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An optimal iterative solver for symmetric indefinite linear
systems with PDE origins: Balanced black-box stopping tests

Pranjal

Abstract This work discusses the design of efficient algorithms for solving symmet-
ric indefinite linear systems arising from FEM approximation of PDEs. The distinc-
tive feature of the preconditioned MINRES solver that is used here is the incorpora-
tion of error control in the ‘natural norm’ in combination with an effective a posteriori
estimator for the PDE approximation error. This leads to a robust and optimal black-
box stopping criterion: the iteration is terminated as soon as the algebraic error is
insignificant compared to the approximation error.

Keywords FEM approximation of PDEs, a posteriori FEM error estimators,
symmetric indefinite linear systems, iterative solvers, MINRES, preconditioning.
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1 Introduction

1.1 Problem

Numerical solution of a partial differential equation (PDE) together with initial and/or
boundary conditions essentially involves two types of errors—(PDE) approximation
error and algebraic error (which arises from solving the usually huge discrete linear
system iteratively). For chosen discretization parameters, the approximation error is
fixed . Solving iteratively the corresponding discrete linear(ized) system(s) to a very
high accuracy is not desirable. This is because a highly accurate iterative solution
may require too many iterations and would simply waste computational resources
without any decrease in the approximation error. On the other hand, if the itera-
tions are stopped too early the iterative solution will not be a good approximation
to the exact solution. This work attempts to handle these issues by presenting optimal
balanced black-box stopping tests in iterative solvers, specifically Minimal Residual
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2 Pranjal

(MINRES) solver [17], (the popular method of choice) for solving symmetric in-
definite linear systems with PDE origins. This is an active research field in general;
see [21,22,12,19,20].

1.2 Solution methodology

In order to stop optimally, that is, by avoiding premature stopping and unnecessary
computations, it is important to use the fundamental relation between the algebraic
error and the approximation error. For a given approximation (that is, for a fixed
approximation error), at any iteration step the total error (which can be regarded as
the approximation error obtained from the solution computed at that iteration step) is
essentially the sum of the approximation error and the algebraic error; all the errors
are measured in some ‘natural’ norm (this issue is addressed later). By balancing the
algebraic error and the total error, a balanced stopping test is obtained.

Generally, the algebraic error is unknown since the exact algebraic solution is not
usually available. Obtaining tractable upper and lower bounds on the algebraic error
in terms of a readily computable and monotonically decreasing quantity (if any) of
the chosen iterative solver is the distinctive feature of the devised stopping strategy.
Moreover, there are no user-defined constants in the optimal balanced stopping tests
presented in this paper. Thus, iterative solvers incorporating such optimal balanced
stopping strategies will be black-box solvers.

Wathen [25] has observed that finite element (FEM) approximation (see [5]) of
a PDE endows the FEM problem with a natural norm for measuring errors, which
is determined by the approximation space chosen. Typically, in FEM setting, the
PDE approximation error and the algebraic error are measured in this natural norm.
Also, note that the approximation error can be measured a priori or/and a posteriori
(see [24]). A priori approximation error estimation usually requires the solution to
satisfy some regularity conditions which may not hold or/and may not be easily ver-
ifiable a priori. On the other hand, robust a posteriori approximation error estimation
techniques are generally readily available. Moreover, a posteriori error estimation can
be used for driving the FEM procedure adaptively. Hence, a posteriori approximation
error estimation approach is used in this paper.

This paper has 9 sections. In section 2, a review is presented of the work done
towards developing an optimal balanced black-box stopping test in MINRES solver
for solving symmetric indefinite linear systems (in particular saddle point systems)
arising from mixed FEM approximation of PDEs. The main contribution of this paper
towards existing research is also summarized therein. The weak form and the mixed
FEM set up of the underlying PDE (here Stokes equations) is done in section 3 and the
target linear system is formulated in section 4. An overview of MINRES is presented
in section 5 and a discussion about block preconditioning for accelerating MINRES
convergence in solving the target linear system is presented in section 6. The optimal
balanced black-box stopping tests in MINRES are derived in section 7. Computa-
tional results that are produced using the IFISS [8] toolbox are discussed in section 8.
A summary of the paper is presented in section 9. For the sake of brevity, the term
balanced stopping test will usually be used in place of optimal balanced black-box
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stopping test throughout this paper. Note that this work has appeared as chapter 3 in
author’s PhD thesis [21].

2 Saddle point linear systems

Large linear systems in saddle point form are ubiquitous. They frequently arise in
optimization and in mixed finite element approximation of problems arising in fluid
and solid mechanics. In matrix form such systems usually have a 2× 2 block form[

A BT

B −C

] [
u
p

]
=

[
f
g

]
, (2.1)

where A ∈ Rn×n is symmetric positive-definite, C ∈ Rm×m is symmetric positive
semi-definite, B ∈ Rm×n, u, f ∈ Rn and p,g ∈ Rm with n ≥ m. The coefficient
matrix in (2.1) is always symmetric indefinite and so (preconditioned) MINRES is
used for solving (2.1). An introduction about discrete saddle point systems and a
detailed discussion on numerical methods for solving them can be found in [4].

An optimal balanced black-box stopping test in preconditioned MINRES for
solving (2.1) arising from mixed FEM approximation of PDEs has been devised
in [23]. In their analysis the matrix C is taken to be the zero matrix. An extension
of their algorithm EST MINRES henceforth called SADDLE MINRES is presented
in this paper. The solver SADDLE MINRES has essentially the same ingredients as
the EST MINRES solver: it employs a block preconditioner to accelerate MINRES
convergence with a rate that is independent of problem parameters and incorporates
a balanced stopping strategy to maximize efficiency. The balanced stopping test is
obtained by balancing the a posteriori approximation error estimate with the itera-
tion error in the natural norm associated with the underlying PDE. Similar to [23],
tractable bounds on the usually unobservable (natural) norm of the iteration error are
obtained in terms of the monotonically decreasing preconditioner norm of MINRES
iteration residual.

Balanced stopping criterion for symmetric indefinite linear systems arising from
mixed FEM approximation of PDEs have also been studied in detail in [2]. Their
stopping criterion is based on a priori approximation error bounds and the constants
involved in the balanced stopping test are also estimated a priori, which may or may
not be straightforward to estimate a priori in general. This is in contrast to the material
presented here and in [23] where the approximation error is estimated a posteriori and
the constants involved in the balanced stopping test are estimated on-the-fly.

2.1 Main contribution

Unlike EST MINRES, the optimal balanced black-box stopping strategy presented
here provides not only for solving saddle point systems with a nonzero matrix C
but a general framework (by presenting the precise eigenvalue problem to solve for
the constants required for balanced stopping test) in (preconditioned) MINRES for
solving symmetric indefinite linear systems with PDE origins. Moreover, the constant
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in the balanced stopping test of [23] has been ‘improved’ in this paper in the sense that
one now stops optimally a ‘bit’ earlier than using the balanced stopping test of [23].

3 Deterministic steady-state Stokes equations

Stochastic Galerkin FEM (which results in a huge linear system) and stochastic col-
location methods (which result in solving for many smaller linear systems) are the
popular choices for solving parametric PDEs [11]. Since the existing storage re-
quirements and computational flops increase with the size and the number of linear
systems, an optimal balanced black-box stopping test might save significant com-
putational work of an iterative solver and in any case it would rule out premature
stopping. Note that the optimal balanced black-box stopping methodology presented
here is applicable for solving both the parametric and the corresponding deterministic
PDE.

Stokes equations are archetypal PDEs, which on mixed FEM approximation give
rise to symmetric indefinite linear systems. A posteriori error estimators play an im-
portant role in devising a balanced stopping test (see section 7), however, ‘tight’ a
posteriori approximation error estimators for stochastic Stokes equations have not yet
been developed. Thus, it is sufficient to focus on devising a balanced stopping test in
MINRES for solving the symmetric indefinite linear system arising from mixed FEM
approximation of deterministic Stokes equations.

