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Abstract

This thesis starts with an introduction to liquid crystal properties, which are

needed to proceed with this research. From the dielectric tensor which appears

in the Maxwell equations, we were able to obtain a relationship between the

elements on the main diagonal of the dielectric tensor. This relationship has

been discussed and illustrated with some examples for both positive and negative

birefringence.

By introducing a constrain on the Berreman model, we were able to derive

a 2 × 2 differential equation in matrix form which works for both normal and

oblique incident. This equation gives us a simple and intuitive means to analyze

the evolution of light through all sorts of media i.e. isotropic, anisotropic with

a fixed transmission axis and anisotropic with a twisted transmission axis of

anisotropy.

One of the objectives of this research was to find the right technique to solve

the 2× 2 dynamic equation. Fortunately, the classic Floquet’s theory guarantees

the existence of the solution and it gives some of its characteristics. In fact, we

were able to solve the 2×2 Schrödinger equation by a new method which we called

it in this thesis a rotational frame method. The obtained solution is consistent

with Floquet’s theory and agrees totally with the Jones solutions. Also, this

solution allows us to test the Berreman approximation.

16



Abstract 17

Finally, in this research we were able to encode the orientation of the optical

axis inside a liquid crystal sample, into the potential of the Schrödinger equation.

As a consequence of that, solving the inverse problem of the Schrödinger equation

that is recovering the potential, is indeed recovering the orientation of the director

inside the sample. The Berreman inverse problem and its corresponding linearized

problem has been considered in this thesis. In these sections, we give a rigorous

derivation for the Fréchet derivative.
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Chapter 1

Introduction

It is well known that material scientists classified the matter into three different

states: gas, liquid and solid. The main basis of this classification is the orientation

and the position of the molecules in the matter. Last century a new state of matter

has been reported under the name of liquid crystal. As it can be easily seen that

the formalism of this name appears since the new state lies between liquid phase

and solid phase. Indeed the molecules in liquid crystal tend to have an average

degree of orientation and this average of orientation is known as the director of

the liquid crystal. However, the molecules in the liquid crystal phase do not have

any degree of positioning order.

In short, liquid crystal consist of elongated rod shape molecules in which the

long axis of each of the molecules tends to align on average in one direction and

this direction is known in optics as the director or the optical axis. In fact, there

are many kinds of liquid crystal. However, the twisted nematic liquid crystal is

the most common one for applications. An application familiar to most people is

the displays, such as calculators, cellular phones, watches, new computer screens

and some new large TV screens.
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The study of light propagation inside isotropic and anisotropic media, such

as a liquid crystal, is of particular importance from a practical application point

of view. In practice, the optical properties of liquid crystal have been extensively

studied in the literature of numerous papers, see for example [5], [12], [37]. As a

consequence of that, several schemes have been proposed to calculate the optical

properties of these media.

One of the most important cases which has been treated by several authors is

when the wavelength of the propagating light is much smaller than the pitch where

the typical distance over which the optical axis changes is significant. In such

situations, the reflected light can usually be ignored. By reviewing the literature,

it can be easily noticed that the Jones method [27], [58] and the Berreman method

[5], [46], [23], [6] are the most commonly used methods to handle and model the

optical properties of the liquid crystal devices. Generally speaking, Berreman

was able to manipulate Maxwell’s equations, as we will see later in this thesis, in

order to obtain his equation, which gives us all the information required about

the optical properties.

One of the main differences between these methods is that the Berreman

method considers both transmitted and reflected waves but the Jones method

ignores the reflected and considers only the transmitted waves. A detailed deriva-

tion of Jones method is given by Lien [27]. Both of these methods assume that

the propagation of the fields vary in one direction which is usually normal to the

supporting glasses which sandwich the medium.

