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Abstract. Geodesic distances are a natural dissimilarity measure between prob-
ability distributions of a fixed type, and are used to discriminate texture in several
image-based measurements. Besides, since there is no known closed-form solution
for the geodesic distance between general multivariate normal distributions, we
propose two efficient approximations to discriminate textures in the context of
face recognition. Unlike the typical appearance-based approach that uses low-
resolution grayscale face images, we propose a novel generative approach for face
recognition based on texture discrimination. In the proposed approach, sparse fa-
cial features are extracted from high-resolution color face images using predefined
landmark topologies, in which landmarks are in discriminative locations of face
images. By adopting a common landmark topology, the dissimilarity between dis-
tinct face images can be scored in terms of the dissimilarities between the texture
in their corresponding landmark vicinities. The proposed multivariate normal
distributions represent the color intensities around each landmark location. The
classification of new face samples occurs by determining the face image sample
in the training set which minimizes the dissimilarity score. The proposed face
recognition method was compared to methods representative of the state-of-the-
art using color and grayscale face images, and presented higher recognition rates.
Moreover, the proposed measures to discriminate textures tend to be efficient in
face recognition and in general texture discrimination (e.g., texture recognition of
material images), as our experiments suggest.

Keywords: geodesic distance, approximations, multivariate normal distribution, face
recognition, sparse features.
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1. Introduction

The instrumentation and measurement fields are
associated to measure, detect, record and monitor a
certain phenomenon (i.e., a measurand) in applications
that usually involve uncertainty and/or probability
distributions. Some measurands are invisible like the
electromagnetic field, and other are visible like the light
reflection on a surface.

In order to measure signals in the visible
light spectrum, imaging sensors (i.e., cameras) are
commonly used to record images or videos which tend
to present higher resolutions due to the technological
advancement. In such recorded data, colors are usually
represented as basic color intensity combinations (i.e.,
red, green and blue), leading to an inherent high-
dimensional multivariate feature representation.

Moreover, the image processing and computer
vision fields may be used to help to extract
reliable features for several instrumentation-related
applications which wuse texture information, such
as face recognition [1] [2] [3] [4], brain image
recognition [5] [6], texture recognition of material
images [7], food image recognition [8] [9], character
recognition [10] [11], yawning detection [12], etc. In
this work, we are mainly interested in face recognition
by using efficient texture dissimilarity metrics based on
geodesic distance approximations between probability
distributions.

Face recognition is an instrumentation-related ap-
plication which uses computer vision and pattern
recognition techniques to identify individuals. More-
over, there are several emerging applications based in
face recognition in augmented reality, gaming, security,
and so on [3] [4] [13] [14]. Face recognition is also stud-
ied by neuroscientists and psychologists to provide use-
ful insights in how the human brain works [15]. In such
applications, features extracted from images or videos
present high dimensionality and the sample availabil-
ity for machine learning is scarce, potentially leading
to the known curse of dimensionality [16].

In order to compact face features while discrimina-
tive characteristics of the original data are preserved,
the Figenfaces method [17] creates a linear projection
to a lower dimensional space, where new face samples
are recognized. It uses Principal Component Analy-
sis (PCA) [18] to create a linear orthogonal projection
which preserves most of the face data variability.

However, Figenfaces not always leads to a reliable
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face class separability since it only preserves the
global structure of the data. On other hand, the
Laplacianfaces method [19] tries to preserve the local
structure of the data in the lower dimensional space
by creating a locality graph. However, the underlying
class structure may be distorted since the final linear
projection is non-orthogonal.

The Orthogonal Locality Preserving Projections
method (OLPP) [20] was proposed as an extension to
the Laplacianfaces method, adding the orthogonality
property to the resulting linear transformation, causing
a better preservation of the underlying class structure.
Similarly, another method named Orthogonal Neigh-
borhood Preserving Projections (ONPP) [21] tries to
preserve the local and the global face data geometry
by creating a neighborhood graph, which is used to
determine the final orthogonal linear transformation.

