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Imperfe
t Homo
lini
 Bifur
ationsPaul GlendinningDepartment of Mathemati
s, UMIST, P.O. Box 88, Man
hester M60 1QD, UKJan Abshagen & Tom MullinMan
hester Center for Nonlinear Dynami
s, University of Man
hester, Oxford Road, Man
hester M13 9PL, UK(Dated: Mar
h 26, 2001)Experimental observations of an almost symmetri
 ele
troni
 
ir
uit show 
ompli
ated se-quen
es of bifur
ations. These results are dis
ussed in the light of a theory of imperfe
t globalbifur
ations. It is shown that mu
h of the dynami
s observed in the 
ir
uit 
an be understoodby referen
e to imperfe
t homo
lini
 bifur
ations without 
onstru
ting an expli
it mathemati
almodel of the system.PACS numbers: 02.30.Oz,05.45.-a,05.45.GgKeywords: gluing bifur
ations, experiments, theory, almost symmetri
 systemsI. INTRODUCTIONThe rôle of symmetries in determining the behaviour ofnonlinear physi
al systems 
an be 
ru
ial. Re
e
tion (orZ2) symmetry is relevant to a wide range of experiments,and in su
h a system a pair of stable solutions may be
reated by a super
riti
al pit
hfork bifur
ation as a pa-rameter is varied. These new states break the originalsymmetry, but are symmetri
 images of ea
h other. Of
ourse, perfe
t symmetry is never a
hievable in any phys-i
al system so in pra
ti
e the bifur
ation may be
omedis
onne
ted having one bran
h whi
h varies monotoni-
ally with the parameter and a se
ond whi
h arises by asaddle{node bifur
ation. This is most easily modelled byadding an imperfe
tion term as a 
onstant in the modelnormal form and this appears to work well in des
rib-ing the lo
al bifur
ation stru
ture. However, a physi
alsystem will typi
ally 
ontain many sour
es for this imper-fe
tion and some of them may be high{dimensional in na-ture. Therefore, it is reasonable to ask whether a modelwith a single imperfe
tion term provides a good repre-sentation of the system far from the bifur
ation point.Spe
i�
ally, we are interested here in the e�e
ts of thislo
al modelling on the global dynami
s whi
h result fromhomo
lini
 bifur
ations.Our investigation is 
on
erned with a 
lass of global bi-fur
ations involving homo
lini
 orbits, i.e. orbits whi
htend to a stationary point of the model 
ow in both for-wards and ba
kwards time. Typi
ally, the existen
e of ahomo
lini
 orbit is not a persistent property of a di�eren-tial equation, but they o

ur on lines in two-parameterfamilies (te
hni
ally, they are 
odimension one bifur
a-tions). In the absen
e of symmetry, the net e�e
t of su
hbifur
ations is to 
reate or destroy a periodi
 orbit, whoseperiod tend to in�nity at the bifur
ation point. This mayhappen in one of two ways: one-sided or two-sided. In theone-sided 
ase, the orbit appora
hes the bifur
ation pointfrom one side of the bifur
ation point as its period tends

