
Shaking and whirling: dynamics of spiders and
their webs

Glendinning, Paul

MIMS EPrint: 2018.7

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


SHAKING AND WHIRLING:
DYNAMICS OF SPIDERS AND THEIR WEBS

PAUL GLENDINNING
SCHOOL OF MATHEMATICS,

UNIVERSITY OF MANCHESTER,
MANCHESTER M13 9PL, U.K.

Abstract. As one of a set of defence strategies, orb-web spiders
shake their webs. Other spiders whirl. Mathematical models are
introduced which describe these phenomena and throw light on
expected oscillation frequencies and behaviour that could be com-
pared with experiments. The models also suggest dynamical inter-
pretations for the design of webs. In particular a new interpretation
of the function of stabilimenta is given.
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1. Introduction

Many species of spiders respond to threats by moving rapidly with
their webs. This web-shaking can also be used to remove detritus from
the web. In this paper we consider three different types of motion
initiated and maintained by the spider which involve the web moving
with the spider. First, rapid oscillation in the direction transverse to
the plane of the web is considered in section 3.1. This is observed in
orb-web spiders such as Agriope aurantia, e.g. [28] where it is called
web flexing. Secondly, rapid whirling beneath a horizontal web or from
strands of silk fixed above the spider [12]. This behaviour is observed
in the cellar spider, Pholcus phalangioides. Thirdly, rapid oscillations
or vibrations of the position of the spider in the plane of the web itself,
which will be referred to as vibrations, are analyzed. Like the shaking
of section 3.1 this can also be observed in species of orb-web spiders.

In all three cases the net effect is that the image of the spider becomes
blurred. The obvious interpretation is that the spider initiates the
motion so that blurred image either makes it harder for a predator to
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2 GLENDINNING

attack the spider because of uncertainty over its position, or discourages
the predator by giving the impression that the spider is larger and ‘less
spider-like’ [5]. Web decorations (stabilimenta) may also help change
the observed outline of objects in a shaken web, see [5] and references
therein.

The mechanical properties of webs and silk strings has been investi-
gated quite extensively, e.g. [15, 16], as has the structure and size of
webs, e.g. [25], but there has been relatively little work on the global
dynamics of webs. The ways in which spiders might detect collisions
with their webs and how they might interpret vibrations of their webs
has been discussed [13, 18, 22] and there is a more abstract mathe-
matical interest in networks of elastic strings independent of spiders
[21, 23]. Aoyanagi and Okumura [2] consider dynamics, but in the
context of high dimensional models that allow only numerical observa-
tions. They focus on stress distributions and the effect of damage on
structures. Thus the models presented here are the first to probe the
mathematical features of web-shaking as a defence mechanism.

The simple models introduced here provide inital insights into the
mathematical description of web-shaking. The models are based around
simple pendulums and networks of elastic strings. They do not give
a complete description of the web structure, but suggest how the web
responds to actions of the spiders in ways that make it possible to pro-
vide predictions and test hypotheses. All the models presented could
be made more complicated and hence more realistic, but they have
been chosen because they provide good qualitative agreement with ob-
served behaviour whilst making quantitative comparisons possible as
well. The agreement with observations also suggest that webs may be
designed to be closer to the models than one might expect, i.e. that
by designing webs to behave dynamically in more constrained ways the
spider is better able to control the response of the web. In particular,
we use the discussion to speculate both on the extent to which the
spider excites the web without responding to the web, as is the case
in section 3.2, or responds to the motion of the web, pumping it like a
swing, e.g. section 3.1. The analysis also suggests ways that the struc-
ture of the web, for example the stabilimenta, may make the dynamics
closer to the models presented.

2. Methods

2.1. Overview. The aim of the models presented here is to provide
insights into the essential biophysics behind web-shaking. The models
treat the spider as a point mass with inextensible massless legs, and
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the web is treated as a set of elastic strings which exert force when
under tension but not when slack. These assumptions make it possible
to build theoretical models based on classic pendulums and networks of
elastic strings which provide insights into how the oscillations observed
are created and maintained.

In each of the three models the spider plays a different role, and
this leads to different technical challenges. In the first two models
(shaking transverse to the plane of the web and whirling) the spider
is active. In web-shaking the spider pumps the web using a strategy
analogous to the way a child pumps a swing, and in whirling the spider
changes the position of the point at which its body is attached to the
web or ceiling above it. In these cases it is natural to use Lagrangian
mechanics to describe the position of the spider’s body as a function
of time in response to a time-dependent forcing term representing the
independent actions of the spider.

Lagrangian methods are based on the idea of generalised coordinates.
Suppose that the state of a system can be described by n coordinates
(positions and angles) q = (q1, . . . , qn). If the kinetic energy of the
system is T (q, q̇, t) and the potential energy is V (q, q̇, t) then the La-
grangian of the system is L(q, q̇, t) = T−V and the equations of motion
in the absence of external forces are the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , n. (1)

In the case of the spider vibrating in the plane of the web the actuation
of the vibration by the spider determines the initial conditions for our
model, and the passive dynamics of the spider in its web is described
by the forces due to the tension in the strings. Since a slack string
produces no force (at least to the level of approximation used here) the
force is zero if the length ℓ of the string is less than its natural length
ℓ0, whilst it is proportional to the extension ℓ− ℓ0 if ℓ > ℓ0. If

{x}+ = max(0, x)

denotes the maximum of x and zero then the force exerted on the spider
by the string is

F = k{ℓ− ℓ0}+r̂, (2)
where k > 0 is the string constant and r̂ is the unit vector in the
direction of the string towards the external point to which the string is
fixed. These forces will be summed over the radial strands of the web.