Stokes equations are used for modelling flows at ‘low speed’. Examples include
highly viscous and confined flows such as flow of blood etc.; see [7, p. 119]. Follow-
ing the notation in [7, p. 119], the steady-state Stokes solution (−→u , p) is defined on
a spatial domain D ⊂ Rd, (d = 1, 2, 3), where the vector valued velocity function
−→u (−→x ) : D → Rd and the scalar valued pressure p(−→x ) : D → R satisfy

−∇ · ∇−→u (−→x ) + ∇p(−→x ) =
−→
0 , ∀−→x ∈ D, (3.1a)

∇ · −→u (−→x ) = 0, ∀−→x ∈ D, (3.1b)
−→u (−→x ) = −→w (−→x ), ∀−→x ∈ ∂DD, (3.1c)

∇−→u (−→x ) · −→n − −→n p(−→x ) = −→s (−→x ), ∀−→x ∈ ∂DN . (3.1d)

Here ∂DD and ∂DN are the Dirichlet and Neumann parts respectively of the spatial
boundary ∂D. The functions −→w ,−→s are given and −→n denotes the outward normal to
∂D. The set of real numbers is denoted by R.

3.1 Weak formulation

The weak formulation of (3.1) is to find −→u ∈ H1
E(D) and p ∈ L2(D) such that

a(−→u ,−→v ) + b(−→v , p) = f(−→v ), ∀−→v ∈ H1
E0

(D),

b(−→u , q) = 0, ∀ q ∈ L2(D),
(3.2)
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where

a(−→u ,−→v ) :=

∫
D

∇−→u : ∇−→v −
∫
D

p (∇ · −→v ),

∇−→u : ∇−→v denotes componentwise dot product,

b(−→u , q) :=

∫
D

q (∇ · −→u ), f(−→v ) :=

∫
∂DN

−→s · −→v ,

L2(D) := {p : D → R |
∫
D

p2 <∞},

H1(D) := {u ∈ L2(D) |Ωαu ∈ L2(D),∀ |α| ≤ 1},

Ωα is distributional derivative of u,α = (α1, . . . , αd) is a multiindex, |α| :=
d∑
i=1

αi,

H1
E(D) := {−→v ∈ H1(D)d | −→v = −→w on ∂DD},

H1
E0

(D) := {−→v ∈ H1(D)d | −→v =
−→
0 on ∂DD}.

Here H1(D)d is the d-fold Cartesian product of the H1(D) space. For definition of
distributional derivative, see [16, p. 434].

3.2 Mixed FEM formulation

Choosing finite dimensional subspaces in (3.2), Xh
E ⊂ H1

E(D), Xh
E0
⊂ H1

E0
(D),

Mh ⊂ L2(D) leads to a mixed FEM formulation: find−→uh ∈ Xh
E , ph ∈Mh such that

a(−→uh,−→vh) + b(−→vh, ph) = f(−→vh), ∀−→vh ∈ Xh
E0
,

b(−→uh, qh) = 0, ∀ qh ∈Mh.
(3.3)

Let {
−→
φj}nu

j=1 be a basis for the finite dimensional space Xh
E0

. It can be extended

(loosely speaking)1 to form a basis {
−→
φj}nu+n∂

j=1 for Xh
E , so that any −→uh ∈ Xh

E can be
written as

−→uh =

nu +n∂∑
j=1

uj
−→
φj , uj ∈ R, (3.4)

where the known term
∑nu +n∂

j=nu +1 uj
−→
φj interpolates the boundary data on ∂DD.

Similarly, if {ψk}
np

k=1 be a basis for Mh, then any ph ∈Mh has an expansion

ph =

np∑
k=1

pkψk, pk ∈ R. (3.5)

1 The space X1
E is not a vector space unless −→w =

−→
0 .
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4 Block matrix form

Plugging the basis expansions from equations (3.4) and (3.5) in (3.3) results in the
following block matrix formulation2[

A BT

B O

] [
u
p

]
=

[
f
g

]
. (4.1)

The symmetric positive-definite matrix A (henceforth called vector-Laplacian ma-
trix) is a block diagonal matrix with the usual FEM stiffness matrix on its diagonals
and the matrix B is called the divergence matrix. Also, u = [u1, . . . , unu

]T ∈ Rnu ,
p = [p1, . . . , pnp ]

T ∈ Rnp , and the entries of A, B, f , and g are [7, p. 130]

A = [aij ] ∈ Rnu×nu , aij :=

∫
D

∇
−→
φi : ∇

−→
φj ,

B = [bkj ] ∈ Rnp×nu , bkj := −
∫
D

ψk (∇ ·
−→
φj),

f = [fi] ∈ Rnu , fi :=

∫
∂DN

−→s ·
−→
φi −

nu +n∂∑
j=nu +1

uj

∫
D

∇
−→
φi : ∇

−→
φj ,

g = [gk] ∈ Rnp , gk :=

nu +n∂∑
j=nu +1

uj

∫
D

ψk (∇ ·
−→
φj).

(4.2)

For the Stokes equations (continuous and discrete) to be well-posed, a compatibility
condition needs to be satisfied at the inflow and outflow boundaries (if any). More-
over, if the discrete system (4.1)–(4.2) is to be a faithful representation of the con-
tinuous problem (3.1), then the mixed FEM velocity and pressure spaces need to be
chosen carefully such that they satisfy an inf-sup (or correspondingly a (discrete)
uniform inf-sup) stability condition; see [7, p. 133 ff.] for more details. Typically,
choosing more pressure basis functions than velocity basis functions necessarily re-
sults in a singular linear system.

Using the popular (piecewise quadratic) Q2–P−1 (piecewise linear, discontinu-
ous across elemental boundaries) finite elements or the (Taylor–Hood)Q2–Q1 (piece-
wise bilinear pressure) finite elements for velocity and pressure space combination
leads to inf-sup stable approximations on a rectangular grid. However, the use of
higher order finite elements might not always provide more accurate FEM solutions,
especially if the true solution is not very regular. Because of this reason and from
the ease of programming and computational efficiency, Q1–P0 (piecewise constant
pressure) finite elements orQ1–Q1 finite elements are attractive choices for velocity-
pressure FEM basis. But these approximations are not inf-sup stable on a rectangu-
lar grid. In order to make these finite element methods stable, a symmetric positive
semi-definite stabilization matrix C is introduced in place of the zero block of the
coefficient matrix in (4.1). A detailed discussion about the stabilization rationale and
strategy for the discrete Stokes system can be found in [7, pp. 139–149].

2 Some discretizations of the Stokes equations can lead to nonsymmetric linear systems. But such dis-
cretizations are not considered here.
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The symmetric coefficient matrix K :=

[
A BT

B −C

]
of stabilized discrete Stokes

system is always indefinite; this follows by applying Sylvester’s law of inertia on the
matrix K [7, p. 189]. Moreover, it will be assumed that K is nonsingular, that is, it
has no zero eigenvalue. Since K is symmetric indefinite, MINRES is the popular and
robust iterative method of choice for solving discrete linear systems with coefficient
matrix K.

5 An overview of MINRES

Iteratively solving Kx = b using MINRES [7, chapter 4] involves constructing a
sequence of iterates x(k) (k = 1, 2, . . .) from the shifted Krylov space

x(0) + span {r(0), Kr(0), . . . ,Kk− 1r(0)}, (5.1)

where x(0) is the initial solution vector, r(0) = b − Kx(0) is the initial residual
and the spanning space Kk(K, r(0)) := span {r(0), Kr(0), . . . ,Kk− 1r(0)} is the
Krylov subspace of order k generated by the matrix K and the vector r(0). In the

context here x :=

[
u
p

]
, b :=

[
f
g

]
. The residual r(k) at the kth iterative step is

r(k) = b − Kx(k) = r(0) + span {Kr(0), K2r(0), . . . ,Kkr(0)}. (5.2)

The MINRES method chooses the iterate x(k) from the space (5.1) such that it min-
imizes the Euclidean norm ‖r(k)‖2 :=

√
(r(k))T r(k) of the corresponding residual

r(k) over the shifted space in the right-hand-side of (5.2).
A basis of orthonormal vectors {w(1), . . . ,w(k)} is constructed for the Krylov

space (5.1), where w(1) := b/‖b‖. This construction process of basis is known as
the Lanczos method [14] where the basis vectors are generated iteratively using the
recurrence

KWk =WkTk + tk+1,kw
(k+1)eTk=:Wk+1 T k, (5.3)

where Wk := [w(1), . . . ,w(k)] and ek is the kth vector of the canonical basis. The
tridiagonal symmetric matrix Tk contains the orthogonalization coefficients and T k is
the tridiagonal matrix Tk with an additional final row [0, . . . , 0, tk+1,k]; for complete
details see [10, section 2.5]. The constant tk+1,k is chosen such that ‖w(k+1)‖ = 1.
The Lanczos step (5.3) provides the following characterization of the iterate x(k) and
the residual r(k)

x(k) = x(0) +Wky
(k), (5.4a)

r(k) = b−Kx(k) =Wk+1

(
e1‖r(0)‖ − T ky(k)

)
. (5.4b)

By solving the least squares problem miny(e1‖r(0)‖−T ky), the minimizing solution
x(k) is computed. Here e1 is the first canonical basis vector in (k + 1) dimensions.
In order to solve the least squares problem, a QR factorization (see [9, p. 246]) of T k
is performed using k Givens rotations.
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The eigenvalues of Tk = WT
k KWk are known as the Ritz values (see [9, p.

