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Abstract. The structural data of any rational matrix R(λ), i.e., the structural indices of its
poles and zeros together with the minimal indices of its left and right nullspaces, is known to satisfy
a simple condition involving certain sums of these indices. This fundamental constraint was first
proved by Van Dooren in 1978; here we refer to this result as the “rational index sum theorem”.
An analogous result for polynomial matrices has been independently discovered (and re-discovered)
several times in the past three decades. In this paper we clarify the connection between these two
seemingly different index sum theorems, describe a little bit of the history of their development, and
discuss their curious apparent unawareness of each other. Finally, we use the connection between
these results to solve a fundamental inverse problem for rational matrices — for which lists L of
prescribed structural data does there exist some rational matrix R(λ) that realizes exactly the list
L? We show that Van Dooren’s condition is the only constraint on rational realizability; that is, a
list L is the structural data of some rational R(λ) if and only if L satisfies the rational index sum
condition.
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mial matrices, rational matrices, structural indices, zeros
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1. Introduction. Rational matrices, i.e., matrices whose entries are scalar ra-
tional functions in one variable, lie at the heart of control theory and linear systems
theory. As a consequence, essentially any book on these disciplines will contain a
wealth of information on rational matrices; see, for instance, the seminal references
[23, 37], or the more recent [6]. In the numerical linear algebra community, increased
attention has recently been directed at rational matrices, due to their relationship with
the numerical solution of nonlinear eigenvalue problems (NEP) arising in modern ap-
plications. Some of these NEPs arise immediately as rational eigenvalue problems
(REPs) expressed in terms of rational matrices. Even more importantly, there are
many NEPs that are not rational but can be reliably approximated by REPs; these
rational approximations can then be linearized and solved by standard methods for
linear eigenvalue problems, such as the QZ algorithm in the case of dense medium
size problems, or various Krylov methods adapted to the special structure of the
linearizations for large scale problems. Some recent references on this subject are
[1, 2, 3, 14, 19, 20, 33, 39, 44].
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This renewed interest in rational matrices is motivating a rethinking of a number
of classical results and concepts, looking for simplifications, revisions, and expansions
that might make them more amenable to numerical treatment and applications, as
well as to the development of new lines of research on rational matrices themselves. It
is instructive to contrast the study of rational matrices with the parallel investigation
of polynomial matrices, a very particular subclass of rational matrices. Polynomial
matrices have been the subject of intense research activity over the last fifteen years,
both from numerical and theoretical perspectives, despite already being a fundamental
topic in matrix analysis and numerical linear algebra that is well covered in classic
references [17, 18, 23, 46]. Some representative sources for various aspects of recent
research on polynomial matrices, among a great many others, are [5, 7, 8, 9, 10, 13,
15, 21, 22, 26, 27, 28, 29, 35, 40, 41, 42, 44, 51]. This small sample, together with
the references included in them, should make clear that modern research on rational
matrices is in some respects well behind modern research on polynomial matrices;
indeed, many of the problems considered and solved for polynomials remain open in
the realm of rational matrices.

In this context, we solve a problem on rational matrices corresponding to a very
recently settled problem for polynomial matrices [10]; informally stated, this might be
called the general inverse “eigenstructure” problem for rational matrices. Although
this informal statement immediately establishes a connection with REPs, we empha-
size that the problem considered in this paper is much more than just an inverse
“eigenstructure” problem. Our goal is not just to realize a prescribed list of eigen-
values, but a complete list of structural data, comprised of finite and infinite zeros
and poles together with their structural indices, as well as the minimal indices of left
and right rational null spaces; note that the eigenvalues of a rational matrix are just
those zeros that are not poles (all these standard concepts are reviewed in Section 2).
More precisely, then, the inverse problem solved in this work is to find a necessary
and sufficient condition for the existence of a rational matrix when a complete list of
“structural data” is prescribed. This necessary and sufficient condition is that the pre-
scribed structural data satisfy a fundamental relation that we baptize as the rational
index sum theorem, or Van Dooren’s index sum theorem, since it was proved for the
first time by Paul Van Dooren in 1978 and published in [49] (more information on the
history of this result will be provided later). The condition in Van Dooren’s index sum
theorem is extremely easy to check, since it simply says that for an arbitrary rational
matrix the total number of its poles (counting orders) is equal to the total number of
its zeros (counting orders) plus the sum of all its minimal indices. It should be noted
that both finite and infinite zeros and poles must be included in this result, as well
as left and right minimal indices.

We expect that the inverse problem solved in this paper will have numerical appli-
cations, since the corresponding result for polynomial matrices has already found one
such application: in particular, the development of stratification hierarchies of polyno-
mial matrices in terms of their complete eigenstructures [13, 22]. These stratification
hierarchies determine what are the possible eigenstructures of all the polynomial ma-
trices in a neighbourhood of a given one. Such results, combined with backward
stable algorithms for computing eigenstructures of polynomial matrices [15], allow
us to determine numerically the defective eigenstructures compatible under roundoff
errors with a given polynomial matrix. The polynomial inverse problem solved in [10]
has recently found another interesting application [12] in the description of sets of
polynomial matrices with bounded rank and degree. We expect that the results in
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this paper can also be applied to solve related problems for rational matrices.

An important by-product of this paper is to bring the attention of the numerical
linear algebra community to Van Dooren’s index sum theorem for rational matrices,
a result that has remained essentially unknown in this community, as we will discuss
later. It is also expected that this rational index sum theorem will find other relevant
applications apart from the inverse problem solved in this work, since its polynomial
matrix counterpart [36, 9] has already been applied to solve a number of interesting
problems. For example, it has been used to show that many structured classes of
even degree polynomial matrices that arise in applications contain polynomials that
cannot be “strongly linearized” via a pencil with the same structure [9, Section 7].
It is important to note that the polynomial and rational index sum theorems can be
seen to be easy corollaries of each other; one direction of this equivalence was already
noted in [10, Remark 3.2], while the other direction is shown in Section 3 of this paper.

The rest of the paper is organized as follows. Section 2 reviews the basic notions
about rational and polynomial matrices that are needed in this work. Van Dooren’s
index sum theorem is then revisited in Section 3 from two perspectives: first, a new
proof of this result valid in arbitrary fields is presented, and second, its history as well
as its relation with the so-called polynomial index sum theorem are briefly discussed.
Section 4 includes the most important original result of this paper, i.e., the solution
of the inverse problem for rational matrices when a complete list of structural data is
prescribed. As a consequence of this result, an alternative formulation of the inverse
problem is considered and solved in Section 5. Finally, some conclusions and lines of
future work are discussed in Section 6.

2. Basic concepts, auxiliary results, and notation. The results summarized
in this section on rational matrices, as well as many others, can be found in the
classic references [23, Chapter 6] for real and complex rational functions, and [37] for
rational functions with coefficients in arbitrary fields. Another interesting reference
is [48, Chapters 1 & 3], which only considers real rational functions. We also strongly
recommend the recent reference [4], which works in the general setting of matrices
over principal ideal domains and the corresponding fields of fractions.

In this paper an arbitrary field F is considered. In those results where F is required
to contain infinitely many elements, this property is explicitly stated. The algebraic
closure of F is denoted by F, F[λ] stands for the ring of polynomials in the variable
λ with coefficients in F, and F(λ) for the field of rational functions in the variable
λ with coefficients in F, i.e., the field of fractions of F[λ]. A polynomial matrix is a
matrix whose entries are elements of F[λ], and a rational matrix is a matrix whose
entries are elements of F(λ). The set of m×n constant matrices is denoted by Fm×n,
the set of m × n polynomial matrices by F[λ]m×n, and the set of m × n rational
matrices by F(λ)m×n. Row or column polynomial (resp., rational) vectors are just
m× n polynomial (resp., rational) matrices with m = 1 or with n = 1. For any pair
of scalar polynomials p(λ), q(λ) ∈ F[λ], the expression p(λ) | q(λ) means that p(λ)
divides q(λ). Given two matrices A and B, A ⊕ B denotes their direct sum, i.e.,
A ⊕ B = diag(A,B). Throughout the paper, the unspecified entries of a matrix are
zero.

The degree of a polynomial matrix P (λ) ∈ F[λ]m×n is the largest degree of its
entries and is denoted by deg(P ). If deg(P ) = d, then P (λ) can be written as

P (λ) = Pdλ
d + · · ·+ P1λ+ P0, with P0, P1, . . . , Pd ∈ Fm×n and Pd 6= 0. (2.1)
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For any P (λ) ∈ F[λ]m×n of degree d as in (2.1), we define its reversal polynomial as

(revP )(λ) := λdP

(
1

λ

)
= P0λ

d + · · ·+ Pd−1λ+ Pd. (2.2)

In some situations, the reversal polynomial is defined with respect to a chosen “grade”
larger than deg(P ) (see, for instance, [9]), but this is not needed in this paper.