to in�nity. In the two-sided 
ase, su
h as the Shil'nikov
ase [1℄, the lo
us of the orbit in parameter spa
e os
il-lates about the bifur
ation value 
reating the so{
alled`Shil'nikov wiggle' as the period of the orbit tends to in-�nity. Moreover, there are period-doubling and reverseperiod-doubling bifur
ations of the orbit together withmore 
ompli
ated homo
lini
 bifu
ations. This sequen
eof events has been reported previously [2℄ in an experi-mental and theoreti
al study of a modi�ed van der Polos
illator, and in a wide variety of other experiments in-
luding Taylor{Couette 
ows [3, 4℄, opti
s, [5, 6℄, 
hemi-
al os
illators [7, 8℄ and liquid 
rystal 
ows [9℄.In the presen
e of simple symmetries, homo
lini
 bi-fur
ations may involve two or more homo
lini
 orbits. Inthe simplest 
ases the net e�e
t is to destroy a pair of pe-riodi
 orbits whi
h are the image of ea
h other under thesymmetry and 
reate a single symmetri
 bran
h of peri-odi
 orbits. These symmetri
 periodi
 orbits 
annot un-dergo period-doubling bifur
ations in the two sided 
ase.The period-doubling and reverse period-doubling bifur-
ations on bran
hes of the symmetri
 orbit are repla
edby an initial symmetry-breaking (or reverse symmetry-breaking) bifur
ation. The asymmetri
 orbits 
reated inthis way may, of 
ourse, be involved in period-doublingbifur
ations. This distin
tion will be useful in the inter-pretation of the bifur
ations observed below.Whilst the e�e
t of small symmetry-breaking terms onthe bifur
ations of stationary solutions has a long history(the imperfe
tion theory of Golubitsky and S
hae�er [10{12℄) there appears to have been no systemati
 attemptto des
ribe the equivalent modi�
ations of global bifur-
ations (although see [13, 14℄ for a spe
ial 
ase). Our aimhere is to provide the foundations for su
h an approa
h.We re
onsider the experimental ele
troni
 os
illator [2℄whi
h exhibits a variety of almost symmetri
 global bi-fur
ations and show how many features observed in theexperiments may be explained by reinterpreting some re-sults on 
odimension two homo
lini
 bifur
ations so as to



2obtain a general imperfe
tion theory for homo
lini
 bifur-
ations. These results ne
essarily involve non-stationarysolutions, and so are likely to be appli
able and observ-able in many more interesting situtations.The experiments were 
arried out using a van der Polos
illator. The bifur
ation stru
ture of this system hasbeen investigated in detail previously [2℄ but with theimpli
it assumption of symmetry. It is the aim of thepresent study to investigate the global dynami
s of the
ir
uit and relate the observations to modern ideas ongluing bifur
ations where the mathemati
al abstra
tionof perfe
t symmetry is relaxed.II. EXPERIMENT IA. The ele
troni
 os
illatorThe experimental study was performed using a vander Pol os
illator 
ir
uit, the details of whi
h are givenin Healey et al. [2℄. It 
omprises an autonomous LCRos
illator with two nonlinear 
ondu
tan
es in the feed-ba
k 
ir
uit. Pre
ise variation of the two parameterswhi
h 
ontrol the behaviour of the system was providedby swit
hable de
ades resistan
e boxes. By this meansdetermination of the bifur
ation stru
ture to a relativea

ura
y of better than 0:1% was possible. The two pa-rameters are denoted by �1; �1 and they are nondimen-sionalised forms of the resistan
es R1; R2 whi
h 
ontrolthe nonlinear elements. Details of the nondimensionali-sation are given in Healey et al. [2℄.The prin
iple set of observations were made usingan os
illos
ope. Steady bifur
ations were observed as
hanges in the level of the d.
. output. On the otherhand dynami
al states were best monitored as Lissajous�gures formed from a 
ombination of signals measuredover the nonlinear elements. In this way, limit 
y
les,period doubling sequen
es, 
haos et
. were readily dis-played. Time-series were also re
orded and stored on a
omputer via a 12-bit A/D for further pro
essing. Thisin
luded phase portrait analysis using the method of de-lay 
oordinates.The indu
tor used in the present 
ir
uit is 1.5269H
ompared with 1.78H used by Healey et al. [2℄. This
auses a shift of the bifur
ation points relative to thosepreviously reported, though the bifur
ation stru
tureremains qualitatively the same. The imperfe
tions inthe 
ir
uit are tiny and the resulting dis
onne
tions areequally small. They arise from a variety of sour
es butwe will refer to them throughout as a single imperfe
tion.B. Bifur
ation setThe stability diagram for the ele
troni
 