551]). These can be computed cheaply and readily in the Lanczos method at each
iterative step of the MINRES solver. As the iteration progresses, the extremal Ritz
values provide an increasingly better approximation to the corresponding extremal
eigenvalues of K or of M−1K if the matrix is preconditioned with matrix M . This
point will be discussed further in section 7.6.

From the minimal residual criterion, the following MINRES convergence esti-
mate is obtained.

‖r(k)‖2 ≤ min
pk ∈Πk, pk(0)= 1

max
j
|pk(λj)| ‖r(0)‖2, (5.5)

where Πk denotes the set of real polynomials of degree less than or equal to k and
λj’s are the eigenvalues of K. In case of preconditioned linear system with (symmet-
ric positive-definite) preconditioner M , (5.5) becomes [7, p. 192]

‖r(k)‖M−1

‖r(0)‖M−1

≤ min
pk ∈Πk, pk(0)= 1

max
j
|pk(λj)|, (5.6)

where ‖r(k)‖M−1 :=
√

(r(k))TM−1r(k) is monotonically decreasing with iteration
count k in preconditioned MINRES.

6 Block preconditioning

Typically, matrices arising from FEM approximation are ill-conditioned with respect
to discretization parameters. Thus, preconditioning is required to accelerate conver-
gence. It is advocated in [15] that block diagonal preconditioners are intrinsic choices
for symmetric linear systems (in saddle point problems), which arise from numerical
approximation of PDEs. Proceeding in this flavour, it has been argued in [7, p. 194 ff.]

that the symmetric matrix
[
A O
O BA− 1BT + C

]
is the ‘desired’ but an impractical

preconditioner (since BA− 1BT + C is a dense matrix and hence computing its in-
verse and also of vector-Laplacian matrix is not cheap) for solving the preconditioned
linear system

M− 1K

[
u
p

]
= M− 1

[
f
g

]
, (6.1)

where M :=

[
P O
O S

]
is a preconditioner. A practical choice of P is a block diagonal

matrix with each block a preconditioner for the scalar Laplacian matrix (which is on
the diagonal of A). It would be ideal to have P to be spectrally equivalent to A,
that is, there exist positive constants δ1 and ∆1 that are independent of discretization
parameters such that

δ1 ≤
uTAu

uTPu
≤ ∆1, ∀u ∈ Rnu . (6.2)
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Indeed this is the case when a Laplacian multigrid preconditioner is used; see [7,
lemma 4.2, p. 197]. For the block S of the preconditioner, a good choice is the pres-

sure mass matrix Q = [qkl], qkl :=

∫
D

ψkψl, ∀ k, l = 1, . . . , np [7, p. 172].

The matrixQ is spectrally equivalent to the matrixBA− 1BT +C, that is, there exist
positive constants γ and Γ that are independent of discretization parameters such that
the following holds [7, p. 193–194].

γ2 ≤ qT (BA− 1BT + C)q

qTQq
≤ Γ 2 ≤ d, ∀q ∈ Rnp and q 6= 1, (6.3)

where d is the dimension of the domainD. In fact the particular choice of S = diag(Q)
for continuous (P1 or Q1)3 makes S spectrally equivalent to Q, that is, there exist
positive constants δ2 and ∆2 that are independent of discretization parameters [7, pp.
198–199] such that

δ22 ≤
qTQq

qTSq
≤ ∆2

2, ∀q ∈ Rnp . (6.4)

Note that the constant γ in (6.3) is the uniform inf-sup constant when C = 0 and
δ2 = 2γ2, where δ is the uniform inf-sup constant for the case when C 6= 0.

Having formulated a mixed FEM matrix formulation of (3.1) and discussed briefly
about MINRES preconditioners to be used for solving the corresponding discrete lin-
ear system, the balanced stopping strategy is presented in the next section.

7 A balanced stopping test

According to [25], a natural norm for a function in the space of square integrable
functions is its L2 norm while the L2 norm of the gradient of the function is a natural
choice if the function is in H1

E0
. Thus, a natural choice of norm (‖ · ‖E ) for any

(−→u , p) ∈ H1
E0

(D)× L2(D) is4

‖(−→u , p)‖E := ‖∇−→u ‖2 + ‖p‖2, (7.1)

where the L2 norm ‖ · ‖2 is defined as ‖p‖2 := (
∫
D
p2)1/2. In terms of vectors, ‖ · ‖E

translates into the norm ‖ · ‖E

‖e‖E :=
√
eTEe =

√
eT1 Ae1 + eT2Qe2, ∀ e = [eT1 , e

T
2 ]
T ∈ Rnu +np ,

(7.2)

where e1 ∈ Rnu , e2 ∈ Rnp , and E :=

[
A O
O Q

]
. Since the vector-Laplacian matrix

A and the pressure mass matrix Q are both symmetric positive-definite, the matrix E
is also symmetric positive-definite and hence ‖ · ‖E is indeed a norm on Rnu +np .

3 ForP0 pressure approximation, Q is in fact diagonal.
4 Note that∇−→u is to be interpreted componentwise.
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7.1 Error equation

For a given approximation, by the triangle inequality at iteration k

‖(−→u −
−−→
u
(k)
h , p − p

(k)
h )‖E︸ ︷︷ ︸

total error

≤ ‖(−→u − −→uh, p − ph)‖E︸ ︷︷ ︸
approximation error

+ ‖(−→uh −
−−→
u
(k)
h , ph − p(k)h )‖E︸ ︷︷ ︸

algebraic error

,

(7.3)
where (−→u , p) is the true solution, (−→uh, ph) is the true mixed FEM solution, and

(
−−→
u
(k)
h , p

(k)
h ) is the FEM solution formed from the kth iterate of the chosen iterative

solver. From (7.1), it follows by the definition of ‖ · ‖E that

‖(−→uh −
−−→
u
(k)
h , ph − p

(k)
h )‖E = ‖∇(−→uh −

−−→
u
(k)
h )‖2 + ‖ph − p(k)h ‖2. (7.4)

Note that

‖∇(−→uh −
−−→
u
(k)
h )‖2 =

√
(e

(k)
1 )TAe

(k)
1 , e

(k)
1 = [u1h − u

(k)
1h
, . . . , unuh

− u(k)nuh
]T ,

‖ph − p
(k)
h ‖2 =

√
(e

(k)
2 )TQe

(k)
2 , e

(k)
2 = [p1h − p

(k)
1h
, . . . , pnph

− p(k)nph
]T ,

(7.5)

where −→uh −
−−→
u
(k)
h =

∑nu

i=1(uih − u
(k)
ih

)
−→
φi , ph − p

(k)
h =

∑np

j=1(pjh − p
(k)
jh

)ψj . Also,
for any two nonnegative real numbers a and b [7, p. 213]

√
a+ b ≤

√
a +
√
b ≤

√
2
√
a+ b. (7.6)

Putting a = ‖∇(−→uh −
−−→
u
(k)
h )‖22, b = ‖ph − p

(k)
h ‖22 in (7.6) and using (7.5), (7.2)

gives

‖e(k)‖E ≤ ‖∇(−→uh −
−−→
u
(k)
h )‖2 + ‖ph − p(k)h ‖2 ≤

√
2‖e(k)‖E . (7.7)

For enclosed flow problems, a slight variant of the L2 norm known as the ‘quotient
space norm’ ‖ · ‖0,D is used for measuring pressure.