However, preserving the face data structure in the
lower dimensional space not always leads to a good
face class separation. On the other hand, if the class
labels of each training sample are previously known,
it is possible to preserve better the class structure by
using supervised dimensionality reduction approaches
like Linear Discriminant Analysis (LDA) [22], which
determines a linear projection (Fisherfaces) that moves
samples from different classes away while approximates
samples in the same classes in the lower dimensional
space.

There are methods based in LDA, i.e., the Dis-
criminative Orthogonal Neighborhood-Preserving Pro-
jection (DONPP) [23], which analyzes and preserves
the intra-class and inter-class geometry in the lower
dimensional space. Another LDA-based method is the
Multi-view Discriminant Analysis (MvDA) [24], which
creates projections of input face features in different
perspectives and combine them obtaining the final lin-
ear transformation.

However, LDA may present inaccuracies for non-
linear separation problems. Therefore, some LDA
kernel extensions [25] [26] [27] were proposed to map
the input data to a higher dimensional space through
a non-linear mapping, where the inner product in this
space can be computed by a kernel function without
knowing the non-linear mapping explicitly [28]. The
Spectral Regression Kernel Discriminant Analysis
method (SRKDA) uses regularization techniques to
provide an efficient computation of kernel LDA using
large datasets [27], obtaining as result a linear
projection that preserves the original non-linear class
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structure.

Other methods try to learn non-linear transfor-
mations in order to preserve better the non-linear data
structure of high dimensional data, and that is the case
of the Isomap method [29], which creates a neighbor-
hood graph in which the data manifold is approximated
by calculating approximations for geodesic distances by
determining the shortest path between samples. The fi-
nal low dimensional representation of the original sam-
ples is obtained by the typical multidimensional scaling
algorithm (MDS) [30].

The non-linear dimensionality reduction method
called Locally Linear Embedding (LLE) [31] tries to
model data samples as linear combinations of its
neighboring samples and uses this information to
determine the lower dimensional representation of the
original samples, preserving the local data geometry
existing in the original high dimensional space.

Although there are available in the literature
several techniques to reduce efficiently the face data
dimensionality and preserve the underlying face class
structure, there are common issues which affect
face representation such as variations of illumination,
changes in the head pose, change of appearance,
and others, demanding a high availability of distinct
training samples in order properly to represent
the face variability for machine learning as in the
appearance-based approach methods [17] [19] [20] [21].
Since these methods concatenate all image pixels
to create representative feature vectors, they need
to downsample grayscale face images to reduce the
computational complexity. The obtained face feature
representation still presents high dimensionality and
suffers from the aforementioned issues.

On the other hand, it is possible to extract
sparse face features directly from high-resolution color
face images by using face representations based in
landmarks associated to key points on face images at
important and discriminative locations, leading to an
enhanced face representation [3] [32]. Landmarks can
be automatically determined by using approaches like
Active Shape Models (ASMs) [33] and several methods
have been proposed to extract sparse features from face
images using trained ASMs [34] [35].

However, not all extracted facial features are
equally relevant from the point of view of face
class discrimination. Therefore, some methods have
been proposed to estimate the most discriminative
landmarks, like the Enhanced ASM [32], where mutual
information is used to rank the landmarks in terms
of their discrimination capability using color high-
resolution face images. In the Enhanced ASM method,
face features are represented by Gaussian mixtures and
new face samples are recognized by maximizing the
class likelihood. However, this classification scheme

can be adversely affected by outliers and noisy data.

As result, such statistical face representations
demand fewer face samples for machine learning
since relevant features are extracted from key points
on the face images (e.g. the eyes, eyebrows and
nose), preserving discriminative details from high-
resolution color images unlike typical appearance-
based methods [17] [19] [20] [21], which demand low-
resolution grayscale face images.

Another method that extracts features from
vicinities of landmark locations is the Customized
OLPP (COLPP) [3], in which landmark topologies are
used to mark important and discriminative information
on face images. The pixels in the landmark vicinities
are concatenated to form high dimensional feature
vectors which are mapped into a lower dimensional
space where the class structure of the original features
is preserved. In this discriminative linear space,
classification occurs by employing a linear soft margin
Support Vector Machine (SVM) [36].