It is well known that any rational function has infinitely many representations as
a ratio of polynomials, but can be uniquely simplified to reduced form.

Definition 2.1 (Reduced form). Any nonzero r(λ) ∈ F(λ) can be uniquely

expressed in reduced form r(λ) = α·u(λ)

`(λ)
, where the polynomials u(λ) and `(λ) are

coprime and monic, and α ∈ F. The associated expression r̃(λ) = u(λ)

`(λ)
is the nor-

malized reduced form of r(λ).
Also, any rational matrix R(λ) ∈ F(λ)m×n can be uniquely expressed as

R(λ) = P (λ) +Rsp(λ), (2.3)

where P (λ) is a polynomial matrix and Rsp(λ) is a strictly proper rational matrix,
i.e., a rational matrix such that for each of its nonzero entries the degree of the
denominator is strictly larger than the degree of its numerator. P (λ) is called the
polynomial part of R(λ) and Rsp(λ) the strictly proper part of R(λ).

The key tool for working with rational matrices is the Smith-McMillan form, in-
troduced by McMillan [31, 32] via the Smith form of polynomial matrices [17, Chapter
VI]. The Smith-McMillan form is the canonical form of a rational matrix under mul-
tiplication by unimodular matrices, i.e., square polynomial matrices with nonzero
constant determinant or, equivalently, nonsingular polynomial matrices whose inverse
is polynomial. We state this result here with the notation we will use throughout the
rest of the paper (see also [37, Chapter 3]).

Theorem 2.2 (Smith-McMillan form). For any rational matrix R(λ) ∈ F(λ)m×n

there exist unimodular matrices U(λ) ∈ F[λ]m×m and V (λ) ∈ F[λ]n×n, and a nonneg-
ative integer r ≤ min{m,n} such that

U(λ)R(λ)V (λ) =


d1(λ)

. . . 0r×(n−r)
dr(λ)

0(m−r)×r 0(m−r)×(n−r)

 =: D(λ), (2.4)

where for i = 1, . . . , r the diagonal entries di(λ) = εi(λ)
ψi(λ) ∈ F(λ) are in normalized

reduced form, and for j = 1, . . . , r − 1 we have εj(λ) | εj+1(λ) and ψj+1(λ) |ψj(λ).
Moreover, the rational diagonal matrix D(λ) is unique.

The matrix D(λ) in (2.4) is called the Smith-McMillan form of R(λ), and the

normalized reduced fractions di(λ) = εi(λ)
ψi(λ) for i = 1, . . . , r are called the invariant

rational functions of R(λ). The integer r is the rank of R(λ) when viewed as a
matrix over the field F(λ), and is sometimes referred to as the normal rank of R(λ),
although in this paper we avoid the use of the word “normal” and simply denote the
rank by r = rank(R). Those polynomials ε1(λ), . . . , εr(λ) and ψ1(λ), . . . , ψr(λ) in
(2.4) that are different from 1 are called the nontrivial numerators and denominators,
respectively, of the Smith-McMillan form of R(λ). It is important to note that ψ1(λ)
in (2.4) is the monic least common multiple of the denominators of the entries of
R(λ), when these entries are each expressed in reduced form.
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Suppose p(λ) ∈ F[λ] is a nonzero polynomial, and let π(λ) be any nonconstant
monic irreducible polynomial with coefficients in F. Then there is a unique nonnega-
tive integer k and a unique polynomial q(λ) ∈ F[λ] with q(λ), π(λ) coprime such that

p(λ) = [π(λ)]kq(λ). (2.5)

The integer k is called the structural index of p(λ) at π(λ), and is denoted S(p, π). It
follows immediately that for any two nonzero polynomials p1(λ), p2(λ) ∈ F[λ],

S(p1p2, π) = S(p1, π) + S(p2, π) . (2.6)

There is a very natural extension of this concept to rational functions, as a result of
the following elementary lemma.

Lemma 2.3. Let π(λ) be a nonconstant monic irreducible polynomial over the
field F, and let r(λ) be any nonzero rational function in F(λ). Then there is a unique
integer k (possibly zero or negative) and a rational function s(λ) in reduced form
s(λ) = α · u(λ)/`(λ) where π(λ) is coprime to u(λ) and to `(λ) such that

r(λ) = [π(λ)]k s(λ) .

As before, we call the integer k the structural index of r(λ) at π(λ) and denote it by
S(r, π). The structural index S(r, π) can also be easily calculated from any represen-
tation n(λ)/d(λ) of r(λ) as a fraction of polynomials. Indeed, it is straightforward to
see that

S(r, π) = S(n, π)− S(d, π) . (2.7)

The following properties are now easy consequences of (2.6) and (2.7).
Lemma 2.4. Consider any nonconstant monic F-irreducible polynomial π(λ), and

any nonzero rational functions r1(λ), r2(λ) ∈ F(λ). Then

S(r1r2, π) = S(r1, π) + S(r2, π) . (2.8)

Also, for any nonzero rational function f(λ) ∈ F(λ),

S(r1, π) = S(r2, π) ⇒ S(fr1, π) = S(fr2, π) , (2.9)

S(r1, π) < S(r2, π) ⇒ S(fr1, π) < S(fr2, π) . (2.10)

A further natural extension is to rational matrices. Let R(λ) be a rational matrix
over F, with Smith-McMillan form given by (2.4). Let di(λ) = εi(λ)/ψi(λ) for 1 ≤ i ≤ r,
and define the structural index sequence of R(λ) at π(λ) to be

S(R, π) :=
(
S(d1, π), S(d2, π), . . . , S(dr, π)

)
. (2.11)

Then by Lemma 2.3, S(R, π) is exactly the sequence of integers (h1, h2, . . . , hr) such
that

εi(λ)

ψi(λ)
= π(λ)hi

ε̃i(λ)

ψ̃i(λ)
, (2.12)

where the triples of polynomials
(
ε̃i(λ), ψ̃i(λ), π(λ)

)
are pairwise coprime (each pair is

coprime) for i = 1, . . . , r. The sequence of integer exponents (h1, h2, . . . , hr) is unique,



6 L. M. ANGUAS, F. M. DOPICO, R. HOLLISTER, AND D. S. MACKEY

and satisfies the non-decreasing condition h1 ≤ h2 ≤ · · · ≤ hr by the divisibility
properties of the numerators and denominators of the Smith-McMillan form and (2.7);
indeed, these divisibility properties are equivalent to the structural index sequence at
every irreducible π(λ) being non-decreasing. Note that in [4, p. 204], h1, h2, . . . , hr
are called the “invariant orders” at π(λ) of R(λ), which is very natural since they
form a complete set of invariants under a clearly defined equivalence relation. In this
paper we use “structural indices” instead, since it is used in the classical reference [23,
p. 447] (see also [45, p. 2.4]), and was a major reason for adopting the name “index
sum theorem” in [9].

Note that the sequence of structural indices of R(λ) at π(λ) contains nonzero
terms if and only if the nonconstant monic irreducible polynomial π(λ) ∈ F[λ] in (2.12)
divides either εr(λ) or ψ1(λ) (or both); otherwise, (h1, h2, . . . , hr) = (0, 0, . . . , 0).
Including sequences with all its structural indices equal to zero in the definition allows
us flexibility and the ability to state certain results in a concise way.

Given the Smith-McMillan form (2.4) of R(λ) ∈ F(λ)m×n over a field F, the roots
of ε1(λ), . . . , εr(λ) in the algebraic closure F are the finite zeros of R(λ). Analogously,
the roots of ψ1(λ), . . . , ψr(λ) in F are the finite poles of R(λ). The finite eigenvalues
of R(λ) are those finite zeros that are not poles. Observe that the uniqueness of
D(λ) in (2.4) implies that the Smith-McMillan form of R(λ) does not change under
field extensions. Thus, D(λ) is also the Smith-McMillan form of R(λ) considered as
a matrix in F(λ)m×n. This makes it possible to consistently define the structural
index sequence of R(λ) at any λ0 ∈ F, denoted S(R, λ0) for simplicity, by identifying
S(R, λ0) with S(R, π(λ)) for π(λ) = λ− λ0. With this notation, observe that:

(1) λ0 is a finite zero of R(λ) if and only if the last term of S(R, λ0) is positive;
(2) λ0 is a finite pole of R(λ) if and only if the first term of S(R, λ0) is negative;
(3) λ0 is neither a finite zero nor a finite pole of R(λ) if and only if all the terms

of S(R, λ0) are zero;
(4) λ0 is a finite eigenvalue of R(λ) if and only if S(R, λ0) contains only nonneg-

ative terms, the last of which is positive.
The following example illustrates these ideas.

