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Rich tomography is becoming increasingly popular since we have seen a substantial
increase in computational power and storage. Instead of measuring one scalar for each
ray, multiple measurements are needed per ray for various imaging modalities. This
advancement has allowed the design of experiments and equipment which facilitate a
broad spectrum of applications.

We present new reconstruction results and methods for several imaging modalities
including x-ray diffraction strain tomography, Photoelastic tomography and Polarimet-
ric Neutron Magnetic Field Tomography (PNMFT). We begin with a survey of the
Radon and x-ray transforms discussing several procedures for inversion. Furthermore
we highlight the Singular Value Decomposition (SVD) of the Radon transform and
consider some stability results for reconstruction in Sobolev spaces.

We then move onto define the Non-Abelian Ray Transform (NART), Longitudinal
Ray Transform (LRT), Transverse Ray Transform (TRT) and the Truncated Trans-
verse Ray Transform (TTRT) where we highlight some results on the complete inver-
sion procedure, SVD and mention stability results in Sobolev spaces. Thereafter we
derive some relations between these transforms. Next we discuss the imaging modali-
ties in mind and relate the transforms to their specific inverse problems, primarily being
linear. Specifically, NART arises in the formulation of PNMFT where we want to im-
age magnetic structures within magnetic materials with the use of polarized neutrons.
After some initial numerical studies we extend the known Radon inversion presented
by experimentalists, reconstructing fairly weak magnetic fields, to reconstruct PNMFT
data up to phase wrapping.

We can recover the strain field tomographically for a polycrystalline material using
diffraction data and deduce that a certain moment of that data corresponds to the
TRT. Quite naturally the whole strain tensor can be reconstructed from diffraction
data measured using rotations about six axes. We develop an innovative explicit
plane-by-plane filtered back-projection reconstruction algorithm for the TRT, using
data from rotations about three orthogonal axes and state the reasoning why two-
axis data is insufficient. For the first time we give the first published results of TRT
reconstruction. To complete our discussion we present Photoelastic tomography which
relates to the TTRT and implement the algorithm discussing the difficulties that arise
in reconstructing data.

Ultimately we return to PNMFT highlighting the nonlinear inverse problem due
to phase wrapping. We propose an iterative reconstruction algorithm, namely the
Modified Newton Kantarovich method (MNK) where we keep the Jacobian (Fréchet
derivative) fixed at the first step. However, this is shown to fail for large angles
suggesting to develop the Newton Kantarovich (NK) method where we update the
Jacobian at each step of the iteration process.
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Chapter 1

Introduction

Due to requirements from applications both in industry and various academic disci-

plines, the field of inverse problems has undergone a tremendous growth resulting in

the formation of an essentially multidisciplinary scientific subject. It is not entirely

clear who the founder of inverse problems is. However, the work of Georgian physi-

cist Ambartsumian in 1929 is usually attributed to be the first of the kind wherein

he solved the inverse Sturm-Liouville problem, namely the recovery of the differential

operator from its eigenvalues. The paper [3] was published in the journal Zeitschrift

für Physik. The actual term inverse problem has gained popularity since the middle of

the 20th century. Inverse problems arise whenever one searches for causes of observed

or desired effects that cannot be perceived directly, e.g. Geophysical inverse problems

[34], like determining a spatially varying density distribution in the earth from gravity

measurements.

We quote the statement of J.B. Keller [1], “We call two problems inverses of each

other if the formulation of one problem involves the solution of the other one. Hence

one is termed as the forward problem and the other is an inverse problem. Generally

the forward problem involves solving some system of differential equations and usually

this indicates the evolution of the described system from two attributes; knowledge of

its current state and the governing physical laws including information on all physically

relevant parameters. Conversely a possible inverse problem would be to estimate (some

of) these parameters from observations of the evolution of the system. Sometimes this

distinction is not so obvious, e.g. differentiation and integration are inverse to each

other but how would we articulate this properly. According to Hadamard [14], a

12
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mathematical problem is called well-posed if

• for all admissible data, a solution exists,

• for all admissible data, the solution is unique and

• small perturbations in the data does not affect the solution largely.

Thus we regard integration to be well-posed and differentiation is ill-posed, a prop-

erty common to most inverse problems. So integration is the forward problem and

differentiation is the inverse problem.

Amongst the many inverse problems is x-ray Computerized Tomography (CT),

which is central to the ideas developed within this thesis. Specifically tomography is

when images of internal structures of a solid object such as the human body (medical

x-ray) or the Earth are created. This is done by observing and recording the differences

in the effects on the passage of waves of energy, impinging on specific structures. The

origin of the word tomography recapitulates its usage today as the derivation stems

to Ancient Greece; τoµoζ tomos means slice section and γραφω graph means to write.

The Radon transform introduced by Johann Radon in 1917 laid the foundation to

x-ray CT but the recognition goes to Godfrey Hounsfield and Allan Cormack as they

developed the first practical implementation of x-ray CT in 1972 as well as receiving

the Nobel Prize in Medicine in 1979.

Over the years the field of x-ray CT has developed and evolved with applications

including but not limited to nondestructive materials testing, geophysics, and archae-

ology. Furthermore, it became the motivation for scientists to develop other novel

imaging modalities as they started to realise that x-rays whilst passing through crys-

tals would give diffraction patterns. Another advancement was when one uses different

rays from the electromagnetic spectrum, e.g. gamma rays and infra-red, or to use neu-

trons and electrons which exhibit wave-particle duality for imaging purposes. Indeed

in 1994, the Nobel Prize in Physics was given partly to Clifford G. Shull for the de-

velopment of the neutron diffraction technique. Nowadays especially for applications

in material science where information related to the crystal structure (strain, phase,

texture) of polycrystalline materials is sought, techniques such as Neutron Bragg Edge

Tomography [48] and x-ray diffraction tomography [24] are becoming increasingly pop-

ular.
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As the diversity of applications continues to preponderate with mathematics being

applied to a manifold of disciplines and supercomputing is escalating, the need to

design robust and revolutionary reconstruction algorithms is much more in demand

than ever before. Increasingly we need to image quantities with more degrees of

freedom than a simple scalar such as magnetic fields (vector) and tensor fields (strain).

To do this tomographically we need richer data than one scalar per line (ray). In some

types of innovative tomography we have a function for each line (ray), from varying

wavelength, energy, diffraction angle etc, giving more data. The rise in computational

storage ability has aided problems of this type (big data). Korsunsky [24] (perhaps

others also) call this Rich Tomography. As new tomographic measurement modalities

arise we need to understand what data is needed for a stable reconstruction and how

to do that reconstruction numerically.

Such experimental techniques are not carried out in small scale laboratories within

universities or research institutes. In fact throughout the last few decades and contin-

uing to proliferate are the construction of synchroton facilities throughout the world.

The demand for such sites are a source of attraction for research grants from gov-

ernments and industrial sponsors. One such site is the European Spallation Source

(ESS) based in Lund, Sweden, which is believed to be the worlds most powerful pulsed

neutron source when the framework will be completed by 2025. The estimated cost

of the facility in 2013 was 1.843 billion euros. On the occasion of ICTMS 2017, the

third international conference on tomography of material and structures held in Lund,

between 26th - 30th of June 2017, participants were given a guided tour of ESS and

MAXIV, the new Swedish synchroton facility. Here in the United Kingdom, we have

a site in Harwell, Oxfordshire, named the Diamond Light Source, adjacent to which is

the Rutherford Appleton Laboratory (RAL) where we have a research group named

Manchester x-ray Imaging Facility (MXIF). Moreover, the Queen’s Anniversary Prize

Award (2012-2014) was given for new techniques in x-ray imaging of materials critical

for power, transport and other key industries to Prof Phil Withers, MXIF director and

Regius professor of materials.

Just before the start of the new millennium it was proposed to image magnetic do-

mains in bulk samples non-destructively with the idea to use polarized neutrons. The

trend in using neutrons for tomography is that it provides important complementary
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information to that given by x-rays as neutrons have zero electrical charge and can

penetrate deeply into massive samples, see [45]. Neutrons are highly sensitive to mag-

netic fields owing to their magnetic moment and thus they can be used for real space

tomographic imaging investigations of magnetic structures. The first simulations were

presented by [19, 25] and developed further by Kardjilov [22] to make two and three

dimensional images of magnetic fields. Initially the setup did not measure the full spin

rotation matrix but only a single diagonal element of it was recorded. Correspond-

ingly, the method has been applied for strongly oriented fields and high symmetry

cases providing significant a priori knowledge for analysis, e.g. through field modeling

and simulation matching with data. In this manner magnetic fields of electromagnetic

devices and electric currents, [22, 41, 44, 29, 47], but also quantum mechanical effects

in superconductors [22, 44, 7] could be studied successfully.

Recently experimentalists have succeeded to ensure the measurement of these po-

larized neutrons, the feasibility demonstrated in [44], giving rise to a rich tomography

problem as each ray of an ensemble of neutrons gives nine scalars, resulting in a 3× 3

matrix. Although no official name has been assigned to the new imaging modality,

pilot studies suggest giving the name Polarimetric Neutron Magnetic Field Tomogra-

phy (PNMFT). Indeed the only apparatus able to acquire PNMFT data in the world

as yet has been innovatively assembled at the Japan Proton Accelerator Research

Complex (J-PARC) [41] in Tokai, Japan. Interestingly, we have devised an inventive

reconstruction algorithm for the reconstruction of weak magnetic fields. Furthermore

for the first time we show reconstructions of simulated PNMFT data in this thesis

which has motivated physicists and experimentalists to reconstruct experimental data.

Moreover for stronger magnetic fields we have pioneered a method which is capable

to reconstruct magnetic fields where phase wrapping issues arise since a well known

phenomenon is that neutrons revolve around their axis when coming into contact with

a magnetic field.

The diffraction pattern of an x-ray (or neutrons) through polycrystalline solids

such as metals has been used extensively to study the crystal structure and atomic

spacing. Only very recently though have scientists realised that it can be possible to

use this technique to image and visualise strain patterns in a polycrystalline material.

Nevertheless strain is a symmetric rank two tensor which means that the diffraction
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pattern gives rise to more information than just a scalar per ray, an example of rich

tomography. Several research groups have devised a reconstruction technique to image

strain but have not realised that they are actually calculating the overall change in

thickness of the sample along the ray. An alternative viewpoint proposed two years ago

by Lionheart and Withers in [27] is to use a certain moment of the diffraction pattern

which relates to the Transverse Ray Transform (TRT). To acquire measurement data

for such a modality would require a laborious scan, one which would necessitate revolv-

ing the sample around six axes. Experimentalists would adore an innovation where

less time and effort is required to gather data. Indeed work in this thesis outlines such

a reconstruction algorithm which would half the amount of data to store as well as

halving the time spent in collecting data. A new three axes explicit plane-by-plane re-

construction procedure is derived and first time numerics on simulated data are shown

suggesting the technique can be used on experimental data. Such an experimental

setup would need to be set up at a synchroton facility.

Numerous situations in mechanical engineering involve prediction of the stress be-

haviour in solid components under load. Nondestructive methods to measure stresses

in three-dimensional photoelastic models of engineering components are currently of

great interest to the aerospace and automotive industries. Only recently a new instru-

ment has been developed in conjunction with Rachel Tomlinson, University of Sheffield,

allowing experimental verification of the design for prototypes to be performed quickly

and efficiently. As yet no reconstruction of raw experimental data has been successful,

even for weak stress. We outline the causes and theoretical reasoning why the case

may be so and suggest another technique which may give a breakthrough. Indeed the

author has made contributions to the reconstruction code running on the machines in

the PSI 1 (previously) and now the University of Sheffield, recognising the bugs and

fixing these.

Now we give a brief outline of each chapter of this thesis, drawing attention to

the main results. In Chapter 2 we introduce the Radon and x-ray transforms and

consider the inversion procedures. Specifically for the two dimensional case (one slice)

numerical results for several reconstruction procedures are shown. Moreover we display

a slice by slice approach to reconstruct a three dimensional phantom before stating

1Photon Science Institute, University of Manchester
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the singular value decomposition for the Radon transform. For completeness we state

some stability results. In Chapter 3 several ray transforms are introduced and their

inversion formulae are derived for complete data before stating results which relate

some of these transforms.

In Chapter 4 we explain three different imaging modalities and mention which ray

transforms are associated with them. For the linear inverse problem of PNMFT numer-

ics are shown. In Chapter 5 we derive explicit plane-by-plane reconstruction formulae

for symmetric rank two tensor fields and display the numerics for the first time. In

Chapter 6 we introduce the nonlinear inverse problem of PNMFT. The drawback of

using the Modified Newton Kantarovich (MNK) method is illustrated whilst a possible

way to resolve this is suggested, the Newton Kantarovich (NK) method.

Throughout the period of study for this PhD, three journal articles have been

produced. One has been published [10], another undergoing corrections [37] and the

third [11] on the verge of submission. These are

1. An explicit reconstruction algorithm for the transverse ray transform of a sec-

ond rank tensor field from three axis data - Naeem M. Desai and William R.B.

Lionheart.

2. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields - Morten

Sales et al.

3. Polarimetric Neutron Magnetic Field Tomography : a non-Abelian ray transform

- Naeem Desai et al.

Specifically in [10], the author developed the explicit reconstruction algorithm in

collaboration with Bill Lionheart and numerically implemented it. Likewise in [37], the

author formulated the PNMFT problem as a non-abelian ray transform type problem.

Finally, for [11], the author developed the forward solver whilst numerically implement-

ing the reconstruction of simulated data by the use of MNK. Moreover an improved

method, precisely, NK was suggested.



Chapter 2

The Radon Transform

To develop the necessary machinery to aid us throughout this thesis, this chapter

outlines some of the fundamental results within the literature. We start off in Section

2.1 with the notion of a distribution in order to define the Fourier transform on the

correct spaces. Thereafter the Radon and x-ray transforms are introduced with some

inversion results. In Section 2.2 we discuss how to discretize the Radon operator and

its adjoint in a two dimensional setting. Numerical implementations of filters are

described in Section 2.3.1 and the CGLS algorithm is introduced in 2.3.2. It is well

known that a volumetric reconstruction is possible by a slice by slice approach. An

example of this is introduced in Section 2.3.3 using a Hilbert transform reconstruction

approach. In Section 2.4 the range of the Radon transform is discussed with its ill-

posedness property. Finally to complete, some stability estimates are mentioned in

Section 2.5.

2.1 Distribution Theory

A distribution is a kind of generalised1 function. Every reasonable function corre-

sponds to a distribution, however the converse is not necessarily true. The theory of

distributions has a coherence and power that the classical theory of functions lacks,

e.g. the derivative of a distribution always exists and is another distribution. By con-

trast, there are many continuous functions which have no derivatives in the classical

sense, e.g. Weierstrass function. Hence for our purpose it suffices to study the Fourier

1classical sense
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transform in a distribution sense.

To show the nature of the difficulties for the Fourier transform in the classical sense,

we shall glance briefly on the definition of the Fourier transform based on L1(R) (inte-

grable) functions. Since the definition involves an integral, f̂(ξ) =
∫∞
−∞ e−ix·ξf(x) dx, it

is quite natural to require that this integral converges which demands the integrability

of the function f(x). However the Fourier transform f̂(ξ) is not necessarily integrable

making the Fourier inversion theorem meaningless. With the theory of tempered dis-

tributions, all of these difficulties disappear. We will study the Fourier transform in

the Schwartz space S(Rn) and in it’s dual S ′(Rn) but before we define the Fourier

transform properly, several definitions are given.

A test function, φ, is a C∞ function with compact support which means it has

continuous derivatives of all orders and it vanishes outside some bounded set. In R

there is only one derivative operator d
dx

and the most general higher order derivative

is simply dn

dxn
. However when working in Rq, where q 6= 1, there are q first order

derivatives ∂
∂xi
, 1 ≤ i ≤ q. Hence rather cumbersome higher order expressions arise,

like
∂α1+α2+...+αq

∂xα1

1 ∂x
α2

2 ....∂x
αq
q
. (2.1)

We require an abbreviated form of the differential operator mentioned in (2.1)

which leads us quite naturally to define the notion of multi-indices helping us to

define an open support test function.

Definition 2.1 Let us define a q-tuple of non-negative integers, α = (α1, ...., αq) and

let |α| = α1 + α2 + ... + αq. Then the differential operator in (2.1) can be written as

Dα = ∂|α|

∂xα
. Such a q-tuple is defined as a multi-index.

Definition 2.2 A function φ ∈ C∞(Rn) is called an open support test function if

for every n, k ∈ N, xnφ(k)(x) remains bounded as x→ ±∞. The space of open support

test functions on Rn is denoted by S(Rn) and is known as the Schwartz space.

Before we state the definition of a distribution the description of an inner product

space is given below.

Definition 2.3 An inner product space is a linear function space, on which there

is defined an inner (scalar) product 〈f, g〉 ∈ R (or C) such that
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• 〈g, f〉 = 〈f, g〉 − real,

(or 〈g, f〉 = 〈f, g〉 − complex - bar denotes complex conjugate),

• 〈g, αf1 + βf2〉 = α〈g, f1〉+ β〈g, f2〉,

• 〈f, f〉 ≥ 0 with equality ⇔ f = 0.

Definition 2.4 A tempered distribution T is a mapping from the set of open sup-

port test functions S(Rn) into the complex numbers (C) which satisfies the following

• (Linearity) 〈T, aφ(x) + bψ(x)〉 = a · 〈T, φ(x)〉+ b · 〈T, ψ(x)〉, ∀φ, ψ ∈ S(Rn)

and a, b ∈ C.

• (Continuity) If φn → 0 in S(Rn), then 〈T, φn〉 → 0.

A remark on the inner product notation 〈Tf , φ〉 =
∫∞
−∞ f(x)φ(x) dx, where Tf is the

distribution corresponding to f. This reminds us of the underlying idea that the tran-

sition from functions to distributions is given by an integral. The set of all tempered

distributions is denoted by S ′(Rn) and is defined by the (continuous) dual of the

Schwartz space, S.
For a function φ ∈ S(Rn) we denote the Fourier transform φ̂ and its inverse φ̌ using

the following

φ̂(y) = (2π)−
n
2

∫

Rn

e−ix·yφ(x) dx. (2.2)

φ̌(x) = (2π)−
n
2

∫

Rn

eix·yφ(y) dy. (2.3)

Often a need arises to use the partial Fourier transform where we consider a k-

dimensional vector subspace V ⊂ Rn with Cartesian coordinates (x1, x2, ......, xn) in

Rn such that V = {x |xk+1 = ..... = xn = 0}. The partial Fourier transform can then

be written as

φ̂(y1, ...., yk, xk+1, ...., xk) = (2π)−
k
2

∫

Rk

e−i(y1x1+....ykxk)φ(x) dx1....dxk. (2.4)

If any introduction to distribution theory is consulted, like [35], it can be seen that

if φ ∈ S(Rn), then so are φ̂, φ̌ ∈ S(Rn). Above in (2.2) and (2.3) we have defined

the Fourier transform. However, in reality we require the definition of the Fourier

transform for distributions which is given below.
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Definition 2.5 Let T ∈ S ′(Rn). The Fourier transform of T is the map T̂ : S(Rn) →
C defined by

T̂φ := T φ̂, ∀φ ∈ S(Rn). (2.5)

Now for example, consider f ∈ L1(Rn) and let Tf be the distribution defined by

Tfφ =
∫
Rn f(x)φ(x) dx for all φ ∈ S(Rn). Then by Definition 2.5 we have

T̂fφ =

∫

Rn

f(x) φ̂(x) dx =

∫

Rn

(∫

Rn

e−iy·xf(x) dx

)
φ(y) dy = Tf̂φ.

In other words, when you Fourier transform the distribution associated to f , you get

the distribution associated to f̂ , the ordinary Fourier transform of f .

Now that the Fourier transform has been defined properly in a distribution sense

the Radon and x-ray transforms which are fundamental tools to several ideas developed

within this thesis have to be clearly specified. The (n-dimensional) Radon transform

R maps a function on Rn into the set of its integrals over hyperplanes of Rn. Consider

ξ ∈ Sn−1 and p ∈ R then we have

R : S(Rn) → S(Z), with Z = Sn−1 × R.

The Radon transform can be defined as follows

Rf(ξ, p) =

∫

x·ξ=p
f(x) dx =

∫

ξ⊥
f(pξ + y) dy, (2.6)

which is the integral of f ∈ S(Rn) over the hyperplane perpendicular to ξ with (signed)

distance p from the origin (when n = 2, see Figure 2.1).

Figure 2.1: Parameterisation of a line.
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The (n-dimensional) x-ray transform X maps a function on Rn into the set of its

line integrals. Consider ξ ∈ Sn−1, x ∈ Rn and t ∈ R, then

Xf(ξ, x) =

∫ ∞

−∞
f(x+ tξ) dt (2.7)

is the integral of f ∈ S(Rn) over the straight line through x with direction ξ. Note

that if x is moved in the direction of ξ then Xf(ξ, x) does not change, hence we restrict

x to ξ⊥. The x-ray transform is an integral operator which can be realised as follows

X : S(Rn) → S(TSn−1), where

TSn−1 = {(ξ, x) ∈ Rn × Rn | |ξ| = 1, ξ · x = 0} ⊂ Rn × Rn (2.8)

is the tangent bundle of the unit sphere Sn−1. For n = 2, topologically one can

understand this by considering all the tangent space to a circle, S1, joining these

tangents in a smooth and non overlapping manner described in Figure 2.2.

Figure 2.2: Tangent bundle of the unit sphere, TS1.

Before we state further results, let us take a look at Radon data for the case n = 2

which is often referred to as a sinogram. The Radon transform of a Dirac delta function

is a distribution supported on the graph of a sine wave. Hence let us consider f(x) to

be zero except for a delta measure centred on the point x = (x1, x2)
T ∈ R2. Any line

that misses the delta measure gives us an integral of zero. However those that hit the
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delta measure give a positive value. We know that for each angle, ξ, the lines will hit

the delta measure. Hence from definition

x · ξ = x1 cosφ+ x2 sinφ = p,

since we just need the p for each ξ. Now if we plot the (ξ, p) pairs, which give lines

through x we yield a cosine curve. This is because we can also write p in terms of

polar coordinates, α and
√
x21 + x22. Hence

p =
√
x21 + x22 cos(φ+ α).

The amplitude and phase of the cosine curve indicate the position of the object. Thus

by superposition, several distinct objects produce several sine waves. Hence the name

sinogram. Trivially it can be shown that Rf(ξ, p) = Rf(−ξ,−p) which means that

Rf is an even function and topologically the range of the Radon transform, S1 ×R is

an infinite cylinder. One interesting fact is the range of the x-ray transform (n = 2) is

TS1, tangent bundle to the unit sphere, which is diffeomorphic to S1 × R, suggesting

a link between Rf(ξ, p) and Xf(ξ, x) in two dimensions. Of course Xf(ξ, x) and

Rf(ω, p) where ξ ⊥ ω coincide (except for the notation of arguments) since

Rf(ω, p) =

∫

x∈ξ⊥,x·ω=p
Xf(ξ, x) dx. (2.9)

The above arguments show in the two dimensional case what Radon (x-ray) data

looks like. Regardless of this insight into the range, how would one characterise the

range of (2.6) and (2.7) in arbitrary dimension n? The answer to this lies in [31,

Theorem 4.1].

Theorem 2.1 Let f ∈ S(Rn). Then, for m = 0, 1, ...

∫

R

smRf(ξ, s) ds = pm(ξ), (2.10)

∫

ξ⊥
(x · v)mXf(ξ, x) dx = qm(v), v ⊥ ξ, (2.11)

with pm, qm homogeneous polynomials of degree m, qm being independent of ξ.

