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Optimal iterative solvers for linear nonsymmetric systems and nonlinear
systems with PDE origins: Balanced black-box stopping tests

Pranjal∗ and David Silvester†

Abstract. This paper discusses the design of efficient algorithms for solving linear nonsymmetric
systems and nonlinear systems associated with FEM approximation of elliptic PDEs. The novel
feature of the designed linear solvers like GMRES, BICGSTAB(`), TFQMR, and nonlinear solvers
like Newton and Picard, is the incorporation of error control in the ‘natural norm’ in combination
with an effective a posteriori estimator for the PDE approximation error. This leads to robust and
optimal black-box stopping criteria: the iteration is terminated as soon as the algebraic error is
insignificant compared to the approximation error.
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1. Introduction and problem description. Consider the following boundary
value problem: find the solution u(~x) : Ω→ R such that

L(~x)u(~x) = f(~x), ∀ ~x ∈ Ω,(1.1a)

B(~x)u(~x) = g(~x), ∀ ~x ∈ ∂Ω.(1.1b)

where Ω ⊂ Rd (d = 1, 2, 3, . . .) denotes the spatial domain and ∂Ω is the spatial
boundary. Here L is the (possibly nonlinear) elliptic PDE operator, B denotes the
boundary operator, f is the given (scalar) source term, g denotes boundary value, and
u the true solution. Equation (1.1) is discretized here using finite element method
(FEM) [2] and the corresponding linear or nonlinear discrete system is solved by a
linear or a nonlinear iterative solver respectively. Linear iterative process is considered
next.

1.1. Linear systems. For chosen spatial discretization parameter h, FEM for
solving (1.1) results in solving for a linear system, that is,

(1.2) Fhxh = bh ⇐⇒ M−1
h Fhxh =M−1

h bh,

where the matrix Mh is a preconditioner. The matrix Fh and the vector bh are
known quantities arising from the FEM process while the unknown algebraic solution
xh denotes the coordinate vector of the FEM solution uh in the chosen FEM basis.

The numerical solution of (1.1) essentially involves two types of errors which

are: approximation error (‖u − uh‖E) and algebraic error (‖uh − u
(k)
h ‖E). Here u

(k)
h

denotes the FEM solution formed from the solution x
(k)
h at the kth step of the chosen

iterative solver. Also, ‖ · ‖E denotes the natural norm. Wathen [24] has observed that
FEM approximation of a PDE endows the problem with a natural norm, which is
determined by the specific approximation space. Typically, in FEM setting, the PDE
approximation error and the algebraic error are measured in this natural norm.

1.1.1. Research objective. The approximation error is fixed for chosen spatial
discretization parameter. Solving iteratively the corresponding discrete linear(ized)
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system(s) to a very high accuracy is not desirable. This is because a highly accurate
iterative solution may require too many iterations and simply waste computational
resources without decreasing the approximation error. On the other hand, if the
iterations are stopped too early the iterative solution will not be a good approximation
to the exact solution. This paper attempts to address these issues by presenting
optimal balanced black-box stopping tests in Krylov solvers [8, sections 11.3–11.4] for
solving linear systems with PDE origins. This is an active research field; see [17, 20,
11, 14, 15].

1.1.2. Motivation. Typically, using an optimal balanced black-box stopping
methodology would usually lead to huge computational savings and in any case would
definitely rule out premature stopping of the chosen iterative solver.

1.2. Nonlinear systems. When FEM approximation to solve (1.1) results in a
nonlinear discrete system, nonlinear solvers like Newton solvers etc., are used to solve

them. Starting with a given initial guess u
(0)
h , nonlinear solvers typically construct a

sequence of iterates {u(l+1)
h }, l = 0, 1, · · · satisfying

(1.3) u
(l+1)
h = u

(l)
h + δu

(l)
h .

The problem of optimal balanced black-box stopping of the nonlinear iterative solver
is of interest here in the same manner as that for a linear solver. Also, the ‘correction’

term δu
(l)
h at each nonlinear iterative step l requires solving a linear system for the

basis coefficients of δu
(l)
h . So, optimal balanced black-box stopping criteria developed

in linear solvers can be applied in solving the linear system arising at each nonlinear
iterative step too.

Paper organization. The structure of this paper is as follows. The problem
statement has already been discussed in section 1. The general solution methodology
for linear and nonlinear systems is presented in sections 2 and 3 respectively. The
optimal balanced black-box stopping tests are derived therein. In section 4, the main
contribution of this work is highlighted while in section 5 optimal balanced black-box
stopping tests are presented in GMRES [18] and suboptimal Krylov solvers of non-
symmetric linear systems with PDE origins. In section 6, using the IFISS [4] toolbox
in MATLAB, computational results illustrating the devised optimal balanced black-
box methodology are presented and discussed for convection-diffusion equations and
Navier–Stokes equations. An optimal balanced black-box stopping test in (nonlinear)
Newton/Picard solver for solving the Navier–Stokes PDE is also presented therein.
Conclusions are presented in section 7. Note that C and c denote generic constants
throughout. Also, l denotes a nonlinear iterative step and k denotes a linear iterative
step throughout this paper.

2. Solution methodology for linear solvers. For a given approximation, the
approximation error is fixed. The triangle inequality at (linear solver) iteration k
(k = 0, 1, 2, . . .) gives the following decomposition of the total error,

‖u − u
(k)
h ‖E ≤ ‖u − uh‖E + ‖uh − u

(k)
h ‖E .

Total error Approximation error Algebraic error
(2.1)

The total error at iteration step k is nothing but the approximation error obtained

from kth FEM iterate u
(k)
h (which in turn is obtained from x

(k)
h whose components are
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the coefficients in the FEM basis representation of u
(k)
h ). Estimation of total errors

(approximation error) and algebraic error is discussed next.
In FEM setting, the approximation error (and hence total errors) can be measured

a priori or a posteriori [23]. A priori approximation error estimation usually requires
the PDE solution to satisfy some regularity conditions which may not hold or/and may
not be easily verifiable a priori. On the other hand, robust a posteriori approximation
error estimation techniques are popular for driving the FEM procedure adaptively
and are generally readily available in the sense that

(2.2) c ηh ≤ ‖u − uh‖E ≤ Cηh, with
C

c
∼ O(1).

where ηh denotes the a posteriori error estimate of the approximation error. Also, the

algebraic error ‖uh − u
(k)
h ‖E can usually be expressed in terms of the iteration error

e
(k)
h := xh − x

(k)
h norm ‖e(k)

h ‖Eh
:=

√
(e

(k)
h )TEhe

(k)
h , that is,

(2.3) c1‖e(k)
h ‖Eh

≤ ‖uh − u
(k)
h ‖E ≤ C1‖e(k)

h ‖Eh
, with

C1

c1
∼ O(1).

Here Eh is a ‘suitable’ (see section 4 for more details) symmetric positive-definite
matrix such that ‖ · ‖Eh

indeed defines a norm.

Thus, if η
(k)
h , ηh, ‖e(k)

h ‖Eh
are tight estimates of the total error (at iteration k),

the approximation error, and the algebraic error (at iteration k) respectively, then in
light of the above discussions (2.1) becomes

(2.4) η
(k)
h ' ηh + ‖e(k)

h ‖Eh
, k = 0, 1, 2, . . . .

The equivalence ' in (2.4) follows from (2.2) and (2.3).

Remark 2.1. Notice from (2.4) that when the contribution of ‖e(k)
h ‖Eh

to the sum

is ‘small’ then {η(k)
h } would converge with some accuracy to (unknown but fixed) ηh

and one stops ‘optimally’, that is, the total error a posteriori error estimate cannot
be significantly reduced further. Thus, the iterative strategy here can be looked upon

as constructing a sequence {η(k)
h } converging to ηh.

Thus, one would stop optimally when ‖e(k)
h ‖Eh

‘balances’ η
(k)
h in the sum (2.4), that

is, stop at the first iteration k∗ such that

(2.5) ‖e(k∗)
h ‖Eh

≤ ηh.