In some cases, the Berreman equation can be solved analytically. However, in

most cases of interest only a numerical solution is possible. Also, when the sample

width is significantly larger than the wavelength of the incident light, then the

task of finding a numerical solution to the Berreman equation is time consuming.
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Also, from the literature, it can be noticed that both of the above methods can

not handle the model for high resolution display devices. The main reason is that

the propagation of fields vary in the other directions. A good source for modeling

high resolution displays devices can be found in [22]. Finally, the application of

an electric field to liquid crystal has the effect to reorient molecules and change

the orientation of director inside the liquid crystal devices. This phenomenon

leads to a wide range of applications in the field of displays.

1.1 The concept of well-posed and ill-posed prob-

lems in mathematical physics

Both of the mathematical terms, well-posed and ill-posed were introduced by the

the French mathematician Hadamard in the field of partial differential equations.

According to Hadamard, the solution of a mathematical model of a certain phys-

ical phenomenon has to have certain criteria in order to say that the problem is

either well-posed or ill-posed. A problem is said to be well-posed if its solution

exists, unique and continuously depends on the data. A good example of the

concept of a well-posed problem in the field of partial differential equations is the

heat equation with prescribed initial conditions.

On the other hand, a problem is said to be ill-posed if it is simply not well-

posed. In other words, an ill-posed problem is a problem which does not have a

solution, or the solution exist but it is not unique or the solution does not depend

continuously on the data. In reality, a concept has been introduced lately which is

the concept of a well-posed problem in the sense of Tikhonov. This concept says

that some class of the ill-posed problem can be moved to the class of a well-posed

problem. This can be done by reformulating the problem and introducing extra
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assumptions. This method is known in mathematics as regularization and was

introduced by Tikhonov [49].

1.2 Fundamental solution of a dynamic system

The major objective of this section is to introduce the concept of a fundamental

matrix of a linear dynamic system. Basically, a linear dynamic system is a set of

first order linear differential equations . These equations can be written in vector

form as:

ψ(z)′ = A(z)ψ(z). (1.1)

where A(z) is a square matrix known as the dynamic coefficient matrix. If the

elements of the coefficient matrix are continuous, then a fundamental matrix

exists for the above dynamic linear system on the interval [0 z] if

T (z)′ = A(z)T (z), (1.2)

and T (0) = I. This solution of the dynamic system which is called a fundamental

matrix is also known in some contexts as a transition matrix. The matrix is a

square matrix that satisfies the differential equation of a dynamic system and

equals to an identity at the initial state. One of the main properties of this

matrix is the ability to transfer any possible initial state of a dynamic system to

another state

ψ(z) = T (z)ψ(0). (1.3)
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In other words, if ψ(z) = T (z)ψ(0) is the solution of the dynamic system with

initial state ψ(0) then

ψ(z)′ =
d

dz
{T (z)ψ(0)} (1.4)

=
d

dz
{T (z)}ψ(0) (1.5)

= {A(z)T (z)}ψ(0) (1.6)

= A(z){T (z)ψ(0)} (1.7)

= A(z)ψ(z). (1.8)

is indeed the solution of the differential equation of the system.

1.3 Aims and objectives

Nowadays, a lot of research has been done in the field of liquid crystals, to explore

their optical properties. One of the main reasons of these researches is the wide

range of their applications, which range from illuminated sensors, watches to

large TV displays, which can be seen in the market these days. Understanding

the evolution of the state of polarization is the most important key for their

optimum operations.

The main objective of this research is to investigates the forward and in-

verse problem for the Berreman model which has been derived form Maxwell’s

equations. A theoretical investigation around the propagation of light inside both

isotopic and anisotropic media is carried out. This investigation leads us to study

a system of ordinary differential equations which arises in the field of optics

dE

dz
+ i

ω

c
noE = V (z)E, (1.9)
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where V (z) is called potential in Quantum Mechanics. According to the research

carried out by X. Zhu and R. Jain [61], there is no analytical solution to the

matrix equation when the potential is a function of position. The main reason

is that these equations are coupled-mode equations and the coupling coefficients

are functions of position.

