
A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error

Higham, Nicholas J. and Mary, Theo

2018

MIMS EPrint: 2018.10

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error*

Nicholas J. Higham Theo Mary

April 23, 2018

Abstract

We consider ill-conditioned linear systems Ax = b that are to be solved iteratively, and as-
sume that a low accuracy LU factorization A ≈ L̂Û is available for use in a preconditioner. We
have observed that for ill-conditioned matrices A arising in practice, A−1 tends to be numeri-
cally low rank, that is, it has a small number of large singular values. Importantly, the error
matrix E = Û−1L̂−1 A− I tends to have the same property. To understand this phenomenon we
give bounds for the distance from E to a low-rank matrix in terms of the corresponding distance
for A−1. We then design a novel preconditioner that exploits the low-rank property of the error
to accelerate the convergence of iterative methods. We apply this new preconditioner in three
different contexts fitting our general framework: low floating-point precision (e.g., half precision)
LU factorization, incomplete LU factorization, and block low-rank LU factorization. In numer-
ical experiments with GMRES-based iterative refinement we show that our preconditioner can
achieve a significant reduction in the number of iterations required to solve a variety of real-life
problems.

1 Introduction
We consider the iterative solution of a linear system Ax = b, where A ∈ Rn×n is nonsingular. A
widely used approach is to compute a low accuracy LU factorization A = L̂Û +∆A, and use the
approximate inverse factors Û−1L̂−1 as a preconditioner. However, the rate of convergence of the
iterative method strongly depends on the matrix properties, such as the distribution of its singular
values. If A is ill conditioned the preconditioned iteration may converge slowly or not at all. In
such a situation, we may have no other choice than to compute a more accurate LU factorization,
which is likely to be too expensive for large-scale problems.

The objective of this article is to present a novel and yet general preconditioner that builds on
a given approximate LU factorization and can be effective even for ill-conditioned systems. This
preconditioner is based on the following key observation: ill-conditioned matrices that arise in
practice often have a small number of small singular values. The inverse of such a matrix has a
small number of large singular values and so is numerically low rank. This observation suggests
that the error matrix

E = Û−1L̂−1 A− I = Û−1L̂−1∆A ≈ A−1∆A

is of interest, because we may expect E to retain the numerically low-rank property of A−1. The
main contributions of this article are to specify conditions under which E is indeed numerically low
rank and to describe how to exploit this property to accelerate the convergence of iterative methods
by building a preconditioner based on a low-rank approximation to E.

We begin, in section 2, by describing the general framework for our analysis and providing three
examples of algorithms that fit within the framework: low floating-point precision (for example,
half precision) LU factorization, incomplete LU factorization, and block low-rank LU factorization.

*Version of April 23, 2018. Funding: This work was supported by Engineering and Physical Sciences Research Council
grant EP/P020720/1, The MathWorks, and the Royal Society. The opinions and views expressed in this publication are
those of the authors, and not necessarily those of the funding bodies.

1



We also describe the experimental setting of the following sections. In section 3 we derive sufficient
conditions for the error matrix to be low rank. In section 4 we propose a new preconditioner based
on a low-rank approximation to the error. In section 5 we analyze experimentally how this precon-
ditioner can accelerate the solution of linear systems in the three contexts mentioned above. We
use GMRES-based iterative refinement (GMRES-IR) as our iterative method. Concluding remarks
are given in section 6.

Throughout this article, the unsubscripted norm ‖ ·‖ denotes the 2-norm.

2 General framework and three applications
We first describe the general framework to which the theory and algorithms developed in this arti-
cle apply. We then provide three examples of widely used algorithms that fit within the framework:
low floating-point precision LU factorization, incomplete LU factorization, and block low-rank LU
factorization. We finally describe the experimental setting used in the following sections.

2.1 General framework description
We consider a linear system Ax = b, where A ∈ Rn×n is nonsingular. We assume an approximate
LU factorization

A = L̂Û +∆A (2.1)

can be computed, but we do not make any assumption on how the factorization is computed, nor
do we assume ∆A to have any special structure. We define the error matrix as

E = Û−1L̂−1 A− I = Û−1L̂−1∆A.

We will show theoretically and experimentally that E is likely to have low numerical rank1 when
A is ill conditioned (that is, κ(A) = ‖A‖‖A−1‖ À 1). Note that A being ill conditioned is not a
strict requirement of our framework, but the algorithms we design can cope with such matrices;
therefore, in this article, we mostly consider ill-conditioned A.

2.2 Low floating-point precision LU factorization
The use of half or single precision floating-point arithmetic in mixed-precision algorithms is be-
coming increasingly common. In particular, half-precision arithmetic is attracting growing interest
now that it has started to become available in hardware [13].

A natural way to exploit a low precision LU factorization is with iterative refinement. Carson
and Higham [6] investigate iterative refinement in three precisions. They show that if the work-
ing precision u is double precision, the LU factors are computed in half precision, and residuals
are computed in quadruple precision then convergence of the refinement process is guaranteed if
κ(A) ≤ 104 and backward errors and forward errors of order u will be produced. They also show
that, by using GMRES preconditioned with the LU factors to solve for the correction term, the limit
on κ(A) can be relaxed to 1012 or 1016 in order to ensure a forward error or backward error of order
u, respectively. Algorithm 1 summarizes this GMRES-based iterative refinement (GMRES-IR),
which was originally proposed in a form using two precisions [5].

While GMRES-IR requires only a small number of iterative refinement steps (outer iterations)
when κ(A) satisfies the required bounds, the number of iterations in the GMRES solves (inner
iterations) can be large. In this article, we will demonstrate how the new preconditioner proposed
in section 4 can help to reduce the number of iterations and therefore widen the range of tractable
problems.

1The term “numerical rank” will be defined in Definition 3.1.

2



Algorithm 1 GMRES-based iterative refinement with precisions u f , u, and ur.
1: Compute LU factorization of A at precision u f .
2: Solve Ax1 = b at precision u f using the LU factors and store x1 at precision u.
3: while not converged do
4: Compute r i = b− Axi at precision ur and round r i to precision u.
5: Solve Ãdi ≡ Û−1L̂−1 Adi = Û−1L̂−1r i at precision u using GMRES, with matrix–vector

products with Ã computed at precision ur.
6: xi+1 = xi +di at precision u.
7: end while

2.3 Incomplete LU factorization
The LU factors of a sparse matrix can be much less sparse than the matrix, because of fill-in,
potentially making the factorization too expensive. This problem can be alleviated by using fill-
reducing reorderings of the matrix, such as minimum degree, minimum fill, and nested dissection.
However, the amount of fill-in can still be quite large in many practical applications.

A widely used alternative approach is to compute an incomplete LU (ILU) factorization [26,
sec. 10.3], in which the sparsity of the LU factors is kept under a given threshold. For example,
ILU(0) forces L̂Û to have the same sparsity pattern as A. More generally, the sparsity of the
computed factors can be controlled by a tolerance τ, where filled entries of magnitude less than
τ (relative to the norm of A) are dropped. For large values of τ, ILU-based preconditioners may
yield slow convergence of the iterative method. We will show how our new preconditioner, used in
conjunction with an ILU preconditioner, can overcome this obstacle.

2.4 Block low-rank LU factorization
In numerous scientific applications, such as the solution of partial differential equations, the matri-
ces resulting from the discretization of the physical problem have been shown to possess a low-rank
property [4]: suitably defined off-diagonal blocks of their Schur complements can be approximated
by low-rank matrices. This property can be exploited to provide a substantial reduction of the
complexity of matrix factorizations.

Several matrix representations—so-called low-rank formats—have been proposed in the litera-
ture. Most of them fit within our general framework, but we will focus on the block low-rank (BLR)
format [1], [2], [3]. The BLR format is based on a flat 2D blocking of the matrix that is defined
by conveniently clustering the associated unknowns. A BLR representation Ã of a dense matrix A
has the form

Ã =


Ã11 Ã12 · · · Ã1p

Ã21 · · · · · · ...
... · · · . . .

...
Ãp1 · · · · · · Ãpp

 , (2.2)

where each block A i j of size mi×n j and numerical rank kτi j is approximated by a low-rank product

Ã i j = X i jY T
i j , where X i j is mi ×kτi j and Yi j is n j ×kτi j.