Proof We compute

∫

R

pmRf(ξ, p) dp =

∫

R

pm
∫

ξ⊥
f(pξ + y) dy dp =

∫

Rn

(x · ξ)mf(x) dx,
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where we have used the substitution x = pξ + y and indeed this is a homogeneous

polynomial of degree m in ξ. Similarly,

∫

ξ⊥
(x · v)mXf(ξ, x) dx =

∫

ξ⊥
(x · v)m

∫

R

f(x+ tξ) dt dx =

∫

Rn

(u · v)mf(u) dz,

for v ⊥ ξ where we have put u = x+ tξ. This is a homogeneous polynomial of degree

m in v being independent of ξ. �

Prior to the explanation of why Theorem 2.1 was stated, we define special func-

tions which arise mainly as the eigenfunctions of self-adjoint2 ordinary differential

equations. These are orthogonal bases for weighted L2 spaces on intervals and are

often associated with 19th century European mathematicians.

Definition 2.6 The Gegenbauer polynomials Cλ
l , λ > −1

2
, of degree l are defined as

the orthogonal polynomials on [−1,+1] with weight function (1−x2)λ− 1

2 . We normalize

Cλ
l by requiring Cλ

l (1) = 1. We then have

∫ +1

−1

(1− x2)λ−
1

2Cλ
l (x)C

λ
k (x) dx =




0, l 6= k

22λ−1(Γ(λ+ 1

2
))2l!

(1+λ)Γ(l+2λ)
, l = k

(2.12)

where Γ is the Gamma function.

For λ = 0, these can be recognised as the Chebyshev polynomials of the first kind,

Tl = C0
l which are given by the formula Tl(x) = cos(l arccos(x)). In other words,

Tl(x) is a polynomial that expresses cos(lθ) in terms of cos(θ), e.g. T3(x) = cos(3θ) =

4 cos3(θ) − 3 cos(θ) = 4x3 − 3x. Moreover Chebyshev polynomials of the second kind

when λ = 1 are defined by

Ul(x) = (l + 1)C1
l =

sin((l + 1) arccos(x))

sin(arccos(x))
. (2.13)

Definition 2.7 A spherical harmonic Yl of degree l is the restriction to Sn−1 of a

harmonic polynomial homogeneous of degree l on Rn. There are

N(n, l) =
(2l + n− 2)(n+ l − 3)!

l!(n− 2)!
, N(n, 0) = 1

linearly independent spherical harmonics of degree l, and spherical harmonics of dif-

ferent degree are orthogonal on Sn−1.

2defined later in Section 2.3
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The motivation in stating (2.10) of Theorem 2.1 is if f ∈ C∞
0 , where f is continu-

ously many times differentiable (smooth) and is compactly supported on the unit disk,

then the expansion of Rf(ξ, p) can be written in terms of the products Cλ
l Ykj, where

Cλ
l are the Gegenbauer polynomials and Ykj the spherical harmonics. This will have

consequences which we shall use later in Section 2.4. Note that these functions form

a complete orthogonal system in L2(Z, (1− p2)λ−
1

2 ). Hence the expansion reads

Rf(ξ, p) = (1− p2)λ−
1

2

∞∑

l=0

∞∑

k=0

∑

j

clkjC
λ
l (p)Ykj(ξ)

where j runs over all N(n, k) spherical harmonics of degree k. The Cλ
l are orthogonal

in [−1,+1] with respect to the weight function (1− p2)λ−
1

2 , hence

∫ +1

−1

Cλ
l (p)Rf(ξ, p) dp =

∑

k=0

∑

j

clkj

∫ +1

−1

(1− p2)λ−
1

2 (Cλ
l (p))

2 dp Ykj(ξ).

In accordance to (2.10), the left hand side of the above is a polynomial of degree l in ξ

which due to the evenness of Rf , is even for l even and odd, for l odd. Hence clkj 6= 0

only for k = l, l − 2, ...., and Rf(ξ, p) assumes the form

Rf(ξ, p) = (1− p2)λ−
1

2

∞∑

l=0

Cλ
l (p)hl(ξ) (2.14)

where hl is a linear combination of spherical harmonics of degree l, l−2, .... In the liter-

ature (2.10) and (2.11) are known as the Helgason-Ludwig consistency conditions.

2.2 Ray Tracing Algorithm

In the literature the Shepp-Logan phantom is used as an image f ∈ S(R2) to simulate a

sinogram. Several procedures are known to computationally implement this including

the usage of the Image Processing Toolbox in MATLAB which has built in functions.

However, we will simulate a sinogram by discretizing the Radon (x-ray) transform as

a sparse matrix which acts on the image (e.g. the Shepp-Logan phantom) to resemble

the slice of a 3D volume for CT data. The methodology adopted is to solve several

line integrals for different ξ ∈ S1 which emulates x-rays fired from sources traversing

a voxel grid through to detectors. In order to do this effectively, a parallel beam

geometry is setup with sources and detectors lying on a circle, a certain distance from

the Shepp-Logan phantom. The machinery involved to calculate a line integral relies
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on knowing the intersection length that a given ray makes with an indexed voxel, which

is multiplied by the value of the phantom in that specific voxel. All such intersections

the ray makes throughout the discretized grid are added up to give the contribution

to the sinogram. This rather complex process requires the attention of [20], a revised

form of [42] which is followed to explain what is known as forward projection.

This specific method recognises the voxels as volumes separated by the intersec-

tion of planes and calculates the intersection of a ray with those planes. The two

dimensional (pixel) setting is described underneath and is easily extendable to a three

dimensional setting (voxels). Suppose we parameterize a ray and consider the differ-

ence in the parameter value between consecutive lines of a given orientation defining

the pixels. Let us define a pixel grid of Nx lines in the x-direction and Ny lines in

the y-direction with dx and dy denoting the spacing between the lines. The first lines

intersect at the point (bx, by). The setup described above is encapsulated in Figure 2.3.

The ray enters at (x1, y1) and leaves at (x2, y2) with the following parametric form

x(α) = x1 + α(x2 − x1), (2.15)

y(α) = y1 + α(y2 − y1). (2.16)

With the assumption that the ray is in a generic position (i.e. x1 6= x2 and y1 6= y2),

the intersection points of the ray with the side of the grid are labelled αmin and αmax.

There are four situations to cover but here we will only consider the case when the

ray starts and ends outside the grid. For rays that start or end inside the grid, we set

αmin or αmax to 0 or 1 respectively.

Using the definition of α it is possible to calculate its value at the intersection of

the ray with a certain line. If the line is parallel to the x-axis, set α = αx(i), otherwise

set it to α = αy(j), where the line is parallel to the y-axis. These specific values are

defined below

αx(i) =
(bx + idx)− x1

x2 − x1
, and (2.17)

αy(j) =
(by + jdy)− y1

y2 − y1
. (2.18)

To calculate the value of αmin and αmax, consider

αmin = max(0, αxmin, αymin), and (2.19)

αmax = min(1, αxmax, αymax), (2.20)
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Figure 2.3: Procedure to calculate a line integral.

where

αxmin = min(αx(1), αx(Nx)), (2.21)

αxmax = max(αx(1), αx(Nx)), (2.22)

αymin = min(αy(1), αy(Ny)), (2.23)

αymax = max(αy(1), αy(Ny)). (2.24)

Now that αmin and αmax are known we can proceed to determine where the ray enters

the pixel grid. The increment in α between lines in both x and y directions is also

deduced. Eventually as we step through the pixel grid, we note which axis the next

boundary is parallel to and update the value accordingly. For a detailed explanation,

see [20]. Specifically the path length of a given ray through a certain pixel (i, j),

denoted as lij, is stored as the difference between consecutive values of α. This process

terminates when α > αmax.

The above outlines how the intersection lengths of a given ray crossing a pixel grid

are calculated. However to compute the integral we require the values of the given

function specified on the pixel grid also. Thus the integral
∫
ray
f =

∑
lijf(i, j) which

results in a very sparse matrix. Moreover this is just for a single ray, in a practical

setting we usually have ω×θ rays where ω is the number of rays and θ is the number of
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Figure 2.4: Forward projection illustration.

projections (views). Let A be an (ω× θ)× (M ×N) matrix where M ×N denotes the

pixel grid size. The sinogram data is then simulated by Af = d, where f is a vector

of length M ×N whose entries consists of the value at each pixel and d is a vector of

length ω× θ. For efficient computation this process is done on the fly without storing

the entire matrix. Figures 2.4a and 2.4b show a Shepp Logan phantom test image and

the sinogram data generated by forward projection.

2.3 Reconstruction

Let us return to the general (n-dimensional) case by completing the definition of an

inner product, Definition 2.3, which should ideally be defined via an integral. Hence

the spaces S(Rn),S(Z) and S(TSn−1) are equipped with the following inner products

〈f1, f2〉S(Rn) =

∫

Rn

f1(x)f2(x) dx, (2.25)

〈g1, g2〉S(Z) =
∫

Sn−1

∫

R

g1(ξ, p)g2(ξ, p) dp dξ, (2.26)

〈h1, h2〉S(TSn−1) =

∫

Sn−1

∫

ξ⊥
h1(ξ, x)h2(ξ, x) dx dξ. (2.27)

The benefit of studying integral operators is due to their practical usage in the re-

construction of functions, e.g. Radon in medical CT. How is it possible to recover

f ∈ S(Rn), for some h(ξ, x) ∈ S(TSn−1) or g(ξ, p) ∈ S(Z)? This question motivates

the following definition.

Definition 2.8 Let S, T be inner product spaces, 〈〉S, 〈〉T be the inner products on S, T

respectively, and let L : S → T be a linear operator. Then the adjoint L∗ : T → S of
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L is defined by

〈g,Lf〉T = 〈L∗g, f〉S,

∀f ∈ S and ∀g ∈ T.

Using the inner products defined in (2.25), (2.26) and (2.27), let us observe omitting

the complex conjugation due to the usage of real valued function only that

〈Rf(ξ, p), g(ξ, p)〉S(Z) =
∫

Sn−1

∫

R

Rf(ξ, p)g(ξ, p) dp dξ

=

∫

Sn−1

∫

R

∫

ξ⊥
f(pξ + y)g(ξ, p) dy dp dξ.

Substituting a new variable of integration x = pξ + y, we have p = ξ · x, dx = dy dp,

hence

〈Rf(ξ, p), g(ξ, p)〉S(Z) =
∫

Sn−1

∫

Rn

f(x)g(ξ, ξ ·x) dx dξ =
∫

Rn

f(x)

∫

Sn−1

g(ξ, ξ ·x) dξ dx,

by Fubini’s theorem, see Appendix A.3. Thus 〈Rf(ξ, p), g(ξ, p)〉S(Z) = 〈f(x), R♯g(x)〉S(Rn),

where

R♯g(x) =

∫

Sn−1

g(ξ, ξ · x) dξ. (2.28)

This is a formal adjoint and since Rf(ξ, p) and R∗g(x) form a dual pair in a geometric

sense, it is often called the dual of the Radon transform, denoted as R♯g(x). Intuitively,

it can be seen that the Radon transform integrates over all points on a given hyperplane,

whilst the dual of the Radon transform integrates over all hyperplanes through a point

which is why it is understood to be known as backprojection as it “projects back” the

Radon data along the hyperplanes onto the image. Similarly for the x-ray transform,

a formal adjoint can be derived as

〈Xf(ξ, x), h(ξ, x)〉S(TSn−1) =

∫

Sn−1

∫

ξ⊥
Xf(ξ, x)h(ξ, x) dx dξ

=

∫

Sn−1

∫

ξ⊥

∫

R1

f(x+ tξ)h(ξ, x) dt dx dξ.

Natterer [31] shows this is 〈Xf(ξ, x), h(ξ, x)〉S(TSn−1) = 〈f(x), X♯h(x)〉S(Rn), where

X♯g(x) =

∫

Sn−1

h(ξ,Πξ⊥x) dξ. (2.29)

The Πξ⊥ indicates an orthogonal projection on ξ⊥ defined properly in Section 3.2.2.
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Backprojection of Shepp Logan phantom
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Figure 2.5: Backprojection of Radon data.

To implement backprojection numerically we reuse the same code in Section 2.2.

In a discrete setting ray integration is a matrix, say A. Since we require the dual

operator, then AT is backprojection. If this process is used, it is termed as a matched

backprojector considering there are other backprojection methods available.

From Figure 2.5, the issue of simply using backprojection for the reconstruction

of functions has been illustrated, consequently requiring the derivation of a better

reconstruction algorithm. Indeed, several reconstruction algorithms exist, some of

which shall be exemplified in due course. To facilitate the derivation of such results

we state the Fourier slice theorem. Note that we can write Rf(ξ, p) = Rξf(p) and

Xf(ξ, x) = Xξf(x) which is also called the projection of f onto ξ⊥.

Theorem 2.2 Let f ∈ S(Rn), then

R̂ξf(σ) = (2π)
n−1

2 f̂(σξ), σ ∈ R (2.30)

X̂ξf(τ) =
√
2πf̂(τ), τ ∈ ξ⊥ (2.31)

Proof By definition of the one dimensional Fourier transform (k = 1) from (2.4), we

have

R̂ξf(σ) =
1√
2π

∫

R

e−iσpRξf(p) ds =
1√
2π

∫

R

e−iσp

∫

ξ⊥
f(pξ + y) dy dp.

Suppose x = pξ + y, then p = ξ · x, dx = dy dp, so

R̂ξf(σ) =
1√
2π

∫

Rn

e−iσξ·xf(x) dx = (2π)
n−1

2 f̂(σξ).
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Equivalently,

X̂ξf(τ) = (2π)−
n−1

2

∫

ξ⊥
e−iτ ·yXξf(y) dy = (2π)−

n−1

2

∫

ξ⊥
e−iτ ·y

∫

R

f(y + tξ) dt dy

= (2π)−
n−1

2

∫

Rn

e−iτ ·xf(x)dx =
√
2πf̂(τ),

by the Fourier transform definition and the change of variables mentioned above. �

2.3.1 Filtered Backprojection

Here we derive inversion formulas for the Radon and x-ray transforms.

Definition 2.9 Let f ∈ Z. The Riesz potential Iα of a function is given by

Îαf(ρ) = |ρ|−αf̂(ρ), (2.32)

where α < n.

When Iα is applied to functions on TSn−1 or Z, it acts on the second variable only.

Theorem 2.3 Let f ∈ S(Rn), g = Rf and h = Xf. Then, for any α < n, we have

f =
1

2
(2π)1−nI−αR♯Iα−n+1g (2.33)

f =
1

|Sn−2|(2π)
−1I−αX♯Iα−1h. (2.34)

Proof Employing the Fourier inversion formula (2.3) gives

Iαf(x) = (2π)−
n
2

∫

Rn

eix·ρ|ρ|−αf̂(ρ) dρ. (2.35)

Introducing polar coordinates ρ = σξ gives (see Appendix A.1)

Iαf(x) = (2π)−
n
2

∫

Sn−1

∫ ∞

0

eiσx·ξσn−1−αf̂(σξ) dσ dξ

= (2π)−n+
1

2

∫

Sn−1

∫ ∞

0

eiσx·ξ|σ|n−1−αR̂f(ξ, σ) dσ dξ,

by expressing f̂ with R̂f(ξ, σ) by the use of Theorem 2.2. Moreover exploiting the

evenness of the Radon transform gives the integral over (−∞, 0) which added to the

one above leads to

Iαf(x) =
1

2
(2π)−n+

1

2

∫

Sn−1

∫ ∞

−∞
eiσx·ξ|σ|n−1−αR̂f(ξ, σ) dσ dξ.
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Using the definition of the Riesz potential (2.9), the above can be written as

Iαf(x) =
1

2
(2π)−n+1

∫

Sn−1

Iα+1−nRf(ξ, x · ξ) dξ = 1

2
(2π)−n+1R♯Iα+1−nRf(x).

If we apply I−α to the above we yield the inversion formula

f(x) =
1

2
(2π)−n+1I−αR♯Iα+1−nRf(x).

To derive the inversion formula for the x-ray transform we require what Natterer [31]

formulates in the Section of Integration Over Spheres, stating

∫

Rn

a(θ) dθ =
1

|Sn−2|

∫

Sn−1

∫

ξ⊥
|τ |a(τ) dτ dξ.

Now using the same procedure as in (2.35) we achieve

Iαf(x) = (2π)−
n
2

1

|Sn−2|

∫

Sn−1

∫

ξ⊥
eix·τ |τ |1−αf̂(τ) dτ dξ.

Again using Theorem 2.2, f̂ is replaced by X̂f , thus

Iαf(x) = (2π)−
n+1

2

1

|Sn−2|

∫

Sn−1

∫

ξ⊥
eix·τ |τ |1−αX̂f(τ) dτ dξ.

The inner integral can be expressed by the Riesz potential, hence

Iαf(x) = (2π)−1 1

|Sn−2|

∫

Sn−1

Iα−1Xf(ξ,Πξx) dξ = (2π)−1 1

|Sn−2|X
♯Iα−1Xf(x),

where Πξ is the orthogonal operator projecting onto the space perpendicular to ξ and

the inversion for X follows. �

In essence, Theorem 2.3 gives us R−1 and X−1. For two dimensional problems it

is common to use α = 0 which simplifies (2.33) to f = 1
4π
R♯I−1Rf. This is known

as Filtered Backprojection (FBP) since I−1 acts like a filter on the data before back-

projecting to recover the image and it is commonly referred to as a ramp filter as

mentioned in [21] due to the implementation of the shape in the Fourier domain. On

the other hand if α = 1, then we have f = 1
4π
I−1R♯Rf, known as Backproject then filter

(BPF). This is possible since the filter can commute with the adjoint operator which

shall be discussed later in Section 2.4 where we relate the Helgason-Ludwig condition

(2.10) and (2.11) with the SVD of the Radon transform.

In a practical setting the data is noisy so using a ramp filter is not the most sensible

thing to do as high frequency components are amplified. Nevertheless, the effect of
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noise can be somewhat controlled by the use of regularization where we limit the high

frequency amplification. One specific way is to use a Hamming window and the effect

of using one is illustrated in Figure 2.6b. To numerically implement a ramp filter

we perform a one dimensional Fourier transform of the data using the Fast Fourier

Transform (FFT). Thereafter frequency domain filtering occurs along the p direction

before it is passed to spatial domain via the Inverse Fast Fourier transform (IFFT).

If a Hamming window is to be implemented, the frequency domain ramp filter is

convoluted with w(n) defined below.

Definition 2.10 For a discrete signal of length N , labelled by n = 0, 1, ..., N − 1, the

Hamming window w(n) is given by

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
. (2.36)
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(a) The effect of a ramp filter.
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(b) The effect of the Hamming window.

Figure 2.6: The different effects of both filters.

The effect of the ramp filter and Hamming window can be seen by reconstructing

the sinogram from Figure 2.4a. To avoid inverse crimes the sinogram was binned by

a factor of three after which 5% noise was added to the data. Finally backprojection

was performed to reconstruct the image on a 90 × 90 pixel grid size. We define the

relative 2-norm error as

ǫ =
‖ frec − f ‖2

‖ f ‖2
, (2.37)

which is used to calculate ǫhamming = 0.4501 and ǫramp = 0.4814. Thus quantitatively

apparent when noise is present, the hamming filter performs better.
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Reconstruction using Ramp filter

20 40 60 80

10

20

30

40

50

60

70

80

90 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Ramp filter reconstruction.

Reconstruction using Hamming filter
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(b) Hamming filter reconstruction.
Shepp Logan phantom, f
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(c) Original phantom.

Figure 2.7: Reconstruction using both filters.

2.3.2 Conjugate Gradient Least Squares

A typical linear inverse problem can be formulated as an over determined system

Ax = b as we have more equations than the number of unknowns. So A is a rectangular

matrix which is a discrete representation of the linear operator in question, x is the

unknown and b is some sort of observed data. We can use the Conjugate Gradient

algorithm to solve systems where such an A is not symmetric nor square. In order to

solve the linear system Ax = b, we can solve the equivalent system

ATAx = AT b, (2.38)

which is symmetric positive definite. Alternatively this system is known as the normal

equations associated with the least squares problem, formulated as

min
x

‖Ax− b‖22. (2.39)
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However it is highly recommended not to solve (2.38) in this manner. Indeed the

2-norm condition number is given by Cond2(A
TA) = ‖ATA‖2 ‖(ATA)−1‖2. Con-

sider ‖ATA‖2 = σ2
max(A) where σmax(A) is the largest singular value of A. Note also

that ‖A‖2 = σmax. Hence a similar argument for ‖(ATA)−1‖2 yields Cond2(A
TA) =

‖A‖22 ‖A−1‖22 = Cond2
2(A) suggesting that standard iterative procedures will fail mis-

erably if the matrix is ill-conditioned as often is the case for inverse problems. If the

approach used in Section 2.2 is utilised then we can store the matrix A to give inter-

section lengths for a ray path integral as well as simulating sinogram data which can

be reshaped in the form b. To reconstruct the Shepp Logan phantom the Conjugate

Gradient Least Squares CGLS algorithm (2.1) has to be implemented which is done

with the aid of Hansen’s Regularization toolbox [17, 16].

Algorithm 2.1 CGLS Let x0 = 0; d0 = b; r0 = AT b; p0 = r0; t0 = Ap0;

for k = 1,2,.... until stopping criterion is reached

αk =
‖rk−1‖2
‖tk−1‖2 ;

xk = xk−1 + αkpk−1;

dk = dk−1 + αktk−1;

rk = ATdk;

βk =
‖rk‖2

‖rk−1‖2 ;

pk = rk + βkpk−1;

tk = Apk;

end

The CGLS reconstruction of the Shepp Logan phantom is shown in Figure 2.8a where

Cond2(A
TA) = 3.2097 × 106, which suggests a need to apply some regularization.

Indeed one such method is called Tikhonov regularization which leads to the mini-

mization problem

min
x

‖Ax− b||22 + α2‖ Lx‖22. (2.40)

The regularization parameter α controls the weight given to minimization of the reg-

ularization term relative to the minimization of the residual term. In many cases
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the matrix L is chosen to be the identity matrix I. The Tikhonov problem can be

formulated alternatively as

(ATA+ α2LTL)x = AT b and min
x

∥∥∥∥∥∥


 A

αL


 x−


 b

0



∥∥∥∥∥∥
2

. (2.41)

There are several methods by which α can be chosen including the L curve method.

These are exemplified in [16, Chapter 7]. However the method we adopt takes a small

fraction of the largest singular value, σmax, of the discrete operator in question. The

reconstruction present in Figure 2.8a did not converge even after 100 steps whereas

the reconstruction present in Figure 2.8b converged in 32 steps. Note we have binned

the simulated sinogram from Figure 2.4b by a factor of 3. Thereafter 20% noise was

added before the CGLS algorithm was applied. The relative error was calculated as

ǫCGLS = 0.4413 and σmax = 101.6476, hence α = 0.1× σmax.

Reconstruction using CGLS
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(a) CGLS with no regularization.

Reconstruction using CGLS
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(b) CGLS with regularization.

Figure 2.8: Iterative reconstruction method.

2.3.3 Plane by plane reconstruction

Many algorithms are known to invert the Radon transform, including iterative recon-

struction procedures using Conjugate Gradient Least Squares, for example, described

earlier in Section 2.3.2. Here we want to restrict our attention to a property that

follows from (2.33). Consider the case when α = 0 and since I1−n is a one dimensional

filter, it acts on functions in R. Now for a ∈ S(R),

Î1−na(σ) = |σ|n−1â(σ),
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using the definition of the Riesz potential (2.9). Further simplification using the sign

function shows

Î1−na(σ) = (sgn(σ))n−1σn−1â(σ) = Hn−1an−1,

where H is the Hilbert transform defined by Ĥa(σ) = −i sgn(σ)â(σ) and an−1 is

understood to be the (n− 1)-th derivative with respect to the variable p. This allows

us to rewrite the explicit inversion formula for the Radon transform (2.33) as

f =
1

2
(2π)1−nR♯Hn−1gn−1 (2.42)

Suppose n = 2, then (2.42) is understood as

f =
1

4π
R♯

(
−i sgn(p)

∂̂g

∂p

)∨

. (2.43)

If this is implemented numerically, then similar results to Figures 2.7b and 2.7a can

be achieved.