Example 2.5. Given the rational matrix

R(λ) = diag

(
λ

λ− 1
,

1

λ− 1
, (λ− 1)2

)
⊕
[

1 λ2 0
0 1 λ7

]
∈ F(λ)5×6 ,

it is easy to check that the Smith-McMillan form of R(λ) is

D(λ) =

[
diag

(
1

λ− 1
,

1

λ− 1
, 1, 1, λ(λ− 1)2

)
0

]
.

The verification proceeds by multiplying R(λ) by the monic least common denomi-
nator of its entries, i.e., ψ1(λ) = (λ − 1), computing the Smith form of the result-
ing polynomial matrix, and then dividing this Smith form by ψ1(λ). The Smith-
McMillan form is then obtained by simplifying all entries to normalized reduced
form. The only nonzero structural index sequences at finite λ0 ∈ F for this R(λ)
are S(R, 1) = (−1,−1, 0, 0, 2) and S(R, 0) = (0, 0, 0, 0, 1); note that the sequence
length is 5 since rank(R) = 5. Thus, 1 is simultaneously a pole and a zero of R(λ),
while 0 is a zero but not a pole. Therefore, 0 is the only finite eigenvalue of R(λ).

Notice that the Smith-McMillan form of a rational matrix R(λ) over F can be
uniquely reconstructed from the nontrivial structural index sequences of R(λ) at non-
constant monic irreducible polynomials. Suppose π1(λ), π2(λ), . . . , πk(λ) are the only
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nonconstant monic irreducible polynomials π(λ) ∈ F[λ] such that S(R, π) is nontriv-

ial, and let S(R, πi) = (h
(i)
1 , h

(i)
2 , . . . , h

(i)
r ) with h

(i)
1 ≤ h

(i)
2 ≤ · · · ≤ h

(i)
r . Then the

invariant rational functions d1(λ), d2(λ), . . . , dr(λ) of R(λ) are given by

dj(λ) =

k∏
i=1

[πi(λ)]h
(i)
j =

εj(λ)

ψj(λ)
. (2.13)

The individual numerator and denominator polynomials εj(λ) and ψj(λ) may also be
uniquely reconstructed in a similar fashion.

The following simple result on Smith-McMillan forms and structural index se-
quences is fundamental in proving the main results in this paper. The proof follows
immediately from the previous results.

Lemma 2.6. Let R(λ) ∈ F(λ)m×n be a rational matrix with rank r and Smith-
McMillan form D(λ). Also let f(λ) ∈ F(λ) be any nonzero scalar rational function,
and π(λ) ∈ F[λ] any nonconstant monic irreducible polynomial. Then the structural
index sequence of f(λ)R(λ) at π(λ) is

S
(
f(λ)R(λ), π(λ)

)
= S

(
f(λ)D(λ), π(λ)

)
= S

(
R(λ), π(λ)

)
+ (s, s, . . . , s) , (2.14)

where s = S(f(λ), π(λ)). Furthermore, the Smith-McMillan form of f(λ)R(λ) ∈
F(λ)m×n can be obtained from the diagonal rational matrix f(λ)D(λ) simply by re-
placing each nonzero entry of f(λ)D(λ) by its normalized reduced form.

Proof. It is immediate that f(λ)R(λ) is unimodularly equivalent to f(λ)D(λ), us-
ing the same unimodular transformations that take R(λ) into D(λ). Thus f(λ)R(λ)
and f(λ)D(λ) have the same Smith-McMillan form, and hence identical structural
index sequences S

(
f(λ)R(λ), π(λ)

)
and S

(
f(λ)D(λ), π(λ)

)
. But by Lemma 2.4, the

structural indices of the diagonal entries of f(λ)D(λ) form a nondecreasing sequence
for any irreducible π(λ). Thus, aside from expressing these diagonal entries in nor-
malized reduced form, the matrix f(λ)D(λ) is already essentially in Smith-McMillan
form, so that

S
(
f(λ)D(λ), π(λ)

)
=
(
. . . , S

(
f(λ)di(λ), π(λ)

)
, . . .

)
= S

(
R(λ), π(λ)

)
+ (s, s, . . . , s) ,

by (2.8) and (2.11).
Remark 2.7. For brevity, in situations such as those in Lemma 2.6, we will

informally say that f(λ)D(λ) is the Smith-McMillan form of f(λ)R(λ).

So far, only finite poles and zeros of rational matrices have been defined. Next, we
define the structure at ∞ as it was originally done by McMillan [31, 32] (see also [23,
p. 450]); other equivalent definitions can be found in [4, Section 5] and [48, Chapter
3]. Although these alternative definitions may be more convenient in certain settings,
they require the introduction of some additional concepts. In Definition 2.8, bear in
mind that 0 ∈ F.

Definition 2.8. Let R(λ) ∈ F(λ)m×n be a rational matrix. The structural
index sequence of R(λ) at infinity, denoted S(R,∞), is defined to be identical with
the structural index sequence of R(1/λ) at 0, or equivalently, as the structural index
sequence of R(1/λ) at π(λ) = λ, i.e.,

S(R,∞) := S
(
R(1/λ), 0

)
:= S

(
R(1/λ), λ

)
.

According to this definition, then, R(λ) has a pole (resp., a zero) at ∞ if R(1/λ) has
a pole (resp., a zero) at 0. The following simple result about rational functions will
be very useful when calculating the structural indices at ∞ for a rational matrix.
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Lemma 2.9. Suppose r(λ) = n(λ)
d(λ) ∈ F(λ) is a nonzero scalar rational function,

where n(λ), d(λ) ∈ F[λ] are scalar polynomials. Then r( 1
λ ) can be expressed in the

form

r

(
1

λ

)
=

f(λ)

g(λ)
λdeg(d)−deg(n),

where f(λ), g(λ) ∈ F[λ] are each coprime to λ, so that S(r,∞) = deg(d)− deg(n).

Proof. r(1/λ) = n(1/λ)

d(1/λ)
= λdeg(d)λdeg(n)n(1/λ)

λdeg(n)λdeg(d)d(1/λ)
= λdeg(d)−deg(n) revn(λ)

rev d(λ)
.

The following example illustrates the structure at infinity of a rational matrix.
Example 2.10. Consider again the matrix R(λ) in Example 2.5 and note that

the degree of its polynomial part is 7. In addition, it is easy to check that R(1/λ) has
as Smith-McMillan form the matrix[

diag

(
1

λ7(λ− 1)
,

1

λ2(λ− 1)
,

1

λ2
, 1, λ(λ− 1)2

)
0

]
.

So, the sequence of structural indices at infinity ofR(λ) is S(R,∞) = (−7,−2,−2, 0, 1)
(= S(R(1/λ), 0)). Therefore, R(λ) has a pole and also a zero at infinity.

Two quantities associated with any rational matrix are introduced in the next
definition. They will play key roles in Van Dooren’s index sum theorem.

Definition 2.11 (Total numbers of poles and zeros). Let R(λ) ∈ F(λ)m×n

be a rational matrix. Then the total number of poles of R(λ), denoted δp(R), is
minus the sum of the negative structural indices at all the poles (finite or infinite) of
R(λ); equivalently, the summation of negative structural indices may be taken over all
λ0 ∈ F ∪ {∞}. Similarly, the total number of zeros of R(λ), denoted δz(R), is the
sum of the positive structural indices at all the zeros (finite or infinite) of R(λ), or
equivalently, the sum of positive indices over all λ0 ∈ F ∪ {∞}.

In [4, p. 204], the positive entries of S(R, λ0) for any λ0 ∈ F ∪ {∞} are called
the orders of the zero at λ0, while the negative entries of S(R, λ0) with their signs
changed are called the orders of the pole at λ0 ∈ F ∪ {∞}. Other similar definitions
of “order” can be found in [23, 45]. In this terminology, the quantity δz(R) (resp.,
δp(R)) is simply the sum of the orders of all zeros (resp., poles) in F ∪ {∞}.

Remark 2.12. The descriptions of δp(R) and δz(R) given so far all require
passing to the algebraic closure F. This can be avoided by directly using the invariant
rational functions in the Smith-McMillan form over F given by (2.4). If S(R,∞) =
(q1, . . . , qr), then it is easy to see that

δp(R) =

r∑
i=1

deg(ψi)−
∑
qi<0

qi and δz(R) =

r∑
i=1

deg(εi) +
∑
qi>0

qi . (2.15)

Example 2.13. The only nonzero structural index sequences of the matrix R(λ)
in Example 2.5 are S(R, 1) = (−1,−1, 0, 0, 2), S(R, 0) = (0, 0, 0, 0, 1), and S(R,∞) =
(−7,−2,−2, 0, 1). Therefore, δp(R) = 13 and δz(R) = 4. Using the Smith-McMillan
form of R(λ) in Example 2.5, it is easy to check that (2.15) yields the same result.