In the remainder of this section the equations used to describe shak-
ing and vibrating are explored in more detail. The model for whirling
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has been derived in the context of mechanical cranes [9] and the equa-
tions are described as part of the results, subsection 3.2.

2.2. Shaking. The model of shaking is shown in Figure 1. Only the
central vertical strand is described, and the spider is attached to the
web at two places representing its front and back legs. Gravity is small
compared to the elastic forces in the web and is ignored, and to simplify
the description the configuration is assumed to be symmetric about the
horizontal line through the body of the spider.

Mathematically, in coordinates (x, z) with x horizontal and z verti-
cal, the web strings are fixed at (0, z0) and (0,−z0) above and below
the spider for some fixed z0 > 0 and the symmetry implies that the
spider moves transverse to the plane of the web in the x-direction with
z = 0. The model involves the following further quantities:

spider’s leg length h;
length of upper and lower web strands ℓ;
angle of web strands to vertical θ;
angle of spider’s legs to vertical ϕ;
web coefficient of elasticity k;
spider mass m;
natural length of web strand ℓ0.

(3)

Note that h, m and z0 are constants and the other quantities vary with
time. By elementary geometry, if (x, 0) is the position of the spider’s
centre of mass then

z0 = ℓ cos θ + h cosϕ
x = ℓ sin θ + h cosϕ.

(4)

We shall choose to work with (x, ϕ) as generalized coordinates, in which
case (4) determines θ and ℓ in terms of the generalized coordinates.
Eliminating θ from (4), or by using the cosine rule

ℓ = ℓ(x, ϕ) =
√
x2 + z20 + h2 − 2h(x sinϕ+ z0 cosϕ)

=
√

(x− h sinϕ)2 + (z0 − h cosϕ)2.
(5)

The potential energy is the elastic energy of the two web strands

V (x, ϕ) = k(ℓ− ℓ0)
2, (6)

and assuming the web strands have negligible mass, the kinetic energy
of the system is

T =
1

2
mẋ2. (7)
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The Lagrangian is L = T −V and the Euler-Lagrange equation for the
equations of motion in the x-variable is Using (5),

L =
1

2
mẋ2 − k

(√
(x− h sinϕ)2 + (z0 − h cosϕ)2 − ℓ0

)2
. (8)

Thus the equation of motion is

mẍ = −
2k(x− h sinϕ)

(√
(x− h sinϕ)2 + (z0 − h cosϕ)2 − ℓ0

)
√

(x− h sinϕ)2 + (z0 − h cosϕ)2
. (9)

During the swing phases of the motion ϕ is held fixed by the spider
and so the Lagrangian has no explicit t dependence. Hence the energy
is a first integral during the swing phase and solutions lie on curves of
constant E:

1

2
mẋ2 + k

(√
(x− h sinϕ)2 + (z0 − h cosϕ)2 − ℓ0

)2
= E. (10)

As the web swings, the spider adjusts the angle between its leading
legs in a short period of time which observations suggest to be timed
so that ẋ ≈ 0, i.e. at the turning points of the oscillations, a bit like
the pumping of a child’s swing. During this phase the Lagrangian (8)
remains valid, but the actuation by the spider means that the ϕ vari-
able becomes time dependent so the analysis of the previous paragraph
leading to (10) is no longer valid. Over a small time the angle changes
from ϕ− to ϕ+ say, or vice versa, and the corresponding change in x
can be analyzed using the methods of [30]. The conclusion will be that
the change in x during the short period of time during which the spider
re-adjusts its posture by changing ϕ is negligible, unlike the swings of
[30], but similar to a car and its suspension going over a bump.

If ϕ = ϕ(t) then the Euler-Lagrange equation in x is

mẍ+
∂V

∂x
= 0, (11)

with V defined by (6) and (5). Suppose that the actuation period
is small, ∆t. The partial derivative ∂V

∂x
is bounded as ϕ varies, so

integrating over a small time from 0 to t ≤ ∆t,
mẋ = K +O(∆t) (12)

where K is constant (the value of ẋ at the start of the actuation pro-
cess) and the O(∆t) terms arise from integrating the bounded partial
derivative. Integrating once more from 0 to ∆t and denoting the change
in a variable y from 0 to ∆t by [y],

[x] = O(∆t). (13)
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The change of posture of the spider is fast compared to the oscillations
of the web, so as ∆t→ 0 the right hand side of (13) tends to zero and
the left hand side is simply the change in x, i.e.

[x] = 0 (14)
if the change in posture of the spider is instantaneous.

At first sight this seems quite surprising; it is essentially due to the
fact that the kinetic energy term is degenerate as it is independent of
ϕ̇. Had a more sophisticated model with mass in the legs of the spider
been used then there would have been a compensating shift in the value
of x.

This implies that at the end of each swing of the oscillation the
equation of motion changes from (9) with ϕ = ϕ± to the same equations
with ϕ = ϕ∓ whilst x is continuous at the moment of change.