ir
uit is shownin Figure 1. The overall stru
ture shows lines of steadyand dynami
 bifur
ations all meeting at the top righthand 
orner of the �gure whi
h is a 
odimension{2 point.
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FIG. 1: Experimental bifur
ation set in the �1; �1 plane. SNdenotes the path of saddle-node bifur
ations, `Hopf' the Hopfbifur
ations to simple os
illations and `Hom' the gluing bi-fur
ations. The paramater region denoted by `P2' is whereforward and reverse period doubling is observed on the asym-metri
 orbits.The dynami
 bifur
ations (Hopf and homo
lini
) arepairs of lines superposed and separated by the imperfe
-tions in the 
ir
uit. This e�e
t is very small and 
annotbe resolved on the s
ale of the �gure but, as we will showbelow, it has a signi�
ant e�e
t on the global dynami
s.In the parameter range of interest, a perfe
tly sym-metri
 system would have a trivial zero volts �xed pointwhi
h would lose stability to a pair of non{zero d.
. statesat a super
riti
al pit
hfork bifur
ation. As expe
ted, inthe experiment we see that this bifur
ation is dis
on-ne
ted to form a 
ontinuously 
onne
ted state and a sep-arate solution bran
h whi
h is terminated at its lower endby a saddle{node bifur
ation denoted by SN in Figure 1.The stable non-trivial asymmetri
 d.
. states both be-
ome time-dependent via Hopf bifur
ations; one on ea
hbran
h. The imperfe
tion in the 
ir
uit is very small,so the lo
i of these bifur
ations almost 
oin
ide and aremarked 'Hopf' in Figure 1. The two asymmetri
 limit
y
les whi
h arise at the Hopf bifur
ations appear toglue together leading to a large symmetri
 periodi
 or-bit. This transition is denoted by the line marked `Hom'in Figure 1 and will be dis
ussed in detail below. Thissymmetri
 limit 
y
le undergoes di�erent types of bifur-
ation in
luding symmetry-breaking and period doublingand may also be
ome 
haoti
. Finally, within the os
il-latory regime forward and reverse period doubling se-quen
es have been observed and these 
an be related tothe Shil'nikov wiggle as shown by Healey et al [2℄. Theboundaries of this region are denoted by P2 in Figure 1.C. Imperfe
t gluing bifur
ationWe �rst examine the in
uen
e of the imperfe
tion onthe gluing bifur
ation whi
h o

urs when the two asym-metri
 limit 
y
les join without the presen
e of 
ompli-
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FIG. 2: Os
illation period of di�erent periodi
 orbits at �1 =0:6000 plotted as a fun
tion of �1. `1' and `0' denote the orbitson the asymmetri
 bran
hes and `10', `01' are the glued orbits.
0
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FIG. 3: Phase portraits of 
oexisiting asymmetri
 (1; 0) andsymmetri
 (10) periodi
 orbits at �1 = 0:6041 and �1 =0:6000
ated dynami
s. We 
hose �1 suÆ
iently large (�1 � 0:59approximately) and �1 
lose to �1 so that the 
haos whi
harises from period-doubling sequen
es on a Shil'nikovwiggle is avoided and the dynami
s is almost planar. Wepresent a `typi
al' set of results for the orbit stru
tureof the os
illator in this regime in Figures 2 and 3 whi
hwere taken at �1 = 0:6000. Figure 2 shows the periodof the various simple orbits observed as a fun
tion of theparameter �1, and Figure 3 shows the form of the 
or-responding orbits { the two small asymmetri
 orbits arelabelled by `1' and `0' respe
tively, and the large ampli-tude orbit is labelled by `10', for reasons whi
h will beexplained below.If the ele
troni
 os
illator were symmetri
 then the de-velopment of the orbits shown in Figure 3 for �1 = 0:6041would have a simple explanation in terms of gluing bifur-
ations [15℄: two periodi
 orbits whi
h are the symmetri


image of ea
h other approa
h a stationary point and are`glued together' to form the single symmetri
 orbit with
ode `10'. At the bifur
ation the two smaller periodi
 or-bits tou
h at the stationary point, i.e. they are no longerperiodi
 (their period has diverged to in�nity) and theyform two homo
lini
 orbits, biasymptoti
 to the station-ary point.As is 
lear from Figure 2, and as should be expe
tedof a real physi
al system, the os
illator is not perfe
tlysymmetri
. Hen
e it is not surprising that the pair of ho-mo
lini
 orbits whi
h exist at a single parameter value inthe symmetri
 system seem to o

