horizontal steps of τk will intersect φ
exactly 2k−1 times. This theory has been used, for instance, in estimating eigenvalue
distribution [6], and in constructing polynomial preconditioners [7]. In our case, we
use the step function τk, obtained after k steps of the Lanczos algorithm, as an
approximation to the cumulative mass participation sum, i.e.,

τk(µ`) ≈ φ(µ`) =
∑̀
i=1

m(xi), 1 ≤ ` ≤ n.

This is illustrated in Figure 2(a)–(b) for a real structural engineering problem called
chilled problem. On plot (a), the step functions τk and φ appear to coincide at least
to the eye but plot (b), which is a closeup of plot (a) around λ = 7.3 × 103 shows
that the step functions indeed intersect. We will return to Figure 2 at the end of
section 3.2.

3.2. A new shifting strategy. The step function τk(µ) in (3.8) is readily avail-
able after k steps of Algorithm 2.1 with σ = 0 and starting vector w = b. Intuitively,
the eigenvalues corresponding to the eigenvectors with largest normalized mass par-
ticipation should lie under tall and narrow steps of φ(λ), whereas short and wide
steps would indicate intervals of eigenvalues corresponding to eigenvectors of negligi-
ble mass participation (see Figure 2 for illustration). To make this formal, denote by

12
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(a) chilled problem in the x-direction, n = 93445, kmax = 200.
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(b) Closeup the above stair graph.

Fig. 2. Step functions φ(µ) and τk(µ) for the chilled problem in the x-direction. The small
yellow stars in (a) correspond to the smallest eigenvalues λi and their normalized mass participation
factors m(xi) such that

∑
im(xi) ≥ 0.9. The green and red circles correspond to the pairs (λi,m(xi))

obtained by MASIL and pMASIL, respectively, and such that
∑

im(xi) ≥ 0.9. The shading shows
the intervals selected by the new shifting strategy.

Ψ(c, d) the total mass participation of eigenvectors whose corresponding eigenvalues
lie in the interval [c, d], that is,

(3.10) Ψ(c, d) =
∑
j∈J

m(xj), J =
{
j ∈ {1, . . . , n} : λj ∈ [c, d]

}
,

where λj = 1/µj is the jth largest eigenvalue of K − λM . Since by Theorem 3.2 the
function φ(µ)−τk(µ) has exactly 2k−1 sign changes , we have that for 1 ≤ i < j ≤ k,

(3.11)

j−1∑
`=i+1

τ2k,` ≤ Ψ

(
1

θ
(k)
i

,
1

θ
(k)
j

)
≤

j+1∑
`=i−1

τ2k,`.
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We can now make use of the bounds in (3.11) to identify the union of intervals of
smallest total length over which we are guaranteed to satisfy

(3.12)
∑̀
j=1

m(xij ) ≥ ξ

for some ξ ∈ (0, 1). Since we require that the total mass participation over that union
of intervals is at least ξ, we must look a the lower bounds of (3.11). Let us denote by
γij the following ratios

γij :=

∑j−1
`=i+1 τ

2
k,`

1

θ
(k)
j

− 1

θ
(k)
i

,

so that, by (3.11),

γij ≤
Ψ
(

1

θ
(k)
i

, 1

θ
(k)
j

)
1

θ
(k)
j

− 1

θ
(k)
i

.

Assuming that the eigenvalues are distinct and roughly evenly distributed, large γij

indicate high relative mass participation in the interval [1/θ
(k)
i , 1/θ

(k)
j ], and small γij

indicate low relative mass participation. Since the lower bound for Ψ(1/θ
(k)
i , 1/θ

(k)
i+1)

is 0, we look at intervals of the form [1/θ
(k)
i−1, 1/θ

(k)
i+1]. Thus to simplify the following

discussion, define γi to be

γi := γi−1,i+1 =
τ2k,i

1

θ
(k)
i+1

− 1

θ
(k)
i−1

.