2.3. Vibrating. To model the vibrations of a spider in the plane of its
web, the web is considered to consist of N radial elastic strings. Each
string is fixed at one end to some external frame at position Zj and at
the other end to the spider at position X. From (2) the motion of the
spider is determined by the equation

mẌ =
N∑
1

k{|Zj − X| − ℓ0}+rj, rj =
Zj − X
|Zj − X|

. (15)

Equation (15) can be applied to three-dimensional motion with the
points Zj at arbitrarily chosen positions, but for simplicity only the
two-dimensional case will be cosidered, looking at motion in the plane
of the web.

If the points Zj are regularly spaced on a circular fame of radius
ℓ0 + a where ℓ0 is the natural length of each string and a > 0 is the
extension of each string when the spider is at the centre of them web,
then we can choose coordinates

Zj = (ℓ0 + a)(cos
2πj

N
, sin

2πj

N
), j = 1, . . . , N.

With this assumption the right hand side of (15) is zero if X = (0, 0),
i.e. (0, 0) is an equilibrium point for the system with all the strings in
tension having length ℓ0 + a. For sufficiently small perturbations from
the equilibrium point, all strings remain under tension and we can
ignore the curly brackets in (15). Thus if X = ϵU with ϵ > 0 small,
then if ℓ = ℓ0 + a and U = ϵℓ(u, v) the lowest order perturbations give

|Zj − X| − ℓ0 ∼ a− ϵℓ(u cos
2πj

N
+ v sin

2πj

N
) +O(ϵ2).
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Setting cj = cos 2πj
N

and sj = sin 2πj
N

then
rj = (cj, sj)− ϵ (a(u, v)− (cju+ sjv)(cj, sj)) +O(ϵ2).

Substituting these expressions into (15) and retaining only the leading
order terms gives

(ü, v̈) = −Nk
2m

(
1 +

a

ℓ0 + a

)
(u, v). (16)

So in a sufficiently small neighbourhood of the origin in this symmetric
case the motion is oscillatory, and the origin is stable.

If there are infinitely many strings the sum in (15) is replaced by an
integral with respect to the angle coordinate θ labelling the points Zj

on the hoop. The configuration then has radial symmetry and we can
calculate the force at any X with |X| = r by considering the force at
X = (r, 0) and using the symmetry. The symmetry also implies that
this will be a central force regardless of the proportion of strings under
tension.

Suppose that Z = (ℓ0 + a)(cos θ, sin θ) is a point on the boundary of
the hoop and O = (0, 0). Then provided the string is in tension, the
extension of the string from Z to X is

|XZ| − ℓ0 =
√

((ℓ0 + a) cos θ − r)2 + (ℓ0 + a)2 sin2 θ − ℓ0

or, setting p = ℓ0 + a,
|XZ| − ℓ0 =

√
p2 + r2 − 2rp cos θ − ℓ0. (17)

If the angle ∠OXZ is denoted by ϕ then the component of the force
in the x-direction which stands for the radial direction in the general
case by symmetry is

k(
√
p2 + r2 − 2rp cos θ − ℓ0)(− cosϕ), (18)

with the minus sign on the last term so that the positive direction is the
positive x-direction. Using the cosine rule, |OZ|2 = |OX|2 + |XZ|2 −
2|OX||XZ| cosϕ and so

2r|XZ| cosϕ = |OX|2 + |XZ|2 − |OZ|2 = 2r2 − 2rp cos θ. (19)
Thus |XZ| cosϕ = r − p cos θ and the component of the force in the
x-direction from (18) is

−k

(
r − p cos θ − ℓ0

r − p cos θ√
p2 + r2 − 2rp cos θ

)
. (20)

The total force on the mass at X is found by integrating over all angles
θ such that the string from X to Z is under tension, i.e. |XZ|2 ≥ ℓ20.
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If all the strings are under tension then let ψ = 0, otherwise let ψ be
the solution in 0 ≤ ψ ≤ π such that

p2 + r2 − 2pr cosψ = ℓ20. (21)
Then the total force on the mass at radius r is

F = −r̂2k
∫ π

ψ

(
r − p cos θ − ℓ0

r − p cos θ√
p2 + r2 − 2rp cos θ

)
dθ (22)

where r̂ is the unit vector from the origin O to the centre of mass of
the spider X. Thus

F = −r̂2k
(
(π − ψ)r + p sinψ − ℓ0

∫ π

ψ

r − p cos θ√
p2 + r2 − 2rp cos θ

dθ

)
.

(23)
The last term of (23) can be evaluated using elliptic integrals, and
we will use this to obtain a lowest order approximation to the force for
small r when all the strings are tense, i.e. when ψ = 0. This calculation
is long and technical so it is deferred to the appendix.

3. Results

3.1. Shaking: webs under tension. Orb-web spiders have been ob-
served to create fast oscillations of their webs in the direction transverse
to the plane of their web. Cedhagen and Björklund [4] observe that

• the spider shakes the web by altering the angle of its legs to its
body; and

• the spider is able to bring the vibrations to a rapid stop.
The first observation may not appear controversial, there are many
examples of elastic structures with vibrational modes that can be set
in motion by appropriate oscillation of a part of the structure or its
surroundings. If the vibration is a classic (approximately) conservative
oscillation then the second is harder to explain dynamically, although
it is always possible to invoke dissipative forces. In this section we
develop a model of a web under tension which explains both these
phenomena via a simple behavioural rule.