The final concept we need to complete our survey of all the types of structural
data of a rational matrix is that of minimal indices. Their definition is completely
analogous to the corresponding one for polynomial matrices and can be found, for
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instance, in [23, Section 6.5]; this definition is briefly recalled here. Note first that
a rational matrix R(λ) is said to be regular if R(λ) is square and detR(λ) is not
identically zero, i.e., R(λ) is invertible as a matrix over the field F(λ); otherwise,
R(λ) is said to be singular. Any singular R(λ) ∈ F(λ)m×n has nontrivial left and/or
right rational null spaces (here rational means over the field F(λ)):

N`(R) := {y(λ)T ∈ F(λ)1×m such that y(λ)TR(λ) = 0},
Nr(R) := {x(λ) ∈ F(λ)n×1 such that R(λ)x(λ) = 0} ,

which are just particular examples of rational subspaces as described in [16]. Any
rational subspace V ⊆ F(λ)n has many bases formed entirely of polynomial vectors;
such bases are called polynomial bases of V. The order of any polynomial basis of
V is defined as the sum of the degrees of its constituent vectors [16, Definition 2].
Among all of the polynomial bases of V, those with least order are called minimal
bases of V [16, Definition 3]. Although there are infinitely many minimal bases of
V, the ordered list of degrees of the polynomial vectors in any minimal basis of V is
always the same [16, Remark 4, p. 497], and is called the list of minimal indices of
V. The left and right minimal indices and bases of a rational matrix R(λ), then, are
defined as those of the rational subspaces N`(R) and Nr(R), respectively. The next
example illustrates minimal bases and minimal indices.

Example 2.14. Consider again the 5×6 rational matrix R(λ) from Example 2.5.
Note that rank(R) = 5, so dimN`(R) = 0 and dimNr(R) = 1. This means that
R(λ) has no left minimal indices, and exactly one right minimal index. It can easily
be checked that {v(λ) := [0, 0, 0, λ9,−λ7, 1]T } is a polynomial basis of Nr(R); that
{v(λ)} is a minimal basis follows from all polynomial vectors in Nr(R) being scalar
polynomial multiples of v(λ), hence of degree at least 9. Therefore, the unique right
minimal index of R(λ) is 9.

By contrast with Example 2.14, determining directly from the definition whether
a general polynomial basis is minimal or not may be very hard. Interested readers
can find useful criteria for minimality in the classical reference [16], and a new one in
terms of a finite number of constant matrix rank conditions in [47, Section 3].

The concept of minimal indices together with those concepts previously defined
give rise to the following definition.

Definition 2.15. Given a rational matrix R(λ) ∈ F(λ)m×n with rank r, the
complete structural data of R(λ) consists of the following four components:

(i) “Finite structure”: the invariant rational functions ε1(λ)
ψ1(λ) , . . . ,

εr(λ)
ψr(λ) defining

the Smith-McMillan form of R(λ),
(ii) “Infinite structure”: the structural index sequence S(R,∞),
(iii) “Left singular structure”: the left minimal indices η1, . . . , ηm−r of R(λ), and
(iv) “Right singular structure”: the right minimal indices α1, . . . , αn−r of R(λ).

It is worth emphasizing some simple implicit constraints on the complete structural
data of a rational matrix R(λ): first, the number of invariant rational functions and
the number of structural indices at infinity are both equal to rank(R), and second, the
numbers of left and right minimal indices, the size of R(λ), and rank(R) are related
via the rank-nullity theorem.

Remark 2.16. There are several alternative, but equivalent, ways to specify the
finite structure of a rational matrix R(λ) as presented in Definition 2.15(i). Staying
inside the field F, one could list all the nonconstant monic irreducible polynomials
π(λ) ∈ F[λ] such that S(R, π) is nonzero, together with all of the corresponding
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structural index sequences. As discussed earlier in (2.13), this information is sufficient
to uniquely reconstruct the invariant rational functions (see also [4, Theorem 4.2]).
At the cost of passing to the algebraic closure F, one could instead list all the finite
poles and zeros of R(λ), together with the corresponding structural index sequences.
This description may be more natural if F = C, which is probably the most important
case in applications.

2.1. Polynomial matrices: structure at infinity. Polynomial matrices can
be viewed as rational matrices with the denominators of all entries equal to one.
The Smith-McMillan form of any polynomial matrix is identical to its Smith form
[17, Chapter VI], so the invariant rational functions are the same as the invariant
polynomials. Therefore, polynomial matrices do not have any finite poles, and all
their finite zeros are finite eigenvalues. The structural index sequences at the finite
zeros are nonnegative, and are exactly the same as what in the literature on polynomial
matrices [9, 18, 30] are called the partial multiplicity sequences at the finite eigenvalues.

Consider any m× n polynomial matrix P (λ) of degree d, over the field F. Using
Definition 2.8, we can directly compute the smallest structural index at infinity of
P (λ), viewing P (λ) as a rational matrix. Write P (λ) = [pij(λ)]m×n with

dij = deg pij(λ) and d = degP (λ) = max
ij

dij . (2.16)

By the definition of rev, we have pij
(

1
λ

)
=

revpij(λ)

λdij
. It follows that

P

(
1

λ

)
=

[
pij

(
1

λ

)]
=

[
revpij(λ)

λdij

]
=

1

λd

[
λd−dij revpij(λ)

]
=:

1

λd
Q(λ)

where Q(λ) = revP (λ) is a polynomial matrix. Note that at any (i, j) where dij
attains its maximum value d, the entry Qij(λ) will be coprime to λ, since the reversal
of any scalar polynomial is coprime to λ. Consequently the first invariant polynomial
of Q(λ) will be coprime to λ, since the first invariant polynomial in any Smith form
is the gcd of the entries of the polynomial matrix. This means that S(Q, 0) will be of
the form (0, ∗, . . . , ∗), where each ∗ is nonnegative. Hence, by Lemma 2.6, we have

S(P,∞) = S
(
P ( 1

λ ), 0
)

= S(Q, 0) + (−d, . . . ,−d) = (−d, ∗, . . . , ∗), (2.17)

where each ∗ is greater than or equal to −d. Thus any polynomial matrix of degree
d > 0 has a pole at infinity of order d (and perhaps other orders as well). This simple
calculation provides an example of a more general result for rational matrices found
in [4, Section 5] and [48, Chapter 3], that we state here (without proof) for the sake of
completeness; this general result can be viewed as a natural extension of Lemma 2.9.

Proposition 2.17. Let R(λ) ∈ F(λ)m×n be a rational matrix with each nonzero
entry expressed as rij(λ) = nij(λ)/dij(λ), where nij(λ), dij(λ) ∈ F[λ]. Then the
smallest structural index at infinity of R(λ) is

ω := min
ij

(
deg(dij)− deg(nij)

)
, (2.18)

where the minimum is taken over the nonzero entries of R(λ). Let P (λ) be the poly-
nomial part of R(λ) as in (2.3). If P (λ) 6= 0, then ω = − deg(P ), while if P (λ) = 0,
then ω > 0.
This result about the smallest structural index at infinity is illustrated by the R(λ)
in Example 2.5, together with the Smith-McMillan form of the corresponding R(1/λ)
found in Example 2.10.
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As we have seen so far in this section, it is possible to coherently define the struc-
ture at infinity of a polynomial matrix P (λ) by viewing it as a rational matrix, and
then using the structural indices at infinity of this (special) rational matrix. How-
ever, this has not been the typical practice in the literature on polynomial matrices
[9, 11, 18, 29, 30], or even for matrix pencils [17, 38, 43]. Instead, the standard way to
define the structure at infinity of polynomial matrices has been via the reversal polyno-
mial (2.2), as in the following definition. Another classical way to define the structure
at infinity is through the use of homogeneous polynomial formulations [11, 17, 38, 43];
note that this is equivalent to the definition via the reversal polynomial [50].

Definition 2.18. Let P (λ) ∈ F[λ]m×n be a polynomial matrix. Then infinity
is an eigenvalue of P (λ) if 0 is an eigenvalue of the polynomial matrix revP (λ). In
addition, the partial multiplicity sequence of P (λ) at ∞, denoted M(P,∞), is defined
to be identical to the partial multiplicity sequence of revP (λ) at 0, i.e.,

M(P,∞) := M(revP, 0) .

It is worth re-emphasizing that for polynomial matrices, structural index sequences
and partial multiplicity sequences are identical for all finite λ0, i.e., S(P, λ0) ≡
M(P, λ0) for all λ0 ∈ F. It is only at infinity where these concepts differ; however,
there is a simple relationship between the two, as shown in the next proposition.