The Ã i j approximation of each block can be computed in different ways. We have chosen to
use a truncated QR factorization with column pivoting, which is a QR factorization with column
pivoting that is truncated as soon as a diagonal coefficient of the R factor falls below a prescribed
threshold τ, referred to as the BLR threshold. The BLR threshold τ controls the accuracy of the
factorization.

In order to perform the LU factorization of a dense BLR matrix, the standard LU factorization
has to be modified so that the numerically low-rank blocks can be exploited to reduce the number
of operations. Many such algorithms can be defined, depending on where the compression step
(the introduction of the low-rank approximations) is performed. In this article, we will consider

3



the CUFS variant, introduced in [2]. As described in [2], the CUFS variant achieves the lowest
complexity of all BLR variants by performing the compression as early as possible.

Using the BLR factorization as an approximate LU factorization has been shown to make an
efficient preconditioner for iterative methods such as GMRES, outperforming both traditional it-
erative and direct methods for many applications of practical interest [21]. We will show that
our low-rank approximation to the factorization error can improve the performance of the BLR
preconditioner.

2.5 Experimental setting
The numerical results have been obtained in MATLAB R2017b on a laptop computer equipped
with 8 GB of memory and a four-core Intel i5-6300U running at 2.40GHz.

Our experiments use four different precisions of IEEE standard arithmetic: half-precision, with
unit roundoff u = 4.9×10−4, for which we used the MATLAB fp16 class from the Cleve Laboratory
toolbox [24]; single precision (u = 6.0×10−8) and double precision (u = 1.1×10−16); and quadruple
precision (u = 9.6×10−35), for which we use the Advanpix Multiprecision Computing Toolbox [25].

We will consider a large set of both random dense and real-life sparse matrices coming from a
variety of applications. The randsvd matrices were generated with the MATLAB gallery function,
using rng(1) to seed the random number generator. All the other matrices come from the SuiteS-
parse Matrix Collection (previously called the University of Florida Sparse Matrix Collection) [9].
The full list is provided in Table 2.1.

The matrices are of relatively small size. We are mainly interested in the theoretical and
numerical behavior of the algorithms; their high performance implementation is not our focus here.
We will, however, explain why the proposed algorithms are expected to perform well on large-scale
problems and in parallel computing environments.

Throughout the rest of this article, we will specify between parentheses after each matrix name
which type of approximate LU factorization was performed: half precision LU factorization (fp16),
incomplete LU factorization (ILU), or block low-rank LU factorization (BLR). For ILU, we used
the MATLAB ilu function with threshold partial pivoting, with setup.type = ‘ilutp’ and drop
tolerance τ.

Table 2.1 indicates which type of factorization was tested on which matrices. The fp16 fac-
torization was tested on the full set; the ILU and BLR factorizations were tested on a subset of
matrices with values of τ varying between 10−1 and 10−5 for ILU and between 0.99 and 10−5 for
BLR. This leads to a total of 163 tests on 40 matrices.

3 Bounds for the numerical rank of the error matrix
We begin with some definitions.

Definition 3.1. Let A ∈Rn×n be nonzero. For k ≤ n, the rank-k accuracy of A is

εk(A)=min
Wk

{‖A−Wk‖
‖A‖ : rankWk ≤ k

}
. (3.1)

We call Wk of rank k an optimal rank-k approximation to A if Wk achieves the minimum in (3.1).
The numerical rank of A at accuracy ε, denoted by kε(A), is

kε(A)=min {k : εk(A)≤ ε} .

The matrix A is of low numerical rank if εk(A)¿ 1 for some k ¿ n.

For brevity, we will sometimes shorten “low numerical rank” to “low rank”; this should cause
no confusion as we will not need to refer to exactly low-rank matrices.

4



Table 2.1: The test matrices, indicating for each one which of ILU and BLR was tested and the
corresponding values of the drop tolerance or the BLR threshold τ.

Matrix n κ(A) Values of τ tested Application
ILU BLR

randsvd(1e4,2) 100 1.0e+04 — — Random dense
randsvd(1e7,2) 100 1.0e+07 — — Random dense
randsvd(1e10,2) 100 1.0e+10 — — Random dense
randsvd(1e7,1) 100 1.0e+07 — — Random dense
randsvd(1e7,3) 100 1.0e+07 — — Random dense
d_dyn1 87 7.4e+06 10−{1,3,5} — Chemical Process Simulation
d_ss 53 6.1e+08 10−{1,3,5} — Chemical Process Simulation
west0132 132 4.2e+11 10−{1,3,5} 10−2 Chemical Process Simulation
west0167 167 4.8e+10 10−1 10−5 Chemical Process Simulation
impcol_a 207 1.4e+08 10−{1,3,5} — Chemical Process Simulation
impcol_e 225 1.4e+08 10−{1,3} — Chemical Process Simulation
rajat11 135 9.2e+05 10−{1,3,5} 10−1 Circuit Simulation
rajat14 180 3.2e+08 10−{1,3,5} 10−1 Circuit Simulation
494_bus 494 2.4e+06 10−{1,3,5} 0.9, 10−1 Power Network
bfwa398 398 3.0e+03 10−{1,3} 0.9 Electromagnetics
utm300 300 8.5e+05 10−{3,5} 10−{1,2,3} Electromagnetics
arc130 130 6.1e+10 10−{1,3,5} — Materials
robot 120 4.3e+08 10−{1,3} — Robotics
rotor1 100 2.4e+12 10−{1,3} — Structural
lund_a 147 2.8e+06 10−{1,3,5} 0.9 Structural
nos1 237 2.0e+07 10−{1,3} 0.99 Structural
nos5 468 1.1e+04 10−{1,3} 0.99,0.9 Structural
lshp_406 406 1.1e+03 10−1 10−1 Thermal
ex1 216 3.3e+04 10−{2,3,5} 10−{3,4,5} Computational Fluid Dynamics
saylr1 238 7.8e+08 10−{1,3,5} 0.9, 10−{3,4,5} Computational Fluid Dynamics
steam1 240 2.8e+07 10−{1,3,5} 10−1 Computational Fluid Dynamics
steam3 80 5.0e+10 10−{1,3,5} — Computational Fluid Dynamics
cavity01 317 3.5e+04 10−{1,3} 10−{1,2,3} Computational Fluid Dynamics
fs_183_1 183 2.2e+13 10−{1,3,5} — 2D/3D Problem
plskz362 362 4.7e+05 10−3 10−3 2D/3D Problem
cz308 308 1.4e+04 10−{1,3} 0.99, 0.9 2D/3D Problem
cz400 400 2.6e+05 10−{1,3} 10−3 2D/3D Problem
tumor_1 205 2.6e+05 10−{1,3,5} 10−1 Optimal Control
hangGlider_1 360 1.1e+10 10−{3,5} 10−1 Optimal Control
orbitRaising_1 442 1.1e+08 10−{3,5} 10−3 Optimal Control
str_600 363 1.9e+05 10−{1,3,5} 10−{1,2} Optimization
ww_36_pmec_36 66 3.0e+11 10−{1,3,5} — Eigenvalue/Model Reduction
lop163 163 2.8e+07 10−{1,3,5} 10−3 Statistical/Mathematical
rw136 136 2.5e+05 10−{1,3,5} 10−1 Statistical/Mathematical
CAG_mat364 364 1.4e+05 10−3 10−1 Combinatorial

5



Let XΣY T denote the singular value decomposition (SVD) of A, and let σi(A) be the ith largest
singular value. By the Eckart–Young–Mirsky theorem [11], [19, p. 468], [23], ‖A −Wk‖ is mini-
mized2 for Wk = X :,1:kΣ1:k,1:kY T

:,1:k, which yields

εk(A)= σk+1(A)
σ1(A)

. (3.2)

As stated in the introduction, we have observed that ill-conditioned matrices often have a (numeri-
cally) low-rank inverse. We now assume that A−1 is low rank and seek conditions under which the
error E = Û−1L̂−1∆A retains this low-rank property. To that aim, we have to answer two questions:
is Û−1L̂−1 low rank if A−1 is low rank? And is E low rank if Û−1L̂−1 is low rank?

To answer the first question, we consider L̂Û as an additive perturbation of A. We need the
following lemma.