Here ‖qh‖0,D = ‖qh − 1
|D|
∫
D
qh‖2, |D| =

∫
D

for any qh ∈ Mh [7, p. 128].
Note that

‖qh −
1

|D|

∫
D

qh‖22 =

∫
D

(
qh −

1

|D|

∫
D

qh

)2

=

∫
D

qh qh +

∫
D

(
1

|D|

∫
D

qh

)2

−
∫
D

2qh

(
1

|D|

∫
D

qh

)
= ‖qh‖22 +

1

|D|

(∫
D

qh

)2

− 2
1

|D|

(∫
D

qh

)2

= ‖qh‖22 −
1

|D|

(∫
D

qh

)2

≤ ‖qh‖22,

(7.8)
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since 1
|D|
(∫
D
qh
)2 ≥ 0. So, ‖qh‖0,D ≤ ‖qh‖2, ∀ qh ∈Mh. Thus, the algebraic error

‖(−→uh −
−−→
u
(k)
h , ph − p

(k)
h )‖E = ‖∇(−→uh −

−−→
u
(k)
h )‖2 + ‖ph − p(k)h ‖0,D (in quotient

space norm) can be bounded from above by the usual L2 norm of the algebraic error,
that is

‖∇(−→uh −
−−→
u
(k)
h )‖2 + ‖ph − p(k)h ‖0,D ≤ ‖∇(

−→uh −
−−→
u
(k)
h )‖2 + ‖ph − p(k)h ‖2. (7.9)

Using (7.9) one can obtain the same bound (7.7) for the enclosed flow algebraic error
at kth iterative step in terms of ‖e(k)‖E norm of the kth iteration error.

A handle on the approximation error and the total error (approximation error at
the kth iteration) is obtained with a posteriori error estimators η and η(k) respectively.
The a posteriori error estimator η(k) is equivalent to the total error in the sense that

c1 η
(k) ≤ ‖∇(−→u −

−−→
u
(k)
h )‖2 + ‖p − p

(k)
h ‖2 ≤ C1 η

(k), with
C1

c1
∼ O(1),

(7.10)
If the a posteriori error estimators η and η(k) are assumed to be ‘close’ estimates of
the approximation error and total error (at kth iteration step) respectively, then the
error equation (7.3) can be rewritten as

η(k) ' η + ‖e(k)‖E , k = 0, 1, 2, . . . . (7.11)

The relation ' is a result of (7.10) and (7.7). In fact it follows from (7.11) that when
the norm ‖e(k)‖E of the iteration error e(k) is ‘small’, then {η(k)} converges to η.
Thus, one would stop optimally when ‖e(k)‖E and the a posteriori error estimate η(k)

of the total error are balanced, that is, stop at the first iteration k∗ such that

‖e(k
∗)‖E ≤ η(k

∗). (7.12)

Remark 7.1 Notice from (7.11) and (7.12) that at the optimal stopping iteration k∗,
{η(k)} would converge with some accuracy to η. Thus, the iterative strategy here can
be looked upon as constructing a sequence {η(k)} converging to η.

In the subsequent subsections, a brief discussion on the a posteriori error estimation
for the Stokes equations is done and tractable bounds on difficult to compute ‖e(k)‖E
are derived.

7.2 Tractable bounds on algebraic error

In preconditioned MINRES with symmetric positive-definite preconditioner M , the

norm ‖r(k)‖M−1 :=
√

r(k)
T
M−1r(k) is monotonically decreasing with iteration

count k and hence a suitable surrogate norm for computations in place of ‖e(k)‖E .
Here r(k) := Ke(k) is the residual at iteration k. Thus, one obtains an expression for
the algebraic error at kth iterative step in terms of the iteration residual r(k), that is

‖e(k)‖2E = (e(k))TEe(k) = (r(k))TK−TEK−1r(k). (7.13)
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It follows from (7.13) that bounding ‖e(k)‖E by ‖r(k)‖M−1 requires computing con-
stants c2 and C2 such that

c2 ≤
(r(k))

T
K−TEK−1r(k)

(r(k))TM−1r(k)
≤ C2, (7.14)

This leads to computing extremal Rayleigh quotient [9, p. 453] bounds ofK−TEK−1

and M−1, that is, find λmin, λmax ∈ R such that

λmin ≤
vTK−TEK−1v

vTM−1v
≤ λmax, ∀v ∈ Rnu +np . (7.15)

Equation (7.15) implies that one needs to compute generalized extremal eigenvalues
for K−TEK−1 and M−1, that is, find the extremal eigenvalues λ such that

K−TEK−1y = λM−1y, y ∈ Rnu +np is an eigenvector. (7.16)

Note that the matricesK,E are symmetric so the matrixK−TEK−1 is also symmet-
ric. Also, since M is symmetric positive-definite, its inverse M−1 is also symmet-
ric positive-definite. So, the generalized eigenvalue problem (7.16) can be converted
(theoretically) into a symmetric algebraic eigenvalue problem through a Cholesky
factorization of M−1. Hence all λ’s in (7.16) are real. Let z = K−1y, then (7.16)
becomes

K−TEz = λM−1Kz, z ∈ Rnu +np . (7.17)

It is clear from the discussions in section that an ideal but an impractical choice for
the preconditioner M is the matrix E. A more practical choice is where the matrices
P and S satisfy (6.2) and (6.4) respectively and hence M is spectrally equivalent
to E. Thus, for ‘good’ choices of P and S, M will ‘behave like’ E after a ‘few’
iterations. Substituting M for E in (7.17), and using that K is symmetric gives

(M−1K)
−1

z = λM−1Kz, z ∈ Rnu +np . (7.18)

LetW :=M−1K, then (7.18) can be rearranged as the following eigenvalue problem

W 2z = µz, z ∈ Rnu +np , (7.19)

where µ = 1/λ. Note that since W = M−1K is symmetric and nonsingular, all
its eigenvalues are real and nonzero. So, the eigenvalues µ’s of W 2 (which are the
squares of eigenvalues of W ) are all real and greater than zero. So, any λ cannot be
zero; in fact all λ’s are greater than zero.

In light of (7.17), (7.18), and (7.19) the eigenvalue problem (7.16) is transformed
into finding the largest (µmax) and smallest (µmin) eigenvalues of W 2 such that

W 2z = µz, z ∈ Rnu +np is an eigenvector. (7.20)

Since the eigenvalues ofW 2 are just the square of the eigenvalues ofW , it is sufficient
to compute the eigenvalues of W . In fact, one obtains

µmax = max{|θ+max|2, |θ−min|
2}, (7.21a)

µmin = min{|θ+min|
2, |θ−max|2}, (7.21b)
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where θ’s are eigenvalues of W such that

θ+max – maximum positive eigenvalue, θ+min – minimum positive eigenvalue,

θ−max – maximum negative eigenvalue, θ−min – minimum negative eigenvalue.

7.3 Stopping criteria

Using λmin = 1
µmax

, λmax = 1
µmin

; (7.14), (7.15), and (7.21) can be combined into

1

max{|θ+max|2, |θ−min|2}
≤ (r(k))

T
K−TEK−1r(k)

(r(k))TM−1r(k)
≤ 1

min{|θ+min|2, |θ
−
max|2}

.

(7.22)
It follows from (7.22) that

1√
max{|θ+max|2, |θ−min|2}

≤ ‖e(0)‖E
‖r(0)‖M−1

;
‖e(k)‖E
‖r(k)‖M−1

≤ 1√
min{|θ+min|2, |θ

−
max|2}

.

(7.23)
Equation (7.23) leads to the following upper bounds on ‖e(k)‖E , that is

‖e(k)‖E ≤
1√

min{|θ−max|2, |θ+min|2}
‖r(k)‖M−1 ,

‖e(k)‖E
‖e(0)‖E

≤

√
max{|θ+max|2, |θ−min|2}
min{|θ−max|2, |θ+min|2}

‖r(k)‖M−1

‖r(0)‖M−1

⇐⇒ ‖e(k)‖E ≤

√
max{|θ+max|2, |θ−min|2}

min{|θ−max|2, |θ+min|2}
‖r(k)‖M−1 .