Proposition 2.19. Let P (λ) ∈ F[λ]m×n be a polynomial matrix of degree d,
with structural index sequence S(P,∞) at infinity, and partial multiplicity sequence
M(P,∞) at infinity. Then

M(P,∞) = S(P,∞) + (d, d, . . . , d) ,

i.e., M(P,∞) is obtained from S(P,∞) by adding d to each of its terms.
Proof. Since S(P,∞) = S(P (1/λ), 0) and M(P,∞) = S(λdP (1/λ), 0), the result

follows from Lemma 2.6 with R(λ) = P (1/λ), π(λ) = λ, and f(λ) = λd.
Remark 2.20. An immediate corollary of (2.17) and Proposition 2.19 is that the

smallest partial multiplicity at infinity of any matrix polynomial is always zero. This
fact also follows easily from Definition 2.18 and the definition of reversal polynomial
in (2.2), which implies that revP (0) = Pd 6= 0. Now if M(P,∞) = (t1, . . . , tr), then
the Smith form of revP can be written as diag(λt1p1(λ), . . . , λtrpr(λ))⊕ 0. So t1 > 0
would imply revP (0) = 0, contradicting the nonzero-ness of Pd; hence t1 = 0. This
fact can also be found in [10, Lemma 2.7], although stated in a different way.

Remark 2.21. By definition, a polynomial matrix P (λ) = Pdλ
d+ · · ·+P1λ+P0

of degree d has an eigenvalue at ∞ if M(P,∞) contains nonzero terms, in particular
if tr > 0; by Proposition 2.19, this is equivalent to S(P,∞) containing terms strictly
larger than −d. In light of the Smith form for revP in Remark 2.20, having tr > 0 is
equivalent to rankPd = rank

(
revP (0)

)
< r = rank(revP ) = rank(P ). That is, P (λ)

has an eigenvalue at ∞ if and only if the rank of its leading coefficient Pd is smaller
than the (normal) rank of the polynomial matrix. This rank deficiency is related to
the need to impose differentiability conditions on the right-hand side of the system
of differential-algebraic equations P (ddt )u = f to guarantee the existence of solutions
[18, Chapter 8].

2.2. Polynomial matrices: index sum theorem and inverse problem.
A fundamental result on polynomial matrices is the polynomial index sum theorem,
proved over the real field in [36, 34], extended to arbitrary fields in [9, Theorem 6.5],
and stated here for completeness.

Theorem 2.22 (Polynomial Index Sum Theorem). Let P (λ) ∈ F[λ]m×n be a
polynomial matrix of degree d and rank r, with invariant polynomials p1(λ), . . . , pr(λ),
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M(P,∞) = (t1, . . . , tr), left minimal indices η1, . . . , ηm−r, and right minimal indices
α1, . . . , αn−r. Then

r∑
j=1

deg(pj) +

r∑
j=1

tj +

m−r∑
j=1

ηj +

n−r∑
j=1

αj = d r. (2.19)

The second background result in this section, proved in [10, Theorem 3.3], solves
the most general form of inverse problem for polynomial matrices with prescribed
complete structural data.

Theorem 2.23 (Fundamental Realization Theorem for Polynomial Matrices).
Let F be an infinite field, let m, n, d, and r ≤ min{m,n} be given positive integers,
let p1(λ)| · · · |pr(λ) be a divisibility chain of arbitrary monic polynomials in F[λ], and
let t1 ≤ · · · ≤ tr, η1 ≤ · · · ≤ ηm−r, and α1 ≤ · · · ≤ αn−r be given lists of nonnegative
integers. Then there exists an m × n polynomial matrix P (λ) with coefficients in
F, with rank r and degree d, with invariant polynomials p1(λ), . . . , pr(λ) and partial
multiplicities at infinity t1, . . . , tr, and with left and right minimal indices respectively
equal to η1, . . . , ηm−r and α1, . . . αn−r, if and only if t1 = 0 and (2.19) holds.

Theorem 2.23 is the basic form of the general inverse result for polynomial matri-
ces. From it can be derived another version of this inverse result, expressed in terms of
lists of prescribed elementary divisors and minimal indices; this alternative form can
be found in [10, Section 3.2]. We emphasize that although the proof of Theorem 2.23
given in [10] is constructive, it is also long, involved, and highly nontrivial. As an un-
fortunate side effect, the constructed polynomial matrix P (λ) does not transparently
display any of the prescribed structural data.

Remark 2.24. The proof given in [10, Theorem 3.3] for Theorem 2.23 uses the
assumption that F is an infinite field only to guarantee the existence for any prescribed
polynomials p1(λ)| · · · |pr(λ) of a constant β ∈ F such that pr(β) 6= 0. Such a β
allows the general inverse problem to be reduced via a Möbius transformation (see
[10, Lemma 3.4 and p. 319]) to an inverse problem where there are no prescribed
eigenvalues at infinity. Thus the assumption that F is infinite can be replaced by the
weaker, albeit less transparent, assumption that there exists some β ∈ F such that
pr(β) 6= 0. Note that for finite fields there always exist some choices of polynomials
p1(λ)| · · · |pr(λ) that do not satisfy this assumption.

Remark 2.25. The assumption in Theorem 2.23 that m,n, r, and d are positive
integers was made in [10] to avoid consideration of the trivial cases of empty matrices
(when m = 0 or n = 0), zero matrices (when r = 0), and constant matrices (when
d = 0). However, it is not hard to see that Theorem 2.23 still holds even if r = 0 or
d = 0, making the right-hand side of (2.19) zero, and thus forcing all summands on
the left-hand side to also be zero. For example, observe that when r = 0, the lists
of invariant polynomials and partial multiplicities at infinity are empty, and we have
m left and n right minimal indices all equal to 0. So Theorem 2.23 is trivially true
when r = 0, with the only possible choice of P (λ) being 0m×n. For the case when
d = 0, consider any constant matrix P (λ) ∈ Fm×n of rank r. Such a constant matrix
has all of its r invariant polynomials equal to 1, all of its r partial multiplicities at
infinity equal to 0 (since revP = P ), and all of its minimal indices equal to 0 (since
the nullspaces of P have bases formed by constant vectors). Thus Theorem 2.23 holds
when d = 0, taking any constant m×n matrix of rank r as the P (λ) that realizes the
prescribed structural data.



RATIONAL MATRICES WITH PRESCRIBED STRUCTURAL DATA 13

3. Van Dooren’s index sum theorem revisited. This section has two parts.
First, a new proof of Van Dooren’s index sum theorem is provided, which in contrast
to previous proofs is valid for rational matrices over arbitrary fields. The second part,
in Subsection 3.2, has a historical nature and is not essential for understanding the
rest of the paper. Despite this, we recommend reading Subsection 3.2 since it contains
some interesting information on this very fundamental result.

3.1. A new proof of Van Dooren’s rational index sum theorem. The first
proof of Van Dooren’s index sum theorem can be found in [45, Proposition 5.10] and
[49, Theorem 3]; a different proof can be found in [23, Theorem 6.5-11]. These proofs
are briefly discussed in Subsection 3.2; for now we only emphasize that both proofs
assume that F = C, although they can be extended with some effort to arbitrary fields.
In this section, we offer a proof based on Theorem 2.22 that is valid in arbitrary fields.
In order to see that our argument is not “circular”, the main steps of the proof of
Theorem 2.22 provided in [9, Theorem 6.5] are now summarized:

(1) the relation between the structural data of any polynomial matrix P (λ) and
the structural data of its first Frobenius companion form C1(λ) is established
in [9, Theorem 5.3];

(2) Theorem 2.22 is proved for pencils in [9, Lemma 6.3] via the “partial Kro-
necker form” valid in arbitrary fields. This form is obtained via strict equiv-
alence, and is the direct sum of a regular pencil and a completely singular
pencil comprised of the classical Kronecker singular blocks;

(3) the results in steps (1) and (2) are combined in [9, Theorem 6.5] to prove
Theorem 2.22 by counting the rank of C1(λ) in two different ways.

Next, we state and prove Van Dooren’s index sum theorem over arbitrary fields.
Recall that the total numbers of poles and zeros of a rational matrix were introduced
in Definition 2.11 (see also Remark 2.12).