Lemma 3.1. Let X ∈Rn×n and X +∆X ∈Rn×n be nonsingular. Then

σi(X +∆X )≤σi(X )
(
1+‖X−1∆X‖) , 1≤ i ≤ n. (3.3)

Proof. Apply inequality (3.3.26) from [18] to X and X (I + X−1∆X ).

We apply the lemma twice. First, recalling (2.1) and taking X = L̂Û and ∆X =∆A in (3.3) yields
(for all i ≤ n)

σi(A)≤σi(L̂Û)
(
1+‖Û−1L̂−1∆A‖). (3.4)

Second, taking X = A and ∆X =−∆A in (3.3) yields

σi(L̂Û)≤σi(A)
(
1+‖A−1∆A‖) . (3.5)

We can now answer the first question with the following theorem.

Theorem 3.1. Let A = L̂Û +∆A ∈Rn×n be nonsingular. The rank-k accuracy of Û−1L̂−1 satisfies

εk(Û−1L̂−1)≤βgβsεk(A−1), 1≤ k ≤ n, (3.6)

with βg = 1+‖A−1∆A‖ and βs = 1+‖Û−1L̂−1∆A‖.

Proof. For all k ≤ n, by (3.2) we have

εk(Û−1L̂−1)
εk(A−1)

= σk+1(Û−1L̂−1)σ1(A−1)
σ1(Û−1L̂−1)σk+1(A−1)

= σn(L̂Û)σn−k(A)
σn−k(L̂Û)σn(A)

.

Bounding the numerator with (3.4) and (3.5) yields the result.

Theorem 3.1 states that if ‖A−1∆A‖ and ‖Û−1L̂−1∆A‖ are not too large then Û−1L̂−1 will retain
the low-rank property of A−1. The quantity βg = 1+‖A−1∆A‖ bounds how much the “perturbed”
singular values of L̂Û can grow with respect to those of A by (3.5). Conversely, βs = 1+‖Û−1L̂−1∆A‖
bounds how much they can shrink by (3.4). The inequality (3.6) is sharp in a scenario where
σn(A)=σ1(A−1)−1 grows by a factor βg and σn−k(A)=σk+1(A−1)−1 shrinks by a factor βs. It is not
clear whether this scenario is attainable. In any case the bound (3.6) is very pessimistic in practice.

Numerical experiments are reported in Table 3.1 for a subset of the matrices, with the LU
factors computed either in half precision or in double precision as an incomplete LU factorization
or BLR factorization. For all these matrices, A−1 has low (numerical) rank. We see that the
singular values of L̂Û are usually of the same order of magnitude as those of A, so that Û−1L̂−1

remains of low rank. The bound (3.6) is usually weak by three orders of magnitude or more, but
depending on the matrix, it can still imply a low rank. A possible explanation for the bound (3.6)
being weak is that βgβs is the same for all k, whereas the value εk(Û−1L̂−1)/εk(A−1) itself depends
on k. It may thus not matter if εk(Û−1L̂−1)/εk(A−1) is large for a large value of k, since we are only
interested in small k.

We now turn to our second question: assuming Û−1L̂−1 is low rank, when can we expect E =
Û−1L̂−1∆A also to be low rank? We answer this question with the following theorem.

2This result is usually stated for the Frobenius norm, but actually holds for any unitarily invariant norm.

6



Table 3.1: Ratios and corresponding bounding quantities for a selection of matrices, where the LU
factorization is computed in half precision or as an incomplete LU factorization or BLR factoriza-
tion.

Matrix max
k

σk(L̂Û)
σk(A)

βg max
k

σk(A)
σk(L̂Û)

βs max
k

εk(Û−1L̂−1)
εk(A−1)

βgβs

rotor1 (fp16) 1.9e+00 3.7e+04 1.0e+00 3.6e+04 9.7e−01 1.3e+09
robot (fp16) 1.0e+00 7.4e+02 1.0e+00 7.1e+02 1.0e+00 5.3e+05
rajat14 (fp16) 2.2e+00 4.6e+02 8.3e+00 4.6e+02 7.7e+00 2.1e+05
tumor_1 (fp16) 4.2e+00 3.5e+02 1.2e+00 4.1e+02 5.1e+00 1.4e+05
west0132 (fp16) 1.1e+00 4.4e+03 1.0e+00 4.6e+03 1.1e+00 2.0e+07
west0167 (fp16) 1.1e+00 1.6e+02 1.0e+00 1.5e+02 1.1e+00 2.5e+04
ww_36_pmec_36 (fp16) 2.1e+04 3.4e+06 1.2e+00 2.0e+02 2.5e+04 6.9e+08
impcol_a (fp16) 1.0e+00 6.5e+02 1.0e+00 6.4e+02 1.0e+00 4.1e+05
impcol_e (fp16) 1.0e+00 4.8e+00 1.0e+00 4.8e+00 1.0e+00 2.3e+01
nos1 (fp16) 2.9e+00 8.7e+03 1.0e+00 6.5e+00 1.2e+00 5.7e+04
steam1 (fp16) 1.7e+00 2.2e+05 1.4e+00 2.9e+05 1.4e+00 6.3e+10
steam3 (fp16) 1.0e+00 1.2e+04 1.0e+00 1.2e+04 1.0e+00 1.4e+08
randsvd(1e4,2) (fp16) 2.1e+02 1.0e+04 1.5e+00 4.8e+01 3.3e+02 4.9e+05
randsvd(1e7,2) (fp16) 7.1e+03 1.0e+07 1.4e+00 1.4e+03 1.0e+04 1.4e+10
randsvd(1e10,2) (fp16) 1.4e+07 9.9e+09 1.4e+00 7.2e+02 1.9e+07 7.1e+12
lund_a (fp16) 2.2e+00 1.1e+04 1.7e+00 1.1e+04 6.0e−01 1.2e+08
lund_a (ILU, τ= 10−1) 1.1e+00 3.7e+04 2.8e+05 5.7e+08 1.9e+01 2.1e+13
lund_a (ILU, τ= 10−3) 4.7e+00 2.2e+03 1.6e+00 4.8e+02 7.5e+00 1.0e+06
lund_a (ILU, τ= 10−5) 1.0e+00 5.4e+00 1.0e+00 5.4e+00 1.0e+00 2.9e+01
cavity01 (fp16) 4.9e+00 3.6e+03 3.2e+01 5.3e+03 1.4e+00 1.9e+07
cavity01 (ILU, τ= 10−3) 1.2e+00 3.5e+01 1.0e+00 2.9e+01 1.3e+00 1.0e+03
cavity01 (BLR, τ= 10−2) 1.2e+00 6.5e+01 5.2e+00 4.0e+01 6.3e+00 2.6e+03
cavity01 (BLR, τ= 10−3) 1.0e+00 1.1e+00 1.0e+00 1.2e+00 1.0e+00 1.3e+00

Theorem 3.2. Let A = L̂Û +∆A ∈Rn×n be nonsingular. The error E = Û−1L̂−1∆A satisfies

εk(E)≤µεk(Û−1L̂−1), 1≤ k ≤ n, (3.7)

with

µ= ‖Û−1L̂−1‖‖∆A‖
‖Û−1L̂−1∆A‖ . (3.8)

Proof. Let Wk be an optimal rank-k approximation of Û−1L̂−1, so that ‖Û−1L̂−1−Wk‖ = εk(Û−1L̂−1)‖Û−1L̂−1‖.
Then Ek =Wk∆A has rank at most k and therefore

εk(E)≤ ‖E−Ek‖
‖E‖ = ‖(Û−1L̂−1 −Wk)∆A‖

‖E‖ ≤ εk(Û−1L̂−1)
‖Û−1L̂−1‖‖∆A‖

‖E‖ ,

as required.

Combining our two theorems we obtain the following corollary.

Corollary 3.1. Let A = L̂Û +∆A ∈Rn×n be nonsingular. The error E = Û−1L̂−1∆A satisfies

εk(E)≤µβgβsεk(A−1), k ≤ n. (3.9)

Corollary 3.1 tells us that the error E retains the low-rank property of Û−1L̂−1 as long as µ is
not too large, that is, ‖Û−1L̂−1‖‖∆A‖ is not too much larger than ‖Û−1L̂−1∆A‖, and βg and βs are
not too large. Here again, inequalities (3.7) and thus (3.9) are pessimistic in practice: experiments
reported in Table 3.2 show that E remains in most cases low rank.