A simple model of the tensioned web is sketched in Figure 1a and is
described in subsection 2.2. Note that we assume that when the spider
flexes its legs it stretches the web as though the web were attached to its
legs and that the web is under tension throughout the motion, i.e. the
length of the web is always greater than the natural length of the web.
The symmetry of the configuration simplifies the dynamics, though
experimental observations [27] suggest that the spider pulls more with
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Figure 1. Schematic view of the web model. (a) Side
view of the web showing the variables used to describe
the configuration; (b) the spider in vertical position with
ϕ = ϕ− = 0; (c) the spider in the alternative position
with ϕ = ϕ+ > 0.

its front legs (i.e. lower legs, as it is upside down in the web) rather
than with both front and back legs equally.

The dynamics of the spider and its web is described by two variables,
the horizontal displacement x of the centre of mass of the spider, and
the angle ϕ between the spider’s legs and the vertical. Observations
suggest that the spider adjusts the angle ϕ (more accurately, the angle
between its front and back legs, which determines ϕ by geometry) at
the end of each swing. During one swing (ẋ < 0 if the spider is on the
right of the web as shown in Figure 1) the spider is aligned with the
web with ϕ = ϕ− ≈ 0 and during the other part of the swing ϕ is fixed
at some value, ϕ+.

The analysis of subsection 2.2 shows that if the spider changes po-
sition quickly then there is a simple change from (9) with ϕ = ϕ± to
the same equations with ϕ = ϕ∓ at the end of each oscillation. Unlike
the case of a child’s swing there is no jump in the x variable caused by
this re-positioning. This can be interpreted as saying that all the work
done by the spider goes into stretching the web rather than moving its
centre of mass. If 0 ≤ ϕ± < π

2
then by (9) there is a stationary point

at x = h sinϕ± > 0, and the curves (10) are closed curves in the (x, ẋ)
phase space around (h sinϕ±, 0). For small oscillations and h≪ z0 the
dynamics is approximately simple harmonic motion with frequency (in
Hertz)

fa =
1

2π

√
2k(z0 − ℓ0)

mz0
. (24)
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Figure 2. Phase portrait of the growth in amplitude
of the oscillations using (9) with ϕ = ϕ− = 0 if ẋ < 0
and with ϕ = ϕ+ = 30◦ if ẋ > 0. The initial condition
is (x, ẋ) = (0.001, 0) with ϕ = 0 (i.e. a displacement of
1 mm from the vertical). Other parameters are as in the
text.

Now suppose that the spider is on the right of the web, as shown
in Figure 1, and that it is able to sense the swinging of the web. The
phase curves (10) show that the strategy described above will lead to
an increase in amplitude as shown in Figure 2.

It is now necessary to put some numbers into the equations to de-
termine the behaviour in more detail (we will work with standard SI
units). Risch [25] shows that it is reasonable to take

m = 0.2× 10−3kg, z0 = 0.2 m, h = 0.025 m. (25)
It is difficult to determine the natural length of the web strands, and
we will use

ℓ0 =
1
2
z0 = 0.1 m (26)

to ensure that the web remains under tension. Risch [25] notes that the
strings are highly elastic allowing around 300% extension or more, so
this is not unreasonable, though it may be on the low side. The Young’s
modulus E of spider strands are variable, but values in the region of
2 GPa, or 2× 109Nm−2 is in keeping with [15] though possibly a little
low [16]. The radius of the string is commonly given to be in the region
of 3 µm (3×10−6m) and so the coefficient of elasticity k = EA/ℓ0 where
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A is the cross-sectional area of the strand. Substituting the various
constants already given implies that

k = 10EA = 20× 109 × 9π × 10−12 = 18π × 10−2. (27)
This is already enough to approximate the expected small amplitude
frequency of oscillations during each phase using (24):

fa =
1

2π

√
k

m
= 15

√
1

π
≈ 8.5. (28)

This suggests a natural frequency of around 8−9 Hz, which is not un-
reasonable given the observations and the simplicity of the modelling.

The choice of ϕ+ is again hard to determine from the literature. We
have chosen to use 30◦, and solutions are similar for other values of
ϕ+ that have been tried. Note that the solution shown in Figure 2
grows rapidly from an initial amplitude of 1 mm to 10 cm within four
oscillations. This takes just under half a second and the numerically
computed frequency over this period of time is 8.03 Hz. Dissipative
effects caused by the movement of the whole web are likely to become
important at this amplitude and speed, preventing the amplitude from
becoming too large.