At this specific iteration k∗, it follows from (2.1) that the total error estimate η
(k)
h will

be bounded by twice the unknown approximation error (up to the constants in (2.2)).
Under the assumption that the equivalence (2.4) represents an equality, a practical
stopping test is obtained as in (2.5) except that the right-hand-side is given by

(2.6) ‖e(k∗)
h ‖Eh

≤ θη
(k∗)
h ,

where 0 < θ ≤ 1. Observe that θ = 1/2 corresponds to equality in (2.4). Note that
the numerical results presented later have been produced with θ = 1.

Generally, the iteration error e
(k)
h is unknown (and hence ‖e(k)

h ‖Eh
is unknown

too) since the exact algebraic solution xh is not usually available. Usually some norm



4 Pranjal and David Silvester

‖r(k)
h ‖Sh

:=

√
(r

(k)
h )TShr

(k)
h (where Sh is a symmetric positive-definite matrix) of

the iteration residual r
(k)
h := bh − Fhx(k)

h is readily computable and monotonically
decreasing with respect to the iteration count k of the chosen solver. Obtaining

tractable upper and lower bounds on the ‖e(k)
h ‖Eh

norm in terms of the surrogate

norm ‖r(k)
h ‖Sh

is the novel feature of the optimal balanced black-box stopping strategy
that is presented here. Moreover, this work states in these bounds, the exact positive
constants λh ∈ R,Λh ∈ R such that

(2.7) λh‖r(k)
h ‖

2
Sh
≤ ‖e(k)

h ‖
2
Eh
≤ Λh‖r(k)

h ‖
2
Sh
, k = 0, 1, 2, . . . .

Equation (2.7) leads to the following two bounds on ‖e(k)
h ‖Eh

, that is,

‖e(k)
h ‖Eh

‖e(0)
h ‖Eh

≤
√

Λh
λh

‖r(k)
h ‖Sh

‖r(0)
h ‖Sh

⇐⇒ ‖e(k)
h ‖Eh

≤ Λh√
λh
‖r(k)
h ‖Sh

,(2.8a)

‖e(k)
h ‖Eh

≤
√

Λh ‖r(k)
h ‖Sh

.(2.8b)

Using r
(k)
h = Fhe(k)

h ⇐⇒ ‖e(k)
h ‖2Eh

= (r
(k)
h )TF−Th EhF−1

h r
(k)
h . Thus, using (2.7) this

implies that obtaining a lower (λh) bound and an upper (Λh) bound on the quan-

tity
‖e(k)

h ‖
2
Eh

‖r(k)
h ‖

2
Sh

=
(r

(k)
h )TF−T

h EhF−1
h r

(k)
h

(r
(k)
h )TShr

(k)
h

requires calculating the extremal Rayleigh quo-

tients [8, p. 453] of F−Th EhF−1
h and Sh. This is equivalent to computing the extremal

(outer most) eigenvalues, that is, the smallest eigenvalue and the largest eigenvalue
of the symmetric positive-definite generalized eigenvalue problem for F−Th EhF−1

h and
Sh (or equivalently of Eh and FTh ShFh). This generalized eigenvalue problem can
be transformed (theoretically through a Cholesky factorization of Sh) into a symmet-
ric positive-definite algebraic eigenvalue problem (keeping the eigenvalues same) and
hence λh and Λh will both be positive.

In light of (2.6), the bounds in (2.8) lead to the following strong and weak optimal
balanced black-box stopping tests: stop at the first iteration k∗ such that either holds,

Λh√
λh
‖r(k∗)
h ‖Sh

≤ η(k∗)
h ;

√
Λh ‖r(k∗)

h ‖Sh
≤ η(k∗)

h ,

or equivalently,
(2.9)

‖r(k∗)
h ‖Sh

≤
√
λh

Λh
η

(k∗)
h (Strong stop); ‖r(k∗)

h ‖Sh
≤ 1√

Λh
η

(k∗)
h (Weak stop).

In terms of the number of iterations (and hence computational work and time) for
convergence, the strong stopping test cannot perform better than the weak stopping

test since
√
λh

Λh
=

√
λh√

Λh

√
Λh
≤ 1√

Λh
. Moreover, the strong stopping test involves an

additional overhead of computing the smallest eigenvalue λh. Thus, it would be
prudent to employ the weak stopping test whenever possible.

Remark 2.2. A crucial point to note here is that if the employed a posteriori
error estimator overestimates the approximation error (total errors), it will be better
to employ the strong stopping test for otherwise the weak stopping test might lead to
premature stopping.
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3. Solution methodology for nonlinear solvers. It follows from (1.3) that
at any nonlinear iterative step l + 1,

(3.1) ‖u(l+1)
h − u(l)

h ‖E = ‖δu(l)
h ‖E .

Note that since norm of difference is greater than or equal to the difference of norms,

‖u(l+1)
h − u(l)

h ‖E ≥ ‖u
(l+1)
h − u‖E − ‖u(l)

h − u‖E , therefore (3.1) becomes

(3.2) ‖u(l+1)
h − u‖E ≤ ‖u(l)

h − u‖E + ‖δu(l)
h ‖E .

If η
(l)
h are ‘tight’ a posteriori approximation error estimators at l nonlinear iterative

step such that c η
(l)
h ≤ ‖u − u

(l)
h ‖E ≤ Cη

(l)
h , with C

c ∼ O(1), then (3.2) can be
rewritten as

(3.3) η
(l+1)
h ' η(l)

h + ‖δu(l)
h ‖E .

Note that {η(l)
h } ultimately converges to true a posteriori approximation error estimate

ηh. So ∀ l ≥ l̂ (say), η
(l)
h are η

(l+1)
h are essentially the same. Using this idea, one can

optimally stop the nonlinear iteration when the contribution from ‖δu(l)
h ‖E in (3.2) and

(3.3) is insignificant. Thus, in light of the discussion in section 2, stop the nonlinear
iteration at the smallest value of (l + 1) of l∗ such that

(3.4) ‖δu(l∗)
h ‖E ≤ η

(l∗+1)
h .

4. Main contribution. An iterative (linear or nonlinear) solver employing the
optimal balanced stopping methodology that is presented here will be a black-box
solver. In the various Krylov solvers used next for solving M−1

h Fhxh =M−1
h bh, the

eigenvalue problem for finding λh, Λh will be specified explicitly by identifying suitable
Eh and Sh. For the remainder of this paper Fh will be assumed to be nonsymmetric.
Note that this work has appeared as chapters 4 and 5 in first author’s PhD thesis [17].

5. Optimal balanced black-box stopping tests for nonsymmetric linear
solvers. Generalized minimal residual (GMRES) method [18] with preconditioning
is the popular method for solving nonsymmetric linear systems. The iteration error

norm ‖e(k)
h ‖Eh

=

√
(r

(k)
h )TF−Th EhF−1

h r
(k)
h can be bounded here by GMRES solver’s

readily available and monotonically decreasing (with iteration count k) residual norm

‖r(k)
h ‖2 :=

√
(r

(k)
h )T r

(k)
h (Sh is the identity matrix here). This involves computing

the smallest eigenvalue λh and the largest eigenvalue Λh of the generalized symmetric
positive-definite eigenvalue problem for Eh and FTh Fh. A popular choice of Eh for
nonsymmetric linear systems is the symmetric part of the coefficient matrix Fh, that

is,
FT

h +Fh

2 provided it is also positive-definite. Thus, in this case, λh and Λh are the
smallest and the largest eigenvalue respectively of the generalized eigenvalue problem

for
FT

h +Fh

2 and FTh Fh. In light of (2.9), the eigenvalue problem above leads to the
following strong and weak stopping criteria in preconditioned GMRES for solving
nonsymmetric linear systems: stop at the first iteration k∗ such that either holds,

(5.1) ‖r(k∗)
h ‖2 ≤

√
λh

Λh
η

(k∗)
h (Strong stop); ‖r(k∗)

h ‖2 ≤
1√
Λh

η
(k∗)
h (Weak stop).