ur at di�erent param-eter values in the os
illator. The results shown in Figure2 also suggest that there is a third homo
lini
 bifur
ation{ the bifur
ation whi
h 
reates the large amplitude `10'periodi
 orbit.It 
an be seen in Figure 2 that the period of both thesmall asymmetri
 orbits `1' and `0' in
reases as �1 in-
reases and they �nally lose stability and jump to the`10' orbit at �1 � 0:6045 i.e. where the graphs of thevariation of period are almost verti
al. Moreover, the `0'orbit remains stable for slightly higher values of �1 thanthe `1' orbit, emphasising that the two orbits are not theimages of ea
h other under the symmetry. It should benoted that the `1' orbit results from a Hopf bifur
ationon the monotoni
 bran
h of the dis
onne
ted pit
hforkbifur
ation. Therefore it loses stability before the `0' or-bit. This is pre
isely what is predi
ted by the addition ofa 
onstant term to the normal form. The orbits shownin Figure 3 all 
oexist at �1 = 0:6041 and are typi
alexamples of the limit 
y
les involved in this gluing bifur-
ation. The fa
t that they 
an all 
oexist explains whyhysteresis 
an be observed in the experiments.There are three features in Figure 2 whi
h we will seekto explain theoreti
ally in the next se
tion: the break upof the gluing bifur
ation, hysteresis, and also the extrabifur
ations evident at larger values of �1. Before de-s
ribing the theory we shall look at this latter sequen
eof bifur
ations in more detail.D. Symmetry-breaking bifur
ation of largeperiodi
 orbitIt is known that symmetri
 systems 
annot undergoperiod{doubling sequen
es dire
tly [16℄ but must �rstbreak their symmetry. Hen
e, we would expe
t the largesymmetri
 orbit formed by the gluing of the two asym-metri
 ones will su�er a symmetry breaking bifur
ation,as predi
ted for the symmetri
 Shil'nikov wiggle [17℄.This was observed at �1 = 0:6000 for �1 just above0:6059. The bifur
ation was dete
ted by measuring themean voltage averaged over 150 periods of the os
illationand plotting this as a fun
tion of �1. The resulting bifur-
ation diagram is shown in Figure 4 where we see that ithas the form of a dis
onne
ted pit
hfork. This diagramexplains the 
reation of the orbit labelled `01' in Figure 2.Note that the original `10' orbit has a larger period but
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FIG. 4: Bifur
ation diagram of symmetry-breaking bifur
a-tion of periodi
 orbits at �1 = 0:6000. The mean of V1 over5000 data points is plotted.
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FIG. 5: Phase spa
e portrait of 
oexisiting "large" periodi
orbits 10 and 01 at �1 = 0:6000 and �1 = 0:6067smaller < V1 > than the newly 
reated `01' orbit and sothe bran
hes in Figures 2 and 4 are apparently reversed.Two typi
al asymmetri
 orbits on respe
tive bran
hes areshown in Figure 5 for (�1; �1) = (0:6067; 06000). It is ev-ident that the `10' orbit on the 
onne
ted bran
h displaysstrong variation in period for �1 > 0:6065 and then insta-bility. However, the `01' orbit is virtually 
onstant overthis range. Both orbits then show redu
tion in periodfor high �1 values. Ea
h orbit undergoes period doublingsequen
es to 
haos for �1 values greater than the rangedisplayed in Figure 2. The extra 
ompli
ations of perioddoubling and instability are topi
s for future resear
h.III. THEORYIt is natural to think of the bifur
ations observed inthe system in terms of two parameters. One of these,