In this thesis, the coupling between the eigen-states when potential is a func-

tion of position i.e. twisted nematic liquid crystal has been investigated to gain

detailed information about how the state of polarization evolves as the wave prop-

agates. This has been done as we will see later by using a new technique which

has been named as a rotational frame method and has been illustrated graphically

for some different input state of polarizations.

Before considering the inverse problem, let us first state the forward problem.

Suppose that the potential V (z) for the above differential equation is given, then

Ex = Ex(z, λ) and Ey = Ey(z, λ) are the solutions of the matrix equation

dE

dz
+ i

ω

c
noE = V (z)E, (1.10)

with initial conditions Ex(0, λ) = a, and Ey(0, λ) = b, where a and b depend

on the initial state of polarization. The forward problem is not an easy to solve

when the Schrödinger equation has a non-vanishing potential. A major part of

this thesis is to overcome this task. In fact, a new method has been obtained in

this research to solve the forward problem with different types of potentials.

On the other hand, the inverse problem for this system of differential equation

is to recover the potential of the schrödinger equation. For the solution of the

inverse problem, one might need to apply the techniques used to solve inverse

problem of the Schrödinger equation to recover the potential. The main reason
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is that the orientation of the optical axis inside the liquid crystal sample was

encoded inside the potential. In fact, recovering the potential will lead to recover

the director. As a consequence of that, it will lead eventually to recover the

dielectric tensor inside the material.

1.4 Thesis organization

In the context of this thesis, the first chapter starts with a brief introduction to

liquid crystals. In this introduction, the two most popular methods in literature

used to handle the propagation of light inside the liquid crystal are mentioned

and compered.

Chapter 2 introduces a brief description to some technical terms relating to

liquid crystal such as anisotropy, birefringence and principal axes. Understanding

these concepts is vital to formulate and proceed with the main problem discussed

in this thesis.

Chapter 3 presents the concept of polarization with all different possible types

of polarizations. After that, this chapter discusses the first method used to han-

dle the propagation of light in materials that is the Jones method. Also, the

relationship between the Stokes parameters, which measure the intensity of light,

and Jones vector is presented in this chapter.

Chapter 4 is dedicated to the experiment which is used in Hewlett Packard

Laboratories in Bristol (HPLB). It, also, introduces the basic method used by

Berreman to solve the forward problem. A simple example has been worked out

to show the method used by Berreman to obtain the solution for the forward

problem.

Chapter 5 introduces the basic equations which govern the propagation of
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electromagnetic waves in materials known as Maxwell’s equations. Also, the con-

cept of dielectric tensors is discussed in some detail. In this chapter, we obtained

a relationship between the diagonal elements of dielectric tensor. This relation-

ship has been verified and illustrated with some graphs, for the case of a twisted

nematic liquid crystal, in off-state with a positive and negative birefringence.

Chapter 6 addresses the polarization states from the Quantum Mechanics

point of view. This chapter compares the strong relationship between the Jones

analysis in optics and the Schrödinger equation in Quantum Mechanics. Flo-

quet’s theory guarantee the existence of the solution of our model and gives some

of its characteristics specially when there is a coupling between the differential

equations. This chapter concludes by discussing all possible types of potentials

we might obtain for different types of liquid crystal samples.

Chapter 7 provides a detail derivation of a 2×2 differential equation from the

Berreman model. This system, 2× 2 differential equation, allows us to visualize

the propagating modes in twisted anisotropic sample. Also, in this chapter we

obtained a new technique to solve the 2 × 2 system when there is a coupling

between the differential equations. Also, in this chapter, we make use of this

equation to study the local modes propagating in the medium for different types

of potentials.

In chapter 8 we obtained the general form of a spectral equation from the

Maxwell equations. This equation has exactly the same form as the second or-

der Schrödinger equation. The solutions for this equation with different types

of potentials has been presented and discussed. Also, this chapter concludes

by discussing the inverse problem of Berreman and the corresponding linearized

problem.