Let us return to the discussion on the x-ray transform. In a typical application

situation (e.g. CT) where one wants to image a three dimensional volume, experimen-

talists would rotate the specimen (or equivalently the source and detector) about a

family of planes normal to the rotation axis. For the remainder of this subsection,

let (n = 1, 2, 3). The x-ray transform can also be defined on a plane in R3 and we

have a coordinate frame of reference in mind illustrated in Figure 2.9. For η ∈ S2, let

η⊥ = {ξ ∈ R3 | ξ · η = 0}, Rη = {sη | s ∈ R} and S1
η = {ξ ∈ η⊥ | |ξ| = 1} be the

unit circle in η⊥. Given s ∈ R, let sη + η⊥ be the plane through sη parallel to η⊥ and

ιs,η : sη + η⊥ →֒ R3 be the identical embedding.

The family of oriented lines in the plane sη + η⊥ is parameterized by points of the

manifold TS1
η = {(ξ, x) | ξ ∈ S1

η, x ∈ η⊥, ξ · x = 0} such that a point (ξ, x) ∈ TS1
η

corresponds to the line {sη+x+ tξ | t ∈ R}.We define the x-ray transform Xη,sf(ξ, x)

on the plane sη + η⊥ as

Xη,s : S(sη + η⊥,R2) → S(TS1
η), (2.44)

by the following formula

Xη,sf(ξ, x) =

∫ ∞

−∞
f(sη + x+ tξ) dt. (2.45)
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Figure 2.9: Geometrical Interpretation.

Consider the plane case n = 2 in which X is identical to the Radon transform. In this

case the formal adjoint B = X♯ : S(TS1) → C∞(R2), the backprojection operator, is

well defined and given by

Bh(x) =
1

2π

∫

S1
h(ξ, ξ · x) dξ (2.46)

for h ∈ S(TS1). Readers must note that the function Bh(x) is C∞-smooth and

bounded on R2 but does not decay fast enough to be in the Schwartz class. Thus we

understand the Fourier transform in the distribution sense.

We then have an inversion formula in frequency domain due to Natterer [31] for

data h(ξ, x) = Xη,sf(ξ, x) in the range of X

f̂(y) = |y|B̂h(x), (2.47)

which means that inversion is performed by a ramp filter applied to the backprojected

data. This operation can be performed slice by slice to invert the x-ray transform for

n = 3, in which case data is needed only for ξ ∈ η⊥ for some fixed rotation axis η ∈ S2.

In this case the slice by slice backprojection operator Bη : S(R × TS1
η) → C∞(R3),

defined by

Bηh(x) =
1

2π

∫ 2π

0

h(ξ(φ), ξ(φ) · x)dφ, for x ∈ η⊥, (2.48)

where ξ(φ) = cosφe1 + sinφe2 and ξ⊥(φ) = cosφe2 − sin φe1 with respect to an

orthonormal basis (e1, e2) of η⊥. The value of Bηh at a point x ∈ R3 is just the

average of the function h over all lines passing through x and orthogonal to η. The
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reconstruction formula (2.47) becomes

Fη⊥ [f(s, y)] = |Πηy|B̂ηh(x), (2.49)

where s = x · η and Πη = I − ηη⊥

|η| . To implement this strategy of plane by plane

inversion we simulate data using our forward projector described in Section 2.2. For

the reconstruction aspect we will employ formula (2.43) where one would presume we

are asking for trouble; differentiation is an ill-posed problem. The question we ask

ourselves is how do we develop an algorithm which would handle the ill-posedness of

∂g
∂p

and be easy to implement. To overcome this scenario we perform a regularised

derivative, carried out in the Fourier domain using the Hamming window to regularise.

Firstly we carry out a one-dimensional Discrete Fourier transform using the FFT,

finishing off with multiplication by −iσw(n). This strategy will be of importance in

Section 5.5. Upon completion of this process we pass the differentiated data into

frequency space multiplying by −i before sending everything back to spatial domain.

Lastly backprojection is performed in the manner described in the previous sections.

In Section 5.4, we define several phantoms for tensor fields of which we utilize

just a single component of the sharp (discontinuous) tensor field, f11, to illustrate

the procedure mentioned above. The phantom used to simulate data is defined on a

256 × 256 × 256 voxel grid. The number of views (or projections) are 180 and the

total number of rays fired are 135. So the data is a 256 × 135 × 180 array which is

binned by a factor of 3 and we reduce the number of slices to 90 to give an array

of size 90 × 45 × 60 before adding 5% pseudo-random noise. The relative error for

the reconstruction present in 2.10a is ǫ3D = 0.3219. We generate the phantom for

comparison purposes again on a 90×90×90 voxel grid since this is the voxel grid size

on which we reconstruct.

2.4 Singular Value Decomposition

Let A be a rectangular (or even square) matrix of size M × N and assuming that

M ≥ N as we generally have more equations than the number of unknowns in practical

inverse problems. Then the Singlar Value Decomposition (SVD) of A is of the form

A = UΣV T =
N∑

i=1

uiσiv
T
i , (2.50)
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(a) Slice by slice reconstruction. (b) The original phantom.

Figure 2.10: Three dimensional reconstruction.

where U = (u1, ...., uN), a matrix of size M × N, V = (v1, ...., vN), a matrix of size

N ×N. The columns of these matrices are orthonormal such that UTU = V TV = IN .

The diagonal matrix Σ = diag(σ1, ...., σN) has non-negative diagonal elements called

singular values such that σ1 ≥ σ2 ≥ .... ≥ σN ≥ 0. The vectors ui, and vi are called the

left and right singular vectors of A, respectively. Generally two characteristic features

are present in the SVD of a discretized operator, namely

• The singular values σi decay gradually to zero with no particular gap in the

spectrum.

• The left and right singular vectors ui and vi tend to have rapid oscillations in

the sign of their elements as the index i increases.

These properties give an insight into classifying the nature of ill-posedness of the

problem. To illustrate this we take the approach of Bertero and Boccacci [5] to identify

the SVD of the Radon transform in two dimension. Alternatively [31] specifies a

different approach deriving the SVD in arbitrary dimension. Moreover [28] suggests a

SVD for the x-ray transform.

We would like to derive the SVD of the Radon transform as an operator from L2(Ω)

into L2(Z,w−1), where w(p) = (1− p2)
1

2 and Ω being the unit ball (disk), i.e. S1 ⊂ R.

Thus

‖f‖2L2(Ω) =

∫

Ω

|f(x)|2 dx (2.51)

Note that w(p) is the half length of the chord obtained by intersecting the disk with
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a straight line having signed distance p from the origin. Hence the Radon transform

which is zero outside Ω is

Rf(ξ, p) =

∫ w(p)

−w(p)
f(pξ + y) dy, |p| ≤ 1. (2.52)

First we need to check to see if R and R♯ are both bounded on L2(Ω) and L2(Z,w−1).

which Natterer [31] does show. Consider the integrand in the RHS of (2.52) as the

scalar product of the function f and the function equal to one over the interval

[−w(p), w(p)]. Applying Cauchy-Schwartz inequality (see Appendix A) to this yields

|Rf(ξ, p)|2 ≤ 2w(p)

∫ w(p)

−w(p)
|f(pξ + y)|2 dy. (2.53)

Integrating across the diameter of the disc in (2.53) gives

∫ 1

−1

w−1(p)|Rf(ξ, p)|2 dp ≤ 2

∫ 1

−1

dp

∫ w(p)

−w(p)
|f(pξ + y)|2 dy = 2

∫

Ω

|f(x)|2 dx. (2.54)

This suggests the codomain of the Radon transform for functions on the cylinder,

g(ξ, p), will need a certain weighted norm, defined as

‖g‖L2(Z,w−1(p)) =

∫ 2π

0

dφ

∫ 1

−1

|g(ξ, p)|2
w(p)

dp. (2.55)

Now if we integrate inequality (2.54) with respect to φ, it is sufficient to show R is a

bounded operator and the following bound is obtained

‖Rf‖L2(Z,w−1(p)) ≤
√
4π‖f‖L2(Ω), (2.56)

suggesting that the largest singular value of R is
√
4π and ‖R‖2 =

√
4π. Since R is

bounded, this suggests that we can classify R as an integral operator of the Hilbert-

Schmidt class.

The singular system of R can be obtained by representing a function g(ξ, p) ∈
L2(Z,w−1(p)), for fixed ξ, as a series of Chebyshev polynomials of the second kind,

which are orthogonal to the weight function w(p) and noted earlier in Definition 2.6.

Consider the change of variable p = cos θ, 0 ≤ θ ≤ π, in (2.13), giving

Ul(cos θ) =
sin(l + 1)θ

sin θ
. (2.57)

Therefore utilizing (2.57) we see that

∫ 1

−1

w(p)Ul(p)Ul′(p) dp =

∫ π

0

sin[(l + 1)θ] sin[(l′ + 1)θ]√
1− cos2 θ

sin θ dθ
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=

∫ π

0

sin[(l + 1)θ] sin[(l′ + 1)θ] dθ =
π

2
δl,l′. (2.58)

Observe that g(cos θ) ∈ L2 since
∫ 1

−1

|g(p)|2 dp

w(p)
=

∫ π

0

|g(cos θ)|2 dθ,

which means g(cos θ) can be represented by the trigonometric series

g(cos θ) =

∞∑

l=0

cl sin[(l + 1)θ], with

cl =
2

π

∫ π

0

g(cos θ) sin[(l + 1)θ] dθ. (2.59)

Thus g(ξ, p) can be represented as a series expansion in ul(p) = w(p)Ul(p) for fixed ξ,

which leads us to consider subspaces of L2(Z,w−1(p)) denoted as L2
l (Z,w

−1(p)). These

subspaces contain the functions of the form

gl(ξ, p) =

√
2

π
w(p)Ul(p)u(ξ), l = 0, 1, .... (2.60)

where u(ξ) is an arbitrary square integrable function of ξ. With the aid of (2.55) and

(2.58) we realise that

‖gl‖2L2(Z,w−1(p)) =

∫ 2π

0

dφ
2

π

∫ 1

−1

dp

w(p)
|w(p)Ul(p)u(ξ)|2

=
2

π

∫ 2π

0

dφ

∫ 1

−1

|w(p)U2
l (p)u

2(ξ)| dp =
∫ 2π

0

|u(ξ)|2 dφ. (2.61)

Consider L2(Z,w−1(p)) = L2
0(Z,w

−1(p)) ⊕ L2
1(Z,w

−1(p)) ⊕ L2
2(Z,w

−1(p)) ⊕ ...... and

it is quite apparent due to the orthogonality of the Chebyshev polynomials that the

subspaces (L2
l (Z,w

−1(p)) are orthogonal. The strategy we employ is to find eigenfunc-

tions and eigenvalues of RR∗. In order to achieve our goal it is necessary to show that

RR∗ transforms a function of (L2
l (Z,w

−1(p)) into another function of (L2
l (Z,w

−1(p)).

The adjoint operator, R∗, is defined below

R∗g(x) =

∫

S1
g(ξ, ξ · x)(w(ξ · x))−1 dξ. (2.62)

Note R∗ is not exactly backprojection as we are utilizing the L2(Z,w−1(p)) norm and

one can check quite easily that 〈Rf(ξ, p), g(ξ, p)〉L2(Z,w−1(p)) = 〈f(x), R∗g(x)〉L2(Ω). Of

course by exhanging the order of integration via Fubini’s theorem and a change of

variables, we have

〈Rf(ξ, p), g(ξ, p)〉L2(Z,w−1(p)) =

∫ 1

−1

dp

w(p)

∫ 2π

0

dφ

(∫ w(p)

−w(p)
dyf(pξ + y)

)
g∗(ξ, p)
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=

∫ 2π

0

(∫ 1

−1

dp

∫ w(p)

−w(p)
dyf(pξ + y)

g∗(ξ, p)

w(p)

)
dφ

=

∫

Ω

f(x) dx

(∫ 2π

0

g∗(ξ, ξ · x)
w(ξ · x) dφ

)
= 〈f, R∗g〉L2(Ω) (2.63)

Since gl is a function of L2
l (Z,w

−1(p)) defined in (2.60), we obtain using (2.52) and

(2.62), the result

RR∗gl(ξ, p) =

√
2

π

∫ w(p)

−w(p)
dy

∫ 2π

0

dφ′ Ul[ξ
′ · (pξ + y)]u(ξ′). (2.64)

By exchanging the integration order in (2.64), let us consider the integral

E(ξ, ξ′; p) =

∫ w(p)

−w(p)
Ul[ξ

′ · (pξ + y)] dy. (2.65)

Explicitly ξ = (cosφ, sinφ) and ξ
′
= (cosφ′, sinφ′), thus ξ · ξ′ = cos(φ − φ′) and

ξ⊥ ·ξ′ = − sin(φ−φ′). Furthermore, say, y = tξ⊥ and suppose p = cos θ and ψ = φ−φ′,

allowing us to transform (2.65) into

E(ξ, ξ′; cos θ) =

∫ sin θ

− sin θ

Ul(cos θ cosψ − t sinψ) dt. (2.66)

Using the substitution u = cos θ cosψ − t sinψ, (2.66) becomes

E(ξ, ξ′; cos θ) =

∫ cos(θ+ψ)

cos(θ−ψ)

Ul(u)

sinψ
du. (2.67)

Yet again introducing a new variable u = cos η in (2.67) and using (2.57) gives

E(ξ, ξ′; cos θ) =
1

sinψ

∫ θ+ψ

θ−ψ
sin[(l + 1)η] dη

=
1

sinψ

[
− 1

l + 1
[cos {(l + 1)η}]θ+ψθ−ψ

]
=

2

l + 1

sin[(l + 1)ψ]

sinψ
sin[(l + 1)θ]. (2.68)

The above expression (2.68) for E(ξ, ξ⊥; cos θ) should be substituted into (2.64) by

reversing the change of variables ψ = φ− φ′ and θ = arccos p⇒ sin[(l+ 1) arccos p] =

sin[(l + 1)θ] = sin θUl(cos θ) =
√
1− p2Ul(cos θ) = w(p)Ul(p). In this manner we

achieve

RR∗gl(ξ, p) =

√
2

π
2π

2

l + 1
w(p)Ul(p)

(
1

2π

∫ 2π

0

sin[(l + 1)(φ− φ′)]

sin(φ− φ′)
u(ξ′) dφ′

)
,

(2.69)

which can be written as

RR∗gl(ξ, p) =
4π

l + 1

√
2

π
w(p)Ul(p)ū(ξ), where
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ū(ξ) =
1

2π

∫ 2π

0

sin[(l + 1)(φ− φ′)]

sin(φ− φ′)
u(ξ′) dφ′. (2.70)

The integral operator in (2.70) is usually seen in the theory for Fourier series. This op-

erator is called the Fejér kernel which takes u to its truncated Fourier series. In essence

(2.70) actually shows that RR∗(L2
l (Z,w

−1(p))) ⊆ L2
l (Z,w

−1(p)). This restriction of the

operator RR∗ to the subspace L2
l (Z,w

−1(p)) is equivalent to the Fejér kernel defined

in (2.70). Hence it is possible to diagonalize RR∗ by diagonalizing its restrictions to

the subspaces L2
l (Z,w

−1(p)). Due to the completeness of the Chebyshev polynomials

we can find all eigenfunctions and eigenvalues of RR∗. Note that the integral operator

given in (2.70) is a finite rank integral operator as can be seen by the following identity

1

2π

sin[(l + 1)(φ− φ′)]

sin(φ− φ′)
=

l∑

k=0

Yl−2k(ξ)Y
∗
l−2k(ξ

′), (2.71)

where Yl(ξ) = 1√
2π
e−ilφ are known as the Spherical Harmonics of degree l. These

functions are orthonormal on [0, 2π] owing to which Yl−2k(ξ) are the eigenfunctions of

the integral operator (2.70). With this in mind let us define

ul,k(ξ, p) =

√
2

π
w(p)Ul(p)Yl−k(ξ), k = 0, 1, 2, ....l (2.72)

which are orthonormal functions in L2(Z,w−1(p)). From (2.70) and (2.71) we realise

that

RR∗ul,k = σ2
l ul,k, k = 0, 1, 2, ...., m, (2.73)

where

σl =

√
4π

l + 1
(2.74)

It can also be shown that

vl,k(x) =
1

σl
R∗ul,k =

√
2l + 2Ql,|l−2k|(|x|)Yl−2k

(
x

|x|

)
, (2.75)

where

Ql,m(r) = rmP
(0,m)
1

2
(m+l)

(2r2 − 1) (2.76)

and P
(α,β)
n (t) denote the Jacobi polynomials.

The singular values σl decay more slowly than 1√
l+1

suggesting the Radon transform

is only mildly ill posed. If we discretize the Radon transform in a similar fashion to

Section 2.2 and calculate the SVD of the forward projection matrix A, we are able to
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confirm this result numerically as shown in Figure 2.11. Here a log log plot is used to

visualize the decay to zero. Note the sudden drop of singular values near the end of

the graph. Usually such an occurence happens when dealing with singular values of

numerically rank deficient matrices. A detailed explanation can be found in Chapter

3 of [16].

10 0 10 1 10 2 10 3 10 4
10 0

10 1

10 2

10 3

Figure 2.11: Singular values, σi, decay gradually to 0.

2.5 Stability Estimates

To deduce stability results for the Radon and x-ray transforms we need to consider

them as operators between suitable Sobolev spaces. In particular the inverses are not

continuous between L2 spaces. Prior to this we state the definition of a Sobolev space.

Definition 2.11 The Sobolev space Hα(Rn) or Hα of real order α is defined by

Hα = {f ∈ S ′(Rn) : (1 + |ξ|2)α
2 f̂ ∈ L2(Rn)}. (2.77)

So Hα is a Hilbert space with the following norm and inner product

‖f‖Hα =

(∫

Rn

(1 + |ξ|2)α|f̂(ξ)|2 dξ
) 1

2

, (2.78)

If α = 0 above in (2.78) we have the usual L2 inner product

〈f, g〉 =
∫

Rn

f̂(ξ)¯̂g(ξ) dξ. (2.79)
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Consider Ω ⊂ Rn, then we define

Hα
0 (Ω) = {f ∈ Hα(Rn) : supp(f) ⊆ Ω̄} (2.80)

where the support of f ∈ S ′ is the complement of the points having a neighbourhood

in which f vanishes (i.e. f vanishes for all C∞-functions with support in the neigh-

bourhood). This is a closed subspace. The Sobolev spaces on Z = Sn−1×R and TSn−1

are defined as follows

‖g‖2Hα(Z) =

∫

Sn−1

∫

R1

(1 + σ2)α|ĝ(ξ, σ)|2 dσ dξ, (2.81)

‖g‖2Hα(TSn−1) =

∫

Sn−1

∫

ξ⊥
(1 + η2)α|ĝ(ξ, η)|2 dη dξ, (2.82)

Theorem 2.4 Consider f ∈ Hα
0 (Ω) with Ω being a bounded set. Then there exists

positive constants c(α, n) and C(α, n) such that

c(α, n)‖f‖Hα
0
(Ω) ≤ ‖Rf‖

Hα+
n−1
2 (Z)

≤ C(α, n)‖f‖Hα
0
(Ω), (2.83)

c(α, n)‖f‖Hα
0
(Ω) ≤ ‖Rf‖

Hα+1
2 (TSn−1)

≤ C(α, n)‖f‖Hα
0
(Ω), (2.84)

Proof. See [31, Chapter 2.5], Theorem 5.1. �

Theorem 2.4 shows that the Radon and x-ray transforms can be both considered as

functions from Hα
0 (Ω) → Hα+n−1

2 (Z) and Hα
0 (Ω) → Hα+ 1

2 (TSn−1) which suggests they

have continuous inverses. Note that the Radon transform increases smoothness by n−1
2

derivatives whereas the x-ray transform increases smoothness by 1
2
derivatives.

This completes the discussion on well known results within the literature that are

to be used throughout this thesis. Our goal and aim is to introduce examples of

rich tomography and use the results within this chapter to derive novel reconstruction

algorithms, ideally implementing them numerically in an innovative manner. Hence

we start our journey by introducing several transforms in the next chapter.



Chapter 3

Ray Transforms on Euclidean Space

Conventional tomography reconstructs an image from a single measurement per ray.

However many applications as we shall see in due course make several measurements

for each ray. Our aim is to reconstruct higher dimensional objects which can be gener-

alised as tensors of type (n,m). Throughout this thesis, our attention is restricted to

orthonormal bases (e1, e2, e3) of R
3 for several modalities, thus we do not distinguish

between co- and contravariant tensors. The design of reconstruction algorithms are

hugely affected by this subtle difference in measurements which can be seen by the

formulation of the model for x-ray tomography. For a monochromatic x-ray beam

(one energy) the initial intensity, u(p = −∞), is known to us at the source as well

as the final intensity, u(p = ∞), of the beam at the detector. One important result,

the Beer-Lambert law [4], states that a beam of electromagnetic radiation is atten-

uated exponentially as it travels through an object which implies that absorption is

− log
(

u(∞)
u(−∞)

)
.

The derivation for this is as follows. Consider the transport equation, a first order

hyperbolic PDE,

ξ · ∇ u(x, ξ) = −f(x) u(x, ξ), (3.1)

where f(x) is the attenuation coefficient. Fixing one direction ξ (for one specific beam)

and integrating gives

∫ ∞

p=−∞

du

u
=

∫ ∞

p=−∞
−f(x+ pξ) dp⇒ u(p = ∞)

u(p = −∞)
= exp

(∫ ∞

p=−∞
−f(x+ pξ) dp

)

⇒ u(p = ∞) = u(p = −∞) exp

(∫ ∞

p=−∞
−f(x+ pξ) dp

)
.

47
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Now observe the effect on the formulation when u is a rank one (vector) or a rank two

tensor (3 × 3 matrix). If we examine the transport equation for one ray, we have an

ODE

d

dp
u = −f(p)u(p),

which causes issues when f(p) is non-scalar since this does not have a general solution

u(p) = exp(−
∫
f(p) dp)u(0). One may ponder using the matrix exponential in such a

circumstance where exp(−
∫
f(p) dp) =

∑∞
k=0

(−
∫
f(p) dp)k

k!
. However, this does not sat-

isfy d
dp

exp(−
∫
f(p) dp) = −f(p) exp(−

∫
f dp) implying that

∫
f(p) has to commute

with its derivative for a solution. This motivates our discussion to define several ray

transforms in Euclidean space that can potentially be utilised in many applications. In

Section 3.1 we introduce the Non-Abelian Ray Transform (NART) and in Section 3.2

we introduce tensor ray transforms with complete inversion formulae. Furthermore,

we briefly indicate current work in this field about range and stability. In Section

3.3 we relate the transforms together which will be of importance in Section 5.1.2 of

Chapter 5.

3.1 Non-Abelian Ray Transform

For certain applications, the order in which the ray traverses the object of interest

matters unlike x-ray CT where the ray travelling in one direction gives the same

attenuation coefficient as the ray travelling in the reverse direction. For example,

SPECT (Single-Photon Emission Computed Tomography), a nuclear medicine imag-

ing technique using gamma rays, is found to have differences in data depending on

the direction of travel, ξ. Thus these types of problems are classed as non-abelian

problems. Other examples include Electromagnetic Polarization Tomography (EPT)

and applications involving weighted Radon transforms usually have such a property.