� say, is the parameter of the (�
tional) symmetri
 sys-tem whi
h has a gluing bifur
ation as des
ribed in se
-tion II C. The se
ond parameter, � say, is a measure ofhow far the os
illator is from being perfe
tly symmetri
,i.e. it is some measure of imperfe
tion with � = 0 
or-responding to the perfe
tly symmetri
 system. Just asthe standard imperfe
tion theory for the bifur
ations ofstationary points [12℄ allows one to des
ribe the e�e
t ofasymmetry in terms of � and �, our aim here is to give ananalogous des
ription for general global bifur
ations. Wenote that this is in the spirit of the work of Glendinning[14℄ and Cox [13℄ for the parti
ular 
ase of Lorenz-likebifur
ations. A. The basi
 pi
tureSuppose that (�; �) = (0; 0) denotes the point in pa-rameter spa
e at whi
h there are two symmetri
ally re-lated homo
lini
 orbits. Consider either one of these or-bits. Sin
e the existen
e of homo
lini
 orbits is 
odi-mension one, there will be a 
urve in parameter spa
ethrough (0; 0) on whi
h systems have a homo
lini
 or-bit whi
h is a 
ontinuation of the given orbit. Thus, fortypi
al two-parameter families of systems, there will betwo 
urves of homo
lini
 orbits in parameter spa
e, G0and G1 say, whi
h interse
t at the origin and whi
h donot interse
t the line � = 0 again lo
ally. The 
urve G0(respe
tively G1) is the lo
us of a homo
lini
 bifur
ationwhi
h 
reates or destroys the periodi
 orbit with 
ode0 (respe
tively, 1). The one-parameter families of nearlysymmetri
 systems su
h as the example 
onsidered in theprevious se
tion would then 
orrespond to some 
urve inthis two parameter spa
e whi
h has, for example, � > 0and whi
h passes 
lose to (�; �) = (0; 0). Su
h a 
urve willinterse
t both G0 and G1, but at di�erent parameter val-ues, so there will be two simple homo
lini
 bifur
ationsat nearby parameter values on su
h a path.The interse
tion of the lo
i of two homo
lini
 bifur
a-tions (ea
h to the same stationary point) is a 
odimensiontwo phenomenon whi
h has been studied by a number ofauthors[15, 18{24℄. The most important feature whi
hall these bifur
ations have in 
ommon is that at leasttwo other 
urves of homo
lini
 orbits emanate from theinterse
tion of G0 and G1, one in � > 0, labelled G10,and the other in � < 0 labelled G01. The labelling de-s
ribes the order (in time) that the orbit passes throughneighbourhoods of the basi
 homo
lini
 orbits. Thesehomo
lini
 orbits are pre
isely the bifur
ations neededto destroy or 
reate (asymmetri
) periodi
 orbits with
ode `10' or `01'. Thus a typi
al path 
lose to � = 0will interse
t G0, G1 and one of the 
urves G01 or G10.This explains the third homo
lini
 bifur
ation observedin Figure 2. Roughly speaking, the di�eren
e between or-bits 
reated by paths 
rossing G10 and those 
reated by
rossing G01 is the di�eren
e between the orbits shownin Figure 5.The details of the two-parameter bifur
ation plane
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FIG. 6: The two parameter plane for the imperfe
t gluingbifur
ation in the planar 
ase. A one parameter family of(imperfe
t) systems, S, is indi
ated by a 
urve through theplane 
lose to � = 0. The arrows indi
ate the dire
tion inwhi
h orbits are 
reated.
lose to the interse
tion of G0 and G1 depends upon thenature of the stationary point, the 
on�guration of thehomo
lini
 orbits and a measure of the amount of twist-ing of solutions about these orbits. The nature of thestationary point is determined by the eigenvalues of theJa
obian matrix of the 
ow whi
h are 
losest to the imag-inary axis. If, up to 
omplex 
onjugation, these are �1and �2 with Re �1 < 0 < Re �2 then the saddle index, Æ,de�ned by Æ = �Re �1=Re �2 (1)plays an important role. The two-parameter spa
e nearthe interse
tion of G0 and G1 in the planar 
ase is shownin Figure 6 (�1 and �2 are real), where the symmetryis a point symmetry about the stationary point and thedire
tion of time may be 
hosen so that Æ > 1. Ea
hsimple homo
lini
 bifur
ation 
reates a periodi
 orbit inthe dire
tion indi
ated by the arrow on the bifur
ation
urve. The parameter plane is divided into six regions bythe 
urves of bifur
ations, and the periodi
 orbits (fromthe lo
al theory) whi
h exist in ea
h region are indi
atedby their 
odes. The bifur
ations observed on the one-parameter path S in Figure 6 are shown in Figure 7,whi
h is the more 
onventional representation.B. Relationship with the experimentThe 
urves sket
hed in Figure 7 are in reasonably goodagreement with the experimental ones in Figure 2 ex
eptfor the extra 
ompli
ations at larger parameter valuesdes
ribed in se
tion IID. Also the fa
t, mentioned at theend of se
tion II C, that all three of the orbits labelled`0', `1' and `10' 
oexist for some values of �1. However,even these aspe
ts 
an be in
orporated into our pi
tureof imperfe
t global bifur
ations. For smaller values of �1
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µFIG. 7: Bifur
ation diagram (period against parameter) onthe one-parameter path S of Figure 6.
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T