Note that (5.1) is a black-box stopping test as opposed to the devised stopping
test in [25, chapter 5] and involves a posteriori error bounds as opposed to [1].
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It is further proposed here that that (5.1) can be used in suboptimal solvers like
BICGSTAB(`) [21], TFQMR [6] etc., which unlike GMRES require fixed and less
storage requirements per iteration like and for which little convergence theory exists
currently. This is provided that breakdowns in such solvers are handled adequately
(see [7]) and these solvers converge at least to the order of the PDE approximation
error.

5.1. Computational logistics of optimal balanced black-box stopping
tests. Optimal balanced black box tests in preconditioned MINRES [13] solver for
solving symmetric positive-definite and symmetric indefinite linear systems can be
found in [17, chapters 2–3]. There Eh =M−1

h and hence preconditioner was involved
in the optimal stopping test’s eigenvalue problem of interest. So, λh, Λh could be esti-
mated cheaply there by exploiting Ritz (eigenvalues of the MINRES Lanczos matrix)
and harmonic Ritz value (eigenvalues of ’modified’ MINRES Lanczos matrix) relations
with the required eigenvalues of the preconditioned coefficient matrix of interest. But
unlike MINRES, a cheap method for computing λh, Λh in (5.1) is ongoing research
since here the eigenvalue problem of interest requires computing the eigenvalues of a
matrix different from the preconditioned coefficient matrix. So, Ritz/harmonic Ritz
value relations are difficult to exploit. Using MATLAB eigs is an alternative but it
might be more expensive if the matrix has ‘many’ nonzero entries. However, (Fh)
coefficient matrix arising from FEM approximation of PDEs are sparse in general
and hence employing eigs to obtain largest and smallest eigenvalues of generalized

eigenvalue problem for
FT

h +Fh

2 and FTh Fh might not be too expensive. Also, note

that η
(k)
h should be computed periodically (say every 4–5 iterations) to minimize its

impact on the overall algorithmic cost.

6. Model test problems. The storage requirements and computational flops
increase with the size and the number of linear systems (which are usually huge for
stochastic PDEs). An optimal balanced black-box stopping test might save significant
computational work of an iterative solver (especially for stochastic PDEs) and in any
case it would rule out premature stopping. Note that the optimal balanced black-
box stopping methodology developed here remains applicable for solving the discrete
systems arising from numerical approximation of the corresponding stochastic PDE
too.

Observe that availability of a tight posteriori approximation error estimator is
crucial for devising an optimal balanced black-box stopping methodology. Tight a
posteriori PDE approximation error estimators for parametric convection-diffusion
equations and parametric Navier–Stokes equations is still an ongoing research and
hence their deterministic counterparts are chosen here to illustrate the developed
optimal balanced black-box stopping methodology.

6.1. Convection-diffusion equations. Convection-diffusion equations are used
for modelling various phenomena such as the temperature of a fluid moving along a
heated wall, the transfer and diffusion of pollutants, etc.; see [5, chapter 18].

Following the notation in [3, p. 234], the steady-state scalar convection-diffusion
solution u(~x) : D → R satisfies

−∇ · ε(~x)∇u(~x) + ~w(~x) · ∇u(~x) = f(~x), ∀ ~x ∈ Ω ⊂ Rd (d = 2, 3),(6.1a)

u(~x) = gD(~x), ∀ ~x ∈ ∂ΩD,(6.1b)

∇u(~x) · ~n = gN (~x), ∀ ~x ∈ ∂ΩN = ∂Ω \ ∂ΩD.(6.1c)
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Here Ω is the spatial domain, ~w denotes the wind, and ε := κI is the isotropic
permeability tensor, κ : Ω → R. The quantities f, gD, gN are given functions and ~n
denotes the normal to boundary ∂Ω, which is the union of the Dirichlet (∂ΩD) and
the Neumann (∂ΩN ) spatial boundary.

For the simplicity of exposition, the diffusion coefficient ε > 0 will be assumed to
be independent of the spatial coordinates. Also, it will be assumed that ∇ · ~w = 0.

6.1.1. Galerkin FEM formulation. The Galerkin FEM formulation of (6.1)
is to find uh ∈ ShE such that

(6.2) ε

∫
Ω

(∇uh · ∇vh) +

∫
Ω

(~w · ∇uh)vh =

∫
Ω

fvh + ε

∫
∂ΩN

gNvh, ∀ vh ∈ Sh0 ,

where ShE and Sh0 are finite dimensional subspaces of H1
E and H1

E0
respectively. Here

H1
E(Ω) := {v ∈ H1(Ω) | v = gD on ∂ΩD},

H1
E0

(Ω) := {v ∈ H1(Ω) | v = 0 on ∂ΩD},
H1(Ω) := {u ∈ L2(Ω) |Dαu ∈ L2(Ω),∀ |α| ≤ 1},

where Dα is distributional derivative of u, |α| :=
∑d
i=1 αi, α = (α1, . . . , αd) is a

multiindex, see [12, p. 434].
Wathen [24] advocates that a natural norm for a function u in the Sobolev space

H1
E0

is the L2 norm of its gradient, that is, ‖∇u‖L2(Ω) :=
√∫

Ω
(∇uh)2. However,

this need not be the only meaningful norm for measuring errors associated with (6.2).
An alternative norm known as the streamline diffusion norm is also discussed in [3,
p. 252]. This norm arises when the streamline diffusion method introduced by [10]
is used for overcoming the drawbacks associated with the Galerkin discretization.1

This leads to a slightly different FEM formulation to (6.2) known as the streamline
diffusion FEM formulation [3, p. 252].

The corresponding streamline diffusion norm is

(6.3) ‖uh‖sd := (ε ‖∇uh‖2L2(Ω) + δ ‖~w · ∇uh‖2L2(Ω))
1/2,

where δ denotes the stabilization parameter [3, p. 253]. For convection dominated
problems, that is, for large Peclet numbers (small ε), the solution uh is dominated by
its behaviour along the streamlines, and hence ‖uh‖sd which involves the streamline
derivative ‖~w · ∇uh‖L2(Ω) is a more meaningful measure than ‖∇uh‖L2(Ω).

The IFISS toolbox employs streamline diffusion stabilization for solving (6.1), but
measures errors in the L2 norm of the gradient. The balanced stopping test will be
based on this norm. However, the stopping methodology can easily be modified to
cater to the streamline diffusion norm in (6.3).

Having formulated the streamline diffusion FEM formulation, the target linear
system is set up in the next subsection.

6.1.2. Matrix formulation. The Galerkin FEM formulation (6.2) gives rise
to the following system of linear equations with given coefficient matrix Fh, given

1Galerkin approximation for (6.1) is inaccurate if the mesh is not fine enough to resolve the layers
in the solution and these inaccuracies may also propagate and pollute the approximated solution in
regions where the exact solution is well behaved. An alternative way to handle boundary layers is
by using Shishkin grids; see [19].
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right-hand-side vector bh, and unknown vector xh.

(6.4) Fhxh = bh ⇐⇒ M−1
h Fhxh =M−1

h bh,

where Mh is a preconditioner. When lower order (piecewise linear or bilinear) finite
elements along with stabilization are employed, the coefficient matrix Fh in (6.4) has
the following form,

Fh = εAh + Nh + Sh,

see [3, p. 272] for more details. For FEM discretization without streamline diffusion
stabilization, Fh = εAh + Nh for finite elements of any order. The matrices under
consideration are quite structured. The matrix Ah is symmetric and positive-definite
provided Dirichlet boundary conditions exist over an interval (

∫
∂ΩD

6= 0), however
small. The stabilization matrix Sh is symmetric and positive-semidefinite. The matrix
Nh is a skew-symmetric matrix [3, p. 241, pp. 271–272]. Thus, Fh is a nonsymmetric
matrix that will be assumed to be invertible throughout this paper. Iterative solvers
like GMRES, BICGSTAB(`), and TFQMR are popular for solving nonsymmetric
linear systems.