We will now introduce the notation used for Non-Abelian Ray Transform (NART)

problems, following [12], and the references therein. For reasons that will become

apparent we need only the planar case. For 0 ≤ j ≤ 2, let Aj(t) be C
∞ n× n matrix

valued functions on R2, with compact support contained in the ball ΩR, where R is

some radius. We denote by ξ = (ξ1, ξ2) a vector in S1 and let Σ(x, ξ) be the matrix
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solution of the partial differential equation

ξ · ∇Σ(x, ξ) = (A1(x)ξ1 + A2(x)ξ2 + A0(x))Σ(x, ξ), (3.2)

such that Σ(x + tξ, ξ) → In, as t → −∞. We then define the limit of Σ(x + tξ, ξ) as

t → ∞ to be the NART of A(x, ξ) = (A1(x)ξ1 + A2(x)ξ2 + A0(x)), which we denote

by S(A).

This formulation is analogous to the transport equation in x-ray tomography de-

scribed earlier. Note we have allowed a first order dependence of the right hand side

on the direction ξ. This case does not include polarized light tomography (with phase

measurements) in which there is a quadratic dependence on direction [32]. Moreover

we elaborate the usage of A(x, ξ) in Chapter 4 where this dependence on direction is

discussed.

Definition 3.1 The matrices A
(1)
j (x), 0 ≤ j ≤ 2 and A

(2)
j (x),0 ≤ j ≤ 2 are said

to be gauge equivalent if there exists a nonsingular n × n C∞ matrix g(x) such that

g(x) = In for |x| ≥ R and

A
(2)
j = gA

(1)
j g−1 +

∂g

∂xj
g−1, j = 1, 2, (3.3)

A
(2)
0 = gA

(1)
0 g−1. (3.4)

The significance of this is that gauge equivalent A(1)(x, ξ) and A(2)(x, ξ) have the same

NART, so we can can hope at best that the inverse problem has a unique solution

up to gauge equivalence. Indeed [12] proves the following theorem which depends on

advanced complex analysis techniques.

Theorem 3.1 (Eskin) Suppose A
(1)
j (x) and A

(2)
j (x), 0 ≤ j ≤ 2, are C∞ compactly

supported matrices with the same NART. Then A
(1)
j (x), 0 ≤ j ≤ 2 and A

(2)
j (x), 0 ≤

j ≤ 2 are gauge equivalent.

3.2 Tensor Ray Transforms

In order to describe ray transforms of tensor fields we fix some notation. In a similar

manner to our introduction of the family of lines in Section 2.3.3, we define the family
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of oriented lines in Rn to be points on the manifold TSn−1. For example, in three

dimensions an oriented line l ⊂ R3 is uniquely represented as l = {x+ tξ | t ∈ R} with

(ξ, x) ∈ TS2.

Definition 3.2 Let us denote the complex vector space of symmetric R-bilinear maps

Rn × Rn → C by S2Cn . The elements of this space are (complex-valued) symmetric

tensors of second rank on Rn.

We identify a complex symmetric tensor f ∈ S2Cn with the C-linear operator,

f : Cn → Cn. For two tensors f, g ∈ S2Cn, we denote by f · g the contraction of the

product of two tensors and f ·η, where η ∈ Rn, the contraction of a tensor with a vector.

This coincides with matrix multiplication of components. Thus (f · ξ) · η = (f · η) · ξ
where η, ξ ∈ Rn. Here we would like to draw the difference between a local contraction

and the usual definition for an inner product 〈◦, ◦〉, which represents integration over

space. For example, given an orthonormal basis (e1, e2, e3) of R
3, a tensor f ∈ S2C3

can be represented by the symmetric 3×3 matrix (fjk), fjk = (f ·ej)·ek. The Hermitian

scalar product on S2Cn can be written as f · g =
∑3

j,k=1 fjkḡjk independently of the

choice of an orthonormal basis. Although the discussion can continue in arbitrary

dimension n, we will restrict our attention to n = 2, 3.

3.2.1 The Longitudinal Ray Transform

The Longitudinal Ray Transform (LRT),

I : S(R3;C3) → S(TS2), I : S(R3;S2C3) → S(TS2),

defined on vector and tensor fields respectively by

If(ξ, x) =

∫ ∞

−∞
f(x+ tξ) · ξ dt, (3.5)

If(ξ, x) =

∫ ∞

−∞
(f(x+ tξ) · ξ) · ξ dt. (3.6)

The LRT can also be defined on a plane in R3. Let η⊥C be the complexification of η⊥

and we follow the notation introduced in Section 2.3.3. We define the LRT on the

plane sη + η⊥

Iη,s : S(sη + η⊥; η⊥C ) → S(TS1
η) (3.7)

Iη,s : S(sη + η⊥;S2η⊥C ) → S(TS1
η) (3.8)
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by the following formulae

Iη,sf(ξ, x) =
∫∞
−∞ f(sη + x+ tξ) · ξ dt, (3.9)

Iη,sf(ξ, x) =
∫∞
−∞(f(sη + x+ tξ) · ξ) · ξ dt (3.10)

respectively. One can see that operators (3.6) and (3.10) are related. Indeed, if

f ∈ S(R3;S2C3) and ι∗η,sf is the slice of f by the plane sη + η⊥, then

Iη,s(ι
∗
η,sf)(ξ, x) = If(ξ, sη + x), for (ξ, x) ∈ TS1

η. Suppose we have a vector field

f ∈ S(R3,C3) which can be uniquely represented as

f = sf +∇v, (3.11)

where sf ∈ C∞(R3,C3) such that

∇ · sf =
3∑

j=1

∂sfj
∂xj

= 0 (3.12)

and a scalar function v ∈ C∞(R3) satisfying v(x) → 0 as |x| → ∞. The field sf is

called the solenoidal part of the vector field f, whilst ∇v is known as the potential

part of f. The LRT of a potential field is identically equal to zero: I(∇v) = 0, for any

v ∈ C1(R3) satisfying v(x) → 0 as |x| → ∞. Thus we can only hope to recover the

solenoidal part. Similarly consider a tensor field g ∈ S(R3, S2C3) which can also be

uniquely represented as

gjk =
sgjk +

1

2

(
∂uj
∂xk

+
∂uk
∂xj

)
, (3.13)

with sg ∈ C∞(R3, S2C3) satisfying

3∑

k=1

∂sgjk
∂xk

= 0, (1 ≤ j ≤ 3), (3.14)

and a vector field u ∈ C∞(R3;C3) satisfying u(x) → 0 as |x| → ∞. The field sg is

called the solenoidal part of the tensor field g, whilst the term involving the partial

derivatives in (3.13) is the potential part of g. The LRT of a potential field is identically

equal to zero, i.e. Ig = Isg. Sharafutdinov in [39] generalizes this unique splitting for

rank m tensors of the form h ∈ S(R3;SmC3).
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Complete Inversion of LRT

In Section 2.3.1 we derive the inversion formula for the Radon transform which can

be stated in terms of the Laplacian as follows

f = cn(−∆)
n−1

2 R♯Rf, (3.15)

where cn = (4π)(
n−1

2 ) Γ(
n
2 )

Γ( 1

2)
and the Laplacian operator denoted as ∆ acts on compo-

nents and it’s inverse ∆−1 is defined by convolution with the fundamental solution.

This should motivate us to ask ourselves if such an inversion procedure exists for the

LRT. We closely follow the notation of Sharafutdinov [39] for the next few sections

and indeed this is possible by Theorem 2.12.2 of [39, Chapter 2], which requires some

definitions.

Definition 3.3 The backprojection operator B : S(R3×R3
0;S

2R3) → S(R3;S2R3) is

given by

Bφ(x) = 1

4π

∫

Ω

φ(x, ξ) dω(ξ), (3.16)

where Ω ⊆ R3 is the unit sphere and ω is its standard measure.

Definition 3.4 On S(R3;SkR3), the space of smooth symmetric rank k tensor fields,

we define the generalization of divergence δ : S(R3;SkR3) → S(R3;Sk−1R3) by

(δf)i1.....ik−1
=

∂

∂xj
fi1.....ik−1j . (3.17)

We will repeatedly use Einstein summation convention from now. Furthermore, the

negative of its formal adjoint is explained hereunder.

Definition 3.5 The symmetric derivative d : S(R3;SkR3) → S(R3;Sk+1R3) is given

by

(df)i1.....ik+1
= σ

(
∂

∂xik+1

fi1.....ik

)
, (3.18)

where σ is the symmetrization operator on tensors.

We are now ready to state the theorem.
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Theorem 3.2 Let n = 3 and m = 0, 1 and 2. For every tensor field f ∈ S(R3;S2R3),

the solenoidal part of f can be recovered from the LRT, If, according to the formula

sf = (−∆)1/2



[m/2]∑

k=0

ck(i−∆−1d2)kjk


ΦmIf, (3.19)

where Φm : S(R3;SmR3) → S(R3;SmR3) is the operator sending a function ψ(x, ξ)

to the set of its integral moments with respect to its second argument. Specifically this

is

(Φmψ)i1.....im(x) =
1

4π

∫

Ω

ξi1...ξimψ(ξ, x) dω(ξ). (3.20)

In Theorem 3.2 i and j are the operators defined by the equalities iu = Iu, ju = tr u.

Here i is the operator of symmetric multiplication by the Kronecker tensor, δij and j

is the operator of convolution with δij . Note that j : (C3;Sm+2C3) → (C3;SmC3) (i.e.

lowers the rank of the tensor by 2). The coefficients ck are given by the formula

ck = (−1)k
1

π

(2m− 2k)!!

2kk!(m− 2k)!
(3.21)

and [m/2] is the integer part of m/2.

Proof. See [39, Chapter 2] �.

Now we derive some formulae for the Fourier transforms of the integral moment oper-

ator in (3.20) for m = 0, 1 and 2. Using the substitution x′ = x+ tξ and the symmetry

in t we achieve

(ΦmIf)i1i2 =
1

2π

∫

Ω

ξi1ξi2

∫ ∞

0

fj1j2(x+ tξ)ξj1ξj2 dt dω(ξ) (3.22)

=
1

2π

∫

Ω

∫ ∞

0

(x′ − x)i1(x
′ − x)i2

|x′ − x|m fj1j2(x
′)
(x′ − x)j1(x

′ − x)j2
|x′ − x|m+2

t2 dt dω(ξ). (3.23)

By the use of Appendix A we know integrals over Rn can be expressed as integrals

over spheres. Thus we recognise (3.23) as

(ΦmIf)i1i2 =
1

2π

∫

R3

(x′ − x)i1(x
′ − x)i2

|x′ − x|m fj1j2(x
′)
(x′ − x)j1(x

′ − x)j2
|x′ − x|m+2

dx′. (3.24)

Hence by the definition of convolution (3.24) can be rewritten as

(ΦmIf)i1i2 =
1

2π
fj1j2 ∗

xi1xi2xj1xj2
|x|2m+2

. (3.25)
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To apply the Fourier transform to (3.25), we require some justification. Note that

fj1jm ∈ S and the fraction can be regarded as an element of the space of tempered

distributions, S ′. As convolution is just multiplication in Fourier space, i.e. (̂f ∗ g) =
(2π)n/2f̂ ĝ. This suggests

F [(ΦmIf)i1i2 ] =
√
2πf̂j1j2F

[
xi1xi2xj1xj2
|x|2m+2

]
, (3.26)

which is the result giving the inversion for the x-ray transfrom in three dimensions

(2.34), with α = 1. In terms of the Laplacian this is just f = (−∆)1/2X♯Xf. In

accordance with the usual rules of treating the Fourier transform like those present in

[18], we can write (3.26) as

F [(ΦmIf)i1i2 ] = (−1)m
√
π

22m
Γ
(
−m+ 1

2

)

Γ (m+ 1)
f̂j1j2∂i1i2j1j2|y|2m−1, (3.27)

where ∂i1...ik = ∂k

∂yi1 ...∂yik
(k = 0, 1, or 2). Now we state the following lemma from [39,

Lemma 2.11.1].

Lemma 3.1 For an integer m ≥ 0,

∂2m|y|2m−1 = ((2m− 1)!!)2|y|−1Πm
y ,

where Πm
y is the m’th power of the function

(
δij(y)− yiyj

|y|2

)
and k!! = k(k−2)(k−4)...

noting that (−1)!! = 1. Equivalently one can understand the above as

∂i1...i2m|y|2m−1 = ((2m− 1)!!)2|y|−1σ(Πi1i2...i2m−1i2m)

where σ has been defined earlier in (3.18) as the symmetrization operator.

Upon using Lemma 3.1 we can show that (3.27) can be written as

Φ̂mIf(y) = b(m, 3)|y|−1Πm
y f̂(y), where (3.28)

b(m, 3) = (−1)m
√
π
((2m− 1)!!)2

22m
Γ
(
−m+ 1

2

)

Γ (m+ 1)
(3.29)

is just a constant and Φm can be thought of as the integral moment backprojection

operator. Now for different values of m = 0, 1 or 2, we immediately have

Φ̂0If(y) = f̂(y)
π

|y| (3.30)
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and for a vector field, f, when m = 1,

Φ̂1If(y) = Πyf̂(y)
π

2|y|. (3.31)

Using the calculated value b(2, 3) = 3π
8|y| , we see

Φ̂2If(y) = Π̃y(f̂(y))
3π

8|y|. (3.32)

In (3.32) above, Π̃y = Π2
y. Specifically this operator can be calculated as

Π̃y(f̂(y)) =
2

3
Πyf̂(y)Πy +

1

3
tr(Πyf̂(y))Πy. (3.33)

Now consider from (3.21) that c0,m=0 = 1
π
, c0,m=1 = 2

π
, c0,m=2 = 4

π
and c1,m=2 = − 1

π
.

Hence substituting these values into (3.19) of Theorem 3.2 gives

f =
4

π

[
7

4
I− 1

4
I tr +

1

4
∆−1d2 tr

]
(−∆)1/2BIf. (3.34)

3.2.2 The Transverse Ray Transform

For the LRT we integrate along the ray direction, ξ. Suppose we integrate normal to

the ray direction, ξ, in which case we define the Transverse Ray Transform (TRT) of

symmetric rank two tensor fields

J : S(R3;S2C3) → S(TS2;S2C3),

which is defined by

Jf(ξ, x) =

∫ ∞

−∞
Pξf(x+ tξ) dt, (3.35)

where

Pξf = ΠξfΠξ, and Πξ = δ − 1

|ξ|2ξ ⊗ ξ,

is the projection of f onto the subspace orthogonal to ξ, that is to the set

{f ∈ S2C3 | f ·ξ = 0} and δ is the Kronecker tensor. Note that here Pξ : S
2C3 → S2C3.

For example, for an orthonormal basis of the form (e1, e2, e3 = ξ), the projection Pξf

is expressed in components as




f11 f12 0

f12 f22 0

0 0 0


 . (3.36)
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Moreover the TRT is defined for vector fields

J : S(R3;C3) → S(TS2,C3),

by

Jf(ξ, x) =

∫ ∞

−∞
Πξf(x+ tξ) dt. (3.37)

Complete Inversion of TRT

Indeed an explicit inversion formula using complete data for the ray transform exists

and is present in [27, Thm 8.1] using the ideas present in [39]. We reiterate the sketch

of the proof here. By expanding Pξf in (3.35) we see

Pξf = f − ξξTf + fξξT

|ξ|2 +
(ξTfξ)ξξT

|ξ|4 . (3.38)

Consider the expansion

BJf = G1f +G2f +G3f, (3.39)

where the terms correspond to the three terms in (3.38). Quite simply using (3.25),

G1 is just BX, implying

G1f =
1

2π
f ∗ |x|−2 (3.40)

and the third term is exactly Φ2f , hence

(G3f)ij =
1

2π
fkl ∗

xixjxkxl
|x|6 . (3.41)

If one looks at (3.24) for m = 1, applying this to fipξp, gives

(G2f)ij = − 1

2π

(
fik ∗

xjxk
|x|4 + fjk ∗

xixk
|x|4

)
. (3.42)

Finally if we take the Fourier transforms of these expression we yield Lemma 3.2,

stated below.

Lemma 3.2 Let g = 2
π
BJf, then

|y|ĝ = f̂ − 1

2
(Πyf̂ + f̂Πy) +

3

8
Π̃y(f̂). (3.43)
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Now let z = y
|y| which makes Πy = I − zzT . Our first job is to transform Π̃y in terms

of Πy. Thus consider

Π̃yf̂ =
2

3
Πyf̂(y)Πy +

1

3
tr(Πyf̂)Πy

=
2

3
[I− zzT ]f̂ [I− zzT ] +

1

3
tr[(I− zzT )f̂ ](I− zzT )

=
2

3
f̂ − 2

3
(f̂zzT + zzT f̂) +

2

3
(zT f̂z)zzT − 1

3
tr(zzT f̂)I+

1

3
tr(zzT f̂)zzT

+
1

3
tr(f̂)I− 1

3
tr(f̂)zzT . (3.44)

Using the result tr(AB) = tr(BA), we can simplify (3.44) to

Π̃yf̂ =
2

3
f̂ +

1

3
tr(f̂)I− 2

3
(f̂ zzT + zzT f̂)+ (zT f̂z)zzT − 1

3
tr(f̂)zzT − 1

3
(zT f̂z)I. (3.45)

Upon substitution of (3.45) in (3.43) we achieve

|y|ĝ = 1

4
f̂ +

1

4
(zzT f̂ + f̂ zzT ) +

3

8
(zT f̂z)zzT +

1

8
Itrf̂ − 1

8
zzT trf̂ − 1

8
zT f̂zI. (3.46)

By direct substitution we get

f̂ =
1

|y|
(
4ĝ − 2(zzT ĝ + ĝzzT )− Itrĝ − zzT trĝ + (zT ĝz)I

)
. (3.47)

To check that (3.47) is correct we can substitute it into (3.46). Now using the definition

of d and δ leads us to Theorem 3.3

Theorem 3.3 Let f ∈ S(R3;S2C3) be a rank two symmetric tensor field, then

f =
4

π

(
4I− Itr + 4∆−1dδ −∆−1d2tr−∆−1Iδ2

)
(−∆)1/2BJf. (3.48)

3.2.3 The Truncated Transverse Ray Transform

The Truncated Transverse Ray Transform (TTRT) is defined to be the linear operator

K : S(R3;S2C3) → S(TS2;S2C3) such that

Kf(ξ, x) =

∫ ∞

−∞
Qξf(x+ tξ) dt. (3.49)
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For a unit vector ξ, we define Qξ : S
2C3 → S2C3 to be the orthogonal projection onto

the subspace {f ∈ S2C3 | f · ξ = 0, trf =
∑3

j=1 fjj = 0}. To illustrate this, let us take

the orthonormal basis (e1, e2, e3 = ξ) and the projection can be expressed by

Qξf =
1

2




f11 − f22 2f12 0

2f12 f22 − f11 0

0 0 0


 . (3.50)

One may think of Qξ as

Qξf = Pξf − 1

2
tr(Pξf)Πξ. (3.51)

This is precisely the projection of f onto ξ⊥ followed by the projection onto the kernel

of the trace operator on ξ⊥.

Complete Inversion of TTRT

Expanding (3.51) gives

Qξf = f − 1

2
trfI− 1

|ξ|2 (ξξ
Tf + fξξT ) +

1

2|ξ|4 (ξ
Tfξ)I+ trf

1

2|ξ|2ξξ
T . (3.52)

If we follow the procedure for the TRT, then suppose the backprojection operator for

the TTRT is

BKf = G1f +G2f +
1

2
G3f +G4f,

where G1, G2, G3 have been identified earlier in Section 3.2.2. For G4f consider

(G4f)ij =
1

4π
fkl ∗

xkxl
|x|4 δij. (3.53)

Once again taking the Fourier transform of each of the now four terms gives us Lemma

3.3.

Lemma 3.3 Let h = 2
π
BKf then

|y|ĥ = f̂ − 1

2

(
Πyf̂ + f̂Πy

)
+

3

16
Π̃y(f̂) +

1

4
tr(Πyf̂)I. (3.54)

Now substituting (3.45) into (3.54) assuming trf = 0 gives

|y|ĥ =
1

8
f̂ +

3

8
(zzT f̂ + f̂ zzT ) +

3

16
(zT f̂ z)zzT − 5

16
(zT f̂ z)I. (3.55)
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By direct substitution we show that

f̂ =
2

|y|

(
4ĥ− 3(zzT ĥ+ ĥzzT ) + (zT ĥz)zzT +

5

3
(zT ĥz)I

)
. (3.56)

From the definition of d and δ we can invert the TTRT using complete data which is

stated in Theorem 3.4.

Theorem 3.4 Suppose f, f̃ ∈ S(R3;S2C3). Here f = f̃ + aI where a ∈ S(R3) and

trf̃ = 0, then

f̃ =
4

π

(
4I− 6∆−1dδ +∆2d2δ2 +

5

3
I∆−1δ2

)
(−∆)1/2BKf. (3.57)

It is important to note that the operator K vanishes on scalar multiples of the Kro-

necker tensor.

3.2.4 SVD and stability estimates

Just to state ongoing work in this area as far as range conditions and stability is

concerned, the author wants to outline the work of Sharafutdinov, [40] and [38]. Here

it is attempted to derive some stability estimates in a similar method to Natterer

in [31] which are stated in Section 2.5. As plane-by-plane data is written in terms of

scalar, vector and tensor longitudinal ray transforms, the ranges of these operators can

be determined in the plane case as a singular function expansion in a suitable Hilbert

space. A similar technique was employed to calculate the singular value decomposition

for the Radon transform in Section 2.4. In fan beam coordinates the singular value

decomposition of the ray transform is given by [23]. Moreover [8] and [9] consider a

parallel beam formulation.

The Helgason-Ludwig range conditions mentioned in Theorem 2.1, for the scalar

Radon transform in the plane simply states that the kth moment of the data

∞∫

−∞

pkXf(ξ, pξ⊥) dp,

is a polynomial of degree ≤ k in ξ. For the LRT of a rank m tensor the condition

is simply degree ≤ k + m. A deeper connection between these conditions and the
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singular function expansion is given by [30]. Such consistency conditions, character-

izing the range of the forward operator are of great assistance in diagnosing errors

and unaccounted physical effects in experimental data. These were studied in order

to recognise the issues outlined in Section 5.6.

3.3 Relations Between Transforms

The discussion for TRT and TTRT will be combined together from this point onwards

unless it is stated specifically. For a given rotation axis η and direction ξ ∈ η⊥, there

are two types of components that need considering. Generally f̃ denotes a trace free

symmetric rank two tensor field. The ‘axial’ component for the TRT and TTRT is

[η · (Jf(ξ, x) ·η)] and [η · (Kf̃(ξ, x) ·η)]. On the other hand the ‘non-axial’ components

are given by [ζ · (Jf(ξ, x) · η)] and [ζ · (Kf̃(ξ, x) · η)] where ζ = ξ × η (× is the vector

product). Moreover we have the components [ζ · (Jf(ξ, x) · ζ)] and [ζ · (Kf̃(ξ, x) · ζ)].
Note that [ζ · (Kf̃(ξ, x) · ζ)] will give us no new information since the operator Qξ acts

on trace free tensor fields in this study. Hence we omit the discussion for this.

We require the non-axial components of Jf(ξ, x), in terms of LRT’s on transaxial

planes. The ‘off diagonal’ components can be expressed as

((Jf)(ξ, x) · η) · (ξ × η) =

∫ ∞

−∞
(Πξf(x+ tξ)Πξ · η) · (ξ × η) dt

=

∫ ∞

−∞
(f(x+ tξ) · η) · (ξ × η) dt =

∫ ∞

−∞
[η × (f(x+ tξ) · η)] · ξ dt.