µ

1
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1010

01FIG. 8: Bifur
ation diagram (period against parameter) ofthe modi�ed global bifur
ation as suggested by Figure 2.Shil'nikov wiggles are observed, suggesting that Æ < 1(and �1 is 
omplex) in this parameter regime. In this
ase, as earlier, there may be symmetry-breaking and re-verse symmetry-breaking bifur
ations of the symmetri
orbit (in the perfe
tly symmetri
 system) [17℄. The bi-fur
ations observed in Figure 2 and des
ribed in moredetail in Figure 4 are not in the asymptoti
 region of ap-pli
ability of the homo
lini
 theory (large period, 
lose tohomo
lini
 bifur
ation) and so we invoke an extra pair ofassumptions on the underlying symmetri
 system for ourmodel: that there is a symmetry-breaking and reverse-symmetry breaking bifur
ation on the symmetri
 orbitand that Æ < 1.If Æ < 1 then the 
urves of homo
lini
 bifur
ations areessentially as in Figure 6 but the dire
tion of the bifur
a-tions is reversed (more pre
isely, the diagram is re
e
tedabout the ��axis) and the orbits 
reated are saddles(rather than stable, as would be the 
ase if Æ > 1). Thisnow suggests the new interpretation of Figure 2 whi
h isshown in Figure 8. The major new feature is that sin
ethe orbits are 
reated in the opposite dire
tion to the 
asewith Æ > 1 in Figure 6 and are unstable, the points atwhi
h the orbits 
annot be followed further (�1 = 0:6041for the `10' orbit and �1 = 0:6025 for the `0' and `1' orbitsin Figure 2) are now assumed to be saddle{node bifur
a-



6tions. There are a number of possible interpretations forthe dis
onne
ted symmetry{breaking bifur
ations, andone of these is shown in Figure 8, although we make no
laim that it is the most likely. Note that the new ar-rangement of the homo
lini
 bifur
ations does provide aregion of parameters where the orbits `0', `1', and `10'
oexist and are stable, as seen in the experiment.The important feature of the analysis above is that twoassumptions about the underlying mathemati
al modelare suÆ
ient to explain the orbits observed in the ex-periment. It is worth emphasising that this 
an be donewithout 
onstru
ting the model equations expli
itly, sim-ply be suggesting that any model equation must havevarious dynami
al features.C. Other 
asesIn the literature, 
odimension two global bifur
ationsare generally des
ribed with G0 and G1 as the 
oordi-nate axes of the bifur
ation analysis. In this 
ase thesymmetri
 system may be assumed to lie on the diagonalof the parameter spa
e, with the asymmetry parameterperpendi
ular to the diagonal (just tilt the diagrams by45Æ to get an impression of the lo
us of bifur
ations). Itis, however, important to bear in mind that the 
urvesG0 and G1 appear to interse
t with a very small angleof interse
tion in asymmetri
 perturbations of symmetri
systems, whereas the standard analysis depi
ts the inter-se
tion angle to be at right angles. Provided the interse
-tion is transversal the analysis is not a�e
ted, although itdoes mean that the true pi
ture for the asymmetri
 per-turbation will be a very skewed version of the standardpi
tures.The basi
 feature 
ommon to all the relevant types ofbifur
ation we 
onsider is that as the bifur
ation param-eter � is varied, a (more or less 
ompli
ated) sequen
e ofbifur
ation is observed with the net e�e
t that a pair ofperiodi
 orbits (those we have labelled `0' and `1') is de-stroyed, and a single large periodi
 orbit is 
reated. Thepre
ise details of the bifur
ations depends on the system,but it is still possible to make a number of general state-ments. 1 The one-sided 
aseIf the dire
tion of time 
an be 
hosen so that �2 is realand Æ > 1 (
f. (1)) then the 
odimension one bifur
ationson G0 and G1 are one-sided and fairly general statementsabout the bifur
ations involved in the range of validity ofthe rigorous argument: large period and parameters 
loseto the interse
tion of G0 and G1 are possible [22℄. First,there are at most two periodi
 orbits, and se
ond, anyperiodi
 orbit has a very parti
ular des
ription in termsof the symbols `0' and `1' introdu
ed above. Te
hni
ally,the sequen
es are rotation 
ompatible sequen
es [22℄, but