6.1.3. A posteriori approximation error estimation. The a posteriori ap-
proximation error estimator that will be employed here for the deterministic convection-
diffusion equations is reliable but need not always be efficient. It is reliable in the
sense that the global upper bound on the true error does not depend on the mesh
parameter h and the diffusion parameter ε. However, it might not always be possible
that the a posteriori error estimate is a lower bound on the local (elemental) approxi-
mation error [3, theorem 6.9, proposition 6.11, pp. 264–265]. According to [3, p. 265],
efficiency issue is generic for any local error estimator whenever boundary layers are
not resolved by the FEM approximation. Hence, streamline diffusion stabilization is
necessary for dealing adequately (but not completely!) with such situations.

To demonstrate that the employed a posteriori error estimator is a ‘close’ estimate
of the approximation error, some computational results are presented for the test
problem described in (next) subsection 6.1.4. The a posteriori error ηh and the actual

approximation error ‖∇(uref − uh)‖L2(Ω) :=
√∫

Ω
∇(uref − uh)2 using a reference

solution are tabulated in Table 1 for a sequence of uniform grids. Since the exact

Table 1
Approximation errors, a posteriori errors, and effectivity indices for convection-diffusion test

problem on uniform grids.

h ηh ‖∇(uref − uh)‖L2(Ω) βeff Prmax
h

1/16 1.0562 4.1162 0.25 3.87
1/32 0.8556 2.6216 0.33 1.97
1/64 0.8018 1.5380 0.52 0.99
1/128 0.7855 0.7571 1.04 0.50

solution to the model problem is not available, a reference solution uref is computed
on a fine (h = 1/256) spatial 512 × 512 uniform grid. This reference solution is then
compared with the computed FEM solution uh (which is linearly interpolated using
MATLAB interp2 function for compatible comparison with the reference solution)
for grids with h = 1/16, 1/32, 1/64, 1/128. The corresponding effectivity index, that is,
βeff = ηh

‖∇(uref−uh)‖L2(Ω)
is also presented. The column for βeff in Table 1 indicates that
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the a posteriori error estimator is an ‘acceptably close’ estimate of the approximation
error. In fact as the mesh is refined and the layers in the solution are resolved, (that
is, maximum mesh Peclet number [3, p. 253] Prmax

h approaches ≤ 1) βeff → 1. Note
that the computation of a posteriori error estimator employed here is quite cheap
since it requires solving for a local 5× 5 linear system on each element.

6.1.4. Experimental results. From Table 1, observe that the computed a pos-
teriori approximation errors do not overestimate the corresponding approximation
error. In light of Remark 2.2 this implies that the weak stopping test in (5.1) can
be used as the optimal balanced black-box stopping test in GMRES, BICGSTAB(`),
and TFQMR for solving (6.4). Thus, one needs to compute the largest eigenvalue

Λh of the generalized eigenvalue problem for
FT

h +Fh

2ε and FTh Fh. (Note that here
the iteration errors are measured in Eh = Ah norm, and the symmetric positive-

definite part of Fh is Ah =
FT

h +Fh

2ε and not just
FT

h +Fh

2 as mentioned in section 4).
To reiterate, the employed iterative solver will stop at the first iteration k∗ such

that
√

Λh ‖r(k∗)
h ‖2 ≤ η(k∗)

h (Weak stop). Also, note that Λh is computed here using
MATLAB eigs. Some alternative approaches (still under further research) towards
cheaper estimation of Λh are discussed in [17, chapter 4].

The results here are presented for GMRES, BICGSTAB(2), and TFQMR. The
choice ` = 2 for BICGSTAB(`) is quite popular and widespread among practition-
ers; see [3, p. 296]. Roundoff errors might pollute the residual norm computed
from short-term recurrences for suboptimal Krylov solvers. In order to avoid these

inaccuracies, ‖r(k)
h ‖2 is computed here after forming the residual explicitly, that is,

r
(k)
h = bh − Fhx(k)

h . It is claimed here that in presence of tight a posteriori approx-
imation error estimators, the balanced stopping test can be employed optimally for
suboptimal iterative methods too provided breakdowns are handled adequately and
these algorithms ‘converge’ at least to the accuracy of the true approximation error.

Four test problems based on (6.1) are present in IFISS software in MATLAB.
Computational results are presented here for the fourth test problem. This problem
is characterized by a recirculating wind ~w and has discontinuous Dirichlet bound-
ary conditions leading to the formation of boundary layers near the corners of the
domain [3, p. 240].

The convection-diffusion problem (6.1) is defined on Ω = (−1, 1) × (−1, 1) with
the source function f(x1, x2) = 0, ∀ (x1, x2) ∈ Ω. Rectangular piecewise bilinear (Q1)
finite elements are used on a sequence of uniform grids. The viscosity parameter
ε = 1/64 is fixed and the optimal inbuilt value of the stabilization parameter δ is
used; see [3, p. 253]. This problem can be set up by choosing test problem 4 after
running the driver cd testproblem in IFISS.

There are four preconditioners built in IFISS for the discrete convection-diffusion
problem. They are: diagonal (DIAG) preconditioner, that is, the diagonal matrix
formed from the diagonal elements of Fh, incomplete LU (ILU), geometric multigrid
(GMG), and algebraic multigrid (AMG) preconditioners; see [3, chapter 7]. Results
are presented here only for ILU and AMG preconditioners for each of the iterative
methods. Let xh denote the MATLAB backslash (Gaussian elimination) solution on
each grid. Henceforth, this will be regarded as the reference (true) algebraic solution.

This will be used for comparison with the result x
(k∗)
h computed using the balanced

stopping test. From xh, the reference (true) a posteriori error estimate ηh is com-

puted. The starting vector x
(0)
h is generated using the MATLAB function rand. The

balanced stopping test that is used in preconditioned GMRES and BICGSTAB(`) is
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Table 2
GMRES iteration counts and errors for ILU (left), AMG (right) preconditioning on uniform

grids for discrete convection-diffusion system.

h ktol1 ktol2 k∗ e∗ηh
1/16 19 24 7 1.9e-3
1/32 43 54 19 4.4e-4
1/64 113 144 54 1.4e-4
1/128 288 374 148 2.9e-5

h ktol1 ktol2 k∗ e∗ηh
1/16 6 10 3 1.4e-3
1/32 7 11 4 7.7e-5
1/64 8 14 4 4.4e-5
1/128 7 14 5 1.8e-6

implemented in gmres r and bicgstab ell in IFISS respectively, while the balanced
stopping test in preconditioned TFQMR is incorporated in the existing MATLAB

function for this solver. Also, let η
(k∗)
h denote the a posteriori error estimate at the

optimal stopping iteration k∗ and e∗ηh := |ηh − η(k∗)
h |. These values are tabulated in

the Tables 2 to 4 for each preconditioner on every grid level for both uniform and
stretched grids. The insights from these numbers are quite generic, which are sum-

marised in the following paragraphs. The e∗ηh columns show that {η(k)
h } has converged

Table 3
BICGSTAB(2) iteration counts and errors for ILU (left), AMG (right) preconditioning on

uniform grids for discrete convection-diffusion system.

h ktol1 ktol2 k∗ e∗ηh
1/16 12 16 6 4.1e-5
1/32 30 38 15 1.7e-4
1/64 86 114 48 2.8e-5
1/128 236 290 124 3.5e-5

h ktol1 ktol2 k∗ e∗ηh
1/16 4 6 2 2.0e-4
1/32 4 6 3 3.7e-6
1/64 4 8 4 8.0e-6
1/128 4 8 4 3.4e-6

with a good accuracy to the reference a posteriori error estimate ηh at the balanced
stopping iteration. To show the effectiveness of the balanced stopping test, the itera-
tion counts k∗ needed to satisfy the balanced stopping test have been compared with

iteration counts ktol1, ktol2 needed to satisfy a fixed relative residual
‖r(k)
h ‖2
‖r(0)
h ‖2

reduc-

tion tolerance of 1e-6 (which is the default tolerance in MATLAB solvers) and 1e-9

respectively. These tolerance values are a realistic user-input tolerance choices in the
absence of a balanced stopping test. The user will not know in general the stopping
point k∗ a priori and is more likely to provide a tighter/coarser tolerance than actually
required. This would lead to unnecessary computations/premature stopping.