Most aforementioned methods usually extract
feature vectors by concatenating pixel information
from whole face images or from landmarks on the
face, leading to high-dimensional feature vectors which
are usually undersampled due to the low availability
of training samples (i.e., face images). On other
hand, probability distributions can be learnt from
the texture in the vicinities of landmarks in high-
resolution color face images, leading to more accurate
and lower dimensional feature representations [32].
As a consequence, dissimilarities between distinct
textures can be obtained as geodesic distances between
probability distributions [4] [13].

In information geometry [37], the geodesic
distance is defined as the length of the shortest
path between probability distributions lying on
a Riemannian manifold induced by the Fisher
information metric applied to a parametric family
of probability distributions [38] [37]. As result,
the geodesic distance is a mnatural dissimilarity
metric between probability distributions, and is
used to discriminate texture in several image-based-
applications, e.g., face recognition [4]. Moreover,
the normal distribution is widely used in several
applications, however, there is no known closed-form
solution to the geodesic distance between general
multivariate normal distributions. Therefore, we
propose two efficient approximations with applications
in face recognition.

Moreover, we propose a novel generative approach
for face recognition which uses information geometry
techniques [38] [37] to discriminate face textures,
in which sparse facial features are extracted from
high-resolution color face images by using predefined
landmark topologies, unlike the appearance-based
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approach, in which low-resolution grayscale face images
are used to reduce the computational complexity [17]
[19] [20] [21]. By adopting a common landmark
topology, the dissimilarity between distinct face
images can be scored in terms of the dissimilarities
between the texture in their corresponding landmark
vicinities, which are obtained by the proposed geodesic
distance approximations between multivariate normal
distributions which represent the color intensities
around each landmark location.

The classification process of new face samples
occurs by the determination of the face image sample
present in the training set which minimizes the
dissimilarity score. The proposed face recognition
method was compared to methods representative
in the state-of-the-art using color or grayscale face
images and presented the higher recognition rates,
supporting a trend in which color information is
relevant on face recognition [3] [32].  Moreover,
the proposed metrics to discriminate texture tend
to be efficient in face recognition since they are
considered effective in general texture discrimination
(e.g., texture recognition of material images) according
to an additional set of experiments that we provide
in texture recognition, also overcoming state-of-the-art
methods.

This paper is organized as follows. Section 2
proposes geodesic distance approximations between
multivariate normal distributions to be wused as
a texture dissimilarity metric in face recognition.
Section 3 presents the proposed face recognition
method, where section 3.1 discusses how sparse
features and probability distributions are obtained
from face images, and section 3.2 presents how
dissimilarities between distinct face images are scored
in terms of the dissimilarities between textures in
their corresponding landmark vicinities by using the
proposed geodesic distance approximations.  The
experimental results are presented and discussed in
section 4 and the final conclusions and ideas for future
works are presented in section 5.

2. Geodesic Distance Approximations Between
Multivariate Normal Distributions

In many face recognition methods, face features are
represented as vectors [17] [19] [20] [21] [3]. However,
those feature representations are highly affected by
natural image issues such as variations in illumination,
pose and scale. Moreover, usually there aren’t enough
samples (face images) to properly sample such high-
dimensional feature spaces.

On other hand, multivariate probability distribu-
tions of color image pixels tend to preserve the original
image characteristics in a lower dimensionality repre-
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sentation, which are useful for texture discrimination.
Moreover, such feature representations are robust to
scale and pose variations. Therefore, we choose to rep-
resent image features as multivariate normal distribu-
tions which are defined as follows:
e~ 3@ T Ha—p)
F(z|p, ) = , (1)
@2m) 2|

where x is a C-dimensional vector, p is the C-
dimensional mean and ¥ is the C' x C covariance
matrix, for images with C' color channels.

Since geodesic distances are the natural distance
measure for families of probability distributions [37],
and assuming that the texture in the landmark
vicinities is normally distributed, we use geodesic
distances between normal distributions in order
to measure dissimilarities between the textures of
corresponding landmarks of distinct face images.