Chapter 2

Liquid crystals

2.1 Some of the properties of liquid crystals

2.1.1 Concept of anisotropy

From the microscopic point of view, the molecules in liquid crystal materials have

three major axes of symmetry, in which two of them have the same length and the

third one is slightly longer, which coincides with the director of the liquid crystals.

This special shape of the liquid crystal molecule gives two measurements for many

physical properties such as viscosity, conductivity and refractive index, when the

measurement is taken over the long axis and the short axis [18]. This leads to

introduce the term anisotropy which means that many physical properties have

different values when the measurements are taken over different directions. For

example, the optical anisotropy term was introduced in optics to indicate that the

light propagates at two different speeds along and perpendicular to the director

in uniaxial liquid crystals. In other words, there are two refractive indices in

uniaxial liquid crystal as we will explain in the coming section.

29



chapter 2 Liquid crystals 30

Figure 2.1: In uniaxial materials, light decomposes into two components traveling
in two different directions and at two different velocities.

2.1.2 Birefringence

In general, the refractive index of most materials is the same regardless of the

polarized direction of the light. However, certain materials such as liquid crystals

have the ability to decompose the incoming ray of light into two rays, when the

light passes through them. Figure 2.1 shows clearly this phenomenon. These

rays are known as the ordinary and extraordinary rays. The ordinary ray with

a refractive index denoted by no travels perpendicular to the director. On the

other hand, the extraordinary ray with a refractive index denoted by ne travels

parallel to the director.

The decomposition of light inside these materials leads to the concept of bire-

fringence which is defined as [18], [48]

∆n = ne − no. (2.1)

When the magnitude of extraordinary refractive index ne is greater than the



chapter 2 Liquid crystals 31

magnitude of ordinary refractive index no then the birefringence is said to be

positive,

∆n > 0, (2.2)

while it is said to be negative when the magnitude of extraordinary refractive

index is less than the magnitude of ordinary refractive index no.

∆n < 0. (2.3)

2.1.3 Surface phenomenon

The surface phenomenon has the ability to align the nematic liquid crystal direc-

tor into three different shapes which are homotropic alignment, planar alignment

and inclined alignment. In homotropic alignment sample, the nematic liquid

crystal director makes exactly ninety degrees within the boundary of the sample.

On the other hand, the director in the planar alignment sample makes zero de-

grees within the boundary. In other words, the director is perpendicular to the

surface in homotropic alignment while it is parallel to the surface in the planar

alignment. In the third case which is inclined alignment, the director makes some

angle within the boundary.

The uniform parallel alignment of the local director can be easily deformed by

several forces such as an electrical field, a magnetic field and the boundaries. In

fact, boundaries are used for some small samples, in practice in the range of 2nm

to 100nm and this technique is known as the surface phenomenon which been

used a long time to control director orientation of the nematic liquid crystal.
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2.2 Principal values and principal axes

Our goal of this section is to clarify the meaning of the two terms, principal

values and principal axes. The dielectric tensor in a non-absorbing medium has

symmetric real elements. This means that the dielectric tensor is a Hermitian

tensor and its eigenvalues are always real and the corresponding eigenvectors

form an orthogonal basis. In other words, the dielectric tensor for nematic liquid

crystal and in general for a Hermitian tensor can be always written in a diagonal

form with non-negative real elements on the main diagonal. These elements

are the eigenvalues which are called the principal values and the corresponding

eigenvectors give the directions of the principal axes.