Note that the projections Pξf̃ and Qξ f̃ are related by

Qξf̃(x) = Pξf̃(x) +
1

2
[(f̃(x) · ξ) · ξ] · Πξ, (3.58)

Now setting x := x+ tξ and integrating the result over t gives

Kf̃(ξ, x) = Jf̃(ξ, x) +
1

2
[(If̃)(ξ, x)] · Πξ. (3.59)

Next consider Πξ · η = η and the scalar product of (3.59) is taken with η, we achieve

Kf̃(ξ, x) · η = Jf̃(ξ, x) · η + 1

2
(If̃)(ξ, x)η. (3.60)

Now taking the scalar product with ζ gives

((Kf̃)(ξ, x) · η) · ζ = [((Jf̃)(ξ, x) · η) · ζ ] + 1

2
[((If̃)(ξ, x)η) · ζ ]
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= ((Jf̃)(ξ, x) · η) · ζ, (3.61)

since η× (ξ× η) = 0. Since the vector field η× (f · η) is orthogonal to η, its restriction
to every plane sη + η⊥ can be considered as a vector field on the plane, i.e.

(η × (f · η))|sη+η⊥ ∈ S(sη + η⊥; η⊥C ) where η⊥C is the complexification of η. As this is

then contracted with the ray direction, ξ, we have

Iη,s((η × (f · η))|sη+η⊥)(ξ, x) = ((Jf)(ξ, x) · η) · (ξ × η) for (ξ, x) ∈ TS1
η. (3.62)

On the other hand we consider the axial component of the TTRT by taking the scalar

product of (3.60) with η giving

((Kf̃)(ξ, x) · η) · η = [((Jf̃)(ξ, x) · η) · η] + 1

2
[((If̃)(ξ, x)η) · η]. (3.63)

Now by defining the function φ on the plane sη + η⊥ by φ(x) = (f(x) · η) · η it can be

shown that

Iη,s(ι
∗
η,sf̃ + 2φδ)(ξ, x) = 2((Kf̃)(ξ, sη + x) · η) · η, (3.64)

where δ is the kronecker tensor on ξ⊥ and ι∗η,sf̃ is the slice of f̃ by the plane sη + η⊥.

Now let (ξ, ζ, η) be an orthonormal basis of R3 and using the fact that

0 = trf̃(x) = [(f̃(x) · ξ) · ξ] + [(f̃(x) · ζ) · ζ ] + [(f̃(x) · η) · η]

and trι∗η,sf̃(x) = [(f̃(x) · ξ) · ξ] + [(f̃(x) · ζ) · ζ ] for x ∈ sη + η⊥.

Hence we have an equality for φ(x) which is precisely

φ(x) = −trι∗η,sf̃(x). (3.65)

Substituting this value into (3.64), we obtain

Iη,s(ι
∗
η,sf̃ − 2(trι∗η,sf̃)δ)(ξ, x) = 2((Kf̃)(ξ, sη + x) · η) · η. (3.66)

As we have seen in (3.36), the TRT depends only on the projection normal to the

direction of the ray. Without loss of generality, take e3 = η = (0, 0, 1) and parameterize

ξ in the usual sense as

ξ =




cos θ

sin θ

0


 , so, ζ =




− sin θ

cos θ

0


 .
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Since ζ ∈ ξ⊥ we can calculate

ζ · (f · ζ) = (− sin θ, cos θ, 0)




f11 f12 0

f12 f22 0

0 0 0







− sin θ

cos θ

0




= f22 cos
2 θ − 2f12 cos θ sin θ + f11 sin

2 θ

= (cos θ, sin θ, 0)




f22 −f12 0

−f12 f11 0

0 0 0







cos θ

sin θ

0




= ξAdje⊥
3
(f)ξ,

where Adje⊥
3
(f) denotes the adjugate matrix of the slice of f restricted to the plane;

of course this is nothing other than the conjugation of Pe3f with a right angle rotation

about the e3 axis. Hence using the above, we see that for ξ ∈ η⊥

(Jf(ξ, x) · ζ) · ζ =
∫ ∞

−∞
(f(x+ tξ) · ζ) · ζ dt (3.67)

and

=

∫ ∞

−∞
(Adjη⊥(f)(x+ tξ) · ξ) · ξ = (IAdjη⊥(f)(ξ, x) · ξ) · ξ, (3.68)

which is the LRT transform of the two dimensional adjugate of the slice of f, restricted

to the plane. We notice that this is exactly the transverse ray transform in the planar

case. The results of this section can be summarized in the following Lemma:

Lemma 3.4 Let f, f̃ ∈ S(R3;S2C3) where f is a symmetric tensor field and f̃ is a

trace free symmetric tensor field. The equations

Iη,s((η × fη)|sη+η⊥) = (J1
η,sf) = (K1

η,sf̃), (3.69)

Iη,s
(
Adjη⊥(ι

∗
η,sf)

)
= (J2

η,sf) and (3.70)

Iη,s(ι
∗
η,sf̃ − 2tr(ι∗η,sf̃)δ) = 2K2

η,sf̃ (3.71)

hold for every s ∈ R and η ∈ S2, where

(J1
η,sf) = ((Jf)(ξ, sη + x) · η) · (ξ × η), (K1

η,sf̃) = ((Kf̃)(ξ, sη + x) · η) · (ξ × η)

(J2
η,sf) = ((Jf)(ξ, sη + x) · ζ) · ζ and (K2

η,sf̃) = ((Kf̃)(ξ, sη + x) · η) · η.

Now that we have introduced several transforms and derived relations between them,

we are ready to discuss certain applications associating the relevant transforms.



Chapter 4

Applications of Ray Transforms

The requirements of a postmodern society demands that we can visualize the inside of

objects in a more sophisticated manner. Hence the design of experiments by scientists

are producing exotic types of data giving rise to rich tomography problems. In this

chapter we restrict our attention to three imaging modalities relating to the four

transforms introduced in Chapter 3. In essence many ray transforms can be related to

different types of rich tomography problems, continuously arising due to the needs of

civilisation. For example, Sharafutdinov [39] introduces two ray transforms that are

not mentioned here; Exponential and Mixed ray transforms. As is mentioned in his

book, these arise in many important practical problems.

In Section 4.1 we introduce the PNMFT problem and describe the data acquisition

process. Furthermore the linearized inverse problem is identified in Section 4.2 where

we simulate and reconstruct PNMFT data. To finish off we derive the novel result

which is contained in [37]. In Section 4.3 we introduce diffraction strain tomography

[27], wherein it is illustrated that a certain moment of the data corresponds to the

TRT. Currently, it is known how to reconstruct data from rotations about six axes [39,

Sec 5.1.6] or complete data shown in Section 3.2.2. In Section 4.4, we give an outline

of Photoelastic tomography and mention the advancements made to the code running

on the apparatus now at Sheffield.

63
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4.1 Polarimetric Neutron Magnetic Field Tomog-

raphy

Despite being electrically neutral, neutrons carry a magnetic moment, which is coupled

to their spin vector. For an ensemble of polarised neutrons in a magnetic field it can

be shown that they behave like a particle with a classical magnetic moment. Therefore

the spin vector, σ, satisfies

d

dt
σ(t) = γNσ(t)× B(t), (4.1)

where γN = −1.8324× 108 s−1T−1 is the gyro-magnetic ratio of the neutron.

Experimentally we assume a polarised neutron beam with uniform velocity set up

at a spallation source. The beam size is approximately 4×4 cm2. In this thesis we only

consider monochromatic beams (single wavelength) and disregard beams with several

velocities. Usually the range of velocities span in the region of 1.5 Å to 7 Å for which

polarisations well beyond 90% and close to 100% can be achieved with spin filters like

super mirror devices illustrated in [22, 7]. Throughout we assume spin precession is

wavelength dependent, specifically 5 Å. A neutron spin filter only transmits neutrons

with spin parallel to the magnetization of the device. Assuming the beam is not

depolarized locally within the setup, a well defined final Larmor precession angle with

respect to the analyzer’s direction can be extracted modulo 2π.

One can understand the data acquisition process from Figure 4.1. Firstly, neutrons

are polarised in the η-direction by the polariser and the two π/2 spin rotators down-

stream can be used to rotate the neutron spins to the ζ- or ξ-directions. The sample

is rotated along a vertical axis for different tomographic projections, and the two fol-

lowing π/2 spin rotators choose the direction of analysis before the analyser, which

transmits neutrons with spins along η. At the end, the signal is recorded by a position

sensitive detector. Note that initial polarization and conservation in the setup without

the sample is negligible. Between the polarising and analysing spin filter, including

the sample position, the neutron beam has to be well guided throughout the magnetic

field in order to maintain polarisation. Such a setup is already in place at JPARC

(Tokai, Japan) [41]. Currently within Europe we do not have one although the ESS

(Lund, Sweden) should have the apparatus by 2020. Naturally the trend will follow
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across the globe and we should see an increase in equipment capable of taking such

recordings.

ξζ

η

Neutron Source

π/2 spin rotator

π/2 spin rotator

Polariser

Analyser

π/2 spin rotator

π/2 spin rotator

Detector

Sample

Figure 4.1: Experimental setup for data acquisition, credit to Morten Sales, [37].

In essence nine sinograms (3 × 3 matrix) are measured which represent three per-

pendicular incoming polarisation directions with all three directions for analysis which

is explained thoroughly in [37]. Such measurements can only be recorded by the use of

spin turners. Two flat coils situated before and after the sample turn the spin utilising

Larmor precession by 90◦ in two perpendicular directions. By activating none, one

or both spin flippers on either side of the sample will allow the measurement of the

entire matrix. The recorded spin matrix is SO(3) which generally puzzles mathemati-

cians and physicists since the spin of neutrons is associated with SU(2). In quantum

mechanics, each Pauli matrix is related to an angular momentum operator that corre-

sponds to an observable describing the spin of a spin 1
2
particle, in each of the three

spatial directions. The three Pauli matrices i
2
τ1,

i
2
τ2 and i

2
τ3 form a basis for su(2)

which exponentiates to SU(2), a double cover for SO(3). Now i
2
τj are the generators

of a projective representation (spin representation) of the rotation group SO(3) acting

on non-relativistic particles with spin 1
2
, like neutrons which are fermions.

An intriguing property of spin 1
2
particles is that they must be rotated by an angle

of 4π in order to return to their original configuration. This is due to the two-to-one

correspondence between SU(2) and SO(3) and the way that, albeit one imagines spin

up or down as the north or south pole on the 2-sphere S2, they are actually represented
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by orthogonal vectors in the two dimensional complex Hilbert space. Hence, the states

of the particles can be represented as two-component spinors or by 3×3 measurement

matrices whose entries include the polarisation measurement in each direction. For an

in-depth discussion, one can consult Section 1.4 of [15] or [13].

4.2 Linear Inverse Problem

A neutron is assumed to travel at uniform speed v in direction θ with position x(t) =

x(0) + tξ, |ξ| = 1 under the influence of an applied magnetic field, B(x(t)). The

position-dependent behaviour of the spin vector described completely in [7] by

dσ(t)

dt
= γNσ(t)×B(x(t)), (4.2)

where γN is the gyro-magnetic ratio of the neutron (−1.832×108 rad s−1 T−1). Since

our attention is on a single slice, we have in mind x(t) = (ζ, η, ξ)T and B(x(t)) =

(B1(x(t)), B2(x(t)), B3(x(t)))
T and σ(t) = (σ1(t), σ2(t), σ3(t))

T . In contrast to many

other vector and tensor tomography methods, the direction of travel ξ of the particle

plays no role in its interaction with the quantity being imaged, here the magnetic field.

Examples of tensor tomography where the direction of travel ξ does interact with the

quantity being imaged will be seen later in Sections 4.3 and 4.4. The vector product

σ(t) × B(x(t)) is linear in σ(t) and the matrix of this linear map is skew-symmetric;

specifically we define

M(B(x(t))) = γN




0 B3(x(t)) −B2(x(t))

−B3(x(t)) 0 B1(x(t))

B2(x(t)) −B1(x(t)) 0


 .

Thus we can rewrite (4.2) as

dσ(t)

dt
=M(B(x(t)))σ(t), (4.3)

Along the path of this neutron we have a system of ordinary differential equa-

tions (4.3) which is linear but with variable coefficients. It plays a similar role to the

Rytov-Sharafutdinov law in polarized light tomography [39]. Of course the differential

equation cannot be solved simply using the integrating factor method that we would

use for a scalar problem as in general the matrix M(B(x(t))) does not commute with
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its derivative with respect to t. Our physical model assumes that there is no inter-

action between the direction of travel ξ and the effect of the magnetic field on the

neutron. Hence armed with machinery from Section 3.1 in Chapter 3 we consider the

case when A1 = A2 = 0 and let A0(x) =M(B(x)). Our transport equation is then

ξ · ∇Σ(x, ξ) =M(B(x))Σ(x(t), ξ), (4.4)

which is a reformulation of (4.3), but considers all straight line paths in the plane.

Here Σ = [σ1(t)|σ2(t)|σ3(t)] is a matrix whose columns consist of three individual

spin vectors, σ. We denote S(M(B)) to be the limit of Σ(x + tξ, ξ) when t → ∞, for

t ∈ R. Note that S(M(B)) depends on Πξx, where Πξx = x − (x · ξ)ξ. The matrix

S(M(B))(x, ξ) is our non-Abelian Radon transform of M(B(x)).

Gauge equivalence for A1 = A2 = 0 implies that ∂g/∂xj = 0 for j = 1, 2, which

means that g must be constant and hence the identity. This means that for A(x, ξ) =

M(B(x)) gauge equivalence is equality. We note that for ξ limited to the plane normal

to some unit vector η, we can consider each plane Π(η, s) = {x : x · η = s} separately,

where the reader should distinguish Π as a plane and Π as the projection operator.

Now Theorem 3.1 yields the following

Theorem 4.1 Given a C∞ vector field B with compact support in R3 for each plane

Π(η, p), the data S(M(B))(x, ξ) for x ∈ Π(η, s), η · ξ = 0 uniquely determines BΠ(η,s).

Note that Eskin’s proof of Theorem 3.1 reduces the reconstruction problem to a

Riemann-Hilbert problem but currently this is not known to result in an explicit

reconstruction algorithm.

We use compact support and assume that outside some ball ΩR, the magnetic field

B is zero. In reality the magnetic field only decays relatively close to zero as we always

have a negligible field. Suppose the line x + tξ intersects ΩR first at t = t−(x, ξ) and

leaves for t = t+(x, ξ). Furthermore, let C∞
c (R3×S2,Mn(R)) be the space of functions

on the unit sphere bundle in R3 into n× n matrices with real entries. Thus we realize

M(B) ∈ C∞
c (R3 × S2,M3(R)) to be a smoothly compactly supported M3(R) valued

function on R3 × S2. We also remind ourselves that oriented lines in R2 are points on

the manifold TS1. Thus the forward map of PNMFT is then a mapping

F : C∞
c (SR3,M3(R)) → C∞(TS1)
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defined by the unique solution Σ ∈ C∞(R3 × S2,M3(R)) of the transport equation

ξ · ∇Σ(x, ξ) =M(B(x))Σ(x(t), ξ), lim
t→−∞

Σ(x+ tξ, ξ) = I3 (4.5)

We understand this as

F(M(B(x)) = lim
t→∞

Σ(x+ tξ, ξ) = S(M(B))(x, ξ)

and we require the linearization of this. Hence let us fix x ∈ R3, ξ ∈ S2, then by

writing Σ(t) = Σ(x+ tξ) and similarly for M(B(x)) which gives us the following

dΣ

dt
(t) =M(B(t))Σ(t), lim

t→−∞
Σ(t) = I3. (4.6)

The Fréchet derivative DF(M(B0)) applied to a perturbation M(δB) ∈ C∞
c (R3 ×

S2,M3(R)) can be calculated in the following way. First suppose that Σ0 is the

solution of (4.5) with M(B0) and we let δΣ ∈ C∞(R3 × S2,M3(R)) be the solution of

the following transport equation

ξ · ∇δΣ(x, ξ)−M(B0(x))δΣ(x, ξ) =M(δB(x))Σ0(x, ξ),

lim
t→−∞

δΣ(x+ tξ, ξ) = 0.

(4.7)

Then

DF(M(B0))M(δB) = lim
t→∞

δΣ(x+ tξ, ξ).

Again if we fix x and ξ, then (4.7) can be written as

dδΣ

dt
(t)−M(B0(t))δΣ(t) =M(δB(t))Σ0(t), lim

t→−∞
δΣ(t) = 0. (4.8)

To solve (4.7) we introduce the integrating factor S0 ∈ C∞(R3 × S2,M3(R)) which

satisfies

ξ · ∇S0(x, ξ) = S0(x, ξ)M(B0(x)), lim
t→∞

S0(x+ tξ, ξ) = I3. (4.9)

By employing the integrating factor we can rewrite (4.8) as

d

dt
(S0(t)δΣ(t)) = S0(t)M(δB(t))Σ0(t).
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Integrating the above and using the condition limt→∞ S0(x + tξ, ξ) = I3 we can state

that

DF(M(B0))M(δB) = lim
t→∞

δΣ(x+ tξ, ξ) =

∫ ∞

−∞
S0(t)M(δB(t))Σ0(t) dt. (4.10)

Now from the above if we consider the case for B0 = 0, we have

DF(M(B0 = 0))M(δB) = lim
t→∞

δΣ(x+ tξ, ξ) =

∫ ∞

−∞
M(δB(t)) dt, (4.11)

since S0 = Σ0 = I3. Now relating this to our S(M(B))(x, ξ) notation this implies that

specifically in the plane normal to η we can solve the linear approximation for small

B simply by solving the two dimensional ray transform

e1 · S(M(B))(x, ξ)e2 = X(B3)(x, ξ). (4.12)

With cyclic permutations we can retrieve the magnetic field. This can be done using

any two-dimensional Radon inversion method outlined in Chapter 2. Moreover this

result is already known by experimentalists such as [22].

To test our formulation we need to simulate a magnetic field which is small enough

(weak) yet strong enough to measure and can be utilized to generate data. Therefore,

the Biot-Savart law, [43], is employed. The central slice of a simulated solenoid is

shown in Figure 4.2.

Biot-Savart law

The Biot-Savart law describes the magnetic field, B, at a point, r, generated by a

steady flow of charges along the path of the current, I. It is commonly stated as

B =
µ0

4π
I

∫
dL× r′

|r′|3 , (4.13)

where r′ is the distance from the infinitesimal wire segment, dL, to the point r. Here

µ0 = 4π×10−7 NA−2 is the permeability of free space. The magnetic field is calculated

for each point in a point cloud surrounding a solenoid constructed of straight wire

segments. The procedure uses (4.13) to calculate the sum over the contributions from

each wire segment of sufficiently small length (1 mm).
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Figure 4.2: Central slice of a simulated solenoid

4.2.1 Forward model

Let us look at how PNMFT data is generated. Detail of how the forward solver

operates can be explained by taking a single neutron at a time. Consider a neutron

fired from point (ζ1, η, ξ1) and detected at (ζ2, η, ξ2), since a parallel beam setup is

emulated. Initially the spin of the neutron is aligned using three unit vectors e1, e2

and e3 which form the initial spin matrix, Σ(t = 0) = I3. Thereafter the spin, Σ(tentry)

is altered as the neutron passes a polariser before entering the magnetic (solenoid)

field of interest. With the aid of Section 2.2, the ray tracing algorithm calculates the

intersection lengths the neutron makes with the voxel grid. These specific voxels are

referenced and utilized for solving the spin differential equation (4.3) assuming the

magnetic field is piecewise constant.

Analytic solution of ODE system

There are several methods to solve the forward problem stated. One such method is

to analytically solve the system of ODEs using the matrix exponential. Consider the

eigenvalues of the matrix stated prior to (4.3), which are

λ1 = 0, λ2 = −i|B|, λ3 = i|B|, (4.14)
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where |B| =
√
B2

1 +B2
2 +B2

3 and the corresponding eigenvectors are

µ1 =




B1

B3

B2

B3

1


 ,

µ2 =




(−B3B3
1
−B3

3
B1)+(−B2|B|B2

1
−B2B2

3
|B|)i

|B|2B2
1
+B222B2

xi

(−B2B3
3
−B2

1
B2B3)+(|B|B3

1
+B1B2

ξ
|B|)i

|B|2B2
1
+B2

2
B2

3

1


 , and

µ3 =




(−B3B3
1
−B3

3
B1)+(B2|B|B2

1
+B2B2

3
|B|)i

|B|2B2
1
+B2

2
B2

3

(−B2
1
B2B3−B2B3

3
)+(−B3

1
|B|−B1B2

3
|B|)i

|B|2B2
1
+B2

2
B2

3

1


 . (4.15)

The real eigenvalue (λ = 0 and µ1) will contribute to one solution of the form eλ1µ1 =

µ1. The other two eigenvalues are purely imaginary and we have the property that

µ3 = µ̄2. Hence another solution will be of the form

eλ2tµ2 = (cos(|B|t)− i sin(|B|t))µ2. (4.16)

If we separate (4.16) into real and imaginary parts we yield

u(t) + iv(t) =

1

B2
2B

2
3 +B2

1 |B|2




(−B3
1B3 − B1B

3
3) cos(|B|t)− (B2

1B2|B| −B2B
2
3) sin(|B|t)

(−B2
1B2B3 −B2B

3
3) cos(|B|t) + (B3

1 |B|+B1B
2
3 |B|) sin(|B|t)

cos(|B|t)




+
1

B2
2B

2
3 +B2

1 |B|2




(−B2
1B2|B| − B2B

2
3 |B|) cos(|B|t) + (B3

1B3 +B1B
3
3) sin(|B|t)

(B3
1 |B|+B1B

2
3 |B|) cos(|B|t) + (B2

1B2B3 +B2B
3
3) sin(|B|t)

− sin(|B|t)


 i.

(4.17)

By the principle of superposition our solution to (4.3) whenM(B) is a constant matrix,

is

σ(t) = c1µ1 + c2u(t) + c3v(t), for c1, c2, c3 ∈ R. (4.18)

The drawback of utilising such a method is that for certain values many degenerate

solutions will arise, as can be seen by the eigenvectors (4.15) and the expression for
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u(t) + iv(t) in (4.17). One may ponder why go through such difficulty and not em-

ploy a numerical matrix exponential code to solve the spin differential equation (4.3).

Precisely, we do not always know what type of algorithm is being used to calculate it.

The author did experiment with the matrix exponential code in MATLAB and was

not convinced with the result.

The initial condition for each pixel is Σ(tentry) and in practice the spin matrix, when

the neutron leaves the referenced voxel, Σ(texit), is calculated by Rodrigues’ rotation

formula [36], an efficient algorithm to compute the exponential map so(3), the Lie

algebra of SO(3), to SO(3) without actually computing the full matrix exponential.

In order to use this result, a unit vector describing the axis of rotation (direction of the

field) and the precession angle, φ, which the neutron rotates by within the referenced

voxel is needed. This is determined by φ = γ L
v
|B|, where L is the neutron path length

within the voxel, v is the velocity of the neutron and |B| is the strength of the magnetic

field in the current voxel.