A comparison of the corresponding columns for ILU iteration counts shows that
for the same approximation error, a significant number of iterations is saved by using
the balanced stopping test. This would result in significant savings in computational

work of the solver (as compared to using fixed relative residual
‖r(k)
h ‖2
‖r(0)
h ‖2

reduction

tolerance 1e-6 or tighter) if one were to solve the (preconditioned) linear systems
arising from adaptive finite element for the chosen problem parameters. The linear
systems that are solved are of size: 1089 × 1089, 4225 × 4225, 16641 × 16641, and
66049×66049. These computational savings are even more striking in light of the huge
size of some of these systems. Also, notice that in the case of AMG iterations, not
much savings (in terms of iteration counts) is achieved by using the optimal balanced
black-box stopping test. However, using the optimal balanced black-box stopping test
does ensure that the employed solver has not stopped prematurely.
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Table 4
TFQMR iteration counts and errors for ILU (left), AMG (right) preconditioning on uniform

grids for discrete convection-diffusion system.

h ktol1 ktol2 k∗ e∗ηh
1/16 32 37 15 7.5e-4
1/32 73 84 36 8.3e-5
1/64 193 234 105 4.4e-5
1/128 534 684 345 4.8e-5

h ktol1 ktol2 k∗ e∗ηh
1/16 9 12 4 4.1e-5
1/32 7 14 4 4.4e-4
1/64 9 19 4 1.9e-5
1/128 8 17 5 4.3e-5

Among the employed iterative methods here, BICGSTAB(2) performs the best
with each preconditioner. Between GMRES and TFQMR, GMRES converges slightly
faster. However, using GMRES over TFQMR could be memory extensive in terms
of storage. In any case, the optimal balanced black-box stopping test provides an
optimal stopping point for suboptimal Krylov solvers like TFQMR etc. Indeed this
is crucially dependent on the fact that these suboptimal solvers do not break down
prematurely. Note that the main aim of these computational results is not to com-
pare the convergence rates of GMRES and various suboptimal Krylov solvers but to
illustrate that an optimal balanced black-box stopping test (5.1) can be employed for
suboptimal solvers as well.
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Fig. 1. Errors vs iteration number for convection-diffusion test problem for ILU preconditioned
GMRES with h = 1/64 (left) and AMG preconditioned GMRES with h = 1/128 (right).

In order to gain further insight from the numerical experiments, the evolution

of the following quantities—η
(k)
h , ‖e(k)

h ‖Ah
, ‖r(k)

h ‖2, and the (weak) algebraic error

bound
√

Λh‖r(k)
h ‖2 is also plotted. The optimal balanced black-box (weak) stopping

test stops optimally when the
√

Λh‖r(k)
h ‖2 curve is below the η

(k)
h curve. From the

plots it follows that when the contribution of ‖e(k)
h ‖Ah

to the sum ηh + ‖e(k)
h ‖Ah

is

insignificant,2 {η(k)
h } converges to ηh.

Indeed this is the case in all plots of Figures 1 to 3. In order to illustrate this
convergence, iterations have been continued for nine more steps after optimal stopping

2From visual inspection this seems to occur soon after ‖e(k)
h ‖Ah

≤ ηh. Generally, both these
quantities are unknown. So, a priori knowledge of optimal stopping step is generally difficult.
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Fig. 2. Errors vs iteration number for convection-diffusion test problem for ILU preconditioned
BICGSTAB(2) with h = 1/64 (left) and AMG preconditioned BICGSTAB(2) with h = 1/128 (right).
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Fig. 3. Errors vs iteration number for convection-diffusion test problem for ILU preconditioned
TFQMR with h = 1/64 (left) and AMG preconditioned TFQMR with h = 1/128 (right).

in each plot. This also illustrates optimal stopping at the correct iteration, that is

{η(k)
h } converges to ηh on each plot. In each plot of Figure 1, it is noticed that after a

initial burn in period, the rate of convergence of ‖r(k)
h ‖2 is constant and is the (famous)

asymptotic convergence factor [3, p. 290] of GMRES. Also, in Figure 1, Euclidean

norm of the residual ‖r(k)
h ‖2 is monotonically decreasing in GMRES while it exhibits

irregular behaviour for BICGSTAB(2) and TFQMR; see ILU plots in Figures 2 and 3.
However, a ‘good’ preconditioner smoothes out the irregular behaviour to a large
extent; see Figures 2 and 3 for AMG preconditioned BICGSTAB(2) and TFQMR
respectively.

6.2. Navier–Stokes equations. Navier–Stokes equations form the fundamen-
tal model of an incompressible Newtonian fluid such as air etc [3, p. 333 ff.]. Similar
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to the convection-diffusion equations, the steady-state Navier–Stokes solution (~u, p)
is defined on a spatial domain Ω ⊂ Rd, (d = 2, 3), where the vector valued velocity
function ~u(~x) : Ω→ Rd and the scalar valued pressure function p(~x) : Ω→ R satisfy

− ν∇ · ∇~u(~x) + ~u(~x) · ∇~u(~x) + ∇p(~x) = ~f(~x), ∀ ~x ∈ Ω,(6.5a)

∇ · ~u(~x) = 0, ∀ ~x ∈ Ω,(6.5b)

~u(~x) = ~w(~x), ∀ ~x ∈ ∂ΩD,(6.5c)

ν∇~u(~x) · ~n − ~np(~x) = ~0, ∀ ~x ∈ ∂ΩN .(6.5d)

The functions ~f , ~w are given and ∂ΩD, ∂ΩN are the Dirichlet and Neumann parts
respectively of the spatial boundary ∂Ω. Kinematic velocity ν > 0 is given and ~n
denotes the outward normal to ∂Ω. Note that the presence of the convective term
gives the Navier–Stokes equations a nonlinear behaviour.

6.2.1. Mixed FEM formulation. The mixed FEM formulation of (6.5) is to
find ~uh ∈ X1

E ⊂ H1
E(Ω) and ph ∈Mh ⊂ L2(Ω) such that

ν

∫
Ω

∇~uh : ∇~vh +

∫
Ω

(~uh · ∇~uh) · ~vh −
∫

Ω

ph (∇ · ~vh) =

∫
Ω

~f · ~vh, ∀~vh ∈ Xh
E0
⊂ H1

E0
(Ω),∫

Ω

qh (∇ · ~uh) = 0, ∀ qh ∈Mh,

(6.6)

where the spaces H1
E(Ω),H1

E0
(Ω) are the vector versions of spaces H1

E(Ω), H1
E0

(Ω)
respectively, defined in (6.2) and ∇~u : ∇~v denotes componentwise dot product. The
solution of (6.6) involves nonlinear iterations that requires solving a linearized problem
at each iterative step.

Starting with a given initial guess (~u
(0)
h , p

(0)
h ) ∈ X1

E×Mh, a sequence {(~u(l+1)
h , p

(l+1)
h )},

l = 0, 1, · · · of iterates is constructed satisfying (6.6) such that [3, pp. 344, 341],

(6.7) ~u
(l+1)
h = ~u

(l)
h + δ~u

(l)
h , p

(l+1)
h = p

(l)
h + δp

(l)
h .