2.3 Oseen-Frank free-energy equation

The free-energy of deformation of nematic liquid crystal director follows the

Oseen-Frank equation which is given by the following expression [39], [35]

F =

∫
v

{1

2
K11(∇·n)2 +

1

2
K22(n ·∇×n)2 +

1

2
K33|n×∇×n|2−

1

2
εo(E · εa ·E)2}dv,

(2.4)

where K11, K22 and K33 are the three elastic constants splay, twist and bend

deformations, εo is the dielectric anisotropy constant, E is the electric field and

εa is the difference in dielectric constants between the ordinary and extraordinary

axes of the liquid crystal molecules. In fact, this integral composed from two

different energy densities. The first three terms of the integral represent the

energy density of the liquid crystals and is usually denoted by

Felastic =
1

2
K11(∇ · n)2 +

1

2
K22(n · ∇ × n)2 +

1

2
K33|n×∇× n|2, (2.5)
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Figure 2.2: Nematic liquid crystal cell sandwiched between two
glasses:(a)Without electric field, (b) An electric field is applied across the
cell.

while the last term is the contribution of the energy density which comes from

the applied external field

Felectric =
1

2
D · E. (2.6)

The absolute total free energy of the system in fact comes from three factors

which are the energy density of liquid crystal, the energy density due to external

field and the surface energy density [21]

Felectric =

∫
(Felastic + Felectric)dx + Fsurface. (2.7)

The surface energy density term Fsurface does not appear in the Oseen-Frank

model. In fact, this term can be neglected when the anchoring is strong [21]. In

the coming section we will explain in some detail how these forces work.
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2.3.1 Mechanics of elastic and electric torque in liquid

crystal molecules

Consider nematic liquid crystal sandwiched between two glasses as illustrated

in figure 2.2. In the presence of a low electrical field inside the cell, there is

a balancing force between the elastic restoring torque, which is caused by the

boundaries and the electrical torque, which is caused by the applied field. When

the applied electrical field is below the critical field, which is needed to reorient

the liquid crystal molecules, there is no change in the director distribution inside

the cell.

In fact, the director distribution below the critical field is similar to director

distribution in the off-state field. However, the orientation of director starts to

change when the applied electrical field exceeds the critical field. The orientation

of the director is no longer similar to the off-state field and varies with the location

as illustrated in figure 2.2. The reason is that both the glass boundaries and

the applied electrical field exert different forces on the molecule according to

its position. The competition between these forces varies with the location and

the molecules follow the resulting of these forces. In other words, the torque

which is caused by the boundaries decreases toward the center of the cell. As the

applied electrical field increase, the molecules will tend toward the direction of

the electrical field.

2.3.2 Model for director orientation

In this section, we will consider special case for director orientation. let us consider

that the electrical field is along the z-axis. Since the magnitude of the director

is not important, it will be considered to equal the unity and the angles between
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the director and the z-axis to be θ(z). To simplify the problem further, it will be

considered that there is no twist inside the medium φ(z) = 0. In this case the

director will have the following components

(nx, ny, nz) = (sin θ(z), 0, cos θ(z)), (2.8)

where θ(z) is a function of position. In order to calculate the director tensor

inside the sample, the tilt angle has to be calculated throughout the cell sample.

This can be done by minimizing the elastic energy equation. Before we continue,

it should be mentioned that similar idea with magnetic field applied across the

sample has been treated by Andrienko [4]

2.3.3 Minimizing the Oseen-Frank free energy

By calculating the divergence and curl of the director

∇ · n = − sin θ(z)
dθ

dz
, (2.9)

∇× n = −j cos θ(z)
dθ

dz
, (2.10)

n · (∇× n) = 0. (2.11)

After the substitution of the above the terms, the Oseen- Frank free energy will

take the following form

F =

∫ d

0

{{1

2
K11 sin2 θ +

1

2
K33 cos2 θ}(dθ

dz
)2 − 1

2
εo∆εE

2 sin2 θ}dz. (2.12)
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Also, by considering one constant approximation K11 = K22 = K33, the elastic

energy equation will reduce to

F =

∫ d

0

{1

2
K11(

dθ

dz
)2 − 1

2
εo∆εE

2 sin2 θ}dz. (2.13)

Our goal is to find the function that optimizes the Oseen-Frank free energy. This

function which is the equilibrium value can be obtained by using the calculus of

variation together with the following boundary conditions

θ(0) = θ(d) = 0. (2.14)