Explaining the role of µ is less straightforward than for βg and βs. To clarify the role of µ,
we compute an upper bound µ̄ = mink µ̄k whose mathematical meaning is easier to grasp. The
following theorem states that unless ∆A is very special, µ should be of moderate size.

7



Table 3.2: The bounds from Theorem 3.2 and Corollary 3.1 compared with the quantities they are
bounding, using the same matrices and factorizations as in Table 3.1.

matrix max
k

εk(E)
εk(Û−1L̂−1)

µ max
k

εk(E)
εk(A−1)

βgβsµ

rotor1 (fp16) 7.6e+00 8.5e+03 7.3e+00 1.1e+13
robot (fp16) 2.1e+00 1.3e+02 2.1e+00 7.0e+07
rajat14 (fp16) 7.9e−01 2.8e+03 2.4e+00 6.0e+08
tumor_1 (fp16) 4.3e−01 4.9e+00 1.8e+00 6.9e+05
west0132 (fp16) 4.4e+00 1.6e+04 4.7e+00 3.3e+11
west0167 (fp16) 5.1e+00 6.3e+04 5.4e+00 1.6e+09
ww_36_pmec_36 (fp16) 2.0e+00 5.7e+01 4.3e+04 3.9e+10
impcol_a (fp16) 2.7e−01 2.6e+01 2.7e−01 1.1e+07
impcol_e (fp16) 1.4e+00 1.4e+02 1.4e+00 3.2e+03
nos1 (fp16) 5.0e+01 5.0e+05 5.9e+01 2.8e+10
steam1 (fp16) 6.1e−01 8.8e+00 6.1e−01 5.6e+11
steam3 (fp16) 4.9e−01 1.1e+03 5.1e−01 1.5e+11
randsvd(1e4,2) (fp16) 1.8e+00 2.2e+00 4.7e+02 1.1e+06
randsvd(1e7,2) (fp16) 1.8e+00 2.2e+00 1.5e+04 3.0e+10
randsvd(1e10,2) (fp16) 1.6e+00 2.1e+00 3.0e+07 1.5e+13
lund_a (fp16) 2.6e+00 6.5e+00 1.2e+00 7.8e+08
lund_a (ILU, τ= 10−1) 5.6e+00 1.8e+01 1.9e+01 3.7e+14
lund_a (ILU, τ= 10−3) 1.1e+00 2.9e+00 6.7e+00 3.0e+06
lund_a (ILU, τ= 10−5) 1.3e+00 5.4e+00 1.3e+00 1.6e+02
cavity01 (fp16) 2.3e+00 7.2e+01 2.1e+00 1.4e+09
cavity01 (ILU, τ= 10−3) 1.8e+00 4.0e+00 2.2e+00 4.1e+03
cavity01 (BLR, τ= 10−2) 5.2e−01 1.3e+02 3.2e+00 3.3e+05
cavity01 (BLR, τ= 10−3) 7.1e+00 1.3e+01 7.1e+00 1.7e+01

Theorem 3.3. The quantity µF = ‖Û−1L̂−1‖‖∆A‖/‖E‖F , which differs from µ only in that the Frobe-
nius norm of E is taken rather than the 2-norm, is bounded by

µF ≤ µ̄k = σn+1−k(L̂Û)
σn(L̂Û)

‖∆A‖
‖Pk∆A‖ , 1≤ k ≤ n, (3.10)

where Pk = Xk X T
k , Xk = [xn+1−k, . . . , xn], and x j is the left singular vector corresponding to the jth

largest singular value of L̂Û .

Proof. The proof draws its inspiration from [7]. Let XΣY T be an SVD of L̂Û , with σ1 ≥ ·· · ≥ σn.
Then, with x j and yj denoting the jth columns of X and Y , respectively,

E =YΣ−1X T∆A =
n∑

i=1

1
σi

yi
(
xT

i ∆A
)
.

Thus, for all k ≤ n,

‖E‖2
F ≥

n∑
i=n+1−k

1
σ2

i
‖yi‖2‖xT

i ∆A‖2 ≥ 1
σ2

n+1−k

n∑
i=n+1−k

‖xT
i ∆A‖2 = 1

σ2
n+1−k

‖Pk∆A‖2.

We can therefore bound µF for all k ≤ n by

µF = ‖∆A‖
σn‖E‖F

≤ σn+1−k

σn

‖∆A‖
‖Pk∆A‖ ,

as required.

Theorem 3.3 tells us that µF will be small when ∆A is a “typical” matrix: one having a signif-
icant component in the subspace span(Xk) for some k such that σn+1−k(L̂Û) ≈ σn(L̂Û). Note that
the proof requires us to take the Frobenius norm of E, which is in general greater than its 2-norm
(and thus µF ≤ µ). However, since E is expected to be numerically low rank, ‖E‖ ≈ ‖E‖F should

8



2 4 6 8 10
10 0

10 1

10 2

10 3

10 4

(a) Matrix lund_a (fp16).

2 4 6 8 10
10 0

10 1

10 2

10 3

(b) Matrix steam1 (fp16).

10 20 30 40
10 0

10 2

10 4

10 6

(c) Matrix rajat14 (fp16).

10 20 30 40
10 0

10 5

10 10

(d) Matrix nos1 (fp16).

Figure 3.1: Quantities µ (defined in (3.8)) and µ̄k (defined in (3.10)), and factors in upper bound
(3.10). µ is small if ∆A is typical (top two matrices) but can be large for special ∆A (bottom two
matrices).

hold. Thus, we can also expect µ ≈ µF to be small. Figure 3.1 plots the values of ‖∆A‖/‖Pk∆A‖,
σn+1−k(L̂Û)/σn(L̂Û), and µ̄k as a function of k for four example matrices. In the first two cases
(matrices lund_a and steam1), ∆A is a typical matrix and thus µ is small. However, for some
matrices (e.g., rajat14 and nos1 in Figure 3.1), ∆A turns out to be special and leads to a large µ.
Nevertheless, for all the matrices studied, the bound (3.7) is never sharp when µ is large (see the
second column of Table 3.2).

We conclude this section by building a matrix for which the µ bound is both large and sharp, to
prove it cannot be improved without further assumptions on the matrix. Generating a matrix A for
which the bound is sharp is difficult, because we do not control the matrix ∆A of rounding errors.
To build such a matrix, we adopt the approach of Higham [17] and use a direct search optimization
procedure to maximize the ratio maxk εk(E)/εk(A−1), where the L̂Û factors are computed with a
half-precision LU factorization. We obtained the 5×5 matrix

A =


0.70262059 0.10163234 −0.42912567 −0.09693864 0.25863816

−0.56142448 0.09716073 −0.79799236 0.15351272 0.14026396
−0.07776207 −0.25317885 0.27700267 0.60226171 0.68688885

0.23039340 0.44918023 −0.07276241 −0.05928910 0.43898931
0.31561248 −0.71961953 −0.31980583 0.21672135 −0.19520101

, (3.11)

for which the bound is almost sharp: maxk(εk(E)/εk(Û−1L̂−1)/) ≈ 9.6e+03 and µ ≈ 1.0e+04 (for
k = 1). As shown in Figure 3.2, A−1 and Û−1L̂−1 are indeed numerically low rank, but the error E

9



1 2 3 4 5
10 -10

10 -5

10 0

10 5

Figure 3.2: Singular values distribution of A−1, Û−1L̂−1, and E corresponding to example matrix
A defined in (3.11) for which the bound of Theorem 3.2 is almost sharp. A−1 and Û−1L̂−1 are
numerically low rank but the error E is not.

is not.

4 A novel preconditioner based on the low-rank error
Now we consider the solution of the linear system Ax = b by means of an iterative method. A
classical approach to accelerate the convergence of the iterative method is to use the preconditioner
based on the computed LU factors

ΠLU = Û−1L̂−1 (4.1)

to solve the preconditioned system ΠLU Ax = ΠLU b. However, when the LU factors have been
computed at low accuracy, and when the matrix A is ill conditioned, convergence may still be slow.
To overcome this obstacle, we propose a novel preconditioner

ΠEk = (I +Ek)−1Û−1L̂−1, (4.2)

which is based on a rank-k approximation Ek to the error E = Û−1L̂−1 A− I. We expect the factor
(I +Ek)−1 to improve the quality of the preconditioner. In the extreme case where Ek = E, ΠE is
exactly equal to A−1 and thus yields a perfect preconditioner, but this is obviously too expensive.
However, if k ¿ n then the solve with I +Ek can be cheaply done with the Sherman–Morrison–
Woodbury formula [15]. Since we have shown that E is often numerically low rank, we may expect
ΠEk , with some suitable small k, to be almost as good a preconditioner as ΠE .