Suppose that after k steps of the Lanczos algorithm the first ` Ritz pairs (λν , xν),
ν = 1, . . . , ` of K − λM have converged. Let us denote by ξ` the sum of their mass
participation factors, that is,

ξ` =
∑̀
ν=1

m(xν).

To construct a union of intervals of smallest total length over which we are guaran-
teed to attain the remaining mass participation ξ − ξ`, we pick the s largest γi, say
γi1 , . . . , γis , iν ∈ {`+ 1, . . . , k − 1} such that

(3.13)

s∑
ν=1

τ2k,iν ≥ ξ − ξ`.

The wanted union of intervals is then
s⋃

ν=1
[1/θiν−1, 1/θiν+1]. By merging the neighbour-

ing and the overlapping intervals we can construct a set of s′ ≤ s disjoint intervals

(3.14) [1/θ
(k)
iν
, 1/θ

(k)
jν

], ν = 1, . . . , s′.

We then choose the shifts σν to be the midpoints of those intervals, namely,

σν =
1/θ

(k)
jν

+ 1/θ
(k)
iν

2
, ν = 1, . . . , s′.

14



We end the shift-and-invert Lanczos iteration with shift σν whenever the sum of the
mass participation of the converged Ritz vectors with eigenvalues in [1/θ

(k)
iν
, 1/θ

(k)
jν

]

attains the minimum in (3.11), i.e.,
∑jν−1
`=iν+1 τ

2
k,`.

Remark 3.3. The inequality (3.13) may not hold if even s = k − ` + 1 although
in practice, it is usually satisfied after a small number of steps k. If (3.13) does not
hold then we can increase k, or reduce ξ.

As an illustration, let us look at Figure 2(a). The jumps of τk(µ) correspond to the

points (1/θ
(k)
i , τk(θ

(k)
i )), i = 1, . . . , k with k = kmax. There are 34 more jumps outside

of plot (a) corresponding to those θ
(k)
i such that 1/θ

(k)
i > 2× 104. The plot shows as

small yellow stars the normalized mass participation factors m(xi) of the eigenvectors
xi corresponding to the ` smallest eigenvalues λi, computed by the unshifted Lanczos
algorithm and thus solving Problem 1.2. Although not visible on plot (a), the eigen-
values of the chilled problem are clustered: for example, the smallest eigenvalue is
around 507, there are 47 eigenvalues in the interval [535,538] and 25 in [570,581]. The

first shaded region from the left corresponds to the interval [1/θ
(k)
1 , 1/θ

(k)
` ] containing

the converged Ritz values computed by the unshifted Lanczos algorithm. The remain-
ing shaded regions correspond to the s′ = 9 disjoint intervals in (3.14). They define
nine shifts for the chilled problem (there is a small interval just after the first inter-
val that corresponds to the shift σ = 0). The non shaded areas correspond to intervals
containing eigenvalues associated with eigenvectors of negligible mass participation.
These intervals are ignored by our approach.

3.3. An algorithm for the approximate solution to Problem 1.1. Given
two n×n matrices M ≥ 0 and K > 0, a spatial distribution vector b ∈ range(K−1M),
a proportion ξ ∈ (0, 1), and a maximum number of iterations kmax our algorithm for
the approximate solution to Problem 1.1 goes through the following steps.
step 1 Call Algorithm 2.1 with σ = 0, w = b, and the implicit filtering turned off.

Stop the Lanczos iterations at step k when either
(a) the converged Ritz vectors xj , j = 1, . . . , `0 are such that

∑`0
j=1m(xj) ≥

ξ, or
(b) k has reached a number of kmax iterations (or larger if

∑k
j=1 τ

2
k,j ≥ ξ is

not satisfied).
If (a) holds then return the converged Ritz vectors xj , j = 1, . . . , `0 as an
approximate solution to Problem 1.1. End the algorithm.
If (b) holds then
• if ‖qk‖2 ≤ tol‖q1‖2 then save the converged Ritz vectors xj , j =

1, . . . , `0, let ξ`0 =
∑`0
j=1m(xj) and proceed to step 2 with the con-

verged and unconverged Ritz pairs (1/θ
(k)
i , xi), i = 1, . . . , k.