Considering the case when there are two univari-
ate normal distributions Fy (z|u1,01) and Fa(z|us, 02),
the geodesic distance G.(F1, F») between both distri-
butions is given in a closed-form [38] by:

1446
1-9¢

Ge(F1, Fy) =v2In =2v2tanh™ ', (2)

where

1/2
(11 — p2)” +2(01 — 02)?
(1 — p12)* + 2(o1 + 02)°

However, for the proposed method, a univariate
normal distribution is not suitable since it supports
only monochromatic images (i.e., grayscale images).
On the other hand, we use color-based feature
representations since color features tend to improve
image class discrimination [3] [32]. Therefore,
multivariate normal distributions are more adequate
to represent face image features.

One special case of multivariate normal dis-
tribution is when the covariance matrix X =
diag(0?,03, ...,02) is a diagonal matrix (i.e., the color
channels are independent features). Therefore, the
geodesic distance G (F1, F») between multivariate nor-
mal distributions Fy(z|p1, 1) and Fa(z|ue, X2) given
by [39] for diagonal covariance matrices can be used as
a dissimilarity metric:

0= (3)

C
Gy(F1,Fy) = \| Y Ge(Ff, F5)*, (4)
c=1

where Ff = Fi(z(c)|ui(c), X1(c, ¢)) represents the c-
th independent univariate normal distribution with
mean p1(c) and variance ¥q(c,c¢), belonging to the
multivariate distribution Fy(x|u1, X1).

However, image color channels are usually not
statistically independent, and wusing multivariate
normal distributions with diagonal covariance matrices
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may discard relevant and discriminative texture
information which should be accounted by geodesic
distances. Moreover, such distributions are not
generally adequate for texture discrimination since
they ignore the natural covariances between color
channels inherent in the color images.

Therefore, in order to obtain more accurate
geodesic distances, we can consider using geodesics for
general multivariate normal distributions, where the
covariances between color channels are also accounted.
Unfortunately, there is no known closed-form solution
for this case, but closed-form solutions for two
specific multivariate normal distribution subcases are

known [38] [39]:
(1) p1 # po,E1 =2o:

CulFr o) = (= )" (20 a —pa), ()
(ii) p1 = pg, 31 # Ba

C
Gx(F1, Fy) = | 5> log())), (6)
with {\;} = Eig((21)"/?52(81)7"?), (7)

where Eig is a function that returns the eigenvalues of
a given matrix and j indicates the j-th eigenvalue.

We intend to approximate the geodesic distance
for the case of general multivariate normal distribu-
tions based on equations (5) and (6), however some
adaptations are necessary due to the fact that distinct
images often present different means and covariance
matrices. As equation (6) does not consider means (1
and p9), we can use it without changes since it is inde-
pendent of the means. However, equation (5) requires
a common covariance matrix Y1, but we have two dif-
ferent covariance matrices ¥ and 5. Therefore, we
propose the following two alternatives for computing
G, for general multivariate normal distributions:

Go(Fr, ) = 05y (i — )T (50)7 (o — po2)

05y (i — ) (22) 7 (- ), (9)

and,

GL(Fy, Fy) = \/ =) (F52) a0

leading to two distinct ways to approximate the
geodesic distance for general multivariate normal
distributions:

G9(Fy, Fp) + Gs(F1, Fh)

Gy(F1, F2) = 5 , or (10)
GMF\,F>) + Gx(F,, F.
Gu(Fy, Fy) = A 2); 2 2)' (11)
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Considering that the color channels of face images
are statistically independent, we fall into the multivari-
ate case with diagonal covariance matrix (G ). Other-
wise, the general multivariate case provides a more ac-
curate geodesic distance approximation between mul-
tivariate normal distributions (G4 or Gy,).

Next, we present the proposed approach for face
recognition, which is based on the proposed geodesic
distance approximations as a texture dissimilarity
metric.