4.1 Computing Ek, a low-rank approximation to E

It would be too expensive to compute Ek explicitly, so we develop a matrix-free approach, in which
we only need to perform matrix-vector products with Ek.

Although other methods could be considered, we use the randomized sampling algorithm [14],
[20] which has been shown to be efficient for computing low-rank approximations to dense matri-
ces [22]. We build Ek as a truncated SVD of E. We consider two versions of the randomized SVD
algorithm, described in Algorithms 2 and 3.

Both algorithms begin by sampling the columns of E with a random matrix Ω of size n×(k+ p),
where p is a small integer parameter that provides oversampling. A small amount of oversampling
is usually enough to ensure a good accuracy of the low-rank approximation [14]. We then build
an orthonormal basis V of S; note that V captures the range of E: E ≈ VV T E. In Algorithm 2,

10



Algorithm 2 Randomized SVD algorithm from [14, Alg. 5.1] via direct SVD of V T E.

Input: matrix A, its computed LU factors L̂Û , and an n× (k+ p) random matrix Ω.
1: Sample E: S = EΩ= Û−1(

L̂−1(AΩ)
)−Ω.

2: Orthonormalize S: V = qr(S).
3: Form V T E = (

(V TÛ−1)L̂−1)
A−V T and compute an SVD V T E = XΣY T .

4: Truncate X , Σ, Y into Xk, Σk, Yk to keep only k singular vectors/values.
5: An SVD of Ek is given by (V Xk)ΣkY T

k .

Algorithm 3 Randomized SVD algorithm from [14, Alg. 5.2] via row extraction.

Input: matrix A, its computed LU factors L̂Û , and an n× (k+ p) random matrix Ω.
1: Sample E: S = EΩ= Û−1(

L̂−1(AΩ)
)−Ω.

2: Orthonormalize S: V = qr(S).
3: Compute the interpolative decomposition V = (I` W)TV(L,:).
4: Extract E(L,:) and compute a QR factorization ET

(L,:) =QR.
5: Form (I` W)T RT and compute an SVD (I` W)T RT = XΣY T .
6: Truncate X , Σ, Y into Xk, Σk, Yk to keep only k singular vectors/values.
7: An SVD of Ek is given by XkΣk(QYk)T .

based on this observation, we compute a rank-k approximation of V T E by means of a deterministic
truncated SVD XkΣkY T

k , which then yields the truncated SVD of the original matrix E as Ek =
(V Xk)ΣkY T

k . This however requires us to form the product V T E which, as analyzed in the next
section, can be expensive. To overcome this issue, Algorithm 3 builds instead an interpolative
decomposition (ID) [8] of V :

V = (I` W)TV(L,:),

where I` denotes the identity matrix of order `= k+ p and V(L,:) is a subset of ` rows of V . Such a
decomposition can be computed by means of a pivoted QR factorization V T P =QR and by defining
W = R−1

1:`,1:`R:,`+1:n and V(L,:) = PT
:,1:`V [14]. We then have, defining Ê =VV T E,

E ≈ Ê =VV T E = (I` W)TV(L,:)V T E = (I` W)T Ê(L,:) ≈ (I` W)T E(L,:). (4.3)

Therefore, we can build the truncated SVD of E based on that of (I` W)T E(L,:). The second
approximation in (4.3) makes algorithm 3 less accurate than Algorithm 2 by a factor up to 1+p

1+4k(n−k) [14, Lem. 5.1]. To maintain a unified presentation, we have formulated Algorithm 3
working on the orthonormal basis V . However, as explained in [14], for this second algorithm it is
not necessary to orthonormalize the sample, i.e., we can work on S rather than V . This is what we
will do in practice.

4.2 The four variants of the ΠEk preconditioner
In the rest of this article, we will analyze four distinct variants of ΠEk , which differ in how Ek is
computed:

• Π(1)
Ek

: compute Ek with Algorithm 2 and with Ω a random Gaussian matrix;

• Π(2)
Ek

: compute Ek with Algorithm 2 and with Ω an SRFT matrix;

• Π(3)
Ek

: compute Ek with Algorithm 3 and with Ω a random Gaussian matrix;

• Π(4)
Ek

: compute Ek with Algorithm 3 and with Ω an SRFT matrix.

An SRFT matrix is a subsampled random Fourier transform matrix, defined as

Ω= FR,

11



Table 4.1: Cost in flops of the setup and solve phases for the two preconditioners: classical ΠLU and
new ΠEk , where `= k+ p. For the sake of simplicity, we assume here that A is a dense, full-rank
matrix.

setup solve

ΠLU
2
3 n3 2n2

Π(1)
Ek

2
3 n3 +8n2`+O(n`2) 2n2 +O(nk)

Π(2)
Ek

2
3 n3 +6n2`+4n2 log`+O(n`2) 2n2 +O(nk)

Π(3)
Ek

2
3 n3 +4n2`+O(n`2) 2n2 +O(nk)

Π(4)
Ek

2
3 n3 +2n2`+4n2 log`+O(n`2) 2n2 +O(nk)

where F ∈ Cn×n is the discrete Fourier transform (DFT) matrix and R ∈ Rn×` is a matrix that
randomly selects ` distinct columns of F, i.e., it consists of ` random distinct columns of the n×n
identity matrix.

4.3 Computational cost analysis
We now analyze the computational cost of our new ΠEk preconditioner and compare it with that of
the classical ΠLU preconditioner. In the following analysis, for the sake of simplicity, we assume
that the matrix A is dense and that the LU factorization is performed in low precision but without
reducing the 2n3/3 flop cost of standard LU (via, e.g., BLR factorization). We briefly comment on
how to extend this analysis to other contexts at the end of this section.

The cost of the algorithm is driven by two main tasks: the setup phase, in which we build Π,
and the solve phase, in which we solve the system ΠAx =Πb via an iterative method, where Π is
one of the two preconditioners ΠLU or ΠEk . Table 4.1 summarizes the cost of these two phases for
ΠLU and the four variants of the ΠEk preconditioners. We only keep track of the constants for the
O(n3) and O(n2) terms, and define `= k+ p.

Both the setup and solve phases are more expensive for the new ΠEk preconditioner. The cost
of the solve phase is independent of the variant of ΠEk considered. At each iteration, we must
perform a solve with I +Ek, which can be achieved via the Sherman–Morrison–Woodbury formula
in O(nk) flops. This cost should be small compared with the 2n2 flops cost of the two triangular
solves with L̂ and Û .

The cost of the setup phase strongly depends on which variant of ΠEk is used. Computing Ek
using Algorithm 2 requires us to perform the products EΩ (line 1) and V T E (line 3). Because it
would be too expensive to build E explicitly, the products must be computed implicitly, i.e., what we
actually compute is Û−1(

L̂−1(AΩ)
)−Ω and similarly for the V T E product. Therefore both products

cost 4n2`+O(n`) flops (two triangular solves with L̂ and Û , one matrix multiplication with A, and
one addition). Thus, the setup overhead cost of Π(1)

Ek
is 8n2`+O(n`2) flops. While this overhead

cost is expected to be small with respect to the initial O(n3) LU factorization, it can still be quite
significant. In fact, for the use of Π(1)

Ek
to be beneficial (in terms of flops) with respect to ΠLU ,

the number of iterations Niter should be reduced by at least 4`, regardless of the problem size n.
We do not achieve an asymptotic gain because the setup overhead cost is of order O(n2), which is
the cost of performing one iteration. The preconditioner Π(2)

Ek
samples E with a SRFT matrix Ω

instead; this reduces the cost of the sampling from 4n2`+O(n`) down to 2n2`+4n2 log`+O(n`),
to which we must still add 4n2`+O(n`) for computing V T E, which leads to a total setup cost of
6n2`+4n2 log`+O(n`). Thus, for Π(2)

Ek
to be beneficial compared with ΠLU , Niter must be reduced by

at least 3`+2log`. On the other hand, Π(3)
Ek

avoids forming V T E explicitly and therefore replaces

a factor 4n2` by only O(n`2) flops. This therefore makes Π(3)
Ek

beneficial compared with ΠLU if Niter

is reduced by at least 2`. Finally, Π(4)
Ek

combines the cost reductions of the previous two variants,
which makes it beneficial compared with ΠLU if Niter is reduced by at least `+2log`.