Plugging (6.7) in (6.6) gives

D(~u
(l)
h , δ~u

(l)
h , ~vh) + ν

∫
Ω

∇δ~u(l)
h : ∇~vh −

∫
Ω

δp
(l)
h (∇ · ~vh) = R(l)(~vh), ∀~vh ∈ Xh

E0
,∫

Ω

qh (∇ · ~u(l)
h ) = r(l)(~qh), ∀ qh ∈Mh,

(6.8)

where

R(l)(~vh) =

∫
Ω

~f · ~vh −
∫

Ω

(~u
(l)
h · ∇~u

(l)
h ) · ~vh − ν

∫
Ω

∇~u(l)
h : ∇~vh +

∫
Ω

p
(l)
h (∇ · ~vh),

r(l)(~qh) = −
∫

Ω

qh (∇ · ~u(l)
h ),

D(~u
(l)
h , δ~u

(l)
h , ~vh) =

∫
Ω

(δ~u
(l)
h ·∇δ~u

(l)
h )·~vh +

∫
Ω

(δ~u
(l)
h ·∇~u

(l)
h )·~vh +

∫
Ω

(~u
(l)
h ·∇δ~u

(l)
h )·~vh.
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6.2.2. Newton iteration. Dropping the quadratic term

∫
Ω

(δ~u
(l)
h · ∇δ~u

(l)
h ) · ~vh

of D and substituting in (6.8) leads to solving a linear problem for the Newton cor-
rection (δ~u(l), δp(l)) at the lth iterative step. That is, ∀ (~vh, qh) ∈ Xh

E0
×Mh, find

(δ~u
(l)
h , δp

(l)
h ) ∈ Xh

E0
×Mh such that∫

Ω

(δ~u
(l)
h · ∇~u

(l)
h ) · ~vh +

∫
Ω

(~u
(l)
h · ∇δ~u

(l)
h ) · ~vh + ν

∫
Ω

∇δ~u(l)
h : ∇~vh

−
∫

Ω

δp
(l)
h (∇ · ~vh) = R(l)(~vh)

(6.9a)

∫
Ω

qh (∇ · ~u(l)
h ) = r(l)(~qh).(6.9b)

6.2.3. Picard iteration. Further linearization is achieved by dropping the lin-

ear term

∫
Ω

(δ~u
(l)
h · ∇~u

(l)
h ) · ~vh in (6.9). This leads to solving a linear problem for the

Picard correction (δ~u(l), δp(l)) at the lth iterative step.

6.2.4. Matrix formulation. Let { ~φj}nu
j=1 be a basis for Xh

E0
. Then any arbi-

trary δ~u
(l)
h ∈ Xh

E0
can be expressed as δ~u

(l)
h =

∑nu

j=1 ∆u
(l)
j
~φj , ∆u

(l)
j ∈ R. Also, { ~φj}nu

j=1

can be extended (loosely speaking) 3 to form a basis for Xh
E , so that any ~u

(l)
h ∈ Xh

E

can be expanded as ~u
(l)
h =

∑nu +n∂

j=1 u
(l)
j
~φj , u

(l)
j ∈ R, where the term

∑nu +n∂

j=nu + 1 u
(l)
j
~φj

interpolates the boundary data on ∂ΩD.

Similarly, if {ψk}
np

k=1 be a basis forMh, then any p
(l)
h , δp

(l)
h ∈Mh has an expression

p
(l)
h =

∑np

k=1 p
(l)
k ψk, δp

(l)
h =

∑np

k=1 ∆p
(l)
k ψk, p

(l)
k ,∆p

(l)
k ∈ R. Since ~u

(l)
h , p

(l)
h are known

from the previous iterative step, their basis coefficients are known too.
Using these basis exapansions in (6.9) leads to the following discrete (Newton)

system of linear equations at the lth nonlinear iterative step,

(6.10)

[
νAh + N

(l)
h + W

(l)
h BTh

Bh O

] [
∆u

(l)
h

∆p
(l)
h

]
=

[
f

(l)
h

g
(l)
h

]
.

The symmetric positive-definite matrix Ah (vector-Laplacian matrix) is the block di-

agonal matrix with the usual FEM stiffness matrix on its diagonals and N
(l)
h is the

vector convection matrix, (the scalar versions of both were introduced in (6.4)). So-

lution vectors ∆u
(l)
h = [∆u

(l)
1 , . . . ,∆u

(l)
nu ]T ∈ Rnu , ∆p

(l)
h = [∆p

(l)
1 , . . . ,∆p

(l)
np ]T ∈ Rnp

and for the entries of Ah, Bh, N
(l)
h , W

(l)
h , f

(l)
h , and g

(l)
h , see [3, p. 348]. Note

the dependence of vector convection matrix Nh, Newton derivative matrix Wh, and
right-hand-side vectors fh,gh on the nonlinear iterative step.

Dropping the Newton derivative matrix in (6.10) results in the linear system
arising from Picard iteration, which is,

(6.11)

[
νAh + N

(l)
h BTh

Bh O

] [
∆u

(l)
h

∆p
(l)
h

]
=

[
f

(l)
h

g
(l)
h

]
.

In any case, the (Newton or Picard) coefficient matrix in (6.10) or (6.11) respectively

3Xh
E is not a vector space unless its elements (which are functions) are zero on the boundary.
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is nonsymmetric.4 Thus, Krylov solvers like GMRES, BIGSTAB(`) etc., will be used
for solving the associated linear systems (6.10) or (6.11).

6.2.5. An optimal balanced black-box stopping test for linear solver.
A natural norm for measuring errors arising from mixed FEM approximation (6.6)
is ‖(~u, p)‖E := ‖∇~u‖L2(Ω) + ‖p‖L2(Ω), ∀ (~u, p) ∈ H1

E0
(Ω) × L2(Ω). The associated

vector norm ‖ · ‖Eh
is defined as

‖eh‖Eh
:=
√

eThEheh =
√

eT1 Ahe1 + eT2 Qhe2, ∀ eh = [eT1 , e
T
2 ]T ∈ Rnu +np ,

where Eh :=

[
Ah O
O Qh

]
. Here Eh is a symmetric positive-definite matrix and there-

fore ‖ · ‖Eh
is a norm on Rnu +np . Here Qh = [qkj ], qkj :=

∫
Ω
ψkψj ∀ k, j = 1, . . . , np

is the pressure mass matrix. Note that by construction, for a given approximation, Eh
is independent of nonlinear iterative step l. Also, observe that unlike the convection-
diffusion case Eh is not simply the symmetric positive-definite part of the Navier–
Stokes coefficient matrix in (6.10) or (6.11).

For any two nonnegative real numbers a and b [3, p. 213]

(6.12)
√
a+ b ≤

√
a +
√
b ≤

√
2
√
a+ b.

Using (6.12), for any (~vh, qh) ∈ Xh
E0
×Mh, ‖ · ‖E is equivalent to ‖ · ‖Eh

in the sense
that

(6.13)
√

vThAhvh + qThQhqh ≤ ‖(~vh, qh)‖E ≤
√

2
√

vThAhvh + qThQhqh,

where vh, qh are the coordinates of ~vh, qh with respect to velocity and pressure
basis respectively. Since, the coefficient matrix in (6.10) or (6.11) is nonsymmetric
and GMRES, BICGSTAB(`) etc., will be used to solve them. Hence the stopping
methodology developed in section 4 can be applied in solving (6.10) or (6.11). At the
lth nonlinear iteration, the iteration residual at kth step of the linear solver is

r
(lk)
h = [(f

(l)
h )T , (g

(l)
h )T ]T −F (l)

h [(∆u
(lk)
h )T , (∆p

(lk)
h )T ]T .

Here, F (l)
h denotes the (Newton or Picard) nonsymmetric coefficient matrix of the

(linearized) discrete Navier–Stokes system in (6.10) or (6.11) at the lth (nonlinear)
iterative step. Proceeding as in section 4, at the lth nonlinear iteration, linear solvers
GMRES, BICGSTAB(`) etc., solving linear systems (6.10) or (6.11) are stopped at
the first iteration lk∗ such that either holds,
(6.14)

‖r(lk∗ )
h ‖2 ≤

√
λ

(l)
h

Λ
(l)
h

η
(lk∗ )
h (Strong stop); ‖r(lk∗ )

h ‖2 ≤
1√
Λ

(l)
h

η
(lk∗ )
h (Weak stop).

Here λ
(l)
h and Λ

(l)
h are the smallest and the largest eigenvalues respectively of the

generalized eigenvalue problem for Eh and (F (l)
h )TF (l)

h .