(7.24)

Thus, from (7.12) it follows that an optimal stopping point is the first iteration k∗ at
which one of the following tests is satisfied√

max{|θ+max|2, |θ−min|2}

min{|θ−max|2, |θ+min|2}
‖r(k

∗)‖M−1 ≤ η(k
∗). (7.25)

1√
min{|θ−max|2, |θ+min|2}

‖r(k
∗)‖M−1 ≤ η(k

∗). (7.26)

Henceforth, the stopping test (7.25) will be called the stronger stopping test while the
stopping test (7.26) will be called the weaker stopping test.
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7.4 A posteriori error estimation

The a posteriori error estimation technique used in the software IFISS for Stokes
equations is due to [1] and it essentially involves solving a local Poisson problem
for each velocity component; see [7, section 3.4.2]. The a poseriori error estima-
tor based on this strategy provides ‘acceptable’ close estimates of the true total (ap-
proximation) errors. In fact for Q1–P0 rectangular finite elements, this a posteri-
ori error estimator is both a global upper bound, (that is, it is reliable) and a lo-
cal elementwise bound (that is, it is efficient) on the actual error; see [13] for full
details. A comparison of η [7, table 3.4, p. 169] and ‘actual’ approximation error
‖∇(−→u −−→uh)‖2 + ‖p− ph‖0,2 [7, table 3.3, p. 166] are tabulated in Table 7.1. The
results presented therein are for the Stokes test problem 1 [7, p. 126] in section 8.1
withQ1–P0 rectangular finite elements on a uniform grid and mesh step size h.

Table 7.1 Actual approximation errors, a posteriori errors, and effectivity indices forQ1–P0 rectangular
finite elements on uniform grids for Stokes test problem 1.

h η ‖∇(−→u −−→uh)‖2 + ‖p− ph‖0,2 βeff

1/4 9.501 18.729 0.51
1/8 5.307 8.853 0.59

1/16 2.761 4.290 0.64
1/32 1.399 2.116 0.66

The entries for corresponding effectivity index βeff =
η

‖∇(−→u −−→uh)‖2 + ‖p− ph‖0,2
in Table 7.1 show that a posteriori approximation error estimator employed here is an
‘acceptable close’ estimate of the true error.

7.5 Computational logistics

The M−1 norm of the iteration residual, that is, ‖r(k)‖M−1 is readily available in
preconditioned MINRES. Also, it is advisable in general to compute η(k) periodically
(say every 4–5 iterations) to minimize the overall algorithmic cost. The eigenvalues
involved in the stopping test (7.25) and (7.26) can be estimated cheaply on-the-fly,
the strategy for which is described in the next subsection.

7.6 Cheap estimation of eigenvalues in stopping test

Note that the extremal eigenvalues θ+max, θ−min of the preconditioned matrix can cheaply
be estimated by the corresponding extremal Ritz values θk+max, θk−min (the maximum pos-
itive Ritz value and the minimum negative Ritz value respectively) of the Lanczos
matrix Tk (see section 5) in preconditioned MINRES.5 As the iteration progresses,

5 This relationship was also exploited in [22].
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the extremal Ritz values provide an increasingly better approximation to the corre-
sponding extremal eigenvalues of M−1K. This holds true for even small iteration
index k, and has been discussed extensively in [18, chapter 13].

But for the interior most eigenvalues θ+min and θ−max, the Ritz values usually provide
a poor estimation. So, the interior most eigenvalues are estimated here by computing
the corresponding interior most eigenvalues θk+min, θk−max of the following generalized
eigenvalue problem

TTk T ky = θharTky, y is an eigenvector. (7.27)

where T k is the R(k+1)×k Lanczos matrix. The eigenvalues θhar in (7.27) are known
as harmonic Ritz values; see [3, section 3.2, p. 41–43]. Here θk+min and θk−max denote
the minimum positive harmonic Ritz value and the maximum negative harmonic Ritz
value respectively. Unlike the Ritz values, which approximate first the extremal eigen-
values of the preconditioned matrix, the harmonic Ritz values approximate first the
interior most eigenvalues of the preconditioned matrix.6 This is better than using Ritz
values to estimate the actual interior most eigenvalues since the interior most Ritz val-
ues might take a long time to provide a good approximation (if at all) to the interior
most eigenvalues.

Further insight into the eigenvalues of the preconditioned matrix is obtained from
the following result in [7, theorem 4.7, p. 201].

Theorem 7.1 The eigenvalues of M−1K satisfy

−∆2
2

(
Γ 2 + Υ

)
≤ θ−min ≤ θ−max ≤

1

2

(
δ1 −

√
δ21 + 4δ1γ2δ22

)
,

δ1 ≤ θ+min ≤ θ+max ≤ ∆1 + Γ 2∆2
2,

(7.28)

where δ1, ∆1, δ2, ∆2, γ, and Γ are the same as in (6.2), (6.4), and (6.3) respectively.
The constant Υ satisfies

qTCq

qTQq
≤ Υ, ∀q ∈ Rnp . (7.29)

Proceeding along the lines of [23] note that for M = E, δ1 = ∆1 = 1. Also, for P0

pressure approximation δ2 = ∆2 = 1. In any case if preconditioner blocks P and S
‘closely’ approximate A and Q respectively, then

δ1 ' 1, ∆1 ' 1, δ2 ' 1, and ∆2 ' 1. (7.30)

Also, the asymptotic simplification (1 + x)
1
2 = 1 + 1

2x gives

1

2

(
δ1 −

√
δ21 + 4δ1γ2δ22

)
' 1

2

(
1 −

√
1 + 4γ2

)
' −γ2. (7.31)

Combining (7.28), (7.30), and (7.31) leads to

θ−max ' − γ2 ≤ 1 ' θ+min. (7.32)

6 This approach was also adopted in [23].



16 Pranjal

The validity of the equivalence θ−max ' −γ2 for C = 0 case can be further confirmed
from the discussions in [7, pp. 196–197]. If γ2 ≤ 1, which is usually the case7 then

from (7.32) it follows
1√

min{|θ−max|2, |θ+min|2}
=

1√
|θ−max|2

' 1√
γ4

=
1

γ2
. In light

of this analysis, the weaker stopping test (7.26) can be transformed into

1

γ2
‖r(k

∗)‖M−1 ≤ η(k
∗) ⇐⇒ ‖r(k

∗)‖M−1 ≤ γ2 η(k
∗). (7.33)

An equivalence similar to (7.32) holds for maximum positive eigenvalue and mini-
mum negative eigenvalue

θ−min ' − (Γ 2 + Υ ) ≤ (1 + Γ 2) ' θ+max. (7.34)

Since 0 ≤ Υ ≤ 1 [7, p. 200], from (7.34)
√

max{|θ+max|2, |θ−min|2} =
√
|θ+max|2 '

(1 + Γ 2) ≤ 1 + d. Combining this with min{|θ−max|2, |θ+min|2} = |θ−max|2 ' γ4, the
stronger stopping test (7.25) becomes

1 + d

γ4
‖r(k

∗)‖M−1 ≤ η(k
∗) ⇐⇒ ‖r(k

∗)‖M−1 ≤
γ4

1 + d
η(k

∗). (7.35)

In presence of ‘tight’ a posteriori error estimators and ‘good’ preconditioner blocks,
the stopping test (7.33) or (7.35) can be used and they hold for both C = 0 and
C 6= 0.

Table 7.2 Comparison of literature and improved stopping tests forQ2–P1 finite elements on rectangular
uniform grids for Stokes test problem 1.

h k∗lit e∗lit k∗imp e∗imp

1/8 10 6.0e-2 8 5.4e-2
1/16 17 1.0e-5 15 5.6e-3
1/32 21 3.1e-4 19 1.7e-3
1/64 24 1.1e-4 24 1.1e-4

In fact for the case C = 0, using (7.33) one stops optimally a ‘bit’ earlier than

using the stopping test ‖r(k∗)‖M−1 ≤
γ2√
2
η(k

∗) of [23]. This happens because

γ2√
2
< γ2 and hence an ‘improvement’ of constants (over those in the existing liter-

ature) involved in the stopping test for the case C = 0 has been obtained here. Note
that this improvement is only a theoretical result. Since

√
2 ≈ 1.41, in practice a gain

of only ‘very few’ (if any) iterations is obtained by using γ2 over
γ2√
2

in balanced

stopping (7.33); see Table 7.2. The stopping iteration k∗lit and k∗imp corresponding to

7 In fact γ2 ≤ Γ 2 ≤ d, where d (equal to 2 or 3 here) denotes the dimensionality of the domain D.
But for C = 0 with Dirichlet boundary conditions in R2, γ2 ≤ 1; see [7, theorem 3.22, p. 174].
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the stopping test in [23] and (7.33) respectively are tabulated in Table 7.2. Also, at
each grid level tabulated are e∗lit := |η−η(k

∗
lit)| and e∗imp := |η−η(k

∗
imp)|. These denote

the corresponding absolute differences in a posteriori error estimates from the actual
a posteriori estimate η obtained using the ‘true’ solution (MATLAB backslash solu-
tion). It follows from Table 7.2 that savings of only a few iterations is obtained on
using the stopping test (7.33) over that in [23]. Also, at the stopping iteration for both
these stopping tests, the sequence {η(k)} has converged with some accuracy to the
true η; see columns for e∗lit and e∗imp. These numbers have been obtained by running
itsolve stokes with default options in IFISS toolbox of MATLAB after setting
up the Stokes test problem 1 that is described in section 8.1. The constants involved
in the stopping test can be modified suitably in the function param est in IFISS.