12



The four variants of the ΠEk preconditioner are thus decreasingly expensive. However, they
are also decreasingly accurate. Indeed, the theoretical properties of SRFT sampling are less well
understood (e.g., how to choose the amount of oversampling). Perhaps more concerningly, the row
extraction SVD (Algorithm 3) leads to an error that is up to a factor 1+p

1+4k(n−k) larger than
that of Algorithm 2 [14, Lem. 5.1]. Since we are only building a preconditioner, this might not be
too problematic if it does not significantly increase the number of iterations. In the following, we
will therefore compare all four variants of ΠEk .

Regardless of the variant of ΠEk used, the new preconditioner might in some cases perform
more flops than the original ΠLU preconditioner if k is large or if the number of iterations is only
reduced by a small quantity. Nevertheless, we still expect it to perform better for the following
three reasons.

• The solve phase achieves in general a low execution rate because it uses BLAS 2 kernels (in
the case of a single right-hand side). On the contrary, for the setup phase, the LU factoriza-
tion is a BLAS 3 kernel, while computing Ek may also be achieved with BLAS 3 kernels (or
“BLAS 2.5” if k is very small).

• The solve phase is performed at working precision, while the setup phase may be performed
at lower precision. This includes the LU factorization but also the computation of Ek. The
influence of uEk , the precision at which Ek is computed, will be analyzed in the next section.

• Several applications require the solution for multiple right-hand sides. In this case, the
setup overhead cost of the ΠEk preconditioner is amortized by the necessity of performing
more solves.

We conclude this cost analysis by briefly indicating how it could be extended to other contexts
such as when A is sparse and/or block low-rank. The important question is whether the extra
work necessary to build the ΠEk preconditioner remains reasonably small compared with the cost
of one iteration (i.e., at least of the same order as in the dense case). For example, if A is a sparse
matrix arising from a 3D regular problem, the cost of one triangular solve is only O(n4/3) flops [12].
Fortunately, the computation of Ek can also exploit the sparsity of A, and the setup overhead
cost is of order O(n4/3`) flops, where the constant depends on which variant of ΠEk is considered.
Therefore, the extra work required to build ΠEk will be compensated as long as the number of
iterations is reduced by some value of order O(`), just as in the dense case. Thus we expect our
preconditioner to be applicable to large-scale problems, both dense and sparse. A similar argument
can be made in the case where A is block low-rank.

5 Numerical experiments with GMRES-IR
In this section, we analyze how our new ΠEk preconditioner can improve the convergence of
GMRES-IR (Algorithm 1) [5], which uses iterative refinement with the solves for the correction
carried out by preconditioned GMRES. We use three precisions, as proposed in [6].

• The LU factorization of A is computed at precision u f , which is half precision for a full
factorization or double precision when ILU and BLR are used.

• The working precision is double precision for all experiments.

• The residual is computed in quadruple precision for all experiments. Computing the residu-
als in extended precision improves the forward error for ill-conditioned problems, though it
has no effect on the convergence of iterative refinement [6].

We set the maximum number of iterative refinement steps to 10 and the maximum number of GM-
RES iterations per step of iterative refinement to 100 (hence a maximum of 1000 total iterations).
The GMRES stopping criterion is set to a relative tolerance of 10−8.

To assess the effectiveness of each preconditioner we will measure both the number of per-
formed iterations and the associated flops. Since our new ΠEk preconditioner can and often does

13



Table 5.1: Five matrices representative of typical scenarios. We used a half precision LU fac-
torization for matrices randsvd(1e7,3) and lund_a, ILU factorization with τ = 10−1 for matrices
west0167 and rajat14, and BLR factorization with τ = 10−2 for matrix utm300. The seventh and
eighth columns of the table show the number of GMRES iterations, with the number of iterative
refinement steps in parentheses.

ΠLU ΠEk ΠEk /ΠLU
Matrix ε k κ(A) κ(ΠLU A) κ(ΠEk A) Iterations Flops Time

randsvd(1e7,3) 10−2 53 1.0e+07 3.3e+06 5.2e+05 200 (2) 99 (2) 161% 84%
lund_a 10−3 6 2.8e+06 1.2e+08 1.7e+04 37 (3) 18 (2) 106% 55%
west0167 10−2 1 4.8e+10 1.3e+18 1.8e+14 403 (7) 300 (5) 88% 76%
utm300 10−3 10 8.5e+05 1.9e+06 5.3e+03 52 (3) 35 (3) 124% 76%
rajat14 10−2 44 3.2e+08 9.3e+04 1.2e+03 47 (2) 26 (2) 280% 95%

perform more flops that the traditional ΠLU preconditioner, we also estimate the time for solution.
Since a high-performance implementation and analysis is not our focus, we use a simple model,
assuming BLAS 3 computations are 10 times faster than their BLAS 2 counterparts. We also as-
sume that computations in single and half precision are twice and four times faster than in double
precision, respectively.

5.1 Analysis of typical scenarios
In this section, we focus on the first variant Π(1)

Ek
and refer to it simply as ΠEk . In Table 5.1,

we consider five matrices that are representative of five typical scenarios. We report the condi-
tion numbers of A, ΠLU A, and ΠEk A. For both preconditioners, we compare the total number of
GMRES iterations (the number in parentheses corresponds to the number of iterative refinement
steps), and the associated flops and estimated time. We also indicate the low-rank threshold ε that
we used to compute Ek, and its corresponding rank k. In Figure 5.1, we plot the singular value
distribution of A−1, Û−1L̂−1, and E for each of these five matrices.

We recall that our preconditioner targets ill-conditioned matrices that have a small number
of small singular values and therefore a numerically low-rank inverse. We have observed that
all ill-conditioned matrices that we have tested from the SuiteSparse Matrix Collection fulfill that
requirement. The only matrices in our set that do not are the mode 1 and 3 randsvd matrices, which
are artificially created problems. They constitute what we will call Scenario 1. Mode 3 randsvd
is analyzed in Figure 5.1a. Interestingly, the SVD of the inverse factors shows a slightly faster
singular value decay and therefore some improvement is observed with ΠEk over ΠLU . However,
the rank k is about n/2, leading to an important flop overhead and thus only a modest time gain.

We emphasize that we selected the matrices based on their condition number only; we did not
specifically select matrices for which A−1 is numerically low rank. While one can surely find an ill-
conditioned matrix from the SuiteSparse collection that does not fulfill this requirement, we believe
that the fact that one does not easily come upon one of them demonstrates that our preconditioner’s
scope is extremely general.

While A−1 is thus numerically low rank for nearly all matrices in the test set, the performance
of our ΠEk preconditioner is heavily dependent on the extent to which the error E is numerically
low rank. In the following Scenarios 2, 3, and 4, E is numerically low rank and thus ΠEk performs
well. In Scenario 2, the SVD of E closely follows that of A−1 (Figure 5.1b); in other cases, the SVD
of E shows an even faster decay than that of A−1, either because Û−1L̂−1 is more low rank than
A−1 (Scenario 3, Figure 5.1c), or because E is more low rank than Û−1L̂−1 (Scenario 4, Figure 5.1d).
Scenario 3 generally happens when the approximate L̂Û factors are nearly singular, thus leading
to a very ill-conditioned ΠLU A matrix. By using ΠEk , we can correct the ill conditioning of ΠLU A.
We conjecture that Scenario 4 is due to a ∆A that possesses some kind of structure, and we have
in fact observed it to be especially frequent for the test cases with BLR factorization.

Finally, Scenario 5 contains the unfortunate cases for which E loses the low-rank property of

14



0 50 100

10 0

10 5

(a) Matrix randsvd(1e7,3) (fp16).

0 100 200 300 400

10 -5

10 0

(b) Matrix cz308 (fp16).

0 50 100 150 200

10 -5

10 0

10 5

10 10

(c) Matrix west0167 (ILU, τ= 10−1).