Since our problem is symmetric with respect to the middle of the cell and the

desired function achieves its maximum at the middle of the cell, the boundary

conditions can be modified and replaced with

θ(0) = 0, (2.15)

θ(
d

2
) = ρ, (2.16)

where ρ is the maximum of the desired function. From the calculus of variations,

the function which optimizes the Oseen-Frank free energy equation has to satisfy

the Euler-Lagrangian condition

dL

dθ
− d

dz
(
dL
dθ
dz

) = 0. (2.17)

The Euler-Lagrangian condition produces the following differential equation

K11
d2θ

dz2
+ εo∆εE

2 sin θ cos θ = 0. (2.18)
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The quantity Ω = K11

εo∆εE2 is known as the electric coherence length which can be in-

terpreted as the required shortest distance needed by the liquid crystal molecules

to tend towards the applied electric field. When the applied electric field is weak,

then only the trivial solution exists. In addition, when there is small distortion

in the nematic structure, then

θ = ρm sin[
z

Ω
], (2.19)

is a good approximate solution for the director distribution. The boundary con-

ditions produce

Ω =
d

π
. (2.20)

This result gives us some sense about the measurement of the critical field pro-

vided that the quantities εo and ∆ε = ε‖ − ε⊥ are known

E =

√
πK11

dεo∆ε
. (2.21)

Also, it shows that the critical field is inversely proportionate to the length of

the sample. The second order differential equation which results from the Euler-

Lagrangian condition can be integrated directly to produce the following equation

K11(
dθ

dz
)2 + εo∆εE

2 sin2 θ = c, (2.22)

where c is the constant of integration and this constant can be identified by using

the modified boundary conditions

εo∆εE
2 sin2 ρ = c. (2.23)
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Now by substituting the value of the integration constant, the differential equation

can be rearranged to separate the variables and as result of that the desired

function can be obtained

(
dθ

dz
)2 =

εo∆εE
2

K11

(sin2 ρ− sin2 θ). (2.24)

Next we will address two cases.

1. The first case is when the electric field is below the critical field. In this

case there is no distortion in the structure of the nematic and as a result

of that both conditions sin2 ρ > sin2 θ and ρ = 0 will force the differential

equation to reduce to

dθ

dz

2

= 0. (2.25)

By integrating this differential equation and using the boundary conditions,

a trivial solution is the only solution that satisfies the boundary conditions.

2. The second case is when the applied electric field is high. In this case,

ρ = π
2
. Since sin2 ρ > sin2 θ and dθ

dz
6= 0 in the integration interval, the

differential equation can be rearranged as

dz =
τ√

1− sin2 θ
sin2 ρ

dθ, (2.26)

where

τ =

√
k22

ε22∆εE sin2 ρ
. (2.27)

Before the integration is carried out, the right hand side of equation (2.26)

can be simplified by using the trigonometric identities and direct integration
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produces the following equation

z = τ

∫ θ

0

| secα|dα

= τ [ln(secα+ tanα)]θ0.

In fact, an explicit function for tilt angle θ, can be obtained by using the

following identity

secα+ tanα =
1 + sinα

cosα
= tan(

α

2
+
π

4
), (2.28)

and the tilt angle is given by

θ(z) = 2 arctan(exp(
z

τ
))− π

2
. (2.29)

2.3.4 Electrostatic potential

In the case of an electrostatic potential, this explicit function is not quite as

simple to solve. The reason is that as the liquid crystal molecules reoriented,

the permittivity changes. This change will have some impact on the electric field

across the sample. In order to find the effects on the electric field, the Laplace

equation must be solved [30]

∇ · ε · ∇u = 0, (2.30)

where is the electrical potential

E = −∇u. (2.31)
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Since the electric field is applied in the direction of z-axis, the Laplace equation

reduces to

d

dz
[(ε⊥ + ∆ε sin2 θ)

du

dz
] = 0. (2.32)

Unfortunately, this equation is nonlinear but it can be linearized by introducing

the following variables u = v1 and u′ = v2 which will give us

24ε sin θ cos θ
dθ

dz
v2 + [(ε⊥ + ∆ε sin2 θ)v′2] = 0. (2.33)

This equation together with the above explicit equation can be solved to obtain

the profile of the tilt angle.