in pra
ti
e a simple 
onsequen
e is that periodi
 orbitshave 
odes of the form01n101n201n301n401n5 : : : (2)where for all i, ni 2 fm;m+ 1g for some m > 0 (or thesame with the roles of 0 and 1 ex
hanged). Moreover, thelimit, �, of the number of 1s in the sequen
e to the lengthof the sequen
e exists and is 
alled the rotation numberof the orbit. In one 
ase (the so-
alled stable orientableLorenz-like 
ase, see [21℄), there is an in�nite set of bi-fur
ations along a typi
al path and at any one parame-ter after 
rossing the �rst bifur
ation 
urve, there is atmost one periodi
 orbit. Moreover, the rotation numbervaries 
ontinuously along the bifur
ation path, implyingthe existen
e of parameter values with non-periodi
 (butnon-
haoti
) attra
tors.If �1 is 
omplex then the range of bifur
ations ismore 
ompli
ated and depends on the pre
ise path takenthrough the parameter spa
e. Here there are regionsof 
oexisten
e of 
ertain periodi
 orbits { those whoserotation numbers p1q1 and p2q2 are Farey neighbours, i.e.jp1q2� q1p2j = 1 { but typi
al 
urves in parameter spa
edo not interse
t most of these regions. A more 
ompletelist of the possibilities 
an be found in [17, 18, 21℄.All the bifur
ations of the rigorous analysis involveone-sided global bifur
ations, and there are no lo
al bi-fur
ations on the bran
hes of ea
h periodi
 orbit. If theseo