• if ‖qk‖2 > tol‖q1‖2 then keep the computed Ritz pairs (1/θ
(k)
i , x̃i), i =

1, . . . , k for step 2. Apply implicit filtering as described in section 2.2(a)
and continue the Lanczos iterations (Algorithm 2.1). Save the converged

Ritz vectors xj , j = 1, . . . , `0, let ξ`0 =
∑`0
j=1m(xj) and proceed to

step 2.

step 2 Construct a sequence of disjoint intervals [1/θ
(k)
iν
, 1/θ

(k)
jν

], ν = 1, . . . , s′, as
discussed in section 3.2, using the k converged and unconverged Ritz pairs

from step 1. Compute the sequence of shifts σν =
(
1/θ

(k)
jν

+ 1/θ
(k)
iν

)
/2,

ν = 1, . . . , s′.
step 3 For ν = 1, . . . , s′, call Algorithm 2.1 with σ = σν and w = (K−σνM)−1Mw̃,
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Fig. 3. Number of intervals s′ in (3.14) as a function of the number k of unshifted Lanczos
steps for the local modes problem in the z-direction.

where w̃ is the sum of the unconverged Ritz vectors from the previous step.
Apply implicit filtering when ‖qk‖2 > tol‖q1‖2. Stop the Lanczos iterations
when either
(i) the converged Ritz vectors xj , j = p+1, . . . , p+`ν with p = `0+

∑ν−1
i=1 `i,

are such that

ξ`ν :=

p+`ν∑
j=p+1

m(xj) ≥
jν−1∑
`=iν+1

τ2k,`,

or
(ii) ξ := ξ`0 +

∑ν
j=1 ξ`j ≥ ξ.

Stop the for loop when (ii) holds. Return the converged Ritz vectors xj ,
j = 1, . . . , p with p = `0+

∑ν
i=1 `i as an approximate solution to Problem 1.1.

End the algorithm.
Implicit filtering cannot be used in the first call to Algorithm 2.1 in step 1 since

this would alter the starting vector and we could not apply our shifting strategy. In
step 1(b) the condition

∑k
j=1 τ

2
k,j ≥ ξ is usually satisfied after a small number of

steps k (see remark 3.3). The choice of the maximum number of iterations kmax is
important. If kmax is too small then the approximation τk(λ) of φ(λ) is too rough
and leads to large intervals and shifts that are not close enough to eigenvalues with
eigenvectors that have large mass participation. On the other hand, a too large kmax

can lead to unnecessary computations, in particular of converged eigenvectors with
negligible mass participation but can also result in too many shifts being identified by
our shifting strategy. This last point is illustrated in Figure 3 for a real engineering
problem. The plot shows that the number of shifts (or intervals in (3.14)) determined
by our shifting strategy increases as the number k of unshifted Lanczos steps increases.
In practice, we found that taking kmax = 200 is a reasonable choice. For tol we choose
tol = 104, and we consider that the eigenpair (λj , xj) has converged if η(λj , xj) ≤ nu,
where u is the machine precision and η(λj , xj) is defined in (2.12).

4. Numerical experiments. For our numerical experiments we used matrices
M and K, and spatial distribution vectors b provided by Arup Group Limited that
were constructed by the finite element software package Oasys GSA [15] from models
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Table 2
List of test problems together with their size n and the number kmax of unshifted Lanczos steps

for SIL and the new method MASIL. The last four columns list the number of eigenvectors needed to
satisfy the MPF condition (3.12) with ξ = 0.9 for SIL and MASIL, and their purged versions pSIL
and pMASIL. The number of shifts used by SIL and MASIL is provided inside brackets.