This fast increase in amplitude can be understood from the equations
of motion. During each oscillation of the web with constant ϕ the
equations of motion (9) are symmetric about the point x = h sinϕ
since the x-dependence is only via terms in (x− h sinϕ) multiplied by
a function of (x− h sinϕ)2. Hence during a half oscillation with ẋ < 0
and ϕ = ϕ− = 0, the spider moves from (x, ẋ) = (x, 0) with x > 0 to
(−x, 0). Similarly, during the half oscillation with ẋ > 0 the motion is
from (−x, 0) to (2h sinϕ+ + x, 0). In other words, during a complete
oscillation the spider moves from (x, 0) to (x+ 2h sinϕ+, 0), and more
generally a factor of ∆A is added to the amplitude of the motion during
every complete oscillation where

∆A = 2h sinϕ+. (29)
This model provides an explanation for the growth in amplitude of

the oscillation. On the other hand, if the spider starts with relatively
large amplitude, but adopts the opposite strategy (small ϕ in ẋ > 0 and
larger ϕ in ẋ < 0) then the oscillations are rapidly damped and after
a finite number of oscillations the solution intersects ẋ = 0 between
x = 0 and x = h sinϕ+. At this point solution curves from above
and below both tend towards ẋ = 0 and the motion stops (technically
this represents a pseudo-stationary point of the Filippov flow, see e.g.
[8]). The approach to this point involves a finite time approach to a
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stationary state at this level of approximation – this could well be an
indication of the ‘abrupt’ halt to the oscillations observed [4]. It would
be interesting to have more data on this phenomenon.

3.2. Whirling. The cellar spider, Pholcus phalangioides, has long thin
legs. It rests upside down with its legs attached to the web above it. If
threatened, it initiates a whirling motion with its body. More careful
observation [11, 12] suggests that the spider initiates a wave of flexing
in its legs, successively lengthening and shortening its legs in a wave
that moves around its body.

Mathematically, this means that the pivot point of the spider moves
around a closed curve, as the weight of the spider is taken by the short-
est leg, and this wave moves around the curve on which the ends of the
legs are tethered to the ceiling. This could be modelled accurately, but
as a first approximation and as a simple model that can shed light on
the dynamic response of the spider’s body to this strategy, we consider
the case of the ‘infinitely-legged’ spider such that the shortest leg is
tethered to the ceiling on a circle and the wave moves around this el-
lipse with angular velocity ω > 0 actuated by the spider. Note that this
implies a different neurological strategy to the motion in section 3.1.
In the case considered in section 3.1 the spider is assumed to respond
to the position and speed of the web; in this section the spider initiates
an independent flexing of its legs.

As an approximation then, the spider’s whirl is modelled by a para-
metrically forced spherical pendulum for which the pivot point moves
in the plane of the ceiling. There is, of course, a slight up-and-down
modulation of the length of the pendulum as the spider shifts the load
bearing legs around the circle, and the circle is more accurately an el-
lipse or more complicated closed curve, but as a first approximation
we will ignore these effects and consider only the forcing due to the
circular rotation of the pivot point. This simplifies the algebra. The
system is an example of a parametrically forced spherical pendulum
with a literature that goes back at least to Miles in the 1980s [20] al-
though the pivot moves on a line segment in that case. However, in
Miles’ work and many of the subsequent analyses of the parametrically
forced spherical pendulum the focus has been on resonance, where the
forcing frequency is close to the natural frequency of the pendulum; see
also [14, 17] for experiments and the effects of dissipation. In our case
there is no attempt by the spider, consciously or otherwise, to create
a resonant frequency. This non-resonant case has been considered in
[9] for weights supported by mechanical cranes, so although the equa-
tions are the same, the parameters are very different. However, the
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Figure 3. Schematic view of (a) the spider; (b) the
pendulum model; and (c) the definition of the rotational
angles ψ and ζ, note ϕ = ψ + ζ, in the projection of the
model onto the plane z = 0.

mathematical description of the problem and some consequences can
be taken from [9], and this is where we start. Note that the nature of
our problem, in particular the angles that the spider is able to influence
directly, means that we will use a slightly different coordinate system
to that in [9].

The model is as shown in Figure 3. An inextensible string modelling
the spider’s legs is attached to the ceiling at a moving point

P = (b cosψ, b sinψ, 0), ψ = ωt

so that it moves around a circle of radius b > 0 in the plane z = 0 with
period 2π

ω
and the origin of time is chosen so that y = 0 with x > 0.

The frequency 1
2π
ω is chosen by the spider, and from observations it is

a little lower than the shaking frequency in section 3.1. The variable
ω is defined without the factor of 2π for ease of comparison with [9].

The centre of mass of the spider is at a point C which can be ex-
pressed in terms of an azimuthal angle θ between the load bearing leg
and the downward vertical, so 0 ≤ θ ≤ π, and a rotational angle ψ+ ζ.
Thus we define ζ so that the angle from the positive x-axis to the pro-
jection of C in the (x, y)-plane. The angle that would normally be
labelled as ϕ in classical mechanics textbooks is ψ + ζ, see Figure 3c.
This differs slightly from the notation of [9]; they use an angle δ = −ζ;
the choice of sign here makes the connection to the classical total angle
ϕ as b → 0 more straightforward. In these coordinates C = (x, y, z)
where if the effective length of the load bearing leg (i.e. the string) is
ℓ then

x = b cosψ + ℓ sin θ cos(ψ + ζ)
y = b sinψ + ℓ sin θ sin(ψ + ζ)
z = −ℓ cos θ.