Rodrigues’ Rotation Formula

If v is a vector in R3 and k is a unit vector describing an axis of rotation about which

v rotates by an angle φ according to the right hand rule, the Rodrigues’ rotation

formula is

vrot = v cosφ+ (k × v) sinφ+ k(k · v)(1− cosφ). (4.19)

Note if we denote H as the cross product matrix, then

Hv = k × v =




0 −k3 k2

k3 0 −k1
−k2 k1 0







v1

v2

v3




One important property worth noting is that iterating the cross product on the right

is equivalent to multiplying by H on the left, i.e. H(Hv) = k× (k×v). Formula (4.19)

above can be rewritten as vrot = v + (sinφ)Hv + (1 − cosφ)H2v. Factorising the v

allows us to write this in compact form. Specifically, vrot = Rv, where

R = I + (sinφ)H + (1− cosφ)H2, (4.20)

is the rotation matrix through an angle φ anticlockwise about the axis k. Rodrigues’

rotation formula is applied thrice to the columns of matrix Σ(tentry) to give us Σ(texit)
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which is the spin when the neutron leaves the current voxel to the next referenced voxel.

The initial spin matrix is changed to Σ(tentry) = Σ(texit) so that (4.3) can be solved

again with the new initial condition. This process is repeated until the neutron passes

through the entire magnetic field. Finally the neutron passes through an analyser

changing Σ(texit) before the final spin is recorded by the detector as

Σ (tend) =




Σζζ Σζη Σζξ

Σηζ Σηη Σηξ

Σξζ Σξη Σξξ


 . (4.21)

This is repeated according to the number of neutrons fired at every angular incre-

ment in the usual tomographic data acquisition process. Hence the size of the data

array is 9 × ω × θ, where ω is the total number of neutrons and θ is the total num-

ber of angles. Nevertheless, for the linearized inverse problem it has been shown that

only 3 out of 9 possible values are required as data, namely Σζη,Σηξ and Σξζ , due

to (4.12). The simulated data from our forward model has been validated. Initially

simple calculations were made to see if realistic data was simulated. Moreover the

simulated data has been validated experimentally which is shown in Figure 2 of [37]

where experimental PNMFT data matches our simulated data.

4.2.2 Reconstructing PNMFT Data

The central slice of the solenoid (magnetic field) simulated by the use of the Biot-

Savart law in Figure 4.2, is utilized in the forward model by the process described

above to generate data. Initially the solenoid was simulated on a 180× 180 pixel grid.

To simulate the data 270 rays of neutrons (uniform velocity with wavelength = 5 Å)

were fired for every angular increment (1 degree in this case) of the usual tomographic

data acquisition process. The data is binned by a factor of three to give the data which

is three sets of 90× 120 arrays for each of the three components from the spin matrix.

Furthermore, 5% pseudo-random noise was added before employing the inverse radon

transform to reconstruct the components of the magnetic field. In order to do this,

primarily the data has to be transformed to a sample reference frame (ζ ′, η, ξ′). As each

measurement consists of a 3×3 matrix, the measured matrices need to be transformed.

Since the sample was rotated around the vertical axis, η, the rotation matrix is given
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by

R(−φ) =




cos(−φ) 0 sin(−φ)
0 1 0

− sin(−φ) 0 cos(−φ)


 .

The rotation matrix which describes the rotation of the neutron as it traverses the

magnetic field is denoted as Σ′ and is specifically calculated as

Σ′ = R(−φ)Σ(φ)RT (−φ).

Thereafter the data is filtered which is done in the Fourier domain with a Hamming

filter. Once complete we backproject the filtered data to achieve the reconstructed

components of the magnetic field. This process has been explained in Section 2.3.1 in

Chapter 2. Note that reconstruction was performed on a grid which does not evenly

divide the grid used for simulation, i.e. 67× 67.

The relative errors from top to bottom in Figure 4.3 corresponding to B1, B2, B3

and |B(x(t))| (magnetic field strength) are 20%, 16%, 11% and 9% respectively. Since

reconstruction is of the central slice of a solenoid, with strength approximately 5.8 µT,

the maximum a single neutron precesses as it passes through the domain is 2 degrees.

This is well within the range for the linearized problem to work. When the strength of

the magnetic field increases to the extent that a single neutron precesses more than 14◦

approximately, this specific method fails. This is when the small angle approximation

breaks, i.e. when sin φ 6= φ. One such illustration is present in Figure 4.4 where

one notices the artefacts coming through. The relative error for the B2 component

is 1.5183. How can one reconstruct strong enough magnetic fields which make the

neutron precess more than 14◦? Indeed the answer lies in some recent work [37].

Inverse Rodrigues’ Rotation Formula

The exponential map, exp : so(3) → SO(3) is essentially what the Rodrigues’ rotation

formula is doing. Since we want the opposite to occur, consider the logarithmic map,

log : SO(3) → so(3). We continue to let H denote the 3×3 matrix that calculates the

cross product with a rotation axis k for all vectors v. The angle of rotation φ is easily

retrieved by the trace (tr) of the rotation matrix, Σ′. Thus φ = arccos
(

tr(Σ′)−1
2

)
=
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Figure 4.3: Central slice reconstruction of a solenoid.

arccos
(

tr(Σ)−1
2

)
, which is used to find the normalized axis

k =
1

2 sinφ




Σ′
ξη − Σ′

ηξ

Σ′
ζξ − Σ′

ξζ

Σ′
ηζ − Σ′

ζη


 .

In terms of matrices this is just H = (Σ′−Σ′T )
2 sinφ

. Finally we can recover the magnetic

field by the Radon transform since −φ
cλL

(ei ·H ·ej) = X(Bk), where {i, j, k} ∈ {1, 2, 3}, λ
is the wavelength of the neutron and c = 4.632× 1014 T−1m−2, known as the Larmor

constant. In essence we are still using the linearization in this technique. Consider

the fact that the effect of the magnetic field is cumulative along the ray which is

apparent as this is governed by the system of ODEs in (4.3). This implies that the

forward problem mapping the magnetic field to the measurements (PNMFT data) is

not linear. Hence we can not simply use an inverse Radon transform and to overcome

this issue we first apply a transformation on the data and then linearize the problem

about B = 0. An important advantage of using the logarithmic chart is that so(3)
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Figure 4.4: Failed reconstruction by known experimentalist method (4.12).

forms a vector space which allows the use of standard filtered backprojection methods

to reconstruct the data.

To test this approach, data is simulated on a 180 × 180 pixel grid in the manner

explained in Section 4.2.1 with a magnetic field of strength, 580µT . To simulate

the data 270 rays of neutrons (uniform velocity with wavelength = 5 Å) were fired

for every angular increment (1 degree in this case) of the usual tomographic data

acquisition process. The data is binned by a factor of three to give the data which

is an array of size 90 × 120 × 9. Unlike the method described earlier, we need all

the data and not just three components of the spin matrix. Furthermore, 5% pseudo-

random noise was added before employing the inverse Radon transform to reconstruct

the components of the magnetic field. For this specific magnetic field the maximum a

single neutron will precess is 176◦ and the reconstructed results are shown in Figure

4.5. The relative errors for the reconstructed components B1, B2, B3 and |B(x(t))|
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(magnetic field strength) are 0.3245, 0.219 , 0.111 and 0.235 respectively. However
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Figure 4.5: Logarithmic approach for magnetic field of strength 580µT.

Simulated B
1

 Component

20 40 60

20

40

60 -4

-2

0

2

4

10
-4

Reconstructed B
1

 Component

20 40 60

20

40

60 -4

-2

0

2

4

10
-4

Simulated B
2

 Component

20 40 60

20

40

60 -5

0

5

10
-5 Reconstructed B

2
 Component

20 40 60

20

40

60 -5

0

5

10
-5

Simulated B
3

 Component

20 40 60

20

40

60 -10

-5

0

10
-4

Reconstructed B
3

 Component

20 40 60

20

40

60 -10

-5

0

10
-4

Magnetic Field Strength [T]

20 40 60

20

40

60 2

4

6

8

10

10
-4 Reconstructed Field Strength [T]

20 40 60

20

40

60 2

4

6

8

10

10
-4

Figure 4.6: Logarithmic approach fails for magnetic field of strength 1160µT.

if we choose a magnetic field of strength 1160µT , the logarithmic approach fails, as

shown in Figure 4.6 where the maximum a neutron will precess is 351◦. At this point

we delay our discussion on PNMFT to Chapter 6 where we introduce techniques for
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nonlinear inverse problems. It is apparent from the exploration of methods for linear

inverse problems that these are unsuccessful.
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4.3 Diffraction Strain Tomography

We briefly discuss an overview of [27] in this section. Firstly, consider both x-rays and

neutrons are diffracted by crystals and this is the fundamental idea used in crystallog-

raphy. Technically the manner in which we perceive a crystal is that they consist of a

periodic spatial arrangement of atoms, taken to be located at points. For our purpose

the important feature is that there is a family of planes normal to a set of one or more

vectors unit ki, separated by distances di. It is usual to call each family of parallel

planes, a crystallographic plane. When a parallel beam of monochromatic x-rays (or

neutrons), with wavelength λ, in the direction ξ, are incident on the crystal such that

θ = cos−1 ξ · ki satisfies Bragg’s law,

2di sin θ = nλ, (4.22)

for some n ∈ N, part of the beam is diffracted and continues in the direction η in

the plane defined by k and ξ at an angle 2θ to ξ. The integer n is called the order

of diffraction. Bragg Edge diffraction is thought of as elastic scattering in that the

diffracted x-rays (or neutrons) have the same wavelength (and hence energy) as the

incident x-rays. We will ignore any attenuation of the diffracted x-rays by the material.

Metals are polycrystalline materials, that is they consist of small randomly oriented

crystals. The assumption that x-rays (or neutrons) incident on some polycrystalline

material, like metals, form a narrow beam (for example cylindrical) centred on some

ray. This is possible by using a synchrotron source. Consider, a beam along a given ray

x+ tξ, the diffracted rays when observed at a distance L on a plane normal to the ray

lie on a circle centred on the projection of x onto this plane with a radius L sin 2θi,n,

where i the crystallographic plane and n is the order of diffraction. An important

remark is that for polycrystalline materials, the diffraction pattern is averaged over

the group of rotations in three space.

Essentially, circles that arise in the diffraction pattern of the unstrained case are

known as Debye-Scherrer rings. However, when the metal (polycrystalline material)

is subjected to linear elastic strain the crystals are deformed changing their diffraction

pattern. Often for high energy, small λ, x-rays (called hard x-rays) and for low orders

of diffraction n, the Bragg angles 2θ are small, perhaps two or three degrees. On the

other hand it is possible in a synchrotron beam to have the detector screen many tens
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of meters away. This means that while the Debye-Scherrer rings can still be measured

normal to the plane ki, the diffraction can be considered approximately parallel to the

screen giving rise to deformed Debye-Scherrer rings, which are simply ellipses.

We restrict our attention to the case for small θ, in which the diffraction pattern

contains only information about the strain transverse to the direction of travel, ξ. We

might consider this a case of rich tomography in that for each ray we have not a scalar

or a vector value but a function of two variables. One approach would be simply

to solve the linear equations relating the strains in a grid of voxels to the intensities

measured on the screens. Even for only one rotation axis, for similar pixel and voxel

dimensions, we would have far more equations than variables, whereby solving such

a system would be inefficient. Our aim therefore is to reduce the redundancy of the

data whilst retaining sufficient information for a unique reconstruction.

Given the wealth of data in a diffraction pattern, it might be supposed that we could

at least reconstruct the distribution of stresses along the beam. A typical diffraction

pattern consists of a series of concentric ellipses for different diffraction orders, and

we might suspect that it would be possible to fit a weighted sum of ellipses to this

pattern. Hence interpreting the weights of the proportion of each strain tensor present

along the ray. Nevertheless, this is not the case as different distributions of ellipses

can produce the same image but [27] shows that a certain moment of the diffraction

pattern in the required direction is the correct choice. For a specific density, χ, stated

in [27], we have
∞∫

−∞

aij(p)dp =

∫

S2R2

aijχ(A)dA, (4.23)

resulting in three moment calculations along radial directions of the diffraction pattern,

namely the TRT Jf(x, ξ).

Notice that the component (η · Jf(ξ, x) · η) = X [η · (f · η)](x, ξ), for ξ ∈ η⊥ is

simply the scalar x-ray transform in the plane through x normal to η. As observed

in [39, Sec 5.1.6] this component can be reconstructed using any inversion formula for

the planar Radon transform inversion plane by plane, including the examples given in

Chapter 2. Choosing six rotation axes ηi so that the outer products η⊗ η are linearly

independent in S2R3 recovers f everywhere.

The authors of [27] mention “One suspects that a reconstruction would be possible
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with less than six rotation axes. Indeed for each ray the above algorithm uses a moment

of the diffraction pattern only in the direction of the rotation, a single measurement of

a one-dimensional section of the diffraction pattern. It would be desirable for practical

purposes to have an explicit reconstruction algorithm that uses rotation about fewer

axes, but makes better use of the data for each ray.” Fortunately such a novel method,

anticipated by both Professor William Lionheart and Professor Phil Withers, has been

developed and will be mentioned in Section 5.2.

4.4 Photoelastic Tomography

Photoelasticity is the effect whereby the introduction of stress in certain transparent

materials causes anisotropy in the otherwise isotropic permittivity, giving rise to bire-

fringence, an optical property of a material having a refractive index that depends

on the polarization and propagation direction of light. The optical anisotropy, which

depends on the stress distribution within the material, may be measured using po-

larimetry [49, 2]. With the assumption that stress is fairly weak, the ordinary and

extraordinary rays can be considered to be straight lines and the relationship between

the anisotropic permittivity tensor and the stress can be assumed to be linear. This

allows us to use tomographic techniques to recover the internal stress pattern of an

object.

Polarized light is used for Photoelasticity and to model light propagation through

a photoelastic medium, an approximation to Maxwell’s equations is usually utilized,

the Rytov-Sharafutdinov law. If [39] is consulted, a full derivation to such a law may

be found. Thus for a complex electric field, E, the Rytov-Sharafutdinov law states

dE

dt
=

i

2ǫ0
Pξ(f)E, (4.24)

where ǫ0 is treated as a constant. Now backtracking to Section 3.1 allows us to relate

(4.24) as A(ξ, x) = Pξf(x). Interestingly, unlike PNMFT the direction of the ray, ξ,

has a significant influence on the data. Consider Pξf is a fourth order homogeneous

polynomial in ξ, as described by (3.38). This fundamental difference make inverse

problems corresponding to forward problems like (4.24) difficult to solve. Let us pose

a solution to the initial value problem as E(t) = U(t)E(t0) and expand it as a (formal)
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Figure 4.7: Configuration of a plane polariscope, described in [49].

Neumann series. Thus

U(t) = I +

∫ t

t0

i

2ǫ0
Pξf(t1) dt1 +

∫ t

t0

dt1
i

2ǫ0
Pξf(t1)

∫ t1

t0

dt2
i

2ǫ0
Pξf(t2) + ..., (4.25)

which is truncated to first order and this is actually what Sharafutdinov [39] refers to

as the TRT of f along the ray x + tξ. However in the context of polarized light it is

very difficult to measure the absolute phase change, so actually for weak strains, the

TTRT is used. Even though the operator Qξ is used, this does not alter the order of

the polynomial for the direction, ξ, which is shown in (3.51).

As mentioned, determination of stress can be carried out using the method of

Fourier polarimetry. The experimental setup is based upon that of a plane polariscope

- the sample to be investigated is positioned between a rotating polariser and analyser.

The polariser and analyser are set up so that the angles through which each is rotated

are directly proportional. Light from a source (a laser) is passed through the polariser,

sample and analyser. The intensity of transmitted light at different polarisations is

measured by a suitable detector, such as a CMOS or CCD camera. A simple plane

polariscope can be seen in Figure 4.7. Fourier polarimetry relies on the principle that

a photoelastic medium can be treated as a linear retarder and a rotator; both systems

would have the same effect upon transmitted light. The characteristic retardation, 2∆,

and the characteristic direction, θ are associated with the linear retarder whereas the

characteristic angle, γ, describes the operation of the rotator. These three parameters

are regarded as the characteristic parameters. The intensity of transmitted light at
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each position of the polariser and analyser is recorded by the detector. By performing

the Fourier transform of the output intensity, the characteristic parameters of the

system can be calculated. Determination of the characteristic parameters gives rise

to the determination of the stress tensor and hence the internal stress pattern can be

deduced by the algorithm developed in Section 5.2.

The apparatus and procedure was first conceptually designed by Rachel Tomlinson,

William Lionheart and David Szotten. The instrumental setup was initially located

at the PSI where several students have worked to get stress pattern reconstruction

of experimental data, each of them failing. This tempted us to look at the code and

reconstruction algorithm to see whether an error is present in the code or the algorithm.

Indeed, the author has worked for some time now on this issue and has successfully

implemented correct versions of the code that was reconstructing the stress pattern. In

particular there is an issue with formula (5.26), (5.27) and (5.28) in [46]. Furthermore,

the question of stability for the reconstruction algorithm is dealt with in Section 5.6.

Sharafutdinov calls it an unstable reconstruction algorithm for three axes data.



Chapter 5

Reconstruction Algorithms and

Numerical Results

Throughout Chapter 4 an outline to the background of imaging modalities has been

mentioned. Along with introducing the application of PNMFT, the reconstruction

algorithm was outlined and numerics were shown in Section 4.1. The tensor ray

transforms stated in Chapter 3 have inversion procedures but these are for complete

data. These are impracticable for experimentalists and imaging techniques such as x-

ray/neutron diffraction tomography and polarized light tomography (Photoelasticity).

With limited data can we reconstruct data arising from such modalities. The answer

in the affirmative can be seen as a result of the derivation of an explicit plane-by-plane

procedure which only uses backprojection in the plane, applying one-dimensional fil-

ters and Fourier inversion techniques all of which have been illustrated by numerical

examples through the use of the Radon transform in Chapter 2. In Section 5.6 we

illustrate the reconstruction of simulated data by specifying a few test phantoms.

Given that, in the proposed application, each projection is acquired laboriously

using a raster scan, it is advantageous to perform the reconstruction using data from

a minimum number of axes, making the most out of the data collected from each

projection. Thus the derived algorithm, both for the TRT and TTRT, only require

data from three axes. Furthermore, we go on to show that data from only two rotation

axes are insufficient in the general case. For the potential case we give an explicit

reconstruction technique using two axis data and show that data from one axis is

insufficent. We present for the first time, some numerical results for our three axis

84
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reconstruction algorithm using simulated data.

5.1 Main algebraic equations

We transform equations (3.69), (3.70) and (3.71) to algebraic equations by applying

the Fourier transform to backprojected data. Before we can do this we pay attention

to several results which are a follow on from [40].

5.1.1 Curl components of tensor and vector fields

We require what [39] refers to as the tangential component τg ∈ C∞(R2) of a vector

field g ∈ C∞(R2;C2), which is defined by

(τg)(y) = (g(y) · y⊥). (5.1)

Here the vector y⊥ is the result of rotating y by π/2 in the positive direction. Of course,

one can understand (5.1) as the two-dimensional curl of a vector field in Fourier (fre-

quency) space. The manifold TS1 can be identified with R×S1 by the diffeomorphism

(p, ξ) 7→ (ξ, pξ⊥) for (p, ξ) ∈ R×S1. Therefore the derivative ∂
∂p

: S(TS1) → S(TS1) is

well defined. For a vector field f ∈ S(R2;C2), the tangential component of the Fourier

Transform F [f ] is recovered by the LRT, If , by the formula

τF [f ] =
i

2
|y|F

[
B

(
∂(If)

∂p

)]
. (5.2)

We see in [26] and [40], the tangential component, τg ∈ C∞(R2), of a tensor field

g ∈ C∞(R2;S2C2) is defined by

(τg)(y) = |y|2tr g − [(g(y) · y) · y]. (5.3)

This is exactly the Fourier transform of the single unique non-zero component of the

compatibility tensor of Barré de Saint-Venant in the plane

W (g) =
∂2g11
∂x22

− 2
∂2g12
∂x1∂x2

+
∂2g22
∂x21

, (5.4)

which is also sometimes described as the curl-curl of a symmetric tensor field. For

f ∈ S(R2;S2C2), the tangential component of the Fourier transform F [f ] is recovered

from the LRT, If, as

τF [f ] =
1

2
|y|3F [B(If)]. (5.5)
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For φ ∈ S(TS1), the function Bφ(x) is C∞-smooth and bounded on R2 but does

not decay fast enough to be in the Schwartz class. Thus we understand the Fourier

transform in the distribution sense in (5.2) and (5.5).

5.1.2 Derivation of the system of equations

Let f ∈ S(R3;S2C3) be a symmetric tensor field and denote by

f ′ = Fη⊥ [f ] ∈ S(R3;S2C3), the partial Fourier transform of f . For any s ∈ R, the

restriction of the vector field η × (f ′ · η) to the plane sη + η⊥ coincides with the two-

dimensional Fourier transform of (η × (f · η))|sη+η⊥ . This is (η × (f ′ · η))|sη+η⊥ =

Fη⊥ [(η × (f · η))|sη+η⊥ ].

We then apply formula (5.2) to the vector field (η × (f · η))|sη+η⊥ , giving

τ((η×(f ′·η))|sη+η⊥)(sη+y) =
i

2
|y|Fη⊥

[
Bη

(
∂(Iη,s((η × (f · η))|sη+η⊥))

∂p

)]
for y ∈ η⊥,

(5.6)

Using (3.69), we can transform (5.6) giving

τ((η × (f ′ · η))|sη+η⊥)(sη + y) =
i

2
|y|Fη⊥

[(
Bη

∂(J1
η f)

∂p

)
(sη + x)

]
, (5.7)

Note that (5.1) gives

τ((η× (f ′ ·η))|sη+η⊥)(sη+y) = [η× (f ′(sη+y) ·η)] · (η×y) = (f ′(sη+y) ·η) · y. (5.8)

Upon substitution of (5.8) into the LHS of (5.7) and applying the one-dimensional

Fourier transform FRη taking s to σ gives

(f̂(ση + y′) · η) · y′ = i

2
|y′|F

[(
Bη

∂(J1
η f)

∂p

)
(sη + x′)

]
for y′ ∈ η⊥, (5.9)

where f̂ is the three-dimensional Fourier transform F [f ]. Since y′ ∈ η⊥ and σ ∈ R, we

let y = ση + y′, where y′ = Πηy. Hence the previous formula (5.9) can be written as

[(f̂(y) · η) · (Πηy)] =
i

2
|Πηy|F

[(
Bη

∂(J1
η f)

∂p

)
(x)

]
, (5.10)

Note that (5.10) is identical to the off-diagonals for the TTRT operator case so we

don’t repeat the derivation here. Moreover this will just reconstruct the solenoidal part

of the off-diagonals since the Fourier transform interweaves with the solenoidal part.
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For any s ∈ R, the slice ι∗η,sf
′ coincides with the two-dimensional Fourier transform

of the slice ι∗η,sf , i.e., ι
∗
η,sf

′ = Fη⊥ [ι
∗
η,sf ], where the Fourier transform on the plane

sη + η⊥. Henceforth, we refer to the adjugate of the slice of f ′ restricted to the plane

as Adjη⊥(ι
∗
η,sf

′) = h′. Upon application of formula (5.5) to h′, we see

[τ(h′)](sη + y) =
1

2
|y|3Fη⊥ [Bη(Iη,s(Adjη⊥(ι

∗
η,sf)))] for y ∈ η⊥. (5.11)

Using Lemma 3.4 we can rewrite the above as

[τ(h′)](sη + y) =
1

2
|y|3Fη⊥ [Bη(J

2
ηf)(sη + x)] for y ∈ η⊥, (5.12)

Now, we apply formula (5.3) to the field g = h′ ∈ S(sη + η⊥;S2η⊥C ) to give

[τ(h′)](sη + y) = |y|2trh′(sη + y)− [(h′(sη + y) · y) · y] for y ∈ η⊥. (5.13)

Substitution of (5.13) into (5.12) gives

|y|2tr h′(sη+y)− [(h′(sη+y) · y) · y] = 1

2
|y|3Fη⊥ [Bη(J

2
ηf)(sη+x)] for y ∈ η⊥. (5.14)

By applying the one-dimensional Fourier transform on Rη to the above, we obtain

|y′|2tr ĥ(ση + y′)− [(ĥ(ση + y′) · y′) · y′] = 1

2
|y′|3F [Bη(J

2
ηf)(sη + x′)], (5.15)

for y ∈ η⊥. As before, employing a change of variables, y = ση + y′, transforms the

above to

|Πηy|2tr ĥ(y)− [(ĥ(y) · Πηy) · Πηy] =
1

2
|Πηy|3F [Bη(J

2
ηf)(x)] for y ∈ R3. (5.16)

Furthermore if we apply (5.5) to the trace free symmetric tensor field

ι∗η,sf̃ − 2{tr(ι∗η,sf̃) · δ} ∈ S(sη + η⊥;S2η⊥C ), we yield

[τ(ι∗η,sf̃
′−2{tr(ι∗η,sf̃ ′)·δ})](sη+y) = 1

2
|y|3Fη⊥ [Bη(Iη,s(ι

∗
η,sf̃−2{tr(ι∗η,sf̃)·δ}))] for y ∈ η⊥.