4A stabilization matrix similar to the Stokes equations [3, chapter 3] is employed (for lower order
finite elements) in place of the zero block of the coefficient matrix [3, p. 349].
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The a posteriori error estimator η
(lk)
h that is employed in (6.14) is equivalent to

the total error (approximation error at the kth iteration) in the sense that
(6.15)

c η
(lk)
h ≤ ‖∇(δ~u(l) − δ~u

(lk)
h )‖L2(Ω) + ‖δp(l) − δp

(lk)
h ‖L2(Ω) ≤ C η

(lk)
h , with

C

c
∼ O(1).

At the lth iterative step ~u
(l)
h , p

(l)
h is known. It follows from (6.7) that δ~u

(l)
h = ~u

(l+1)
h − ~u(l)

h

and δp
(l)
h = p

(l+1)
h − p(l)

h . This implies that (6.10) or (6.11) essentially solves for the

basis coefficients of (~u
(l+1)
h , p

(l+1)
h ). Thus, essentially one can use the same a posteri-

ori approximation error estimators to estimate approximation errors a posteriori for

(δ~u
(l)
h , δp

(l)
h ) as those for (~u

(l+1)
h , p

(l+1)
h ).5

6.2.6. An optimal balanced black-box stopping test for nonlinear solver.
Using ‖(~uh, ph)‖E := ‖∇~uh‖L2(Ω) + ‖ph‖L2(Ω), if (~u, p) denotes the true solution, then
following section 3 leads to

‖∇(~u
(l+1)
h − ~u)‖L2(Ω) + ‖(p(l+1)

h − p)‖L2(Ω) ≤
(
‖∇(~u

(l)
h − ~u)‖L2(Ω) + ‖p(l)

h − p‖L2(Ω)

)
+
(
‖∇δ~u(l)

h ‖L2(Ω) + ‖δp(l)
h ‖L2(Ω)

)
.

(6.16)

From (6.13) it follows that

(6.17) ‖∇δ~u(l)
h ‖L2(Ω) + ‖δp(l)

h ‖L2(Ω) '
√

(∆u
(l)
h )TAh∆u

(l)
h + (∆p

(l)
h )TQh∆p

(l)
h .

In presence of ‘tight’ a posteriori error estimator η
(l)
hsol

, which is equivalent to the
approximation error at the lth nonlinear iteration in the sense that
(6.18)

c η
(l)
hsol
≤ ‖∇(~u

(l)
h − ~u)‖L2(Ω) + ‖p(l)

h − p‖L2(Ω) ≤ C η
(l)
hsol

, with
C

c
∼ O(1),

using (6.17) and (6.18) in (6.16) leads to

(6.19) η
(l+1)
hsol

' η
(l)
hsol

+

√
(∆u

(l)
h )TAh∆u

(l)
h + (∆p

(l)
h )TQh∆p

(l)
h .

Using the strong or weak stopping criterion (6.14) or any other stopping criterion

for linear iteration, (∆u
(l)
h ,∆p

(l)
h ) is replaced by (∆u

(lk∗ )
h ,∆p

(lk∗ )
h )6 in (6.19) which

becomes

(6.20) η
(l+1)
hsol

' η
(l)
hsol

+

√
(∆u

(lk∗ )
h )TAh∆u

(lk∗ )
h + (∆p

(lk∗ )
h )TQh∆p

(lk∗ )
h .

Thus, in spirit of section 3 stop the nonlinear iteration at l∗ which is the smallest
value of (l + 1) such that

(6.21)

√
(∆u

(l∗
k∗ )

h )TAh∆u
(l∗

k∗ )

h + (∆p
(l∗

k∗ )

h )TQh∆p
(l∗

k∗ )

h ≤ η
(l∗+1)
hsol

.

Note that alternative nonlinear iteration stopping strategies do exist, see [22] for
more details. However, these are neither optimal nor black-box in the sense presented
in (6.21).

5This is not a rigorous mathematical statement. A proof for this statement is an ongoing research.
6This k∗ will in general be different for different l.
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6.2.7. A posteriori error estimation. Computation of a posteriori error es-
timates for the Navier–Stokes mixed FEM formulation entails solving local Poisson
problems for each component of velocity [3, p. 352 ff.]. In fact it has been stated
in [3, proposition 8.9, p. 354] that a posteriori error estimators for stabilized Q1-P0

rectangular finite elements are reliable in the sense that the global upper bound on
the approximation error does not depend on the parameters of the continuous prob-
lem. Thus, results presented in the next section are thus based on stabilized Q1-P0

rectangular finite elements.

6.2.8. Computational logistics. At the lth nonlinear iteration, ‖r(lk)
h ‖2 is

readily available as a by-product of GMRES iteration. The eigenvalues Λ
(l)
h and

λ
(l)
h involved in the (linear) stopping test (6.14) are computed using MATLAB eigs.

Also, a cheap but an additional cost arises in computing the matrix-vector products
in the left-hand-side of the nonlinear balanced stopping test (6.21).

The resulting algorithm NAVIER NEWTON GMRES is presented in Figure 4. Note that

the coefficient matrix F (l)
h is never assembled for GMRES Navier balanced. Instead

intelligent matrix-vector products are carried out using the structure of F (l)
h (see the

coefficient matrix structure in (6.10) and (6.11). The same is true for any choice

of a preconditioner M(l)
h . Also, a random initial guess can be used for each call of

GMRES Navier balanced. Note that in practice, the a posteriori error estimate η
(l+1)
hsol

should be computed (and hence the nonlinear stopping test (6.21) be tested) period-
ically. The algorithm in Figure 4 can easily be modified to cater to this situation.
The same holds true for the (linearized) optimal balanced black-box stopping inside
GMRES Navier balanced.

6.2.9. Experimental results. Results of some computational experiments in
IFISS are presented in this section as a proof-of-concept. The test problem for this
purpose is the flow over a backward-facing step problem; see [9], [16]. In order to
illustrate the robustness of the linear and the nonlinear balanced stopping test (6.14)
and (6.21) respectively, results are presented here for various values of viscosity (hence
varying Reynolds number). The grid level (h = 6) is fixed and Q1-P0 rectangular
finite elements are employed on 2h × (2h × 3) grid.

Since no stabilization for the convection term is inbuilt in IFISS for the Navier–
Stokes equations, the a posteriori error estimator is expected to overestimate the true
error. Thus, employing the weak stopping test in (6.14) for linear iterations might lead
to premature stopping. Hence, the strong stopping test in (6.14) will be used here.
The modified pressure convection-diffusion preconditioner [3, chapter 9] is employed
as a preconditioner for all cases in the GMRES solver for solving the linear(ized)
system arising at each nonlinear iterative step. Moreover, results are presented here
only for the Newton iterations. However, the optimal balanced black-box stopping
criterion for both linear and nonlinear iterations is applicable to Picard iterations as
well. Also, note that the initial guess for the Newton iteration in each case is the
(inbuilt) solution of the corresponding Stokes problem.