(30)
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The Lagrangian is then
L(ζ, θ, t) = 1

2
m(ẋ2 + ẏ2 + ż2) +mgz

with (x, y, z) given by (30) and ψ = ωt.
In these coordinates the equations of motion the Euler-Lagrange

equations) are [9]
ℓθ̈ − ℓ(ω + ζ̇)2 cos θ sin θ − bω2 cos θ cos ζ + g sin θ = 0, (31)

and
ℓζ̈ sin θ + 2ℓ(ω + ζ̇)θ̇ cos θ + bω2 sin ζ = 0. (32)

If b = 0 the equations are the classic equations of the spherical pendu-
lum with first integral ℓ2θ̇ sin2 θ = H, constant, from which an effective
potential can be deduced for the θ equation and hence find that typ-
ical solutions oscillate between two allowed values of θ as the mass
rotates around the z-axis with angle ϕ = ψ+ ζ. However, we are more
interested in whether low amplitude oscillation with speed initially al-
most zero can be amplified by the new forcing terms introduced by the
parametric forcing which represents the spider’s actuation of its legs.
Note that although there is an extensive literature on resonant forcing,
where the forcing frequency 1

2π
ω is close to the natural frequency of the

pendulum, 1
2π

√
g
ℓ
, the mechanism described here does not need such a

precise alignment of parameters.
Ghigliazza and Holmes [9] describe the basic bifurcations of (31),

(32). The simple solutions (relative equilibria) that circle the z-axis
with θ and ζ constant must have sin ζ = 0 from (32), so ζ = 0 or
ζ = π.

If ζ = 0 then (31) implies that there is a fixed θ solution θ+ ∈ (0, π
2
)

and no other solutions, and that this is stable [9]. This corresponds
to solutions in which the spiders body co-rotates with its legs, lying
outside the circle of radius B in the direction of the load-bearing leg.
Note that the stability is local, and since the equations are Hamiltonian,
nearby solutions will oscillate about the stable solution.

If ζ = π then there is another solution θ− ∈ (π
2
, π) lying above

the plane of the spider’s legs, and this is unstable [9]. In addition,
Ghigliazza and Holmes [9] show that there is a saddle node bifurcation
creating a pair of new solutions which exist if b < ℓ and

ω >

√
g

ℓ

[
1−

(
b

ℓ

) 2
3

]− 3
4

. (33)

In our problem g ≈ 9.8 ms−2, ℓ ≈ 0.05 m and so the right hand side
is greater than the resonant value

√
g
ℓ
≈ 14. We will restrict attention
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Figure 4. Projection onto the spatial coordinates
(x, y, z) (30) of solutions of (31) and (32) with parameters
given by (34) for time 0 < t < 20. (a) ω = 5 and initial
conditions (θ, θ̇, ζ, ζ̇) = (0.04, 0.01, 0.01, 0.05); (b) ω = 9

and initial conditions (θ, θ̇, ζ, ζ̇) = (0.04, 0.01, 0.01, 0.05);
(c) ω = 12 and initial conditions (θ, θ̇, ζ, ζ̇) =
(0.02, 0.07,−0.05, 0.01).

to ω < 13 to ensure that these solutions do not exist and the system is
not close to resonance.

Numerical simulations with parameters

g = 9.8, ℓ = 0.05, and b =
1

2
ℓ. (34)

and with various values of ω between 5 and 13 (between 0.7 and 2 Hz
roughly) reveal a number of different types of solution. (Note that in
this case the equations are independent of the spider’s mass and lengths
are in metres.) Figure 4 shows three solutions, where the curve traces
out the position of the spider’s body as a function of time. The motion
in Figure 4a with ω = 5 makes small oscillations around the stable
periodic solution. In Figure 4b (ω = 9) the motion is further from the
periodic orbit and less regular, with larger variation in the height of
the motion, and this example also has preferred direction.

As ω increases it is also possible to find more complicated solutions
which spend periods of time in z > 0. Since z = 0 represents the plane
of the web, this would involve collisions between the spider and its web
which are not modelled by the equations here, and this suggests the
existence of dynamical reasons for limits on the speed of actuation. An
example is shown in Figure 4c.

These numerical experiments suggest that a more systematic anal-
ysis of the features of the rotating spider and their relation with (a
more systematic treatment of) the dynamics of this model would be
worthwhile, but also that this very simple model is able to reflect the
observations available.
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3.3. Vibrating. In the presence of danger, or if poked by a pencil,
many spiders will perform rapid oscillations in the plane of the web.
Since these oscillations are in the plane of the web it is reasonable to
assume that the radial spokes of the web, in tension, play the major
role in the dynamics observed, and the aim of this subsection is to in-
vestigate the dynamics of connected elastic strings under tension. The
analysis of subsection 2.3shows that there is a ‘stable’ region near the
centre of the web where the dynamics is regular – presumably a com-
fortable place for the spider to sit – but that if the spider is displaced
outside this central region the dynamical description of solutions be-
comes more complicated. We conjecture that under threat the spider
pulls itself out of the stable zone and uses the high frequency dynamics
of the web to create the blurred illusion of size.

If the web is modelled using only three strings, symmetrically placed,
then

Z1 = (ℓ0 + a)
(√

3
2
,−1

2

)
, Z1 = (ℓ0 + a)

(
−

√
3
2
,−1

2

)
,

and
Z3 = (ℓ0 + a)(0, 1).