(5.17)

Using equation (3.71) of Lemma 3.4 we obtain

[τ(ι∗η,sf̃
′ − 2{tr(ι∗η,sf̃ ′) · δ})](sη + y) = |y|3Fη⊥ [(BηK

2
η f̃)(sη + x)] for y ∈ η⊥. (5.18)

Remember that (τδ)(y) = |y|2trδ− (δ(y) · y) = |y|2. Hence the LHS of (5.18) becomes

[τ(ι∗η,sf̃
′ − 2{tr(ι∗η,sf̃ ′) · δ})](sη + y) = [τ(ι∗η,sf̃

′)− 2|y|2tr(ι∗η,sf̃ ′)](sη + y) for y ∈ η⊥.

(5.19)
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Now applying formula (5.3) to the field g̃ = ι∗η,sf̃ ∈ S(sη + η⊥;S2η⊥C ) gives

[τ(ι∗η,sf̃
′)](sη + y) = |y|2tr(ι∗η,sf̃ ′)− [{(ι∗η,sf̃ ′)(sη + y) · y} · y] for y ∈ η⊥. (5.20)

It is clear that ((ι∗η,sf̃
′)(sη+ y) · y) · y = (f̃ ′(sη+ y) · y) · y by the definition of the slice

on the plane. Therefore one may simplify (5.20) to

[τ(ι∗η,sf̃
′)](sη + y) = |y|2tr(ι∗η,sf̃ ′)− [(f̃ ′(sη + y) · y) · y] for y ∈ η⊥. (5.21)

Upon substitution of (5.21) into (5.19) gives

[τ(ι∗η,sf̃
′−2{tr(ι∗η,sf̃ ′)·δ})](sη+y) = −|y|2tr(ι∗η,sf̃ ′)](sη+y)−[(f̃ ′(sη+y)·y)·y]. (5.22)

We reiterate an argument seen in Section 3.3 where one considers (e1, e2), an orthonor-

mal basis of η⊥. Of course,

0 = trf̃ ′ = [(f̃ ′ · e1) · e1] + [(f̃ ′ · e2) · e2] + [(f̃ ′ · η) · η],

and tr(ι∗η,sf̃
′) = [(f̃ ′ · e1) · e1] + [(f̃ ′ · e2) · e2]

which suggests that tr(ι∗η,sf̃
′) = −(f̃ ′ · η) · η. In aid of the above we can state the final

form of the LHS of (5.18) as

[τ(ι∗η,sf̃
′−2{tr(ι∗η,sf̃ ′) ·δ})](sη+y) = |y|2[(f̃ ′(sη+y) ·η) ·η]− [(f̃ ′(sη+y) ·y) ·y]. (5.23)

This can be substituted into (5.18) giving

|y|2[(f̃ ′(sη+ y) · η) · η]− [(f̃ ′(sη+ y) · y) · y] = [(BηK
2
η f̃)(sη+ x)] for y ∈ η⊥. (5.24)

Finally we can follow the steps leading to (5.15) and (5.16) to give

|Πηy|2[( ˆ̃f(y) · η) · η]− [(
ˆ̃
f(y) ·Πηy) ·Πηy] = |Πηy|3F [(BηK

2
η f̃)(x)] for y ∈ R3 (5.25)

The results of this section are summarized in the following lemma.

Lemma 5.1 Let f̂ ,
ˆ̃
f be three-dimensional Fourier transforms of symmetric tensor

fields f, ˆ̃f ∈ S(R3;S2C3) with the added condition that ˆ̃f is trace free. For a unit vector

η ∈ S2, the following equations hold with the additional condition that ĥ ∈ S(R2;S2C2),

is defined to be the two-dimensional adjugate of f restricted to the plane

(f̂(y) · η) ·Πηy = λη(y), (5.26)



5.2. THREE AXES EXPLICIT RECONSTRUCTION ALGORITHMS 89

|πηy|2tr ĥ(y)− [(ĥ(y) ·Πηy) · Πηy] = µη(y) and (5.27)

|πηy|2[( ˆ̃f(y) · η) · η]− [( ˆ̃f(y) · Πηy) · Πηy] = κη(y), (5.28)

hold on R3, with the right hand sides defined by

λη(y) =
i

2
|Πηy|F

[(
Bη

∂(J1
ηf)

∂p

)
(x)

]
, (5.29)

µη(y) =
1

2
|Πηy|3F [Bη(J

2
ηf)(x)] and (5.30)

κη(y) = |Πηy|3F [Bη(K
2
ηf)(x)]. (5.31)

The partial derivative ∂
∂p

: S(R × TS1
η) → S(R × TS1

η) is defined with the help of

the diffeomorphism R2 × S1
η → R× R× TS1

η, (s, p, ξ) 7→ (s, ξ, pξ × η). Given the data

Jf |η⊥ , right-hand sides λη(y) and µη(y) of equations (5.26) and (5.27) can be effectively

recovered by formulas (5.29) and (5.30). Similarly if we are given the dataKf |η⊥, right-
hand sides λη(y) and κη(y) of equations (5.26) and (5.28) can be effectively recovered

by formulas (5.29) and (5.31).

5.2 Three Axes Explicit Reconstruction Algorithms

Firstly, we derive the reconstruction algorithm for the TRT before moving onto the

TTRT. We use the orthonormal basis vectors ηi = ei, i = 1, 2, 3. Consider the case

where η = η1 for example Πηy = (0, y2, y3), f̂ ·η = (f̂11, f̂12, f̂13). To abbreviate formulas

further, let us denote ληi by λi and µηi as µi. With the aid of (5.26) and (5.29), we

obtain a system of equations




y2 y3 0

y1 0 y3

0 y1 y2







f̂12

f̂13

f̂23


 =




λ1

λ2

λ3


 . (5.32)

The system of equations (5.32) can be solved to give

f̂12 =
λ1
2y2

+
λ2
2y1

− λ3y3
2y1y2

, (5.33)

f̂13 =
λ1
2y3

+
λ3
2y1

− λ2y2
2y1y3

and (5.34)
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f̂23 =
λ2
2y3

+
λ3
2y2

− λ1y1
2y2y3

. (5.35)

There is a slight issue with equations (5.33) — (5.35) as they are undefined on coordi-

nate planes giving us f̂ij|R3\Υ(i 6= j), where

Υ = {y ∈ R3 | y1y2y3 = 0}.

Sharafutdinov calls this an unstable reconstruction in [26] due to the division by zero.

By continuity, f̂ij(y) can be uniquely determined on the whole of R3. To implement

this numerically requires interpolation by nearby voxels for undefined values. Also we

have information outside the boundary since we only consider compactly supported

tensor fields. Undoubtedly in the presence of measurement errors in the data, the

accuracy in recovering f̂ij(y)(i 6= j) decreases as the point y approaches the surface Υ.

It has been illustrated above that data from three orthogonal axes is sufficient to

reconstruct the off-diagonal components of a symmetric rank two tensor field. If we

glance back to Section 3.3 of Chapter 3 we note that the axial component is recovered

by (f · ηi) · ηi, resulting in the following theorem.

Theorem 5.1 A symmetric tensor field f ∈ S(R3;S2C3) is uniquely determined by

the data Jf(ξ, x) for ξ ∈ η⊥i , i = 1, 2, 3 where (η1, η2, η3) forms an orthogonal basis.

TTRT Reconstruction Algorithm

Since the recovery of the off-diagonal entries has been shown earlier in Section 5.2,

we only require the diagonal components. It can be shown with the aid of (5.28) and

(5.31), that



0 2y22 + y23 y22 + 2y23

2y21 + y23 0 y21 + 2y23

2y21 + y22 y21 + 2y22 0







ˆ̃f11
ˆ̃
f22
ˆ̃f33


 =




−κ1 − 2y2y3
ˆ̃f23

−κ2 − 2y1y3
ˆ̃
f13

−κ3 − 2y1y2
ˆ̃f12


 . (5.36)

Solving the system of equations (5.36) gives

ˆ̃f11 =
y41 (κ1 + λ2y2 + λ3y3) + y21 (y

2
2 (2κ1 − κ2 − 2κ3 + 3λ3y3))

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
y21 (+y

2
3 (2κ1 − 2κ2 − κ3 + λ3y3) + λ2y

3
2 + 3λ2y

2
3y2)

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
2 (−y42 (κ2 + λ3y3) + 2y23y

2
2 (κ1 − κ2 − κ3 + λ3y3) + y43 (λ3y3 − κ3))

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)
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+
2 (λ2y

5
2 + 2λ2y

2
3y

3
2 − λ2y

4
3y2)

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

− 5λ1 (y
2
2 + y23) y

3
1 − 2λ1 (y

4
2 + 6y23y

2
2 + y43) y1 − λ1y

5
1

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

, (5.37)

ˆ̃
f22 =

−2y41 (κ1 + λ2y2 + λ3y3)− y21 (y
2
2 (κ1 − 2κ2 + 2κ3 − 3λ3y3))

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

− y21 (4y
2
3 (κ1 − κ2 + κ3 − λ3y3) + 5λ2y

3
2 + 12λ2y

2
3y2)

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
y42 (κ2 + λ3y3) + 2y43 (λ3y3 − κ3) + y22y

2
3 (−2κ1 + 2κ2 − κ3 + λ3y3)

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
2λ1y

5
1 + λ1 (y

2
2 + 4y23) y

3
1 + λ1 (y

4
2 + 3y23y

2
2 − 2y43) y1

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

− λ2y
5
2 − 2λ2y2y

4
3 − 5λ2y

3
2y

2
3

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

and (5.38)

ˆ̃f33 =
−2y41 (κ1 + λ2y2 + λ3y3) + y21 (−4y22 (κ1 + κ2 − κ3 + 3λ3y3))

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
y21 (−y23 (κ1 + 2κ2 − 2κ3 + 5λ3y3) + 4λ2y

3
2 + 3λ2y

2
3y2)

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

− 2y42 (κ2 + λ3y3)− y22y
2
3 (2κ1 + κ2 − 2κ3 + 5λ3y3)

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
y43 (κ3 − λ3y3) + 2λ1y

5
1 + λ1 (4y

2
2 + y23) y

3
1

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

+
λ1 (−2y42 + 3y23y

2
2 + y43) y1 + 2λ2y

5
2 + λ2y2y

4
3 + λ2y

3
2y

2
3

6 (y21 + y22 + y23) ((y
2
2 + y23) y

2
1 + y22y

2
3)

. (5.39)

Just before Theorem 5.1 we have explained how to deal with such singularities arising in

(5.37) — (5.39). Although one may notice that here the condition is y1 = y2 = y3 = 0.

This gives rise to the following theorem.

Theorem 5.2 A symmetric trace-free tensor field f̃ ∈ S(R3;S2C3) is uniquely deter-

mined by the data Kf(ξ, x) for ξ ∈ η⊥i , i = 1, 2, 3 where (η1, η2, η3) forms an orthogonal

basis.
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5.2.1 Alternative formulae for TRT

While the diagonal components fii are easily determined as we have seen, there is an

alternative more complicated procedure to recover them. As this uses different data

it can also be viewed as a compatibility condition on the three axis data.

Consider (5.27) and (5.30). When η = e1, we have trĥ = f̂22 + f̂33, and

ĥ =




0 0 0

0 f̂33 −f̂23
0 −f̂23 f̂22


 .

In the same manner as above (λi), we achieve a system of equations for µi

(y22 + y23)(f̂22 + f̂33)− (y22f̂33 − 2y2y3f̂23 + y23f̂22) = µ1,

(y21 + y23)(f̂11 + f̂33)− (y21f̂33 − 2y1y3f̂13 + y23f̂11) = µ2,

(y21 + y22)(f̂11 + f̂22)− (y21f̂22 − 2y1y2f̂12 + y22f̂11) = µ3. (5.40)

Rearranging the above gives the following



0 y22 y23

y21 0 y23

y21 y22 0







f̂11

f̂22

f̂33


 =




µ1 − 2y2y3f̂23

µ2 − 2y1y3f̂13

µ3 − 2y1y2f̂12


 . (5.41)

Let us relabel the RHS of the above as


µ1 − 2y2y3f̂23

µ2 − 2y1y3f̂13

µ3 − 2y1y2f̂12


 =




ν1

ν2

ν3


 . (5.42)

In this way the solution of (5.41) can be written as

f̂11 =
1

2y21
(ν2 + ν3 − ν1),

f̂22 =
1

2y22
(ν1 + ν3 − ν2),

f̂33 =
1

2y23
(ν2 + ν1 − ν3). (5.43)

Upon substitution of the off-diagonals and µ’s into (5.43), we obtain

f̂11 =
1

2y21
(µ2 + µ3 − µ1 + y2λ2 + y3λ3 − 3y1λ1),

f̂22 =
1

2y22
(µ1 + µ3 − µ2 + y1λ1 + y3λ3 − 3y2λ2),

f̂33 =
1

2y23
(µ2 + µ1 − µ3 + y2λ2 + y1λ1 − 3y3λ3). (5.44)
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5.2.2 Two Axes Algorithms

To reduce the data acquisition time, experimentalists would want to rotate the speci-

men about as few axes as possible. We show that in the general case two orthogonal

axes are insufficient by considering components in the null space of the TRT. Thus

Jηf = 0. If we had two orthogonal axes, say η = e1, e2, then η · (Jηf · η) = 0. This

implies that f11 = f22 = 0. From the definition of λη(y) and µη(y), λ1 = λ2 = 0 and

µ1 = µ2 = 0. The system of equations for the off-diagonals (5.32) gives us

y2f̂12 + y3f̂13 = λ1 = 0, (5.45)

y1f̂12 + y3f̂23 = λ2 = 0. (5.46)

Moreover the system of equations corresponding to the other non-axial components,

(5.42), gives

y22f̂22 + y23 f̂33 = µ1 − 2y2y3f̂23, (5.47)

y21 f̂11 + y23f̂33 = µ2 − 2y1y3f̂13. (5.48)

We can rearrange (5.48) as

y23f̂33 = −2y2y3f̂23, (5.49)

y23 f̂33 = −2y1y3f̂13. (5.50)

From the above, say f̂33 is arbitrary and consequently f̂13 and f̂23 are determined as

f̂23 = − y3
2y2

f̂33 and f̂13 = − y3
2y1

f̂33. (5.51)

Using the values obtained in (5.51) and substituting into (5.46) we can write f̂12 as

f̂12 =
y23

2y1y2
f̂33. (5.52)

Thus all the off-diagonal components in the tensor field are determined through f̂33

which is arbitrary. Hence two axes are insufficient.

In the potential case fij = ∂ui/∂xj + ∂uj/∂xi where u ∈ S(R3;C3). This is

important for applications in that a linear strain tensor f has this form where u is

twice the displacement field. Without loss of generality suppose that data is known

only for rotations about η = e1, e2. We have immediately f11, f22 and hence by direct
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integration twice u1 and u2. We now also have f12 from the partial derivatives of u1

and u2. It remains only to find u3. Multiplying f̂12 by y1y2 and f̂13 by y1y3 and adding

both of them (5.33) and (5.34) gives

y1y2f̂12 + y1y3f̂13 = y1λ1. (5.53)

This gives us f13 in terms of known data and as ∂u1/∂x3 is known we have ∂u3/∂x1

and hence u3. We summarise in the theorem

Theorem 5.3 A potential f ∈ S(R3;S2(C3)) is determined uniquely from Jf(ξ, x)

restricted to ξ ∈ η⊥1 ∪ η⊥2 where η1 and η2 are orthogonal.

This result is of considerable practical importance as it means that stain tensors, in

a scheme such as that envisaged in [27], can be recovered from rotations about only

two axes. We now show that in general a potential f cannot be recovered uniquely

from a one-axis rotation by constructing a general element of the null space. Suppose

we rotate only about e1 we have immediately f11 = 0 and as f̂ij = yiûj + yj ûi we see

u1 = 0. Now as λ1 and u1 are zero

y2û2 + y3û3 =
(λ1 − (y22 + y23)û1)

y1
= 0. (5.54)

and as µ1 = 0

y2û2 + y3û3 =
µ1

2(y22 + y23)
= 0, (5.55)

giving no new information. So u must satisfy u1 = 0 and ∂u2/∂x2 + ∂u3/∂x3 = 0. For

example if u2 is arbitrarily specified, then

u3 = −
∫

−∞

∂u2
∂x2

dx3. (5.56)

For further results of inversion procedures involving the TTRT, one can consult [46].

Now we are in a position to explain how to numerically implement such schemes.

5.3 Forward model

As the process of numerically implementing both algorithms for the TRT and the

TTRT is well-nigh, we treat both cases concurrently. In order to simulate data sets,

we need to implement a discretized version of the operator J and K described in
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(3.35) and (3.49) as a matrix that will approximate integrals of projections and act

upon discretized strain fields represented by vectors of values on a grid of voxels.

Instead of calculating the whole matrix at once, we generate it one row at a time (on

the fly) which corresponds to one individual source-detector pair for one of the three

components in Pξf described by (3.36). On the other hand it can be clearly seen for

the case of Qξf that we have only two components shown in (3.50).

5.3.1 Discrete representation of the tensor field

The discretized tensor field is stored as a 6N3 vector, containing the 6 distinct values

of the symmetric (trace-free) second rank tensor field for each voxel in a N ×N ×N

voxel grid. We increment first by the tensor component number, then the position

x1, x2 and finally x3. We precisely describe several test phantoms in Section 5.4.

Furthermore, the data simulated for the TRT is represented by a 3 × nθ × h× w × 3

five-dimensional array, where we use three rotation axes (η = e1, e2 and e3), nθ angles

steps for tomographic acquisition around each axis and a h×w pixel grid where h is the

number of two-dimensional slices which have w detectors. The factor of 3 is the number

of independent values of Jf in (3.36) which we integrate along each ray. Obviously

due to the constraint imposed by the TTRT, the data simulated is a 3×nθ×h×w×2

five-dimensional array. The factor of 2 is the number of independent values of Kf in

(3.50).

5.3.2 Methodology

We simulate an experimental setup with parallel rays passing through a specimen.

Sources and detectors consist of arrays in an equally spaced grid, either side of the

object being scanned. The source-detector pair is kept fixed and the object is rotated.

This is the ideal case both for x-ray/neutron diffraction imaging and for polarized light

tomography. We follow the procedure by [42] in a form revised by [20] to calculate the

approximate integral along a line through a voxel grid which considers the intersection

length of lines with cubical voxels. Such a process has been significantly explained in

Section 2.2. This will give us the contribution of each voxel to the total integral for

a given ray. For a given tensor we need to calculate the projection on to the plane
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perpendicular to the ray to emulate Pξ. Something similar has to be done for Qξ also.

For the TRT, the axial component [η · (Jf(ξ, x) · η)] and the non axial component

[(ξ × η) · (Jf(ξ, x) · η)] are extracted to be used in the approximation of the integral.

In this thesis we disregard the reconstruction using the other non-axial component

[ζ · (Jf(ξ, x) · ζ)]. Similarly for the TTRT case we extract [η · (Kf(ξ, x) · η)] and
[(ξ × η) · (Kf(ξ, x) · η)].

Now that the contribution of each voxel to the integral is known and by using the

length of intersection of the ray with the voxel from ray tracing, we can form the sum

of these intersection lengths with the voxel values to form the approximate integral.

For our numerical experiments, phantoms were generated inside an N = 90 cubic voxel

grid and measurements were simulated for a source/detector grid with 90× 120 pixels

(i.e. h = 90 and w = 120). We reconstruct on a 90 cubic voxel grid. For each of

the three rotation axes, the specimen is rotated through 180◦ in 1◦ increments, thus a

total of 540 views. Indeed we have committed an inverse crime howbeit the reasoning

for this is left to Section 5.6.

5.4 Generating phantoms

We generate three different phantoms or test fields where two of the three only have

smooth features and is expected to be less sensitive to algorithmic instabilities. The

third phantom has jump discontinuities and is designed to highlight the limitations of

the explicit reconstruction algorithm for discontinuous strain fields.

The smooth phantoms are constructed from smooth Gaussian functions, which

should be relatively easy to reconstruct. We define a cubic domain [−1, 1]3 on which

the components of f are supported, defined by 3-dimensional Gaussians bα(x) for each

of the components fij according to Tables 5.1 - 5.2, where

bα(x) = α exp(−50|x− a|2).

Additionally the trace is removed from the phantom described in Table 5.2, as this

will be used for TTRT numerics. Our third phantom has jump discontinuities which

we expect to be more challenging for the algorithms derived in Section 5.2. This is due

to the magnitude of high frequency terms in the Fourier transform which are explicitly
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Table 5.1: Phantom 1 - Smooth

fij α a1 a2 a3

f11

-1 -0.5 -0.5 -0.5
1 -0.5 0.5 -0.5
-1 -0.5 0.5 0.5

f12
1 0.5 -0.5 0.5
-1 0.5 0.5 -0.5

f13

1 -0.5 -0.5 -0.5
-1 -0.5 -0.5 0.5
1 -0.5 0.5 0.5

f22

-1 0.5 -0.5 -0.5
1 0.5 0.5 0.5
-1 0.5 0.5 0.5

f23
1 -0.5 -0.5 0.5
-1 -0.5 0.5 -0.5

f33

1 0.5 -0.5 -0.5
-1 0.5 -0.5 0.5
1 0.5 0.5 0.5

Table 5.2: Phantom 2 - Smooth

fij α a1 a2 a3

f11 1 -0.5 -0.5 -0.5
f12 1 -0.5 -0.5 0.5
f13 1 -0.5 0.5 -0.5
f22 1 -0.5 0.5 0.5
f23 1 0.5 -0.5 -0.5
f33 1 0.5 -0.5 0.5

Table 5.3: Phantom 3 - Sharp

i j I1 I2 I3

1 1 [-0.4,0.4] [-0.6,0.2] [-0,8,0.8]
1 2 [-0.4,0.4] [-0.2,0.6] [-0.8,0.8]
1 3 [-0.8,0.8] [-0.4,0.4] [-0.6,0.2]
2 2 [-0.8,0.8] [-0.4,0.4] [-0.2,0.6]
2 3 [-0.6,0.2] [-0.8,0.8] [-0.4,0.4]
3 3 [-0.2,0.6] [-0.8,0.8] [-0.4,0.4]

stated in formulas such as (5.37) — (5.38) and (5.33) — (5.35). As in the smooth

case, we define f on the cube [−1, 1]3, but set fij to be the characteristic function of

I1 × I2 × I3 , according to Table 5.3.