ur it is ne
essary to appeal to e�e
ts outside the rigor-ous region of validity of the mathemati
al results { this ismade mu
h easier by an understanding of the two-sidedbifur
ations.2 The two-sided 
ase: Shil'nikov's wiggleThe symmetri
 bifur
ation diagram of the Shil'nikov
ase (�1 
omplex, �2 real and Æ < 1) is given in [17℄.The lo
us of the pair of orbits (`0' and `1') in parameter-period spa
e os
illates as the period in
reases to in�n-ity, with period-doubling and reverse period-doubling bi-fur
ations on every other bran
h. The symmetri
 orbitos
illates in a similar way, but with symmetry-breakingbifur
ations on every other bran
h. Breaking the sym-metry of the system will have two e�e
ts { the globalbifur
ations whi
h 
oin
ide in the symmetri
 system willbe split apart and the symmetry-breaking bifur
ationswill typi
ally be
ome dis
onne
ted as des
ribed above.In the two{parameter diagram 
lose to the interse
tionof G0 and G1, 
urves of more 
ompli
ated bifur
ations(G01 and G10) os
illate rapidly and interse
t ea
h other(there are in�nitely many other 
urves of homo
lini
 bi-fur
ations to 
ompli
ate matters further). For a typi
alasymmetri
 path there will be a single interse
tion withG0 and G1, but potentially several interse
tions with G10and G01. The orbits 
reated in the bifur
ations involvingG0 and G1 will lie on the usual Shil'nikov wiggle in theparameter{period plane as observed experimentally (see
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FIG. 9: Coexisiting Shil'nikov wiggle at � = 0:5317. Thebran
h noted with [ ℄ 
orrespond to the `1' and with ( ) to the`0' orbit respe
tively.
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FIG. 10: Shil'nikov wiggle and gluing pro
ess of the `10' orbitat � = 0:5317. The period of the `10' orbits and the `100'orbit is res
aled by two and three respe
tively.Figure 9). The symmetri
 orbit, `10', 
an also be fol-lowed experimentally (see Figure 10); there are multipleinterse
tions of the parameter path with G10, i.e. extrabifur
ations whi
h 
reate and destroy the orbits labelled`10*'. Between the 
onje
tured interse
tion of the pa-rameter path with G0 and G10 it is possible to observe astable orbit with 
ode `100'. Su
h an orbit 
an be 
reatedfrom homo
lini
 orbits obtained from the gluing of theorbits `10' and `0'. These bifur
ations are expe
ted dueto the interse
tion of G0 and G10 in the two parameteranalysis (
f. the Æ > 1 
ase in [22℄) whi
h 
reate extra
urves of homo
lini
 orbits G010 and G100.IV. EXPERIMENT IIThe gluing pro
ess in the non{planar region of param-eter spa
e involves 
ompli
ated orbits whi
h evolve ona Shil'nikov wiggle. A pair of these wiggles are shown
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FIG. 11: Time series and phase portraits of di�erent dy-nami
al states involved in imperfe
t gluing bifur
ation at� = 0:5317. (a) periodi
 orbit `0' on asymmetri
 bran
h at�1 = 0:56119, (b) 
haos at �1 = 0:56125, (
) period-3 or-bit `100' at �1 = 0:56136, (d) 
haos at �1 = 0:56146, (e)symmetri
 periodi
 orbit `10' at �1 = 0:56152in Figure 9 where the period is plotted as a fun
tion of�1 at �xed �1 = 0:5317. Here the period of the orbitapproa
hes in�nity through a sequen
e of folds where al-ternate bran
hes are unstable and indi
ated by dasheds
hemati
 lines in the �gure. The stable solutions un-dergo forward and reverse period{doubling sequen
es onthe �rst two folds whereas the highest period orbits onlyexist over a tiny range of the parameter.In a perfe
tlysymmetri
 system these two wiggles would overlap 
om-pletely. The e�e
t of the imperfe
tion in the 
ir
uit is todispla
e the two 
urves from one another.A Shil'nikov wiggle has also been observed on the sym-metri
 orbit and the results are shown in Figure 10.There we 
an see three levels of the wiggle with perioddoubling sequen
es. The `10' orbits in this 
ase wereasymmetri
 but we were unable to �nd the mirror imagepairs of solutions in this 
ase. We were, however, able toobserve them at smaller values of �1. The gluing pro
esstakes pla
e on the third level with intervening sequen
esof 
haos and a stable `100' orbit; as expe
ted from the dis-
ussion at the end of se
tion III C. Note we also observedthe `10�' whi
h is an integral part of the gluing pro
ess



8as dis
ussed in se
tion III C above. A set of time{seriesand phase portraits are displayed in Figure 11. The `0'orbit on the dis
onne
ted bran
h glues to the `10' larges
ale orbit via two 
haoti
 phases with an intermediateperiod{3 `100' sequen
e.V. CONCLUSIONAlthough symmetri
 equations are frequently used tomodel almost symmetri
 systems, we have shown that amore 
areful examination of experiments 
an reveal fea-tures whi
h do not appear in the symmetri
 models. Inparti
ular, we have fo
ussed here on global bifur
ationswhi
h involve periodi
 states of the system, and we haveshown how a number of 
ompli
ated bifur
ation diagramsobserved in the experiments 
an be interpreted by ap-pealing to a theory of imperfe
t homo
lini
 bifur
ations.A standard approa
h to the modelling of physi
al phe-nomena is to 
onstru
t a mathemati
al model of the ex-periment, and use this to either predi
t or explain fea-tures of the experiment. This entails both the 
onstru
-tion of the model and the analysis of the model 
on-stru
ted. It is noti
eable that in the approa
h taken herewe have appealed to properties of a model without havingto either 
onstru
t or analyse the model. We have sim-ply said that any mathemati
al model of the experimentsmust have 
ertain features, and that these features leadto 
ertain 
on
lusions by the appli
ation of global bifur-
ation theory.Bifur
ation diagrams 
onsistent with those of se
-tion III have now been observed in more physi
ally in-teresting systems. Abshagen [25℄ has found bifur
ationdiagrams with a striking similarity to Figure 6 in exper-imental data from 
uid 
ow. We believe that the ap-proa
h taken here will �nd appli
ation in a broad varietyof experiments in whi
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