Theorem 3.1 (Van Dooren’s Rational Index Sum Theorem). Let R(λ) be a
rational matrix over an arbitrary field F. Let δp(R) and δz(R) be the total number
of poles and zeros, respectively, of R(λ), and let µ(R) be the sum of the left and right
minimal indices of R(λ). Then

δp(R) = δz(R) + µ(R) . (3.1)

Proof. Let us assume that R(λ) ∈ F(λ)m×n has rank r, that the Smith-McMillan
form of R(λ) is given by D(λ) in (2.4), that S(R,∞) = (q1, . . . , qr), and that the left
and right minimal indices of R(λ) are, respectively, η1, . . . , ηm−r and α1, . . . , αn−r.
The divisibility properties of the denominators of the entries of D(λ) imply that
P (λ) := ψ1(λ)R(λ) ∈ F[λ]m×n is a polynomial matrix, which by Lemma 2.6 has

Smith form ψ1(λ)D(λ) = diag
(
ψ1(λ) ε1(λ)

ψ1(λ) , . . . , ψ1(λ) εr(λ)
ψr(λ)

)
⊕ 0(m−r)×(n−r); see also

Remark 2.7.
The proof of (3.1) now proceeds by applying the polynomial index sum theorem

(i.e., Theorem 2.22) to P (λ), then obtaining (3.1) by using the relationship between
the structural data of P (λ) and R(λ). The relationship between the finite structures
of P (λ) and R(λ) has already been established in Lemma 2.6. It is also clear that
rankP (λ) = rankR(λ), and that the minimal indices of P (λ) and R(λ) are identical,
since ψ1(λ) is just a nonzero scalar in the field F(λ). The relationship between the
structural index sequence S(R,∞) = (q1, . . . , qr) and the partial multiplicity sequence
M(P,∞) can be found by starting from

P
(

1
λ

)
:= ψ1

(
1
λ

)
R
(

1
λ

)
. (3.2)
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Applying Lemma 2.9 to r(λ) = ψ1(λ) shows that S(ψ1

(
1
λ

)
, 0) = −deg(ψ1). From

Lemma 2.6 applied to (3.2) we can now conclude that

S(P,∞) = S
(
P
(

1
λ

)
, 0
)

=
(
q1 − deg(ψ1) , . . . , qr − deg(ψ1)

)
.

Letting d := deg(P ), Proposition 2.19 then yields

M(P,∞) =
(
q1 − deg(ψ1) + d , . . . , qr − deg(ψ1) + d

)
. (3.3)

Assembling all this information, the polynomial index sum theorem applied to P (λ)
now gives

d r =

r∑
j=1

(
deg(ψ1) + deg(εj)− deg(ψj)

)
+

r∑
j=1

(
qj − deg(ψ1) + d

)
+

m−r∑
j=1

ηj +

n−r∑
j=1

αj .

Some simple rearrangements and cancellations now transform this into r∑
j=1

deg(ψj)−
∑
qj<0

qj

 =

 r∑
j=1

deg(εj) +
∑
qj>0

qj

+

m−r∑
j=1

ηj +

n−r∑
j=1

αj . (3.4)

In light of (2.15), we see that (3.4) is precisely (3.1).

Remark 3.2. The proof of Theorem 3.1 just given proceeds very much in the
same spirit as the original proof of the Smith-McMillan form of a rational matrix given
by McMillan in [31, 32] (see also [23, p. 443]); both proofs first reduce the rational
problem to a “polynomial problem”, then leverage known results about polynomial
matrices before converting back to rational matrices. As discussed in Subsection 3.2,
other proofs of Van Dooren’s index sum theorem available in the literature follow
different paths, that by contrast might informally be termed “intrinsically rational”.
In this context, it is interesting to observe that there also exist in the literature
“intrinsically rational” proofs of the Smith-McMillan form as, for instance, the one
presented in [48, p. 10].

Example 3.3. The results in Examples 2.13 and 2.14 allow us to check immedi-
ately that the matrix R(λ) in Example 2.5 satisfies (3.1).

Remark 3.4. It is worth mentioning here the following way to formulate the
rational index sum theorem. Re-arrange (3.1) to the form δz(R) − δp(R) + µ(R) =
0, and recall that δp(R) from Definition 2.11 is minus the sum of all the negative
structural indices. Then this form of the rational index sum theorem simply says
that the sum of all the indices (minimal and structural, positive and negative, finite
and infinite, over all λ0 ∈ F ∪ {∞}) is zero for any rational matrix. This is, in our
opinion, a very elegant formulation of the index sum theorem. Observe that, with the
notation in (3.4) and (2.15), this formulation is equivalent to

r∑
j=1

deg(εj)−
r∑
j=1

deg(ψj) +

r∑
j=1

qj +

m−r∑
j=1

ηj +

n−r∑
j=1

αj = 0. (3.5)
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3.2. History of Van Dooren’s index sum theorem and its relation with
the polynomial index sum theorem. The rational and polynomial index sum
theorems have a rather curious history. In the first place, they seem to have completely
ignored each other until only recently, when the polynomial index sum theorem was
finally recognized to be a corollary of the rational index sum theorem in [10, Remark
3.2]1. This “mutual ignorance” is probably related to two facts:

(a) each index sum theorem uses a different definition of structure at infinity,
as explained in Subsection 2.1, which may have created a certain amount of
confusion;

(b) the statements of these results appear on their face to be very different from
one another — Theorem 2.22 explicitly displays the rank and degree of the
polynomial matrix, while in Theorem 3.1 there is no explicit reference to
either the rank of the rational matrix, or to any degree associated with the
rational matrix.

Connected to these facts, we also emphasize that the original proofs of these two index
sum theorems have completely different flavors and use rather different techniques.

Secondly, both index sum theorems seem to have remained unnoticed by many
researchers, which is surprising, in our opinion, since they establish basic relationships
between the structural data of rational and polynomial matrices that are at the same
level of fundamentalness as the rank-nullity theorem.

As far as we know, the first published index sum theorem is the rational index
sum theorem stated and proved in Theorem 3 of [49], a paper published in 1979
but submitted in 1978. The authors of [49] write the following footnote (on p.241)
concerning the rational index sum theorem – “First obtained, in a slightly different
way, by Van Dooren in earlier unpublished research”; this is the reason we have
referred to this theorem as “Van Dooren’s Index Sum Theorem”. The same result
appears as Proposition 5.10 in the thesis [45], with the same proof as in [49], although
more details are provided in [45]. The proof of Van Dooren’s index sum theorem
presented in [45] is far from trivial and has the following main steps:

(1) it is proved that any rational matrix R(λ) admits a strongly irreducible gen-
eralized state-space realization that is the Schur complement of an adequate
block-partitioned pencil encoding the complete structural data of R(λ) [45,
Section 5.3];

(2) the rational index sum theorem is proved for pencils [45, Theorem 3.8];
(3) the results in (1), (2) are combined in [45, Prop. 5.10] to prove Theorem 3.1.

Note that the proof in [45, 49] of Van Dooren’s index sum theorem relies heavily on
the theory of realizations of rational matrices in terms of polynomial matrices.

The rational index sum theorem can also be found in the classic reference [23,
Theorem 6.5-11], with a proof very different from that in [45, 49]. The proof in [23]
uses valuations of rational matrices, defined as in [16] via the valuations of the scalar
rational functions formed by the minors of the considered rational matrix, combined
with properties of column and row reduced polynomial matrices. Thus the proof
in [23] has very much a “determinantal” flavor. The rational index sum theorem
restricted to real rational matrices with full column rank is also proved via valuations
in [48, p. 137].

The first statement that we know of the polynomial index sum theorem is given
in [36, Theorem 3] for real polynomial matrices (in fact, real matrices are implicitly

1This nice connection was pointed out to the authors of [10] by an anonymous referee, which is
highly appreciated by the authors of [10].
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viewed as complex matrices in [36]). The proof in [36] is essentially the same as that
outlined in the first paragraph of Subsection 3.1, except for the fact that the standard
Kronecker canonical form is used in [36]. Surprisingly, no connections with the original
rational index sum theorem in [45, 49] are mentioned at all in [36]. It is worth noting
that the polynomial index sum theorem is used in the conference proceedings [36]
and the follow-up paper [34] mainly as a tool supporting the primary goal of the
authors, the development of a numerically reliable algorithm for column reduction
of polynomial matrices. It is perhaps this auxiliary role that allowed the polynomial
index sum theorem to go un-recognized as a fundamental result for so long, and remain
essentially forgotten until its importance was highlighted in [9], where, in addition,
it was extended to arbitrary fields and given its current name. Nevertheless, note
that the polynomial index sum theorem has appeared in some scattered references
such as [24, Proposition 1], but always as a nameless auxiliary result, and without
establishing any connection with Van Dooren’s index sum theorem in [45, 49].

Finally, we note that on page 3093 of the almost forgotten long survey paper [25]
by Kublanovskaya, one can see the rational and the polynomial index sum theorems
stated one right after the other(!)2, without proofs, and again without establishing (or
even mentioning) any connection between them. This lack of connection is even more
surprising in [25] than in other references, since the author had both results written
in the same place, and was one of the most prestigious researchers in the field. As we
have seen, the connection had to wait until [10, Remark 3.2]. For completeness we
end this section with the following theorem, which the alert reader has undoubtedly
already anticipated.

Theorem 3.5. The polynomial and rational index sum theorems are equivalent.
Proof. The proof of Theorem 3.1 shows that the polynomial implies the rational

index sum theorem. We proceed as in [10, Remark 3.2] to show that the rational
implies the polynomial index sum theorem. Consider any polynomial matrix P (λ) ∈
F[λ]m×n with degree d, rank r, Smith form diag(p1(λ), . . . , pr(λ))⊕0(m−r)×(n−r), par-
tial multiplicity sequence M(P,∞) = (t1, . . . , tr), and left and right minimal indices
η1, . . . , ηm−r and α1, . . . , αn−r, respectively. Then S(P,∞) = (t1 − d, · · · , tr − d),
by Proposition 2.19. Therefore, taking into account (2.15), the rational index sum
theorem applied to P (λ) gives

−
∑

tj−d<0

(tj − d) =

r∑
j=1

deg(pj) +
∑

tj−d>0

(tj − d) +

m−r∑
j=1

ηj +

n−r∑
j=1

αj .