5.5 Reconstruction procedure

For the TRT case, the recovery of axial components is relatively straight-forward as

this is just plane-by-plane Radon inversion. We apply a ramp-filter to the data using

a one-dimensional discrete Fourier transform and backproject to achieve the diagonal

entries for each rotation axis. Such a procedure is outlined in Section 2.3. Errors

in high frequency components are amplified by the ramp-filter, thus we regularise

the ramp filter by limiting the attenuating high frequencies using a Hamming window
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defined earlier in (2.36). Since backprojection is the adjoint operator of ray integration,

we reuse the ray tracing code to implement discretized backprojection as the transpose

of ray integration.

From (5.29), we see the simulated data values J1 and K1 that are collected for each

plane need to be differentiated in the p-direction, before any backprojection takes place.

The implementation of such a process is done with the aid of a regularised derivative,

introduced earlier in Section 2.3.3 where the Hilbert transform was used to reconstruct

Radon data. Following on we backproject the differentiated plane by plane data onto

the voxel grid and the tangential vector field components (i.e. λ) are calculated using

a three dimensional FFT algorithm and application of a ramp-filter in frequency space.

Then equations (5.33) to (5.35) are used to recover the off-diagonal terms in frequency

space. The only exception is the voxel (y1, y2, y3) = (0, 0, 0), where f̂12, f̂13 and f̂23

are undefined. Here, the value is set using linear interpolation from nearby voxels. To

complete our reconstruction, we employ the three dimensional inverse FFT to recover

fij . One important remark here is that we know by definition that our phantoms have

compact support. Thus if we pad the Fourier transform before Fourier inversions we

should be able to avoid the artefacts arising from such a discontinuity.

We complete the discussion on the procedure for reconstruction by outlining how

the diagonal entries are recovered for TTRT data. From (5.31) one realises that we

must backproject simulated data values K2 plane-by-plane before applying the FFT

algorithm to shift everything into frequency space. Thereafter equations (5.37) —

(5.39) are used to calculate the value of the diagonal terms which are passed onto

spatial domain using an inverse FFT. Due to the division by zero we apply the same

procedure mentioned above when reconstructing off-diagonal terms to avoid having

values that are undefined near the origin.

5.6 Results and summary

In this section we illustrate the results of our implemented reconstructions showing

the performance of the algorithm on smooth and discontinuous phantoms. Using

the 2−norm error defined in (2.37) we calculate the errors component wise for each
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Table 5.4: Relative Errors for TTRT

i j ǫij

1 1 0.098117
1 2 0.34532
1 3 0.32919
2 2 0.098891
2 3 0.3323
3 3 0.095676

tensor phantom. The relative errors for the reconstruction of a strain tensor (trace-

free symmetric rank two tensor - TTRT) are given in Table 5.4. Surprisingly the

relative errors for the off-diagonals are large which are affecting the reconstruction of

the diagonal entries since ˆ̃fii depend on λi.

The justification for reconstructing the simulated data with inverse crimes is ex-

plained clearly by Sharafutdinov [40] where he mentions that differentiated data does

not belong to the range of the Radon transform. This is why the author was encour-

aged to study the range of the Radon and Longitudinal transform shown in Sections

2.4 and 3.2.4. Such results illustrate that we can commute the ramp-filter with the

backprojection operator like BPF inversion for the Radon transform mentioned in Sec-

tion 2.3.1. Realistically, we have as yet a qualitative reconstruction procedure and the

results can be seen in Figures 5.2, 5.3, 5.6 and 5.7. Furthermore, it is important to

note that Figures 5.2, 5.3, 5.4 and 5.5 are related to the TRT, whereas Figures 5.6,

5.7, 5.8 and 5.9 are related to the TTRT.

On the other hand, since the diagonal entries for TRT is just plane-by-plane filtered

backprojection we illustrate the effect of avoiding inverse crime in Figure 5.1. This

portrays the relative error for the diagonal components of the tensor field whilst the

noise level is increased. In actual fact the relative errors ǫ11, ǫ22 and ǫ33 are identical

(three lines are seen as one) due to the way in which the phantom is generated. Fur-

thermore Figures 5.4, 5.8 and 5.9 show the effect of introducing jump discontinuities

in the components of a strain field. This would be the case when some material has

a crack resulting in the reconstruction being inaccurate as expected. Many artefacts

are also visible.
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Figure 5.1: Change in ǫjj when noise is added
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(a) Original f12 (b) Reconstruction of f12

(c) Original f13 (d) Reconstruction of f13

(e) Original f23 (f) Reconstruction of f23

Figure 5.2: TRT off diagonals for smooth phantom 1.
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(a) Original f11 (b) Reconstruction of f11

(c) Original f22 (d) Reconstruction of f22

(e) Original f33 (f) Reconstruction of f33

Figure 5.3: TRT diagonals for smooth phantom 1.
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(a) Original f12 (b) Reconstruction of f12

(c) Original f13 (d) Reconstruction of f13

(e) Original f23 (f) Reconstruction of f23

Figure 5.4: TRT off diagonals for discontinuous phantom.
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(a) Original f11 (b) Reconstruction of f11

(c) Original f22 (d) Reconstruction of f22

(e) Original f33 (f) Reconstruction of f33

Figure 5.5: TRT diagonals for discontinuous phantom.
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(a) Original f̃12 (b) Reconstruction of f̃12

(c) Original f̃13 (d) Reconstruction of f̃13

(e) Original f̃23 (f) Reconstruction of f̃23

Figure 5.6: TTRT off diagonals for smooth phantom 2.
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(a) Original f̃11 (b) Reconstruction of f̃11

(c) Original f̃22 (d) Reconstruction of f̃22

(e) Original f̃33 (f) Reconstruction of f̃33

Figure 5.7: TTRT diagonals for smooth phantom 2.
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(a) Original f̃12 (b) Reconstruction of f̃12

(c) Original f̃13 (d) Reconstruction of f̃13

(e) Original f̃23 (f) Reconstruction of f̃23

Figure 5.8: TTRT off diagonals for discontinuous phantom.
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(a) Original f̃11 (b) Reconstruction of f̃11

(c) Original f̃22 (d) Reconstruction of f̃22

(e) Original f̃33 (f) Reconstruction of f̃33

Figure 5.9: TTRT diagonals for discontinuous phantom.



Chapter 6

Nonlinear Inverse Problems

An inherently more difficult family of inverse problems are collectively referred to

as nonlinear inverse problems. Nonlinear inverse problems have a more complex

relationship between data and model and in the case of PNMFT the relationship

can be represented by the equation Σ = F(M(B)). Here F is a nonlinear opera-

tor and cannot be separated to represent a linear mapping of the model parame-

ters that take a magnetic field M(B) into the data Σ. Now suppose we had two

magnetic fields, B1 and B2, then our problem would only be classed as linear if

F(αM(B1) + βM(B2)) = αF(M(B1)) + βF(M(B2)). Indeed this is not the case

as illustrated in Figures 6.1 and 6.2, where we compare the values of each of the nine

sinograms in the data set obtained by letting α = 50 and β = 150. Now for this exam-

ple we take B1 = B2 and the magnetic field is the central slice of the solenoid utilized

in Section 4.1. The cause of this nonlinearity lies within the Physics of the problem.

If a single neutron precesses more than 180◦ we have phase wrapping issues. The spin

on the neutron depends upon two things; the strength of magnetic field and the time

spent by the neutron in the magnetic field. The logarithmic approach outlined in

Section 4.2.2 will only recover magnetic fields up to phase wrapping which limits its

use. Therefore we have to resort to methods in which we are able to solve nonlinear

problems in order to successfully image magnetic structures in magnetic materials.
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Figure 6.1: Spin Data Σ for F(50M(B)) + F(150M(B)).
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Figure 6.2: Spin Data Σ for F(50M(B) + 150M(B)) = F(200M(B)).

6.1 Modified Newton Kantarovich Method

Nonlinear inverse problems generally must be solved by either an approximate or itera-

tive method. Usually an approximation is not known in which case the only possibility
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is an iterative method. One such iterative scheme is the Newton Kantarovich method

which was utilized by [6] to solve several applications in which the resulting operator

is nonlinear. Such an approach linearises the nonlinear operator equation about a cur-

rent approximation resulting in a linear operator equation. This is solved to yield an

update at each iteration. The Newton Kantarovich method is given by the following

scheme

Bn+1 = Bn + δBn, n = 0, 1, 2, ...., (6.1)

where B is the magnetic field desired and δB is the update satisfying the linear operator

equation

F ′(M(Bn))M(δBn) = −F(M(Bn)). (6.2)

However the computational cost of calculating the Fréchet derivative (Jacobian) at

every step is high so the Modified Newton Kantarovich Method (MNKM) may also be

used. Here the Fréchet derivative is left fixed at the first iterate and the calculation of

the update δBn satisfies

F ′(M(B0))M(δBn) = −F(M(Bn)). (6.3)

A damped MNKM method has a linesearch parameter, α, which controls the extent

of the update, given as

Bn+1 = Bn + α δBn, n = 0, 1, 2, .... (6.4)

One should notice the Fréchet derivative F ′(B = 0) for the problem of PNMFT has

been calculated in Section 4.2 as

lim
t→∞

δΣ(x+ tξ, ξ) =

∫ ∞

−∞
M(δB(t)) dt.

Thus we summarize the MNKM in th efollowing algorithm.

Algorithm 6.1 (Modified Newton Kantarovich Method) Suppose B is a sufficiently

small magnetic field and Σ is PNMFT data, then the iterative procedure converges in

that Bn → B, as n→ ∞. The procedure is as follows

i. B0 = 0,

ii. δBn
i = X−1 [ej · [Σ−F(M(Bn))] · ek],
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iii. Bn+1 = Bn + α(δBn),

iv. n = n + 1.

A similar approach to the one mentioned in Algorithm 6.1 has been taken by [33] for the

nonlinear polarization tomography problem. However this is still a theoretical result

and no one has implemented a numerical recipe for such a reconstruction procedure

as yet. This implies that a similar approach to the one for PNMFT maybe of use. In

essence, the forward model used in the linearized problem will be employed to give a

nonlinear update and the inversion procedure will solve the linearized inverse problem.

6.1.1 Drawback of MNKM

In order to test the MNKM the solenoid in Figure 4.2 is scaled up by a factor of

50 which means the magnetic field is of strength 290 µT. Using the forward model

mentioned in Section 4.2.1, initial data is generated for the strengthened magnetic

field. Thereafter the reconstruction process adopted in the linearized inversion process

is utilized to yield the result from the first iterate. This is fed back into the forward

model to obtain new data which is subtracted from the initial data to give the data set

on which the reconstruction procedure will be employed. Upon completion of Radon

inversion, the update, δB, is found. In reality, a linesearch is performed at every

step to minimize the difference in data. This is performed by solving the forward

problem thrice, each time with a different linesearch parameter, α. To limit the step

in which the iterative procedure advances, a quadratic is fitted to the three different

linesearch parameters chosen against the residuals obtained. The α value for which

the residual is at the minimum, is chosen as the update parameter. The iterative

procedure terminates at a predetermined tolerance, TOL = 10−5.

Figure 6.3 shows the results for the iterative reconstruction algorithm mentioned in

Algorithm 6.1. The initial spin data was simulated using a 180× 180 pixel grid where

270 rays of neutrons (uniform velocity with wavelength = 5 Å) were fired for every

angular increment (1 degree in this case) of the usual tomographic data acquisition

process. The data is binned by a factor of three to give the data which is three

sets of 90 × 120 arrays. Furthermore, 5% pseudo-random gaussian noise was added.

Reconstruction was performed on a grid which does not evenly divide the grid used for
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simulation, i.e. 67×67. The relative errors are 22%, 17%, 9% and 10% for the magnetic

field strength, |B(x(t))| and components B1(x(t)), B2(x(t)) and B3(x(t)) respectively.

It took 25 iterates to converge and the maximum a neutron precesses throughout this

specific magnetic field is 88◦.

Simulated B
1

20 40 60

20

40

60 -1

0

1

10
-4

B
1

 Reconstruction

20 40 60

20

40

60 -1

0

1

10
-4

First Iterate B
1

20 40 60

20

40

60 -1

0

1

10
-4

Simulated B
2

20 40 60

20

40

60 -1

0

1

10
-5 B

2
 Reconstruction

20 40 60

20

40

60 -1

0

1

10
-5 First Iterate B

2

20 40 60

20

40

60 -1

0

1

10
-5

Simulated B
3

20 40 60

20

40

60
-2

-1

0

10
-4

B
3

 Reconstruction

20 40 60

20

40

60
-2

-1

0

10
-4

First Iterate B
3

20 40 60

20

40

60
-2

-1

0

10
-4

|B|[T]

20 40 60

20

40

60 0.5
1
1.5
2
2.5

10
-4 Reconstructed |B|[T]

20 40 60

20

40

60 0.5
1
1.5
2
2.5

10
-4 First Iterate |B|[T]

20 40 60

20

40

60 0.5
1
1.5
2
2.5

10
-4

Figure 6.3: Convergence of iterative procedure.

However, one drawback of this method is illustrated when the solenoid in Figure 4.2

is scaled up by a factor of 100 which means the magnetic field is of strength of 580 µT.

In this situation the MNKM converges to a wrong solution. Figure 6.4 illustrates this

where the most a neutron can precess throughout the magnetic field is 176◦. Thus the

logarithmic approach is by far the better method since it can reconstruct magnetic

fields wherein neutrons precess up to 180◦. How then are we going to tackle the phase

wrapping issue? Of course, the MNKN only uses the Fréchet derivative (Jacobian) at

B = 0. Hence we must attempt to calculate the Jacobian at B 6= 0 and update it at

every step in the iteration process.



114 CHAPTER 6. NONLINEAR INVERSE PROBLEMS

Simulated B
1

20 40 60

20

40

60 -2

0

2

10
-4

B
1

 Reconstruction

20 40 60

20

40

60 -2

0

2

10
-4

First Iterate B
1

20 40 60

20

40

60 -2

0

2

10
-4

Simulated B
2

20 40 60

20

40

60 -2

0

2

10
-5 B

2
 Reconstruction

20 40 60

20

40

60 -2

0

2

10
-5 First Iterate B

2

20 40 60

20

40

60 -2

0

2

10
-5

Simulated B
3

20 40 60

20

40

60
-4

-2

0

10
-4

B
3

 Reconstruction

20 40 60

20

40

60
-4

-2

0

10
-4

First Iterate B
3

20 40 60

20

40

60
-4

-2

0

10
-4

|B|[T]

20 40 60

20

40

60 1
2
3
4
5

10
-4 Reconstructed |B|[T]

20 40 60

20

40

60 1
2
3
4
5

10
-4 First Iterate |B|[T]

20 40 60

20

40

60 1
2
3
4
5

10
-4

Figure 6.4: Drawback of iterative procedure.

6.2 Jacobian Update

We have already seen in (4.10) of Section 4.2 that for an arbitrary B field the Fréchet

derivative can be calculated as

DF(M(B0))M(δB) = lim
t→∞

δΣ(x+ tξ, ξ) =

∫ ∞

−∞
S0(t)M(δB(t))Σ0(t) dt.

This allows us to update Algorithm 6.1 in the manner described below.

Algorithm 6.2 (Newton Kantarovich Method) Suppose B is a magnetic field and Σ

is PNMFT data, then the iterative procedure converges in that Bn → B, as n → ∞.

The procedure is as follows

i. B0 = 0,

ii. δB0
i = X−1 [ej · Σ · ek],

iii. B1 = B0 + α(δB0),

iv. n = 1.

while (Bn+1 − Bn) < TOL
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v. Calculate Jacobian.

vi. Use CGLS for F ′(M(Bn))M(δBn) = F(M(B + δB))−F(M(B)).

vii. Bn+1 = Bn + α(δBn),

viii. n = n+ 1.

Just a note for practical purposes. Suppose we have a matrix equation of the type

STU = V, then using the kronecker product, we can rewrite this as

(UT ⊗ S)vec(T ) = vec(V ),

where the vec denotes vectorization of a matrix in the column sense. Thus the update,

δB can easily be calculated as

(
ΣT0 ⊗ S0

)
vec(M(δB)) = vec (F(M(B + δB))−F(M(B))) (6.5)

using CGLS, introduced in Section 2.3.2. This provides us with a technique to image

stronger magnetic domains but due to time constraints this has yet to implemented

numerically. The next step would be to code the Fréchet derivative at B 6= 0. From

(6.5) above it can be seen that we require an integrating factor, S0, and the pixel spin

data, Σ0, from the previous iterate in the Newton Kantarovich scheme.



Chapter 7

Conclusions and Future Work

This concludes our investigations of tensor ray transforms, in particular applications

such as diffraction strain tomography, photoelasticity and PNMFT. While this thesis

comes to completion, this subject is by no means closed. Rather, some would say it

is the introduction of methods able to solve rich tomography problems. Nevertheless,

here are some of our thoughts and the possible next steps on where we would invest

our time and energy, given more time.

We have derived an explicit reconstruction algorithm for three axes data with the

application x-ray diffraction tomography in mind. Furthermore, for the first time re-

construction of simulated strain data is given outlining the limitation of the novel

unstable method. This is outlined by the numerics where a discontinuous phantom

was simulated and the algorithm never performed well, with artefacts appearing in

the reconstruction. We have pointed out that as there are two distinct methods of

calculating the diagonal components this provides a consistency condition on the data.

Numerically one would apply a discrete three dimensional FFT to the normal compo-

nents, as we have seen the reconstructions are quite accurate. Then using the data (µi)

for the off-diagonals, we could investigate how well the alternative algorithm performs.

Moreover, we have derived that it is not possible to reconstruct a symmetric second

rank strain tensor with data from less than three orthogonal axes. Nonetheless it is

possible to use only two axes of rotation for the case that is the result of an infinitesimal

strain, and recover the displacement field directly. However it might be better in

practice to use the general procedure and then verify to what extent the compatibility

condition holds on the reconstructed tensor.
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The three axes algorithm for the TTRT suffers from similar issues. The reasoning

behind such an effect is the off-diagonals for the TRT and TTRT are calculated in

exactly the same manner. Quantifying the accuracy of the reconstruction suggests the

issue is only in the off-diagonals (i.e. λi) since the relative errors are only 9% for the

diagonal entries of the strain tensor, whereas the relative errors are approximately 33%

for the off-diagonal entries. Surprisingly this is with inverse crimes. This motivated

an interesting question, what exactly happens to data when we differentiate or apply

a filter. So the range conditions for tensor ray transforms were studied, but this is

still an unanswered question. One satisfactory result is the correction of some of the

formulae present in David’s thesis [46] and correcting the code on the instrumental

setup currently in Sheffield.

As for PNMFT, we have an algorithm for reconstructing fairly weak magnetic fields,

up to phase wrapping. Even though this is for simulated data, we have seen this is

possible for experimental data, [37]. We have acquired a bound for which the MNKM

works, namely the correct magnetic field can be retrieved if the angle by which the

neutron precesses is under 90◦. It is apparent that it works when the linearization fails

(i.e. sin(x) 6= x). It is yet an open question as to how Eskin’s result (Theorem 3.1)

can be shown numerically although this is a step in the right direction. Furthermore

we have formulated the Fréchet derivative for B 6= 0 and have devised an algorithm

to reconstruct magnetic field for data acquired from phase wrapping.

7.1 Further Work

While the system (5.32) can be solved in the frequency domain using a discrete Fourier

transform in three dimensions, this is relatively computationally expensive even using

the Fast Fourier Transform algorithm. Another method is suggested by multiplying

the equations in (5.33), (5.34) and (5.35) by −y1y2, −y1y3 and −y2y3 respectively, and
then on taking the inverse Fourier transform, we have

∂f 2
12

∂x1∂x2
= −1

2

(
∂λ̌1
∂x1

+
∂λ̌2
∂x2

− ∂λ̌3
∂x3

)
(7.1)

∂f 2
13

∂y1∂y3
= −1

2

(
∂λ̌1
∂x1

+
∂λ̌3
∂x3

− ∂λ̌2
∂x2

)
(7.2)

∂f 2
32

∂y3∂x2
= −1

2

(
∂λ̌3
∂x3

+
∂λ̌2
∂x2

− ∂λ̌1
∂x1

)
. (7.3)
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The right hand side terms can be calculated directly using a finite difference scheme and

then numerical quadrature used to calculate the fij. Here λ̌i is the three dimensional

inverse Fourier transform of λi. Notice that λi consists of the slice by slice data J1
ei
(off-

diagonal), which is differentiated in the p variable, the projection coordinate in each

plane, backprojected slice by slice and ramp filtered in each plane. This means that

the data used in (7.3) is subjected to standard slice by slice back projection and filter

operations that are commonly implemented in parallel beam x-ray CT reconstruction.

The derivatives ∂λ̌i/∂xi are not local to the plane but numerical implementation would

involve data only from near-by planes.

An alternative approach would be to try different modified ramp filters or explicit

regularization methods such as total variation. Another avenue worth considering

on the practical side is to develop a reconstruction algorithm involving general (non-

orthonormal) axes. In experiments it is often not feasible to rotate the specimen

through 90◦ and remain in the field of view of the measurement system. Explicit re-

construction algorithms such as the one we have given are useful practically for data

that is complete and uniformly sampled. For partial, sparse or irregularly sampled data

representing the forward problem simply as a sparse matrix and solving using itera-

tive algorithms (like CGLS) with explicit regularization is generally better, although

typically requiring large amounts of memory and parallel processors.

From earlier work in Section 2.3.3, it was shown that reconstruction for a volume

is possible slice by slice. This approach can be applied to PNMFT data to give a

three dimensional reconstruction of a magnetic field. Ideally a robust reconstruction

algorithm is required which can take care of phase wrapping issues when dealing with

strong domains in close proximity of 1T. This is what experimentalists would like since

this would certainly be a breakthrough in the neutron imaging community. With

confidence the aforementioned statement can be written since the author presented

this novel idea on the occasion of ICTMS 2017, in Lund, Sweden. The attentiveness

and delight of the audience, majority of whom were neutron imaging scientists, was

amazing as they showed great enthusiasm during the talk.

Ultimately for application purposes, e.g. quantum mechanical effects in supercon-

ductors and imaging electromagnetic devices, a further advancement is required. More

often than not, the magnetic materials that we would like to image are composed of
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several discontinuous domains which largely affect the spin on the polarized neutron.

To derive an innovative reconstruction algorithm for such a problem would really ad-

vance the field. The nonlinear inverse problem for PNMFT can be regarded as a warm

up exercise for other nonlinear problems. Intuitively, the nonlinear polarized light

problem involving the TRT and measuring the absolute phase change of polarized

light will become conceptually easier to understand, if this is solved. Hence benefiting

a whole new spectrum of applications.
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Appendix A

Supplementary Results

Integrals over Rn

Integrals over Rn can be expressed as integrals over spheres by introducing polar

coordinates x = rω, ω ∈ Sn−1

∫

Rn

f(x) dx =

∫ ∞

0

rn−1

∫

Sn−1

f(rω) dω dr. (A.1)

Fubini’s Theorem

One may switch the order of integration if the double integral yields a finite answer

when the integrand is replaced by its absolute value. If X and Y are well defined

spaces and f(x, y) is X × Y integrable meaning that it is measurable and

∫

X×Y
|f(x, y)| d(x, y) <∞, then (A.2)

∫

X

(∫

Y
f(x, y) dy

)
dx =

∫

Y

(∫

X
f(x, y) dx

)
dy =

∫

X×Y
f(x, y) d(x, y). (A.3)

Cauchy Schwartz Inequality

For L2, we have

∣∣∣∣
∫

Rn

f(x) ¯g(x) dx

∣∣∣∣
2

≤
∫

Rn

|f(x)|2 dx ·
∫

Rn

|g(x)|2 dx. (A.4)
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