7.7 Choice of stopping test

A drawback of using the stopping test (7.25) or (7.26) is that they might lead to pre-
mature stopping because one or more of the computed extremal Ritz values or the in-
terior most harmonic Ritz values would have not yet converged to their corresponding
(discrete system) actual eigenvalue respectively. Although this convergence is usually
quite fast, it is generally difficult to determine beforehand the iteration count at which
they will converge. Hence, it is proposed here to store the required Ritz and harmonic
Ritz values of previous 4–5 consecutive iterations and apply the stopping test (7.25)
or (7.26) only when the absolute successive differences of these values for each of
the required quantities is below a prescribed tolerance of 10−2 (say).8

Substituting (7.33) for (7.26) and (7.35) for (7.25) overcomes this drawback. This
is because the constants in the stopping tests now depend on d, which is trivially
known and the discrete inf-sup constant γ, which in many practical applications is
known beforehand and depends only on the topology of the spatial domain; see [6].
However, the stopping tests (7.33) and (7.35) were derived using many equivalences
(') which may not be tight in general. Hence, in presence of a preconditioner M
which is spectrally equivalent to E, it will be better to employ the weaker or the
stronger stopping test based on interior most harmonic Ritz values and extremal Ritz
values.

The resulting algorithm known as SADDLE MINRES in the software IFISS is
given in the form of pseudo-code in Figure 7.1. The external functions matvecK,
precM compute the action of the matrices K and M−1 on a vector respectively
while the function Stokes error est computes the a posteriori error estimate.

Also, b =

[
f
g

]
denotes the right-hand-side vector in Figure 7.1. This algorithm can

easily be modified for the weaker stopping test. A practical implementation of this
algorithm should incorporate periodic computations of the a posteriori error estimate.
Also, it should involve storage of previous 4–5 values from consecutive iterations for
each of the Ritz and the harmonic Ritz values involved in the balanced stopping test.

8 For the weaker stopping test this procedure has to be done for only the harmonic Ritz values.
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Algorithm: SADDLE MINRES
given vectors b, x(0) and functions matvecK, precM, param intest, param extest
Stokes error est
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

set r(0) = b− matvecK (x(0)), r̂(0) = precM (r(0)), ρ0 =
√

(r(0))T r̂(0)

initialize basis vectors: w = r̂(0)/ρ0, p(−1) = 0, p(0) = r(0)/ρ0
initialize auxiliary vectors: d(−1) = 0, d(0) = 0
initialize projected right-hand side: f = ρ0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for k = 1, 2, . . . until convergence do

generate new basis and auxiliary vectors: p(k) = matvecK (w), d(k) = w
if k>1, tk−1,k = tk,k−1, p(k) = p(k) − p(k−1)tk−1,k

tk,k = wTp(k), p(k) = p(k) − p(k−1)tk,k
compute preconditioned basis vector: w = precM (p(k))

tk+1,k =
√

wTp(k), p(k) = p(k)/tk+1,k , w = w/tk+1,k

compute parameters for stopping test:
coefext = param extest (Tk)
coefint = param intest (Tk , tk+1,k)
coef = coefext/(coefint)2

apply previous rotations:
if k>2, ρ1:2 = Sk−2tk−2:k−1,k , ρ2:3 = Sk−1[ρ2; tk,k]
elseif k=2, ρ2:3 = Sk−1t1:2,2
elseif k = 1, ρ3 = t1,1

compute new rotations:
δ̂ =

√
ρ23 + t2k+1,k , c = |ρ3|/δ̂, s = sign(ρ3)tk+1,k/δ̂

apply new rotations: ρ3 = cρ3 + stk+1,k , f̂ = −sf , f = cf , Sk = [c s;−s c]
update auxiliary vector: d(k) = (d(k) − d(k−1)ρ1 − d(k−2)ρ2)/ρ3
update solution: x(k) = x(k−1) + d(k)f̂
compute discretization error estimate : η(k) = Stokes error est (x(k))
stopping test: if coef·|f̂ | ≤ η(k), convergence
update residual norm: f = f̂

enddo

function coefext = param extest (Tk)
compute the smallest negative eigenvalue θ

k−
min and the largest positive eigenvalue

θ
k+
max of Tk

if |θk−min |
2 ≤ |θk+max|2 set coefext = θ

k+
max

else set coefext = |θk−min |
endfunction

function coefint = param intest (Tk , tk+1,k)

compute the smallest positive eigenvalue θ
k+
min and the largest negative eigenvalue

θ
k−
max of generalized eigenvalue problem TTk Tk and Tk

if |θk−max|2 ≤ |θ
k+
min |

2 set coefint = |θk−max|
else set coefint = |θk+min |

endfunction

Fig. 7.1 The SADDLE MINRES algorithm expressed in pseudo-code.

8 Computational results

To provide a proof-of-concept, some computational results are presented in this sec-
tion for two test problems in IFISS. The stronger stopping test (7.25) is employed for
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both the test problems in order to exhibit the nuances associated with using a stopping
test based on both interior most and exterior most eigenvalues of the preconditioned
matrix. It has also been observed from computations for the test problems considered
here that the relevant extremal Ritz values and the interior most harmonic Ritz values
have converged with some accuracy before optimal stopping has been reached. So,
one does not need to store previous 4-5 values from consecutive iterations for these
quantities. Also, instead of computing the a posteriori error estimator periodically, it
is computed here at each iteration to illustrate the balanced stopping methodology.

There are four preconditioners built in IFISS for the discrete Stokes problem.
They are: diagonal (DIAG) preconditioner—the diagonal matrix which is formed
from the diagonal elements of A and the diagonal entries of Q—the block ideal
preconditioner E, block geometric multigrid (GMG), and block algebraic multigrid
(AMG) [7, chapter 4] preconditioners. Results are presented here for block ideal and
block AMG preconditioners for both the test problems. Note that the block AMG
preconditioner is employed with its specified default settings in IFISS.

Piecewise bilinear (Q1) finite elements are used for FEM velocity space and P0

finite elements are employed for FEM pressure space on rectangular grids. The uni-
form mesh step size h is used for the test problem 1 while 2l × (2l × 3) grids are
employed for the test problem 2. The built-in stabilization parameter value in IFISS
is used for setting up the matrix block C in K for both the test problems.

8.1 Test Problem 1

The Stokes PDE (3.1) is defined on a square domain D = (−1, 1)× (−1, 1) with
Dirichlet boundary condition specified everywhere on the boundary. This (enclosed
flow) problem [7, p. 126] can be generated by choosing example 4 when running
the driver stokes testproblem in IFISS. On a given grid, the ‘true’ algebraic

Table 8.1 MINRES iteration counts and errors along with extremal Ritz values and interior most harmonic
Ritz values for block ideal preconditioning on uniform grids for Stokes test problem 1.

h ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

1/16 33 48 15 1.3e-2 -1.2994 -0.2911 1.000 1.6152 3202
1/32 33 48 24 5.3e-4 -1.3173 -0.1949 1.000 1.6170 12546
1/64 33 50 27 1.2e-4 -1.3184 -0.1841 1.000 1.6175 49666
1/128 33 50 30 2.8e-5 -1.3192 -0.1781 1.000 1.6177 197634

solution x is obtained from (block ideal/block AMG) preconditioned MINRES with a

tight relative residual
‖r(k)‖M−1

‖r(0)‖M−1

reduction tolerance of 1e-14. From x, the ‘exact’

a posteriori error estimate η is computed. The starting vector x(0) is generated using
the MATLAB function rand. Also, let η(k

∗) denote the a posteriori error estimate at
the optimal stopping iteration k∗ and e∗η := |η − η(k∗)|. These values are tabulated
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in Tables 8.1 and 8.2 for block ideal and block AMG preconditioner respectively on
various grids.