Some simple rearrangements then produce (2.19), i.e., the polynomial index sum
theorem.

4. Rational matrices with prescribed complete structural data. This
section presents in Theorem 4.1 the most important original result of this paper,
which solves the basic form of the general inverse problem for structural data of
rational matrices. In Section 5, another formulation of the inverse problem for rational
matrices is stated and solved as a corollary of Theorem 4.1.

Theorem 4.1. Let F be an infinite field, let m, n, and r ≤ min{m,n} be given

positive integers, and let ε1(λ)
ψ1(λ)

, . . . , εr(λ)
ψr(λ)

be r rational functions in normalized re-

2The references given in [25] for the index sum theorems are imprecise. With a considerable
degree of interpretation it can be inferred that [25] attributes the rational index sum theorem to
Van Dooren in [45] and the polynomial index sum theorem to V. B. Khazanov in his Ph.D. Thesis,
written in Russian in 1983, which we have not seen.
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duced form, such that the monic polynomials in their numerators and denominators
form divisibility chains ε1(λ) | · · · | εr(λ) and ψr(λ) | · · · |ψ1(λ). Also let q1 ≤ · · · ≤ qr
be arbitrary integers (i.e., positive, negative, or zero), and η1 ≤ · · · ≤ ηm−r and
α1 ≤ · · · ≤ αn−r be two lists of nonnegative integers. Then there exists a rational ma-

trix R(λ) ∈ F(λ)m×n of rank r, with invariant rational functions ε1(λ)
ψ1(λ)

, . . . , εr(λ)
ψr(λ)

and

S(R,∞) = (q1, . . . , qr), and with left and right minimal indices equal to η1, . . . , ηm−r
and α1, . . . , αn−r, respectively, if and only if

r∑
j=1

deg(ψj) +
∑
qj<0

(−qj) =

r∑
j=1

deg(εj) +
∑
qj>0

qj +

m−r∑
j=1

ηj +

n−r∑
j=1

αj . (4.1)

Before proving Theorem 4.1, we emphasize that, taking into account (2.15) and
(3.1), the necessary and sufficient condition (4.1) can be simply stated in plain words
as “the prescribed complete structural data satisfies the condition in Van Dooren’s
index sum theorem”. Note also that (4.1) is written to correspond exactly with
(3.1) and in such a way that all the summands are nonnegative. Recall that another
equivalent way to express (4.1) that might be somewhat easier to apply is (3.5).

Proof of Theorem 4.1. The fact that the existence of R(λ) with the specified
properties implies (4.1) is just Theorem 3.1. The proof that (4.1) implies the existence
of R(λ) with the prescribed complete structural data starts by constructing from the
prescribed (rational) data the following modified data:

(1) the divisibility chain ψ1(λ) ε1(λ)
ψ1(λ)

∣∣∣ · · · ∣∣∣ψ1(λ) εr(λ)
ψr(λ)

of scalar monic polyno-

mials with coefficients in F,
(2) the list of r nonnegative integers 0 ≤ q2− q1 ≤ · · · ≤ qr− q1, whose first term

is zero,
(3) the two lists of nonnegative integers η1 ≤ · · · ≤ ηm−r and α1 ≤ · · · ≤ αn−r.

Observe that (4.1) (or equivalently, (3.5)) implies that this modified data in items (1),
(2), and (3) above satisfy

r∑
j=1

deg

(
ψ1(λ)

εj(λ)

ψj(λ)

)
+

r∑
j=1

(qj − q1) +

m−r∑
j=1

ηj +

n−r∑
j=1

αj (4.2)

=

( r∑
j=1

deg(εj)

)
+ r deg(ψ1)−

r∑
j=1

deg(ψj) +

( r∑
j=1

qj

)
− r q1 +

m−r∑
j=1

ηj +

n−r∑
j=1

αj

= r
[
deg(ψ1)− q1

]
. (4.3)

Since all summands in (4.2) are nonnegative, we see in (4.3) that deg(ψ1)−q1 ≥ 0. The
equality of (4.2) and (4.3) shows that the data in items (1), (2), and (3) satisfy the con-
ditions of Theorem 2.23 (see also Remark 2.25) with d = deg(ψ1)− q1. Theorem 2.23
then guarantees the existence of a polynomial matrix P (λ) ∈ F[λ]m×n with rank r,

degree d = deg(ψ1) − q1, and invariant polynomials ψ1(λ) ε1(λ)
ψ1(λ)

∣∣∣ · · · ∣∣∣ψ1(λ) εr(λ)
ψr(λ)

,

with its r partial multiplicities at infinity equal to 0 ≤ q2 − q1 ≤ · · · ≤ qr − q1, and
with left and right minimal indices equal to η1 ≤ · · · ≤ ηm−r and α1 ≤ · · · ≤ αn−r,
respectively. Next we define the rational matrix

R(λ) :=
1

ψ1(λ)
P (λ) ∈ F(λ)m×n , (4.4)
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and prove that the complete structural data of R(λ) are the prescribed ones. Note
first that the rank of R(λ) is obviously equal to the rank of P (λ), and so is equal to r.

Lemma 2.6 implies that the invariant rational functions of R(λ) are ε1(λ)
ψ1(λ)

, . . . , εr(λ)
ψr(λ)

.

Proposition 2.19 implies that

S(P (1/λ), 0) =: S(P,∞) = M(P,∞)− (d, . . . , d)

= (q1 − deg(ψ1), q2 − deg(ψ1), . . . , qr − deg(ψ1)) . (4.5)

Applying Lemma 2.9 to ρ(λ) := 1/ψ1(λ), we have that S(ρ(1/λ), 0) = degψ1. Combin-
ing this with (4.5), and applying Lemma 2.6 with π(λ) = λ, f(λ) = 1

ψ1(1/λ) = ρ(1/λ),

and s = deg(ψ1), we get the structural indices at infinity of R(λ) from (4.4) to be

S(R,∞) := S

(
1

ψ1(1/λ)
P (1/λ), 0

)
= (q1, q2, . . . , qr) ,

as desired. Finally, note that the minimal indices of R(λ) and P (λ) are equal since
1/ψ1(λ) is just a nonzero scalar in the field F(λ). This completes the proof. 2

The proof of Theorem 4.1 is constructive, since it relies on applying Theorem 2.23
to construct the polynomial matrix P (λ) in (4.4). However, from the comments
in the paragraph just after Theorem 2.23, we know that the construction of this
P (λ) is complicated; consequently, the rational matrix R(λ) obtained in this proof of
Theorem 4.1 does not transparently reveal any of the prescribed structural data.

Remark 4.2. Remark 2.24 and the proof of Theorem 4.1 imply that we can state
a version of Theorem 4.1 valid for any field, but at the cost of adding the assumption
“further suppose that there exists β ∈ F such that ψ1(β)εr(β)/ψr(β) 6= 0”.

5. Rational matrices with prescribed nontrivial structural data.
Theorem 4.1 allows some of the prescribed invariant rational functions to be equal
to 1, as well as some of the prescribed structural indices at infinity to be zero, i.e.,
to be trivial. In this context the word “trivial” refers to data that do not carry any
information on the orders of the poles and/or zeros of the rational matrix whose
existence is guaranteed by Theorem 4.1. The purpose of this section is to provide (in
Theorem 5.2) necessary and sufficient conditions for the existence of a rational matrix
when only the nontrivial structural data are prescribed. We emphasize that Theorem
5.2 is a direct corollary of Theorem 4.1, but a relevant advantage of Theorem 5.2 is
that the rank and the size of the rational matrix whose existence is established are
not prescribed in advance and can, in fact, take a wide variety of values. In order to
state Theorem 5.2 in a concise way, we first make the following definitions.

Definition 5.1. Let F be an arbitrary field. A list Lfin of nontrivial finite
structural data is a list of the form

Lfin :=
{
π1(λ)s11 , π1(λ)s21 , . . . , π1(λ)sg11 ,

π2(λ)s12 , π2(λ)s22 , . . . , π2(λ)sg22 ,
...

πt(λ)s1t , πt(λ)s2t , . . . , πt(λ)sgtt
}
,

where π1(λ), . . . , πt(λ) are distinct nonconstant monic irreducible polynomials in F[λ]
and, for each j = 1, . . . , t, s1j ≤ · · · ≤ sgjj is a sequence of nonzero integers (that may
be negative or positive). Moreover, for any rational matrix R(λ) with entries in F(λ),
we say that Lfin is the list of nontrivial finite structural data of R(λ) if the nonzero
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structural indices of R(λ) at πj(λ) are exactly s1j ≤ · · · ≤ sgjj for j = 1, . . . , t, while
the structural indices of R(λ) at π(λ) are all equal to zero for any π(λ) ∈ F[λ] such
that π(λ) 6= πj(λ) for j = 1, . . . , t.