3. A Generative Method for Face
Representation and Recognition

3.1. Sparse Face Feature FExtraction

Typical appearance-based methods [17] [19] [20] [21]
exploit the face data variability for machine learning.
However, in order to reduce the computational
complexity, these methods use low-resolution grayscale
face images which are converted to the form of high-
dimensional feature vectors. On the other hand, more
discriminative features tend to be obtained from high-
resolution color face images by extracting information
from the texture in the vicinities of key points on the
face images (i.e., landmarks) [3]. Therefore, we propose
a feature extraction method based on the sparse
approach, since this feature representation can be
approached as a multivariate classification problem [32]
[3].

Assuming a point distribution model to represent
color face images, a predefined topology with @
landmarks can be used to represent the facial features
at @ face image locations. These @) landmarks may
be manually annotated or automatically identified
in the face images. However, there is uncertainty
about the correct location of manually annotated
or automatically identified landmarks due to image
artifacts (e.g. head pose, noise, illumination change,
etc.). Therefore, given a landmark topology, we can
introduce interpolated landmarks between each pair
of consecutive landmarks on a face image, improving
the reliability of the biometric information. The final
landmark topology contains a set of L identified and
interpolated landmarks, with L > @. The adopted
landmark topology used in this work is presented
in figure 1, marking important information from the
face images such as the eyes, eyebrows and nose.

Therefore, given a landmark topology with L
landmarks (i.e., the landmark topology in figure 1),
the texture in the squared vicinities with size w x w
centered in each landmark [ are extracted from each
face image (i.e., head pose) b of face class a, considering
face images with C' color channels.

These features are the C-dimensional mean
tapi = BElgpi(m,n)],Vm,n and the (C x C)-
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Figure 1. Adopted landmark topology exemplified in the PUT
Face Database [40] and the FEI Face Database [41]. Face
database landmarks are in red and interpolated landmarks are
in blue.

dimensional covariance matrix X, 5 ; = E[(1,,p,1(m, n)—
tapt) Tapi(m,n) — papi)t],Vm,n, where I, 5 (m,n)
is the C-dimensional color vector representing the pixel
with indexes (m,n) in the squared vicinity of the
landmark [ in the face image b of face class a, with
m,n=1,2,...,w.

For instance, considering color (RGB) face images,
Ha,b, Will be a 3-dimensional vector, but for grayscale
face images fi4,; will be a 1-dimensional vector. As
result, each landmark [ in the face image b of class a
is represented by the mean 5, and the covariance
matrix ¥, computed from the vicinity of the same
landmark.

Since the landmarks represent discriminative
information on the face images, we propose to
calculate dissimilarities between distinct face images
in terms of the dissimilarities between the texture in
their corresponding landmark vicinities by adopting
a common landmark topology (i.e., the landmark
topology in figure 1) as will be described in section 3.2.

3.2. Face Classification

Since geodesic distances are a natural dissimilarity
metric for statistical distributions, we propose to
calculate dissimilarities between distinct face images
by summing dissimilarities between the texture of their
corresponding landmarks which are given as geodesic
distances approximations between multivariate normal
distributions as presented in section 2. Considering
L, the total number of landmarks in a landmark
topology, a geodesic distance approximation between
multivariate normal distributions can be adopted,
ie., Gy (equation (4)), G4 (equation (10)) or G
(equation (11)).

Considering color (RGB) face images, the texture
in the vicinity of each landmark can be considered as
a multivariate normal distribution, since each pixel
can be treated as a 3-dimensional sample within
the landmark vicinity. Considering that the color
channels are independent for each landmark, the
geodesic distance approximation Gy for multivariate
normal distributions with diagonal covariance matrices
provides a suitable geodesic distance metric. In this
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case, the dissimilarity S fgll’,b’ between the face image
(i.e., head pose) b of face class a with the face image b’
of face class a’ can be scored by using G as follows:

L
Stai =D Gr(Fapt, Faryr ), (12)
=1

where I7, ;) represents a multivariate normal distribu-
tion with null covariances for the landmark [ in the
face image b of face class a with the C-dimensional
mean fi,p,; and the (C' x C)-dimensional covariance
matrix Y, 5. On the other hand, if the multivariate
face data present relevant covariances between color
channels, one of the proposed geodesic distance ap-
proximations for general multivariate normal distribu-
tions (G, or Gp,) should be more adequate for the score
calculation:

L

Soai =2 Go(Fapt, Fury ), (13)
=1

or
L

Snei = Gn(Faps, Farp ), (14)
=1

As result, small scores indicate similar face images
(which is the case of a sum of small dissimilarities
between landmarks), and, similarly, bigger scores
indicate dissimilar face images. Therefore, the
classification of a new face sample image I, occurs
by determining the face image I, in the training set
which is less dissimilar to I,/ 3 by using one of the three

. ’ b/ ’ b/ ’ b/
proposed score functions: Syo ", Sgo:” or Spo 7.

4. Experimental Results

Experiments were conducted to compare the proposed
face recognition method presented in section 3 (which
uses the geodesic distance approximations presented
in section 2 to discriminate texture in the vicinities of
the landmarks) to methods representative of the state-
of-the-art using a face database commonly used in
face recognition (i.e., the FERET face database [42]).
This face database was created with the objective
of providing credible data for the development of
new techniques, technology, and algorithms for the
automatic recognition of human faces. The database
is used to develop, test, and evaluate face recognition
algorithms. It presents color face images in high-
resolution (512 x 768 pixels), organized in several
subsets with specific head pose, expression, age, and
illumination conditions. Experiments were performed
with the color face images of the first 200 face classes
of the subsets fa, fb, hl, hr, rb and rc, including all
6 head poses, totaling 1200 images (6 images for each
class), as exemplified in figure 2.
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Figure 2. Typical head poses in the FERET face database used
in the experiments.

In all experiments with the proposed method,
the feature extraction and representation method
proposed in section 3.1 was applied to the face
images in the database, and the means and covariance
matrices were obtained using landmark vicinities of
size 11 x 11 (w = 11) centered at each landmark
location. In order to select consistent features
(landmarks), only faces with no landmark occlusions
were used. A common landmark topology was used in
all experiments in table 1, which is reported in figure 1,
collecting important and discriminative features from
face images.

The methods used for comparison in the ta-
ble 1 are the Customized OLPP method (COLPP) [3],
Enhanced ASM method [32], Support Vector Ma-
chines (SVM) [43], Spectral Regression Kernel Dis-
criminant Analysis (SRKDA) [27], Multi-view Discrim-
inant Analysis (MvDA) [24], Eigenfaces [17], Fish-
erfaces [22], Laplacianfaces [19], Orthogonal Local-
ity Preserving Projection (OLPP) [20], Locally Linear
Embedding (LLE) [31] and Isomap [29]. The proposed
method is compared using three distinct score func-
tions (Sy, Sy and S},) defined in section 3.2.

A set of experiments involving the proposed
method and the aforementioned methods was con-
ducted on the FERET face database, and 6 runs were
executed on the entire test subset. In each run, a leave-
one-out test strategy was adopted, and 5 head poses
per class were randomly selected for training, and 1
head pose per class was randomly selected for testing.
Table 1 shows the average face recognition rates for the
proposed method and methods representative of the
state-of-the-art. All methods in table 1 use the same
selection of face images, in color (RGB) or in grayscale
(color images were converted to grayscale).

For each method listed in table 1, the parame-
ters obtaining the best experimental results were cho-
sen by testing each method with several parameters
configurations until the maximum recognition rate was
reached. The parameter d used in Eigenfaces, Lapla-
cianfaces and other methods is the dimensionality of
the subspace, assuming k neighbors, and r is the PCA
ratio [17] [19] [20], which also is used by the Fisher-
faces and the MvDA methods. The adopted SVM im-
plementation was the LIBSVM [44]. In SRKDA, the
Gaussian kernel with standard deviation o was used.

Table 1. Face recognition rates obtained for the FERET face
database.