Table 8.2 MINRES iteration counts and errors along with extremal Ritz values and interior most harmonic
Ritz values for block AMG preconditioning on uniform grids for Stokes test problem 1.

h ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

1/16 37 54 18 1.1e-5 -1.3010 -0.2815 0.8676 1.5989 3202
1/32 39 55 27 5.2e-6 -1.3069 -0.2017 0.8375 1.6093 12546
1/64 41 58 31 8.4e-7 -1.3088 -0.1816 0.8159 1.6119 49666

1/128 41 58 35 1.7e-6 -1.3095 -0.1756 0.8070 1.6134 197634

The e∗η columns show that {η(k)} has converged with a good accuracy to the true
a posteriori error estimate η at the balanced stopping iteration, see Remark 7.1. The
effectiveness of the balanced stopping test can be gauged by comparing the itera-
tion counts k∗ needed to satisfy the balanced stopping test with the iteration counts

ktol1, ktol2 needed to satisfy a fixed relative residual
‖r(k)‖M−1

‖r(0)‖M−1

reduction tolerance

of 1e-6 (which is the default tolerance in MATLAB solvers) and 1e-9 respectively.
In the absence of a balanced stopping test, these are realistic choices for algebraic er-
ror tolerance. It is unlikely that the user will know the stopping point k∗ a priori
and is likely to provide a tighter tolerance than actually required. This would re-
sult in needless computations. A quick glance at the columns for optimal iteration
counts k∗ and those of ktol2 shows that a significant number of iterations is wasted
(without decreasing the approximation error) by not using the balanced stopping test.
Typically, employing the balanced stopping test (7.25) or (7.26) would result in sig-
nificant savings in computational work of the solver, especially if one were to solve
the underlying PDE adaptively using FEM. These computational savings are further
significant in light of huge size of some of these linear systems; see the last (#dof)
column in Tables 8.1 and 8.2.

The stopping tests (7.35) and (7.33) suggest that the relevant eigenvalues involved
in the stopping tests (7.25) and (7.26) are independent of the discretization parame-
ters. Indeed this is the case, which can be seen from the column entries at balanced
stopping iteration for extremal Ritz values θ

k∗−
min, θ

k∗+
max and interior most harmonic Ritz

values θ
k∗−
max, θ

k∗+
min estimates of the corresponding eigenvalues of the discrete system.

Also, a comparison of the corresponding eigenvalue (Ritz and harmonic Ritz) esti-
mates for block AMG and block ideal preconditioners shows that block AMG ap-
proximates the block ideal preconditioner quite closely.

Further insight into the intricacies associated with applying the stronger stop-
ping test (7.25) is provided by Figures 8.1, 8.2, and 8.3 for both block ideal and

block AMG preconditioning on a uniform grid with h =
1

128
. On both plots of Fig-

ure 8.1, note that at the optimal stopping iteration k∗ (the iteration where the red
curve for η(k) is first above the blue curve for ‖r(k)‖M−1 ) {η(k)} has converged
with some accuracy to the exact a posteriori error estimate η. The convergence is



Optimal MINRES stopping 21

0 5 10 15 20 25 30 35
10

−4

10
−2

10
0

10
2

10
3

iteration number

re
s
id

u
a

ls
 a

n
d

 e
rr

o
rs

 

 

√
C

(k)
s

c
(k)
s

‖r(k)‖M−1

‖r(k)‖M−1

η
(k)

η = 0.30689

0 10 20 30 40
10

−4

10
−2

10
0

10
2

10
3

iteration number
re

s
id

u
a

ls
 a

n
d

 e
rr

o
rs

 

 

√
C

(k)
s

c
(k)
s

‖r(k)‖M−1

‖r(k)‖M−1

η
(k)

η = 0.30689

Fig. 8.1 Errors vs iteration number for block ideal (left) and block AMG (right) preconditioned MINRES
on a uniform grid h = 1/128 for Stokes test problem 1.

further illustrated by continuing for 9 more iterations after balanced stopping where
the red curve for η(k) always ‘stays’ on the black line for η. Note that on these plots
C

(k)
s := max{|θk+max|2, |θk−min|2} and c(k)s := min{|θk−max|2, |θk+min|2}.

The convergence of extremal Ritz values and interior most harmonic Ritz values
at the balanced stopping iteration to the corresponding eigenvalues of the discrete
problem can be seen from Figures 8.2 and 8.3 respectively. The actual extremal and
interior most eigenvalues of the preconditioned (block ideal and block AMG) matrix
on these plots are estimated as the corresponding Ritz and harmonic Ritz values re-
spectively. Preconditioned MINRES is run ‘long enough’ here to ensure that these
estimates have ‘converged’ (this was ascertained by looking at the values of these es-
timates). Note that the data plotted in Figures 8.2 and 8.3 corresponds to the entries in
the last row for block ideal and block AMG preconditioner respectively in Tables 8.1
and 8.2. Also, the plots continue for 9 more iterations after balanced stopping to illus-
trate that the converged extremal Ritz values and interior most harmonic Ritz values
stay convergent to the corresponding discrete system eigenvalues.9

The Ritz value plots in Figure 8.2 further suggest that there are no ghost (spurious
copies) of extremal Ritz values. The same is suggested for interior most harmonic
Ritz values in Figure 8.3. In contrast there are ghost Ritz values for interior most
Ritz values rk−max (the maximum negative Ritz value at the kth step) and r

k+
min (the

minimum positive Ritz value at the kth step); see Figure 8.2. This is also the case for
the extremal harmonic Ritz values hk+max (the maximum positive harmonic Ritz value
at the kth step) and hk−min (the minimum negative harmonic Ritz value at the kth step);
see Figure 8.3. Thus, θ+max and θ−min should be estimated by the corresponding extremal
Ritz values while θ+min and θ−max should be estimated by the corresponding interior
most harmonic Ritz values. This is consistent with the discussion in section 7.6.

9 Lanczos method can lose orthogonalization after convergence of Ritz vectors and hence these esti-
mates might not remain converged. But implementing the Lanczos procedure in MINRES with reorthog-
onalization solves this issue.
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Fig. 8.2 Computed Ritz values for block ideal (left) and block AMG (right) MINRES on a uniform grid
h = 1/128 for Stokes test problem 1.
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Fig. 8.3 Computed harmonic Ritz values for block ideal (left) and block AMG (right) MINRES on a
uniform grid h = 1/128 for Stokes test problem 1.

The discrete inf-sup constant can also be estimated on-the-fly as suggested in the
work of [23]. It follows from Theorem 7.1 that if the bounds in (7.28) are ‘tight’ then

γ2 =
(θ−max)

2 − θ−maxθ
+
min

θ+min
. (8.1)

In light of the Lanczos estimates for the extremal and interior most eigenvalues
of the preconditioned matrix, (8.1) can be rewritten as

(γ(k))2 =
(θ
k−
max)2 − θ

k−
maxθ

k+
min

θ
k+
min

. (8.2)

Thus, the balanced stopping strategy also provides a cheap estimate for γ on-the-
fly; see Figure 8.4. The ‘true’ γ in Figure 8.4 is computed by running (block ideal and



Optimal MINRES stopping 23

0 10 20 30 40

0.5

1

1.5

iteration number

D
is

c
re

te
 i
n

f−
s
u

p
 e

s
ti
m

a
te

 o
n

−
th

e
−

fl
y

 

 

γ

γ
(k)

0 10 20 30 40

0.5

1

1.5

iteration number
 D

is
c
re

te
 i
n

f−
s
u

p
 e

s
ti
m

a
te

 o
n

−
th

e
−

fl
y

 

 

γ

γ
(k)

Fig. 8.4 Computed discrete inf-sup constant for block ideal (left) and block AMG (right) preconditioned
MINRES on a uniform grid h = 1/128 for Stokes test problem 1.

block AMG) preconditioned MINRES ‘long enough’ to ensure convergence (from
inspection of the estimate values).

A closer examination of Figure 8.1 shows that {η(k)} has converged to η much be-
fore balanced stopping iteration on each plot. In fact if one were to apply the weaker
stopping test (7.26) then this is the iteration at which one would stop optimally. How-
ever, there is always the pitfall of premature stopping due to nonconvergence of the
interior most harmonic Ritz values. A way to overcome this issue of premature stop-
ping has been discussed in section 7.7. To reiterate, the results are presented here for
the stronger stopping test (7.25) only to illustrate the nuances associated with opti-
mal stopping for symmetric indefinite systems. In general, the weaker stopping test
should be used in practice.