The sum of the “signed degrees” of the rational functions in Lfin and the length of
the longest chain of Lfin associated with the same irreducible polynomial are denoted,
respectively, by

δ(Lfin) :=

t∑
j=1

gj∑
i=1

sij deg πj(λ) and g(Lfin) := max
1≤j≤t

gj .

Recall that in the important case F = C, every πj(λ) in Definition 5.1 is of the
form πj(λ) = (λ− λj) with λj ∈ C, while in the case F = R, either πj(λ) = (λ− λj)
with λj ∈ R, or πj(λ) = λ2 +ajλ+bj with aj , bj ∈ R such that πj(λ) has two complex
conjugate nonreal roots.

Theorem 5.2. Let F be an infinite field, let Lfin be a list of nontrivial finite
structural data as in Definition 5.1, let c1 ≤ · · · ≤ cg∞ be a list of nonzero integers,
and let η1 ≤ · · · ≤ ηq and α1 ≤ · · · ≤ αp be two lists of nonnegative integers. Then
there exists a rational matrix R(λ) of rank r with entries in F(λ), with list of nontrivial
finite structural data equal to Lfin and nonzero structural indices at infinity equal
to c1 ≤ · · · ≤ cg∞ , and with left and right minimal indices equal to η1, . . . , ηq and
α1, . . . , αp, respectively, if and only if the following two conditions hold:

(a) r ≥ max{g(Lfin), g∞} , and

(b) 0 = δ(Lfin) +

g∞∑
j=1

cj +

q∑
j=1

ηj +

p∑
j=1

αj .

In particular, if (b) holds, then for any choice of r satisfying (a) there exists a
rational matrix R(λ) of rank r with the prescribed structural data; such an R(λ) will
have size (q + r) × (p + r). If r does not satisfy (a), then there does not exist any
rational matrix with rank r and the prescribed structural data.

Proof. The notation for Lfin in Definition 5.1 is used in this proof. First, we prove
that the existence of R(λ) with rank r and with the prescribed structural data implies
that (a) and (b) hold. According to the definition in (2.11) and Definition 2.8, r is
the length of the sequence of all the structural indices at any πj(λ) ∈ F(λ) of R(λ), as
well as the length of the sequence of structural indices at infinity of R(λ). Therefore,
r is larger than or equal to the number of nonzero structural indices at πj(λ) or at
infinity of R(λ), which is precisely condition (a). Using (2.13) and (3.5), it is easy to
see that (b) is just a version of the condition in the rational index sum theorem, and
thus holds for R(λ).

Next, we prove that conditions (a) and (b) imply the existence of R(λ) with the
prescribed structural data and rank r. Let r be any integer satisfying (a). To each
of the t sequences of nonzero integers s1j ≤ · · · ≤ sgjj from Lfin (with j = 1, . . . , t),
append r − gj zeroes in the following manner to form t new integer sequences, each
of length r:

s̃1j ≤ · · · ≤ s̃rj

:=

 0 = · · · = 0 < s1j ≤ · · · ≤ sgjj , if 0 < s1j ,
s1j ≤ · · · ≤ sgjj < 0 = · · · = 0, if sgjj < 0,
s1j ≤ · · · ≤ snjj < 0 = · · · = 0 < snj+1,j ≤ · · · ≤ sgjj , if s1j < 0 & 0 < sgjj .
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From these t sequences of length r, proceed as in (2.13) to define the following r
rational functions in normalized reduced form:

εi(λ)

ψi(λ)
:= π1(λ)s̃i1 · · ·πt(λ)s̃it , for i = 1, . . . , r . (5.1)

Note that the polynomials ψi(λ) :=
∏
s̃ij<0 πj(λ)−s̃ij and εi(λ) :=

∏
s̃ij>0 πj(λ)s̃ij

clearly satisfy ε1(λ) | · · · | εr(λ) and ψr(λ) | · · · |ψ1(λ). Analogously, to the sequence
c1 ≤ · · · ≤ cg∞ of nonzero integers append r − g∞ zeroes, to get an integer sequence
q1 ≤ · · · ≤ qr of length r. With these definitions and m := q+ r, n := p+ r, condition
(b) is equivalent to

0 =

r∑
j=1

deg(εj)−
r∑
j=1

deg(ψj) +

r∑
j=1

qj +

m−r∑
j=1

ηj +

n−r∑
j=1

αj .

Theorem 4.1 can now be applied to prove the existence of R(λ) ∈ F(λ)(q+r)×(p+r)

with the prescribed structural data and rank r.
Remark 5.3. Remark 4.2 together with the proof of Theorem 5.2 implies that an

alternative version of Theorem 5.2 valid in arbitrary fields can be proved, at the cost
of adding the assumption “further suppose that there exists ω ∈ F such that πj(ω) 6= 0
for j = 1, . . . , t, where πj(λ) are the nonconstant monic irreducible polynomials in
the definition of Lfin”.

6. Conclusions and future work. We have proved that there exists a rational
matrix with prescribed complete structural data if and only if such data satisfies the
single, very easily checked necessary condition in Van Dooren’s rational index sum
theorem of 1978. In addition, this rational index sum theorem has itself been revisited
from two points of view: we have extended it to arbitrary fields via a new proof of
this fundamental result, and discussed some of its history and relationship with the
polynomial index sum theorem. These two rational matrix results are based on, and
significantly extend, previous results valid only for polynomial matrices, that can be
found in [9, 10]. As discussed in the Introduction, these previous polynomial matrix
results have already been applied to the solution of a number of problems, some of
them related to numerical algorithms. Consequently, we anticipate that the results in
this paper will have similar applications in the context of rational eigenvalue problems;
such applications can of course also be expected to lead to challenging new questions.
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[35] V. Noferini and J. Pérez, Chebyshev rootfinding via computing eigenvalues of colleague



22 L. M. ANGUAS, F. M. DOPICO, R. HOLLISTER, AND D. S. MACKEY

matrices: when is it stable?, Math. Comp., 86 (2017), pp. 1741–1767.
[36] C. Praagman, Invariants of polynomial matrices, in I. Landau (Ed.), Proceedings of the First

European Control Conference, Grenoble, 1991, INRIA, 1991, pp. 1274–1277.
[37] H. H. Rosenbrock, State-space and Multivariable Theory, Thomas Nelson & Sons, Ltd., Lon-

don, 1970.
[38] G. W. Stewart and J. G. Sun, Matrix Perturbation Theory, Academic Press, Inc., Boston,

MA, 1990.
[39] Y. Su and Z. Bai, Solving rational eigenvalue problems via linearization, SIAM J. Matrix

Anal. Appl., 32 (2011), pp. 201–216.
[40] L. Taslaman, F. Tisseur, and I. Zaballa, Triangularizing matrix polynomials, Linear Alge-

bra Appl., 439 (2013), pp. 1679–1699.
[41] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra

Appl., 309 (2000), pp. 339–361.
[42] F. Tisseur and I. Zaballa, Triangularizing quadratic matrix polynomials, SIAM J. Matrix

Anal. Appl., 34 (2013), pp. 312–337.
[43] H. W. Turnbull and A. C. Aitken, An Introduction to the Theory of Canonical Matrices,

Dover Publications, Inc., New York, 1961 (corrected republication of the 1952 3rd edition
of the original 1932 book).

[44] R. Van Beeumen, K. Meerbergen, and W. Michiels, Compact rational Krylov methods for
nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 820–838.

[45] P. Van Dooren, The Generalized Eigenstructure Problem: Applications in Linear System
Theory, PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 1979.

[46] P. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix:
computational aspects, Linear Algebra Appl., 50 (1983), pp. 545–579.

[47] P. Van Dooren and F. M. Dopico, Robustness and perturbations of minimal bases, Linear
Algebra Appl., 542 (2018), pp. 246–281.

[48] A. I. G. Vardulakis, Linear Multivariable Control, John Wiley & Sons, Ltd., Chichester, 1991.
[49] G. Verghese, P. Van Dooren, and T. Kailath, Properties of the system matrix of a gener-

alized state-space system, Internat. J. Control, 30 (1979), pp. 235–243.
[50] I. Zaballa and F. Tisseur, Finite and infinite elementary divisors of matrix polynomials: a

global approach, MIMS EPrint 2012.78, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, 2012.

[51] L. Zeng and Y. Su, A backward stable algorithm for quadratic eigenvalue problems, SIAM J.
Matrix Anal. Appl., 35 (2014), pp. 499–516.