0 100 200 300

10 -5

10 0

10 5

(d) Matrix utm300 (BLR, τ= 10−2).

0 50 100 150 200

10 -5

10 0

(e) Matrix rajat14 (ILU, τ= 10−1).

Figure 5.1: Singular value distribution of the five matrices in Table 5.1.

15



A−1 (Figure 5.1e). In our set of matrices, this is always due to Û−1L̂−1 not being low rank (i.e.,
the bound from Theorem 3.1 is sharp and βg or βs is large). We recall that in section 3 we built
a matrix for which E loses the low-rank property due to a special ∆A (see (3.11)), but this did not
occur on any of the matrices of our set.

The numerical rank kε of E at accuracy ε can be quite large for matrices falling into Scenarios 1
and 5. To limit the cost of ΠEk , we can limit k to be no larger than a given kmax. For example, for
rajat14, using kmax = n/10, the flop cost of ΠEk is reduced from 280% to 170% of that of ΠLU , and
the time gain is increased from 95% to 92%.

This diversity of scenarios shows that the optimal choice of the preconditioner parameters will
be heavily matrix dependent. However, we would like to design a “black box” version of the precon-
ditioner that has default settings for which it performs well on a wide range of problems. This is
the aim of the next section.

5.2 Finding a black box setting
Three main parameters influence the cost and accuracy of the preconditioner ΠEk : the precision
uEk at which Ek is computed, the low-rank threshold ε, and the amount of oversampling p. In
this section, we analyze how to set these parameters to produce good performance on a wide range
of problems. In order to do that we seek the best value for each parameter separately, using
performance profiles [10], [16, sec. 26.4]. Each performance profile corresponds to a preconditioner,
a selection of three or four parameters, and a chosen performance measure for which smaller is
better. Each curve on a performance profile shows, for a range of values of α ≥ 1, the proportion
of problems p ∈ [0,1] for which the performance measure for a particular parameter was within
a factor α of the smallest performance measure over all the parameter values. The performance
measures are the number of iterations, the number of flops, and the time predicted by our model.

Note that if the iteration fails to converge for some problems for a given parameter then the
corresponding curve in the performance profile never reaches p = 1; thus the value of p at which a
curve levels off is a measure of robustness.

Naturally, the parameters are interdependent: for example, a high oversampling parameter
will increase the weight of the sampling operation, which is performed at precision uEk , thus
increasing the importance of the latter parameter. While the approach of studying each parameter
independently is thus possibly not optimal, it allows us to find a suitable setting without getting
lost into the combinatorics of the parameters.

We first analyze the influence of the oversampling parameter p. From Figure 5.2, it is clear
that a larger oversampling leads to a greater reduction of the number of iterations, but also to a
greater flop overhead due to the larger subspace size `= k+p. We must therefore find a compromise
aiming at minimizing the time estimated by our model. Interestingly, the time performance profiles
suggest that the value for p should be set differently depending on whichΠEk variant is considered.
Indeed, Π(1)

Ek
and Π(2)

Ek
require us to form the product V T E (see section 4.3) and their cost is thus

very sensitive to the choice of p; setting it to a small value works best. Conversely, Π(3)
Ek

and Π(4)
Ek

avoid forming V T E, and we can thus afford to take much higher values of p, since building the
preconditioner is much cheaper. This is visible from the time plots (right column) in Figure 5.2,
where the curves corresponding to small p tend to be above those corresponding to large p for Π(1)

Ek

(top row), while the opposite is true for Π(4)
Ek

(bottom row). Results for Π(2)
Ek

and Π(3)
Ek

variants (not

shown in Figure 5.2), lie in the middle ground. In the following, we will therefore use p = 0 for Π(1)
Ek

and Π(2)
Ek

, and p = 10 for Π(3)
Ek

and Π(4)
Ek

.
We now turn to the low-rank threshold parameter ε, whose effect is plotted in Figure 5.3. The

trend is again clear: a smaller value of ε makes the preconditioner more robust but more costly.
The role of ε is also strongly dependent on which variant of ΠEk is considered, for the same reasons
than the oversampling parameter. In the following, we will use ε = 10−3 for Π(1)

Ek
and Π(2)

Ek
, and

ε= 10−5 for Π(3)
Ek

and Π(4)
Ek

.
Finally, in Figure 5.4 we study the role of the uEk precision parameter on the subset of tests

16



1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

Figure 5.2: Performance profile of the ΠEk preconditioner for different oversampling parameters
p. The other parameters were set to ε= 10−5 and uEk = single.

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

Figure 5.3: Performance profile of the ΠEk preconditioner for different low-rank threshold ε pa-
rameters. The other parameters were fixed to p = 10 and uEk = single.

17



1 1.5 2
0

50

100

1 1.5 2
0

50

100

1 1.5 2
0

50

100

Figure 5.4: Performance profile of the Π(1)
Ek

preconditioner for an LU factorization computed in half

precision for different uEk precision parameters, with ε= 10−5 and p = 10. Results with Π
(2,3,4)
Ek

are
similar.

Table 5.2: Black box settings devised in section 5.2.

ε p uEk

Π(1)
Ek

10−3 0 single

Π(2)
Ek

10−3 0 single

Π(3)
Ek

10−5 10 single

Π(4)
Ek

10−5 10 single

performed with half precision LU factorization (fp16). Computing Ek in half precision leads to a
preconditioner that is less accurate than when Ek is computed in higher precision: in particular,
in about 8% of the cases the preconditioner fails when Ek is built in half precision, whereas it suc-
ceeds with a higher precision uEk . On the other hand, computing Ek in single or double precision
makes little difference on this set of problems, and since single precision is twice as fast as double
precision, the time performance profile shows that setting uEk to single is the best strategy overall,
for all four variants of ΠEk .

5.3 Results on the full set of problems with the black box setting
In this section we report numerical experiments on the full set of problems using the black box
settings chosen in the previous section, which we summarize in Table 5.2.

We emphasize that the results were obtained without tuning the preconditioner parameters on
a case-by-case basis, thereby demonstrating the generality and versatility of the preconditioner.

We first compare the four variants of the ΠEk preconditioner. Figure 5.5 shows the time per-
formance profile of each variant. Note that we do not provide the iterations and flop profiles, since
comparing the four variants in terms of iterations or flops is not meaningful, because they are
used with different values of ε and/or p. We must compare their time performance to assess which
variant finds the best cost/accuracy compromise. The preconditioner Π(4)

Ek
ranks first on the largest

number of problems (about 50% of them); it is, however, less robust than the other variants, failing
to converge in three cases where the other variants converged. We therefore choose to reject it.
While Π(1)

Ek
and Π(2)

Ek
are significantly slower, Π(3)

Ek
achieves a good performance overall, very close

to that of Π(4)
Ek

. Interestingly, it is also the most robust variant; recalling that it is less accurate

than Π(1)
Ek

by a factor up to 1+p
1+4k(n−k), this means that it compensates its lesser accuracy by

being able to afford a much smaller threshold (ε= 10−5 instead of 10−3). We conclude that Π(3)
Ek

is
the choice that leads to the best performance overall on this set of problems.

We now compare Π(3)
Ek

with the classical ΠLU preconditioner. In Figure 5.6, we plot the relative

18



1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

Figure 5.5: Time performance profile of the four variants of the ΠEk preconditioner, obtained with
the black box settings described in Table 5.2.

20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

20 40 60 80 100 120 140 160
0

1

2

3

20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

2.5

Figure 5.6: Performance comparison between the ΠLU preconditioner and the best variant of the
ΠEk preconditioner (Π(3)

Ek
). Each bar corresponds to one of the 163 test cases, its color indicating

which type of approximate factorization is considered (fp16, ILU, or BLR). The y-axis corresponds
to the normalized performance of ΠEk with respect to that of ΠLU : thus, ΠEk performs better than
ΠLU when the bar is under the black line. These results were obtained with the black box settings
described in Table 5.2. The white gap on the left side of the plots corresponds to the test cases for
which ΠLU did not converge whereas ΠEk did.