Problem (direction) n kmax SIL (shifts) MASIL (shifts) pSIL pMASIL

local modes (z) 51,348 200 977 (20) 367 (3) 463 275

ccnb (x) 57,152 200 115 (1) 94 (6) 61 56

chilled (x) 93,445 200 449 (2) 70 (9) 32 19

chilled (y) 100 107 (1) 14 (4) 6 5

chilled (y) 200 49 (0) 49 (0) 6 6

TT (y) 131,835 200 488 (6) 404 (9) 211 140

TT (z) 200 1173 (18) 994 (6) 566 413

of real structural engineering problems. These are listed in Table 2. Our numerical
experiments are performed with MATLAB. As mentioned in the introduction, b is
always associated with a direction, either x, y, or z. So for a given problem, we will
have different solutions depending on the chosen direction since they correspond to
different spatial distribution vectors.

We compare the following approaches to solve our problem:
• SIL: shift-and-invert Lanczos algorithm with the Ericsson and Ruhe shifting

strategy (3.2),
• MASIL: mass accumulating shift-and-invert Lanczos algorithm with the new

shifting strategy described in section (3.3).
When no shifts are used, SIL and MASIL are identical, except for their starting
vectors: SIL uses w = K−1Mb as suggested in [20] and MASIL uses w = b.

In practice, the cumulative sum of the mass participation factors of the eigenvec-
tors returned by SIL and MASIL is always slightly larger than the wanted proportion
ξ. So we have the possibility to remove from the list of computed eigenvectors those
with smallest mass participation so that the cumulative sum of the mass participa-
tion factors of the remaining eigenvectors is exactly ξ or just above. We refer to this
small modification of SIL and MASIL as pSIL and pMASIL, respectively, where the
“p” stands for extra purging step. An illustration of the purging step can be seen in
Figure 2(a), where the pairs (λi,m(xi)) from MASIL are shown as small green circles
and those kept by pMASIL are shown as large red circles.

In Table 2, we compare the number of computed eigenvectors required to satisfy
the mass participation condition (3.12) with ξ = 0.9. Some directions for the problems
are excluded from the table. This is either because shifts were not employed (e.g. ccnb
in the y- or the z-direction, where the 90% mass participation was reached in fewer
than kmax steps and no shift), or too many eigenvectors were required to achieve 90%
mass participation, exceeding time and memory constraints (e.g., for the chilled

problem in z-direction and ξ = 0.75 � 0.9, SIL returns 6959 eigenvectors whereas
MASIL returns 4201 eigenvectors).

The new shifting strategy allows us to exclude intervals containing eigenvalues
whose eigenvectors have a negligible mass participation and shift in the middle of
intervals containing eigenvalues with eigenvectors of large mass participation. As a
result, the number of eigenvectors returned by MASIL can be much smaller than that
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returned by SIL. This is, for example, the case for the local modes problem in the
z-direction and the chilled problem in the x-direction. The number of shifts used
by SIL or MASIL depends on the problem and the shifting strategy employed. Notice
the large number of shifts employed by SIL for the local modes problem in the z-
direction and for the TT problem in the z-direction. For MASIL, the number of shifts
needed is known before hand so if this number is too high then there is always the
possibility to increase the value of kmax or to see if there is a k < kmax that leads to
larger search intervals but fewer of them. We reported results for two different values
of kmax for the chilled problem in the y-direction. For kmax = 100, SIL uses only
one shift but returns 107 eigenvectors whereas MASIL uses 4 shifts but returns only
14 eigenvectors. No shifts are needed if we increase kmax to 200.

Now comparing the number of eigenvectors returned by pSIL to that of SIL shows
that a large proportion of the eigenvectors computed by SIL have a negligible mass
participation and can be purged away. The last column in Table 2 shows that MASIL
still returns many eigenvectors with negligible mass participation that can be removed
while still maintaining the condition (3.12) but the reduction is not as drastic as for
SIL. Note that the number of eigenvectors returned by pMASIL is lower or equal than
those returned by pSIL.