This choice is motivated to provide a vertical (x = 0) axis of symmetry.
The equations of motion, (15) are therefore

mẌ =
3∑
1

k{|Zj − X| − ℓ0}+
(Zj − X)

|Zj − X|
. (35)

This is a piecewise smooth dynamical system which can be simulated
numerically. We choose parameters similar to those in section 3.1 but
with less stretching of the strings:

m = 0.2× 10−3, ℓ0 = 0.17, a = 0.03, k = 18π × 10−2 (36)
and assume that by displacing its centre of mass the spider can create
initial conditions with positions within a leg-span of the origin, i.e. up
to 0.05 m away from the origin (the centre of the web). The important
thing about this quantity is that it should be larger than a, so the spider
can displace itself into regions where not all strings are under tension.
Under these conditions, retaining only the planar displacements, two
different dynamical classes of solutions can be observed in the model.

In Figure 5a the spider’s body oscillates up and down in a fairly
narrow range of x-values, and similar solutions at different angles to the
horizontal can be found at other initial conditions with zero velocity.
If the spider is able to give itself an initial impetus as well, rotational
solutions can also be observed, see Figure 5b. Both of these types of
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Figure 5. Solutions of (35) projected onto the physical
space coordinates (x, y) with parameters given by (36)
for time 0 < t < 3. (a) Initial conditions (x, ẋ, y, ẏ) =
(0.02, 0, 0.05, 0); and (b) initial conditions (x, ẋ, y, ẏ) =
(0, 0.03,−0.02, 0).

motion can be observed in the behaviour of spiders. These classes of
solutions are sometimes called box orbits and loop orbits respectively
[19] and can be found in many mechanical systems.

In the case of infinitely many strings symmetrically distributed the
force on the spider is central and given by (23). The integral can
be solved in terms of special functions, details of which can be found
in the appendix. The small r approximation to this motion is also
described in the appendix. Working in standard polar coordinates with
A = 2π k

m
(1− ℓ0

2p
) > 0 the equations become

r̈ − rθ̇2 = −Ar +O(r2), r2θ̇ = H (37)

where H is the initial angular momentum per unit mass. Hence, ig-
noring terms of order r2 and higher

r̈ = −Ar + H2

r3
= − ∂

∂r

(
1

2
Ar2 +

H2

2r2

)
. (38)

Thus the motion is equivalent to motiion in a potential

V (r) =
1

2
Ar2 +

H2

2r2

which has a unique minimum in r > 0 with r2 = H/
√
A. Solutions

oscillate about this relative equilibrium with frequency approximately
1
2π

√
−V ′′(r) = 1

2π

√
2A.
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Typically the spider stays still with H = 0, in which case the equilib-
rium at r = 0 is stable (small oscillations), but once again if the spider
creates some angular momentum then larger amplitude oscillations in
the plane of the web are possible.

4. Discussion

This paper has introduced a number of models to describe web-
shaking by spiders. The models cover shaking in the direction per-
pendicular to the web (subsection 3.1), whirling from a higher support
(subsection 3.2) and vibration in the plane of the web (subsection 3.3).
All of these are in some sense minimal models: models that seem to
capture the essentials of the phenomenon without becoming so com-
plicated that they become hard to visualise or analyse. As such, all
can be criticised for not including certain aspects of the web dynamics,
and in particular the models of subsection 3.3 could easily be extended
to three dimensions simply by making the vectors three dimensional,
and so the combination of the effects of subsection 3.1 and 3.3, and
the competition between in plane and out of plane motion could be
explored in more detail.

Apart from the general features described in the introduction and
detailed in the relevant sections a number of feature stand out. First,
simple models are able to capture the qualitative dynamics observed
when spiders are threatened, and the models make some quantitative
predictions that could be used to investigate (for example) the rela-
tionship between tension and frequency in a web.

Second, the models involve very different strategies on the part of
the spider. In the case of shaking by orb-spiders the model assumes
that the spider is able to detect the change in motion of the web and
react by altering its position at the correct time. This implies that
there is feedback in the actuation on the part of the spider. In the
case of whirling the assumption is that the spider sets up a circular
wave of motion around its body (shortening and lengthening its legs
around the circle of its body) and that this induces the whirling motion.
Thus for whirling the spider does not react to the motion, but creates
it. Of course, it needs to monitor other features such as the height
of the oscillations to ensure it does not collide with the web or ceiling
above it. It would be interesting to prove that these are indeed the
strategies taken by the spiders, and whether the whirling spider is able
to moderate the speed of rotation as a function (for example) of the
height of its trajectory. Finally, the in plane vibrations are actuated by
an initial displacement and possibly a change in velocity (for example
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by dropping a short distance). Thereafter the spider is passive and it
is the elastic tension in the web and the geometry of the web which
determine the nature of the vibrations of the spider. Dissipative effects
would soon damp this motion, and it would be interesting to know
how the spider moves so as to maintain the energy of the motion.
In particular, does it pump the web (as a second order effect) as in
shaking?