19



performance of Π(3)
Ek

with respect to ΠLU . Each bar corresponds to a different test case, its color in-
dicating which type of approximate factorization is considered (fp16, ILU, or BLR). The colors are
evenly distributed, which means that the numerical behavior of Π(3)

Ek
is comparable for all three

types of factorization. The preconditioner Π(3)
Ek

leads to a lower number of iterations than ΠLU in
about 80% of the test cases. Moreover, this reduction of the number of iterations is often important:
ΠLU performs more than 50% more iterations on 30% the test cases. Interestingly, in about 5% of
the cases, ΠLU fails to converge whereas Π(3)

Ek
successfully solves the problem (indicated by the

white gap on the left side of the plots). Therefore, even though Π(3)
Ek

leads to a flop overhead com-
pared with ΠLU in about 90% of the cases, that overhead is often limited (less than 50% overhead
in half the cases) and using our simple performance model, the estimated time results suggest
significant gains can be expected.

6 Conclusion
We have presented a new and very general preconditioner for ill-conditioned linear systems Ax = b.

The key idea is to exploit the low numerical rank structure that is typically present in the error
arising in approximate matrix factorizations. We have defined a general framework in which a
low accuracy LU factorization A = L̂Û +∆A is computed. This allows for many different types of
approximate LU factorizations, among which in our experiments we have used half precision LU,
incomplete LU, and block low-rank LU.

We have used theoretical results from singular value perturbation analysis to bound the dis-
tance from E = Û−1L̂−1 A− I = Û−1L̂−1∆A to a numerically low-rank matrix by the distance from
A−1 to a numerically low-rank matrix. These bounds are pessimistic and we have found E to be
almost always numerically low rank in practice when A is ill conditioned.

Our novel preconditioner improves the traditional preconditioner Û−1 L̂−1 based on the ap-
proximate LU factors by premultiplying it by a correction term (I+Ek)−1, exploiting the numerical
low rank of E. Because building E explicitly is too expensive, our algorithm uses a matrix-free
approach based on randomized sampling to compute a rank-k matrix Ek as a truncated SVD of E.
We have compared four variants of the algorithm theoretically, by performing a computational cost
analysis, and experimentally.

After experimenting with the internal parameters of the preconditioner, in order to better un-
derstand its practical behavior, we chose a set of parameters that we applied in a black box man-
ner to a large set of real-life problems coming from a variety of applications. Our numerical re-
sults show the capacity of the new preconditioner to accelerate the solution of a wide range of
ill-conditioned problems, thereby demonstrating its generality and versatility.

We conclude by mentioning some possible directions for future work. Our preconditioner could
be coupled with other iterative methods than GMRES-IR, such as GMRES. The LU framework
that we have described could also be naturally adapted to symmetric problems. We believe our
work could even be extended to preconditioners that are not based on matrix factorizations, such
as Jacobi, Gauss-Seidel, approximate inverse, or multigrid approaches.

Most importantly, while out of the scope of this article, a high-performance implementation of
the proposed preconditioner will be of interest both to assess the performance gains that can be
achieved and to study its numerical behavior on large-scale problems. In particular, an important
question is whether large ill-conditioned matrices still possess an inverse that is numerically low
rank, and whether the numerical rank kε of A−1 remains small or on the contrary increases with
n. In Figure 6.1, we compare kε for different matrix sizes for two families of matrices from the
SuiteSparse Matrix Collection that contain cz308 and utm300 in Table 2.1. The plots show that
the numerical rank remains almost constant with respect to n if the required ε is not too small.
While there may of course be some other matrices for which this property is not true, the figure
suggests that, at least for some problem classes, our preconditioner should perform well, or even
better, on large-scale problems.

20



10 -1010 -510 0
10 0

10 1

10 2

10 3

10 4

10 5

10 -1010 -510 0
10 0

10 1

10 2

10 3

10 4

Figure 6.1: Numerical rank kε of A−1 at accuracy ε for different matrix sizes. The matrices are
from the SuiteSparse Matrix Collection and the digits in the name denote the matrix size.

Acknowledgements
We thank Patrick R. Amestoy and Alfredo Buttari for useful discussions.

References
[1] Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent, and

Clément Weisbecker. Improving multifrontal methods by means of block low-rank represen-
tations. SIAM J. Sci. Comput., 37(3):A1451–A1474, 2015.

[2] Patrick Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. On the complexity
of the block low-rank multifrontal factorization. SIAM J. Sci. Comput., 39(4):A1710–A1740,
2017.

[3] Patrick R. Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, and Theo Mary. Performance and
scalability of the block low-rank multifrontal factorization on multicore architectures. ACM
Trans. Math. Software, 2017. Submitted.

[4] Mario Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, volume 63 of Lecture Notes in Computational Science and Engineering. Springer-
Verlag, Berlin, 2008. xvi+290 pp. ISBN 978-3-540-77146-3.

[5] Erin Carson and Nicholas J. Higham. A new analysis of iterative refinement and its applica-
tion to accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput., 39(6):
A2834–A2856, 2017.

[6] Erin Carson and Nicholas J. Higham. Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput., 40(2):A817–A847, 2018.

[7] Tony F. Chan and David E. Foulser. Effectively well-conditioned linear systems. SIAM J. Sci.
Statist. Comput., 9(6):963–969, 1988.

[8] H. Cheng, Z. Gimbutas, P. G. Martinsson, and V. Rokhlin. On the compression of low rank
matrices. SIAM J. Sci. Comput., 26(4):1389–1404, 2005.

[9] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1):1:1–1:25, 2011.

[10] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Programming, 91:201–213, 2002.

21

https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
https://doi.org/10.1137/16M1077192
https://doi.org/10.1137/16M1077192
http://dx.doi.org/10.1007/978-3-540-77147-0
http://dx.doi.org/10.1007/978-3-540-77147-0
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1122918
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/0909067
https://doi.org/10.1137/030602678
https://doi.org/10.1137/030602678
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263


[11] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[12] J. A. George. Nested dissection of a regular finite-element mesh. SIAM J. Numer. Anal., 10
(2):345–363, 1973.

[13] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack Dongarra. Investigating half precision
arithmetic to accelerate dense linear system solvers. In Proceedings of the 8th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17, November 2017,
pages 10:1–10:8.

[14] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288,
2011.

[15] H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. SIAM Rev.,
23(1):53–60, 1981.

[16] Desmond J. Higham and Nicholas J. Higham. MATLAB Guide. Third edition, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2017. xxvi+476 pp. ISBN 978-
1-61197-465-2.

[17] Nicholas J. Higham. Optimization by direct search in matrix computations. SIAM J. Matrix
Anal. Appl., 14(2):317–333, 1993.

[18] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, Cambridge, UK, 1991. viii+607 pp. ISBN 0-521-30587-X.

[19] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Second edition, Cambridge Univer-
sity Press, Cambridge, UK, 2013. xviii+643 pp. ISBN 978-0-521-83940-2.

[20] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.
Randomized algorithms for the low-rank approximation of matrices. Proceedings of the Na-
tional Academy of Sciences, 104(51):20167–20172, 2007.

[21] Théo Mary. Block Low-Rank Multifrontal Solvers: Complexity, Performance, and Scalability.
PhD thesis, Université de Toulouse, Toulouse, France, November 2017.

[22] Théo Mary, Ichitaro Yamazaki, Jakub Kurzak, Piotr Luszczek, Stanimire Tomov, and Jack
Dongarra. Performance of random sampling for computing low-rank approximations of a
dense matrix on GPUs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, New York, NY, USA, 2015, pages 60:1–
60:11. ACM.

[23] L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J. Math., 11:
50–59, 1960.

[24] Cleve B. Moler. Cleve Laboratory. http://mathworks.com/matlabcentral/fileexchange/
59085-cleve-laboratory.

[25] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.

[26] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second edition, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2003. xviii+528 pp. ISBN 0-89871-
534-2.

22

https://doi.org/https://doi.org/10.1007/BF02288367
https://doi.org/10.1137/0710032
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1145/3148226.3148237
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/1023004
https://doi.org/10.1137/0614023
http://dx.doi.org/https://doi.org/10.1137/1035037
http://dx.doi.org/https://doi.org/10.1137/1030034
https://doi.org/10.1073/pnas.0709640104
http://personalpages.manchester.ac.uk/staff/theo.mary/doc/thesis.pdf
https://doi.org/10.1145/2807591.2807613
https://doi.org/10.1145/2807591.2807613
https://doi.org/10.1093/qmath/11.1.50
http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory
http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory
http://www.advanpix.com
http://dx.doi.org/10.1137/1.9780898718003