At each grid level and for various values of viscosity, a reference ‘true’ solution
is computed. This is done by solving the test problem using Newton iteration to a
tight nonlinear relative residual tolerance of 1e-12. From this true solution, ‘true’
a posteriori error estimate ηhsol

is computed. Also, let the difference between the
true a posteriori error estimate and the computed a posteriori error estimate at the

nonlinear iteration l be denoted by e
(lk∗ )
ηhsol

:= |η(lk∗ )
hsol

− ηhsol
|.
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Algorithm: NAVIER NEWTON GMRES

given functions GMRES Navier balanced, matvecA, matvecQ, Navier error est

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
solve the corresponding Stokes problem to obtain starting guess: (~u

(0)
h , p

(0)
h )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for l = 0, 1, 2, . . . until convergence do

Inner iteration (GMRES solver)
% GMRES Navier balanced: solves (6.10) or (6.11) using preconditioned GMRES

with (or without) stopping test (6.14)

% Coefficient matrix F(l)
h , right-hand-side [f

(l)
h

T
,g

(l)
h

T
]T , preconditioner M(l)

h

compute the vector of basis coefficients for δ~u
(l)
h and δp

(l)
h :

[∆u
(l)
h

T
,∆p

(l)
h

T
]T = GMRES Navier balanced(F(l)

h , [f
(l)
h

T
,g

(l)
h

T
]T , M(l)

h )

Outer iteration (Nonlinear solver)

update solution: ~u
(l+1)
h = ~u

(l)
h + δ~u

(l)
h , p

(l+1)
h = p

(l)
h + δp

(l)
h

% Navier error est computes the a posteriori error estimate

compute a posteriori error estimate: η
(l+1)
hsol

= Navier error est (~u
(l+1)
h , p

(l+1)
h )

% matvecA(·), matvecQ(·) compute the action of Ah, Qh on a vector respectively.
stopping test:

if

√
(∆u

(l)
h )T matvecA(∆u

(l)
h ) + (∆p

(l)
h )T matvecQ(∆p

(l)
h ) ≤ η

(l+1)
hsol

convergence, break l loop
endif

enddo

Fig. 4. The NAVIER NEWTON GMRES algorithm expressed in pseudo-code.

Similarly, on each grid level, a ‘true’ MATLAB backslash solution is computed for
linear system arising at each step of the nonlinear iteration. From this true solution,

‘true’ a posteriori error estimate η
(l)
h is also computed. Also, let the difference between

the true a posteriori error estimate and the computed a posteriori error estimate7 at

linear stopping iteration k be denoted by e
(lk∗ )
ηh := |η(lk∗ )

h − η(l)
h |. Each linear system

was also solved using GMRES to a (iteration) relative residual
‖r(lk)
h ‖2
‖r(l0)
h ‖2

tolerance

of 1e-6 and 1e-9 for a comparison with balanced stopping GMRES solver. The
same preconditioner and the same initial random vector is used in all these solvers
for solving any particular linear system. Also, let lktol1

, lktol2
denote the number

of iterations needed to satisfy GMRES relative residual tolerance of 1e-6 and 1e-9

respectively.
The Navier–Stokes PDE (6.5) is defined on a L-shaped (flow over a backward-

facing step) domain Ω = (−1, 5)× (−1, 1) \ (−1, 0]× (−1, 0]. Poiseuille flow profile is
imposed on the inflow boundary (x1 = −1, 0 ≤ x2 ≤ 1), ~x = (x1, x2) ∈ Ω and zero
velocity condition is imposed on the walls. Neumann boundary conditions are defined
everywhere on the outflow boundary (x1 = 5,−1 < x2 < 1). The forcing term ~f is
zero. This problem can be generated in IFISS by choosing example 2 when running

7This a posteriori approximation error estimate is for the linearized part (δ~u
(lk)
h , δp

(lk)
h ).
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the driver navier testproblem [3, p. 335]. The balanced stopping test in GMRES
is implemented in IFISS function gmres r while the nonlinear balanced stopping test
is incorporated in the function solve step navier in IFISS.

Table 5
Navier–Stokes test problem with Newton iteration on a 2h × (2h × 3) (h = 6) grid with ν = 1/50.

l lktol1
lktol2

lk∗ e
(lk∗ )
ηh e

(lk∗ )
ηhsol

Λ
(l)
h λ

(l)
h

1 29 39 23 3.6e-05 3.1e-02 2.6e+05 2.2e-01
2 38 48 33 7.1e-08 3.3e-04 4.4e+05 2.2e-01
3 42 53 36 1.3e-09 5.2e-07 4.0e+05 2.1e-01

In Tables 5 and 6, a comparison of lktol1
, lktol2

numbers with the corresponding

lk∗ values shows that employing the (strong) linear stopping test (6.14) leads to savings
in iteration counts. In each table at the lth Newton iteration and at the linear optimal

balanced black-box stopping iteration lk∗ , e
(lk∗ )
ηh columns show that the preconditioned

GMRES solution of the linearized part has converged with some accuracy to the true

linearized solution. In other words, {η(lk)
h } has converged with some accuracy to

true η
(l)
h . At the nonlinear balanced stopping iteration l∗, e

(lk∗ )
ηhsol

columns exhibit

convergence with some accuracy of {η(lk∗ )
hsol
} to the true a posteriori approximation

error estimate ηhsol
.

The eigenvalues Λ
(l)
h , λ

(l)
h used in the linear stopping criterion are also tabulated

in these tables. These numbers exhibit some structure thereby suggesting that there
might be an expression for these quantities in terms of the parameters of the problem.
However, this aspect has not been investigated in this work.

Table 6
Navier–Stokes test problem with Newton iteration on a 2h × (2h × 3) (h = 6) grid with ν = 1/100.

l lktol1
lktol2

lk∗ e
(lk∗ )
ηh e

(lk∗ )
ηhsol

Λ
(l)
h λ

(l)
h

1 35 46 46 2.0e-05 2.9e-01 9.0e+05 8.5e-02
2 53 66 52 2.0e-08 7.1e-03 4.9e+06 8.5e-02
3 55 68 52 1.8e-08 2.2e-04 3.0e+06 8.5e-02
4 59 73 55 8.2e-10 8.4e-07 2.6e+06 8.5e-02

Evolution of errors with iteration number are plotted in Figure 5 at 4th Newton
iteration on 64 × 192 grid for ν = 1/100. On the plot for linear iteration observe
that at the optimal balanced black-box linear stopping iteration lk∗ , the curve for

η
(lk)
h converges with some accuracy to the line for η

(l)
h . This convergence is further

illustrated by continuing for 9 more iterations after balanced linear stopping. Note

that {η(lk)
h } converges to η

(l)
h when ‖e(lk)

h ‖Eh
curve goes below the (black) line for

η
(l)
h . However, as mentioned earlier, for a given approximation, the iteration error

e
(lk)
h = [(∆u

(l)
h )T , (∆p

(l)
h )T ]T − [(∆u

(lk)
h )T , (∆p

(lk)
h )T ]T is rarely known a priori. Also,

on the plot for Newton iteration (right) notice that at the optimal balanced black-box

stopping nonlinear iteration number four, the curve for η
(lk∗ )
hsol

converges with some
accuracy to the line for the true a posteriori approximation error estimate ηhsol

. This
convergence is further illustrated by continuing for 2 more iterations after optimal
balanced black-box nonlinear stopping.

As mentioned earlier, currently, the eigenvalues for optimal stopping of linear
iterative solvers for solving nonsymmetric linear system (at each nonlinear iterative
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Fig. 5. Errors vs iteration number for Navier–Stokes test problem on a 64 × 192 grid with
ν = 1/100 for Newton iteration (right) and GMRES iteration (left) at l = 4th Newton iteration.

step) cannot be estimated cheaply on-the-fly as compared to those for symmetric
linear systems. So, the cost of computing the eigenvalues for the linear stopping test
may offset the computational savings (in terms of number of linear solver iterations for
convergence) if large number of nonlinear iterations are required. Hence, it is prudent
here to use only the optimal balanced black-box nonlinear stopping test (6.21).

7. Conclusions. In this paper, optimal balanced black-box stopping criteria
have been devised in linear (GMRES, suboptimal solvers like BICGSTAB(`), TFQMR
etc.) solvers for nonsymmetric linear(ized) systems arising from FEM approximation
of convection-diffusion equations and Navier–Stokes equations. Moreover, an optimal
balanced black-box stopping criterion for nonlinear (Newton or Picard) iterations for
solving Navier–Stokes equations has also been derived. Using optimal balanced black-
box stopping tests may not only save unnecessary computational but also rules out
premature stopping of the employed linear and/or nonlinear iterative solvers.

The optimal balanced black-box stopping strategies presented here are quite
generic. They can be suitably modified to cater for varied linear and nonlinear itera-
tive procedures for solving nonsymmetric linear(ized) systems arising from numerical
approximation of a PDE. This is provided cheap and tight a posteriori (or a priori)
approximation error estimators are available along with cheap tractable bounds on
the relevant errors that are generally difficult to compute.
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