Methods RGB Grayscale
Proposed method with score S}, 95.3%  82.3%
Proposed method with score Sy 95.4%  83.2%
Proposed method with score S 83.1% 78.6%
COLPP (d=54,k=6,t=500,r=0.78) 93.8%  79.5%
Enhanced ASM 72.5%  53.8%
SVM 85.2%  76.4%
SRKDA (c=20000) 64.9%  59.7%
MvDA (d=100) 76.1%  71.4%
FEigenfaces (d=51) 69.6% 64.1%
Fisherfaces (r=0.8) 67.1%  65.7%
LPP (d=50,k=1,t=500,r=0.34) 67.1% 65.5%
OLPP (d=54,k=1,t=500,7=0.34) 69.0% 66.2%
LLE 54.2%  46.2%
Isomap 69.1% 64.8%

In the iterative Boosting LDA method [45], 10 itera-
tions were performed in each experiment, using half of
the training samples for training and the other half for
validation, and the Euclidean distance was used as the
distance measure. In table 1, the method MvDA was
trained to use head poses as views. In the Enhanced
ASM method [32], the parameter « was set to 1 giving
more importance to measurements in the local vicinity
of the landmarks.

As shown in table 1, experiments with color
images presented higher recognition rates than the
experiments with the same images but converted
to grayscale, confirming a trend that color face
features tend to improve face class discrimination [32]
[3]. Moreover, the proposed face recognition method
with the score functions S, or S, presented higher
recognition rates than with the score function Sy,
pointing out that the covariance information between
color channels is important to approximate better
the geodesic distance between multivariate normal
distributions. Finally, the proposed face recognition
method presented higher recognition rates than
comparable methods in the state-of-the-art.

The results obtained in table 1 show that the
proposed metrics to discriminate texture are efficient in
face recognition (G in (10) and Gy, in (11)). Moreover,
we provide an additional set of experiments in general
texture discrimination (e.g., texture recognition of
material images) in order to evaluate the efficiency of
the proposed texture discrimination metric presented
in section 2 applied to typical texture databases,
i.e.,, the KTH-TIPS texture database [46] and the
KTH-TIPS-2b texture database [47]. In these
experiments, statistical feature descriptors (i.e., means
and covariance matrices) were extracted from whole
texture images by considering that each texture image
is normally distributed. This is supported by the fact
that the human face presents a well-defined structure
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Table 2. Texture recognition rates obtained for the KTH-TIPS
texture database.

Methods Recognition Rates
Proposed method with score S,  99.76%
Proposed method with score Sg  99.76%
Proposed method with score Sy 66.80%
SRP [7] 99.29%
PLS [48] 98.50%
SSLBP [49] 99.39%
LETRIST [50] 99.00%
DMD [51] 97.96%

which helps face recognition [3] [32], however, texture
images have large stochastic variations of repeated
patterns and vary in pose and scale, so they are not
adequate for landmarking.

In order to evaluate the potential of the proposed
method for texture recognition, additional tests were
performed on the KTH-TIPS texture database [46]
and on the KTH-TIPS-2b database [47]. The KTH-
TIPS texture database [46] provides images of textured
materials in color with size 200 x 200 organized
in 10 texture classes, and each class consists of
81 samples which are captured under nine scales,
three different poses and three distinct illumination
directions. Experiments were run partitioning the
database samples in 50 partitions of training and
testing sets, in which half of the samples per class
are randomly selected for training and the remaining
half for testing [7]. Table 2 shows the average texture
recognition rates for the proposed method and methods
representative of the state-of-the-art.

The methods presented in table 2 wused for
comparison in the KTH-TIPS database are the
Sorted Random Projections (SRP) [7], Pattern
Lacunarity Spectrum (PLS) [48], Scale-Selective Local
Binary Pattern (SSLBP) [49], Locally Encoded
Transform Feature Histogram (LETRIST) [50] and
Dense Microblock Difference (DMD) [51].  The
proposed method was compared using three distinct
score functions (S, S, and S) defined in section 3.2.