Let us now look at the quality of the approximation ũ(t) =
∑p
j=1 vj(t)xj to the

response u(t) of (1.1) when the p eigenvectors xj are computed by SIL, MASIL, pSIL
or pMASIL. For the time dependent external load f(t) = g(t)Mb we use

g(t) =


1, 0 ≤ t ≤ 0.03

11− 103

3 t, 0.03 ≤ t ≤ 0.033
0, 0.033 ≤ t ≤ 1 t (sec)

1

0 .03 .033

g(t)

for the loading function g as suggested in [3, Fig. 2]. We employ 2% damping which
consists of setting ζj = 0.02 in (2.4) for all j. For the relative error between the exact
solution u(t) and its approximation ũ(t), the analysis in section 2.1 tells us to expect

(4.1)
‖u(t)− ũ(t)‖M
‖u(t)‖M

<∼
√

1− ξ ≈ 0.3.

We do not have access to u(t). Therefore as a reference we use the solution obtained
from SIL with ξ = 0.99. The relative errors for the approximate responses ũ(t) re-
turned by SIL, pSIL, MASIL and pMASIL with ξ = 0.9, are shown in Figure 4 for
the local modes problem in the z-direction in (a) and for the chilled problem in
the x-direction in (b). The relative errors agree with (4.1). Not surprisingly, the
relative errors for the pSIL and pMASIL solutions are close to

√
1− ξ ≈ 0.3. We

note that for the chilled problem, the MASIL solution with 14 eigenvectors is al-
most as good as the SIL solution which requires 101 eigenvectors, whereas for the
local modes problem pMASIL algorithm outperforms pSIL algorithm with signifi-
cantly fewer eigenvectors.

Finally, we plot in Figure 5(a)-(b) the ith entry of the reference solution u(t) and
its approximations obtained by SIL, pSIL, MASIL, and pMASIL for the ccnb and
TT problems. We chose the index i for which the reference solution has the largest
amplitude. For the TT problem in the y-direction in plot (a), all solutions agree
with the reference solution even the pMASIL solution which uses significantly fewer
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(a) local modes problem in the z-direction, kmax = 200.
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(b) chilled problem in the x-direction, kmax = 200.

Fig. 4. Relative error between the reference solution u(t) and its approximation ũ(t) obtained
from SIL, MASIL, pSIL, and pMASIL with a proportion of ξ = 90% for the total mass participation.

eigenvectors. Although (4.1) holds for all the approximate solutions, the SIL and
pSIL solutions do not agree as well with the reference solution for the ccnb problem
in the x-direction in plot (b), whereas the MASIL and pMASIL solutions do, thereby
suggesting a better selection of eigenvectors representing the solution.

5. Conclusion. We have shown that if the Lanczos process is applied to K−1M
with starting vector equal to the spatial distribution vector b, then the Lanczos poly-
nomials are orthogonal with respect to the inner product induced by a step function
φ that coincides with the cumulative mass participation sum, that is, the quantity
we are interested in to solve Problems 1.1–1.2. The Lanczos polynomials are also
orthogonal with respect to an inner product induced by a step function τk which,
unlike φ, is readily available at step k of the Lanczos process. The step function τk
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(a) TT problem in the y-direction, i = 21943.
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(b) ccnb problem in the x-direction, i = 14802.

Fig. 5. Plot of the ith entry of the response vector u(t) (reference solution) and its approxima-
tions obtained by SIL, pSIL, MASIL, and pMASIL.

offers an approximation to φ and hence to the cumulative mass participation sum.
The eigenvalues of K − λM lie on the positive real line and we use τk to identity
intervals containing eigenvalues whose corresponding eigenvectors have non negligible
mass participation as well as intervals containing eigenvalues whose eigenvectors have
negligible contribution to the cumulative mass participation. We use this information
to construct a sequence of shifts σ1, σ2, . . . , σp for the shift-and-invert Lanczos algo-
rithm as well as a stopping criterion for the shift-and-invert Lanczos steps with shift
σi, i = 1, . . . , p so that (1.7) holds. The numerical experiments we performed on real
engineering problems show that our approach computes up to 80% fewer eigenvectors
and requires fewer shifts, on average, compared with the shifting strategy proposed
by Ericsson and Ruhe.
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