Note that the plots in Figure 8.1 merit a further investigation in devising an opti-
mal balanced black-box stopping test that is independent of the extremal and interior

most eigenvalues of the preconditioned matrix. If
√

min{|θ−max|2, |θ+min|2} ≥ 1, then

1√
min{|θ−max|2, |θ+min|2}

‖r(k)‖M−1 ≤ ‖r(k)‖M−1 . (8.3)

The weaker stopping test (7.26) in light of (8.3) can be transformed into the following.
Stop at the first iteration k∗ such that

‖r(k
∗)‖M−1 ≤ η(k

∗). (8.4)

However, application of the stopping test (8.4) depends on the implicit assumption

that
√

min{|θ−max|2, |θ+min|2} ≥ 1, which is not always true; see the corresponding

entries for θ+min and θ−max in Tables 8.1 and 8.2.
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8.2 Test Problem 2

The Stokes PDE (3.1) is defined on a L-shaped (‘flow over a backward-facing step’)
domainD = (−1, 5)× (−1, 1) \ (−1, 0]× (−1, 0]. Poiseuille flow profile is imposed
on the inflow boundary (x1 = −1, 0 ≤ x2 ≤ 1) for −→x = (x1, x2) ∈ D, and zero
velocity condition is imposed on the walls. Neumann boundary conditions are de-
fined everywhere on the outflow boundary (x1 = 5,−1 < x2 < 1) [7, p. 124]. This
problem can be generated IFISS by choosing example 2 when running the driver
stokes testproblem.

Table 8.3 MINRES iteration counts and errors along with extremal Ritz values and interior most harmonic
Ritz values for block ideal preconditioning on 2l × (2l × 3) grids for Stokes test problem 2.

l ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

4 53 73 51 6.2e-6 -1.3632 -0.0242 1.000 1.7909 2242
5 55 73 54 3.5e-6 -1.3638 -0.0242 1.000 1.8109 8706
6 53 76 58 1.4e-6 -1.3669 -0.0242 1.000 1.8184 34306
7 53 77 61 3.1e-7 -1.3671 -0.0241 1.000 1.8214 136194

Table 8.4 MINRES iteration counts and errors along with extremal Ritz values and interior most harmonic
Ritz values for block AMG preconditioning on 2l × (2l × 3) grids for Stokes test problem 2.

l ktol1 ktol2 k∗ e∗η θ
k∗−
min θ

k∗−
max θ

k∗+
min θ

k∗+
max #dof

4 59 80 55 1.1e-5 -1.3540 -0.0241 0.8025 1.7191 2242
5 63 84 61 5.2e-6 -1.3571 -0.0241 0.7865 1.7294 8706
6 63 86 65 8.4e-7 -1.3576 -0.0240 0.7606 1.7334 34306
7 63 88 69 1.7e-6 -1.3577 -0.0241 0.7290 1.7361 136194

Results are tabulated for block ideal and block AMG preconditioned MINRES in
Tables 8.3 and 8.4 for this test problem on various 2l × (2l × 3) grids. The quantities
in these tables are defined exactly in the same way as for the test problem 1.10

The insights from the results here is essentially similar to those for test problem 1.
As compared to the test problem 1, the slower convergence is due to a singularity in
the problem near the ‘step’ which is reflected in the largest negative eigenvalue esti-
mate (see the θ

k∗−
max column in Tables 8.3 and 8.4 ) of the preconditioned matrix, which

is more closer to zero than θ
k∗−
max of test problem 1 (where there was no singularity in

the problem).
From Figure 8.5 note that it is possible that the curve of η(k) may fall below the

line of true a posteriori estimate η. However, as the iteration proceeds, ultimately the
sequence {η(k)} converges with some accuracy to η.

10 However, here the ‘true’ algebraic solution x is obtained from preconditioned MINRES with a tight
relative residual reduction tolerance of 1e-12 instead of 1e-14 since (preconditioned) MINRES gives a
warning that latter ‘input tolerance may not be achievable by MINRES’ on some grids.
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Fig. 8.5 Errors vs iteration number for block ideal (left) and block AMG (right) preconditioned MINRES
on a 128× 384 grid for Stokes test problem 2.

The results from both the test problems illustrate that employing an optimal bal-
anced black-box stopping strategy not only avoids unnecessary computations but also
rules out premature stopping of the preconditioned MINRES solver.

9 Conclusions

An optimal balanced black-box stopping test is devised (in a generic sense) in this pa-
per in MINRES with preconditioning for solving (saddle point) symmetric indefinite
linear systems arising from FEM discretization of an underlying PDE (Stokes equa-
tions in particular). The constants in the balanced stopping test are estimated cheaply
on-the-fly. This is achieved by exploiting the relationship between Ritz, harmonic
Ritz values (obtained from the Lanczos process in preconditioned MINRES) and the
relevant eigenvalues of the preconditioned matrix involved in the balanced stopping
test. Typically, employing such a balanced stopping strategy would avoid premature
stopping and generally lead to significant computational savings. The stopping strat-
egy presented here has extended the work done in this direction by [23]. In particular,
the methodology presented here for deriving the constants involved in the balanced
stopping test is quite generic as compared from that in [23]. Also, the constant in-
volved the stopping test of [23] has been ‘improved’ in the sense that one can now
stop optimally a few iterations earlier than using their stopping test.

The optimal balanced black-box stopping methodology presented in this thesis
can be generalized for any iterative solver of a linear(ized) symmetric indefinite sys-
tem arising from numerical approximation of a PDE. The only prerequisites for this
purpose are the existence of a cheap and tight a posteriori error estimator for the
approximation error along with cheap and tractable bounds on the algebraic error.
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12. Jiránek, P., Strakos, Z., Vohralı́k, M.: A posteriori error estimates including algebraic error
and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010).
https://doi.org/10.1137/08073706X

13. Kay, D., Silvester, D.: A posteriori error estimation for stabilized mixed approxi-
mations of the Stokes equations. SIAM J. Sci. Comput. 24(1), 1321–1336 (1999).
https://doi.org/10.1137/S1064827598333715

14. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear dif-
ferential and integral operators. J. Research Nat. Bur. Standards 45(4), 255–282 (1950).
https://doi.org/10.6028/jres.045.026

15. Mardal, K., Winther, R.: Preconditioning discretizations of systems of partial differential equations.
Numerical Linear Algebra with Applications 18(1), 1–40 (2011). https://doi.org/10.1002/nla.716

16. Oden, J.T., Demkowicz, L.F.: Applied Functional Analysis. CRC Press, USA (1996). First Edition
17. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J.

Numer. Anal. 12(4), 617–629 (1975). https://doi.org/10.1137/0712047
18. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, USA (1998)
19. Pietro, D.A.D., Flauraud, E., Vohralı́k, M., Yousef, S.: A posteriori error estimates, stopping criteria,

and adaptivity for multiphase compositional refinement for thermal multiphase compositional flows in
porous media. Journal of Comp. Phy. 276, 163–187 (2014). https://doi.org/10.1016/j.jcp.2014.06.061

20. Pietro, D.A.D., Vohralı́k, M., Yousef, S.: An a posteriori-based, fully adaptive algorithm with adaptive
stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media.
Comput. Math. Appl. 68(12 B), 2331–2347 (2014). https://doi.org/10.1016/j.camwa.2014.08.008

21. Pranjal: Optimal iterative solvers for linear systems with stochastic PDE origins: Balanced black-box
stopping tests, PhD thesis. University of Manchester, UK (2017). PhD Thesis

22. Silvester, D., Pranjal: An optimal solver for linear systems arising from stochastic FEM approximation
of diffusion equations with random coefficients. SIAM/ASA J. Uncertainty Quantification 4(1), 298–
311 (2016). https://doi.org/10.1137/15M1017740

23. Silvester, D.J., Simoncini, V.: An optimal iterative solver for symmetric indefinite sys-
tems stemming from mixed approximation. ACM Trans. Math. Softw. 37(4) (2011).
https://doi.org/10.1145/1916461.1916466

24. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University
Press, UK (2013). First Edition

25. Wathen, A.: Preconditioning and convergence in the right norm. Int. J. Comput. Math. 84(8), 1199–
1209 (2007). https://doi.org/10.1080/00207160701355961