Another challenging database used in texture
recognition is the KTH-TIPS-2b database [47] which
provides material images in color with size 200 x 200
organized in 11 texture classes, and each class consists
of 432 samples which are captured under nine scales,
three different poses and four distinct illuminants,
as exemplified in figure 3. Fifty experiments were
run partitioning the database samples in a ten-fold
test strategy [52], in which 11 samples per class
are randomly selected for testing and the remaining
samples were selected for training in each experiment.
Table 3 shows the average texture recognition rates for
the proposed method and methods representative of
the state-of-the-art.

Figure 3. Sample texture images in the KTH-TIPS-2b texture
database.

Table 3. Texture recognition rates obtained for the KTH-TIPS-
2b texture database.

Methods Recognition Rates
Proposed method with score S,  99.24%
Proposed method with score Sg  99.23%
Proposed method with score Sy 93.70%
LBP [53] 92.53%
ILBP [54] 95.88%
SLBP [55] 95.54%
LTP [56] 96.61%
oLBP [52] 96.04%
IaLBP [52] 97.25%

The methods presented in table 3 used for compar-
ison in the KTH-TIPS-2b database are the Local Bi-
nary Pattern (LBP) [53], Improved LBP (ILBP) [54],
Shift LBP (SLBP) [55], Local Ternary Pattern
(LTP) [56], a-Local Binary Pattern (oLBP) [52], and
Improved aLBP (IaLBP) [52]. The proposed method
was compared using three distinct score functions (Sy,
Sy and Sp) defined in section 3.2.

In the experimental results presented in table 2
and 3, the proposed texture dissimilarity metric
(i.e., geodesic distance approximations) applied to
texture recognition with the score functions S, or
Sy presented higher recognition rates than with
the score function Sy, also pointing out that the
covariance information between color channels is
important to better approximate the geodesic distance
between multivariate normal distributions. Finally,
the proposed method applied to texture recognition
presented higher recognition rates than comparable
methods in the state-of-the-art, also pointing out
that the proposed texture discrimination metric is
efficient not only to discriminate face texture, but to
discriminate typical textures (i.e., material images).

5. Conclusions

In this work, geodesic distance approximations for mul-
tivariate normal distributions were proposed as tex-
ture dissimilarity metrics applied to face recognition.
Also, a novel generative face recognition method that
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uses information geometry [37] techniques to measure
dissimilarities between the texture in the vicinities of
corresponding landmarks of distinct face images was
proposed, which uses a common landmark topology to
mark discriminative locations on high-resolution color
face images. The dissimilarity between distinct face
images is scored in terms of the dissimilarities be-
tween their corresponding landmarks, which are ob-
tained by the proposed geodesic distance approxima-
tions between multivariate normal distributions which
represent the color intensities in the texture present in
the vicinities of each landmark location.

Our proposed face recognition method tends to
handle better common issues in face recognition, such
as variations in illumination, changes in the head
pose, change of appearance, and others, since the
extracted pixel distributions sampled in the vicinities
of the landmarks tend to be similar across different
expressions and head poses. Moreover, the proposed
method takes advantage of the natural redundancy
that there exists in high-resolution color face images
to more accurately measure dissimilarities between
textures in the vicinities of corresponding landmarks.

The proposed face recognition method was
compared to methods representative of the state-of-
the-art using color or grayscale face images and it
presented the higher recognition rates. Moreover, these
results also support a trend in which color information
is relevant on face recognition [32] [3].

Furthermore, the metrics proposed to discriminate
texture tend to be efficient, since they can be con-
sidered effective in the general texture discrimination
problem (e.g., texture recognition of material images),
as our additional set of experiments suggest, and po-
tentially can perform better than comparable state-of-
the-art methods. The incorporation of the effect of
different covariance matrices was found to be impor-
tant.

Future work will deal with issues such as the
identification of the best landmark topology for face
recognition. Moreover, we also intent to use investigate
texture feature representations for binary patterns
applied to face recognition. We also intent to study
alternative techniques to obtain other geodesic distance
approximations for multivariate normal distributions,
also considering Gaussian mixture models.
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