This leads on to a third point. The out of plane shaking and in plane
vibrating described here have been modelled separately. Can spiders
choose which strategy to use, or is it a function of properties of the web
which determine whether the oscillations are in plane, out of plane, or
both? Theoretical studies in three dimensions could certainly suggest
answers, but is the behaviour of individual spiders understood well
enough to determine whether it is external properties or the spider’s
preference that determines which dynamic strategy is used. Moreover,
is the choice between box orbit almost linear oscillations and loop orbits
to do with the tension of the web, the individual spider, or is it random.
Numerical simulations with three, four and six string models suggest
that box orbits appear more often than loop orbits in tense webs. Is
this reflected in experimental observations?

The frequency of the spider’s wave actuation for whirling used in
subsection 3.2 is a little slower than observations would suggest. This
was chosen to avoid complications due to resonance [20] and the extra
periodic solutions described in [9]. The results of subsection 3.2 show
that these complications are not necessary for the model to exhibit
the qualitative features of observations, but more precise observations
may show that the higher ω effects are needed to explain the detailed
behaviour observed. We have chosen not investigate the effect of higher
ω values without the information from more detailed observations.

A further hypothesis emerges from the apparent validity of simple
models. Many spiders’ webs have decorations (stabilimenta) on them.
There are a number of different explanations for these apparent adver-
tisements of the position of the web, and hence invitation to predators
[3]. They could be flags to large non-predators to avoid accidental
damage [7, 29], they could camouflage the position of the spider itself
[26] or they could attract potential prey [6]. To these three hypotheses
we add a fourth. Decorations provide a strengthening of the web along
particular axes. If there is one stabilimentum, as often seems the case,
then the dynamics of the web will be closer to the linear model of sec-
tion 3.1 and hence make this form of defensive strategy easier to initiate
by giving the motion a preferred axis (and so it supports the predator-
defence hypothesis but in a different form). Multiple decorations may
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make the behaviour closer to that of the models of section 3.3. In other
words, the decorations are likely to have dynamical consequences by
making parts of the web more rigid and creating preferred directions,
and spiders may select those that are beneficial. Whether or not this is
the primary reason for decorations, it certainly has consequences which
need to be part of the debate. One immediate avenue of investigation
would be to look at the relative prevalence of box orbits and loop or-
bits in models based on the geometry of the stabilimenta and compare
these with observations.

The limit of infinitely many strings the models of subsection 3.3 was
shown in the appendix to reduce to a central force defined by elliptic
functions. It is not clear how much the precise form of the central force
matters to an understanding of web dynamics, but it provides another
avenue that could be investigated further.
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Appendix A. Infinitely many strings

In this appendix the force (23) for infinitely many strings is simplified
using the theory of elliptic integrals. This makes it possible to calculate
the ‘small r’ approximation used in subsection 3.3 and also defines
an intriguing situation in which elliptic integrals appear as the forcing
terms of a dynamical system rather than in their usual role as solutions.
All the notation is as introduced in subsection 2.3.

It is the last term of (??), the integral, that is hard to simplify. First
note that

I = −ℓ0
∫ π

ψ

r − p cos θ√
p2 + r2 − 2rp cos θ

dθ =
ℓ0
2r

∫ π

ψ

2r2 − 2rp cos θ√
p2 + r2 − 2rp cos θ

dθ

and so by adding and subtracting p2 to the numerator and rearranging

I =
ℓ0
2r

(∫ π

ψ

p2 − r2√
p2 + r2 − 2rp cos θ

dθ +

∫ π

ψ

√
p2 + r2 − 2rp cos θ dθ

)
.

(39)
These are standard elliptic integrals of the first and second kind re-
spectively. Different sources use slightly different notation, so we will
brielfly recall definitions and basic results. The elliptic integral of the
first kind F (ϕ, k) and the elliptic integral of the second kind, E(ϕ, k)
are defined by

F (ϕ, k) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

, E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 θ dθ.

If ϕ = π
2

then these become complete elliptic integrals and [1]
F (π

2
, k) = π

2
(1+1

4
k2+ 9

64
k4+O(k6)), E(π

2
, k) = π

2
(1−1

4
k2− 3

64
k4+O(k6)).

(40)
From Gradshteyn and Ryzhik [10] (2.571.5) and (2.576.2) if A > B > 0
and 0 ≤ x ≤ π, ∫

1√
A−B cos θ

dθ =
2√

A+B
F (δ, R)

and ∫ √
A−B cos θ dθ = 2

√
A+BE(δ, R)− 2B sin θ√

A−B cos θ
.
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where

δ = sin−1

√
(A+B)(1− cos θ)

2(A−B cos θ)
, R =

√
2B

A+B
.

Substituting these results back into (39) gives

I =
ℓ0
r

[
(p− r)F (δθ, s)− (p+ r)E(δθ, s) +

4pr sin θ√
p2 + r2 − 2pr cos θ

]π
ψ

,

(41)
where we have used a subscript θ on δ to emphasise that δ is a function
of the end-points, and

s =
2

p+ r

√
pr. (42)

In principle this provides a closed form for the force which could be
integrated to obtain solutions. To simplify matters we will consider
only the behaviour when r is small, in which case we may assume that
all the strings are under tension so ψ = 0 and using (23) and (41) the
force is

F = −r̂2k
(
πr +

ℓ0
r
((p− r)F (π

2
, s)− (p+ r)E(π

2
, s))

)
. (43)

Using (40) and (42) and expanding in powers of r this becomes

F = −r̂2k
(
π − ℓ0

2p

)
r +O(r2). (44)