2.4 Summary

In this chapter, some of the technical terms, such as isotropy, anisotropy, birefrin-

gence, principal axes and some other terms, needed to understand the concepts

in thesis is discussed in some detail. The mechanics of forces in Oseen-Frank

equation is discussed by considering liquid crystal sample. A simple model has

been treated and explicit function for the tilt angle is obtained.



Chapter 3

Polarization and Jones treatment

3.1 Introduction

In this chapter, we will introduce the concept of polarization, which is so im-

portant to understand the optical properties behind the propagation of light in

materials. To begin with this concept, we start by defining the transverse waves

term. By transverse waves, we mean that the waves vibrate perpendicular to di-

rection of propagation. Light, for example, is a good example of transverse waves.

Light is also called electromagnetic transverse waves since it consists of electric

and magnetic fields. In addition to that, it should be clear from the context of

this chapter that we are talking about monochromatic plane waves.

Light can be classified as either polarized or unpolarized. it is said to be

unpolarized if the electromagnetic waves vibrate in all possible directions. On

the other hand, it is said to be polarized if the light waves vibrate in one single

direction [18]. In practice, there are three different types of light polarizations,

which depend on the magnitude and phase as they propagate. These types are

linear, circular and elliptic polarizations and will be discussed in some detail in

41
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the coming sections.

In the free space or uniform materials, light, in general electromagnetic wave,

has the electric and magnetic fields perpendicular to the direction of propagation.

According to the experimental evidence, the electric field vector is responsible for

all propagation effects behind propagation [18]. As a result of that, the electric

field is usually considered and the magnetic field is ignored, since the magnetic

field is proportional and perpendicular to the electric field.

In order to polarize a light, a device called a polarizer is used. This device has

optical axis which has the ability to change the unpolarized light to polarized. If,

for instance, two polarizers are arranged in a series such that their optical axes

of polarization are perpendicular, then the polarized light passing from the first

polarizer will be blocked by the second polarizer. This configuration is known in

optics as the crossed. However, if the angle between the optical axes changes from

a right angle i.e as the angle changes from 90◦ to 0◦, the amount of polarized light

transmitted by the second polarizer will increase and it will reach maximum if

the angle arrived to is zero. In other words, the polarized light will pass through

the polarizers if their optical axes are parallel. This phenomenon has numerous

applications in the field of data display.

In practical experiments, twisted nematic liquid crystal molecules are placed

between two crossed polarizers, but polarized light is passing through them. The

reason is that, as the light passes through the first polarizer, the nematic liquid

crystal molecules will force the polarized light to travel with the twist direction

and will eventually pass through the second polarizer. To clarify the above point,

the polarized light by the first polarizer will experience the twist orientation of

the nematic liquid crystal molecules placed between the crossed.
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3.2 Equation of polarization

The state and nature of polarization of a light wave can be fully specified once

the propagation direction is identified. If, for example, the z-axis is assumed to

be the direction of propagation , then the electric field of a transverse wave can

be uniquely defined in a Cartesian system by the components along the x and y

axes. These components of electric field can mathematically be defined in terms

of phases and amplitudes as:

Ex = Eox cos(wt− δx), (3.1)

Ey = Eoy cos(wt− δy), (3.2)

where δx and δy are the phases, Eox and Eoy are the amplitudes in the x and y

directions respectively. If the time is excluded from these equations, one might

obtain the equation of polarization [32]

(
Ex

Eox

)2 + (
Ey

Eoy

)2 − ExEy

EoxEoy

cos δ = sin2 δ, (3.3)

where δ = δy − δx is the phase difference between the perpendicular components

of the electric field.

In the coming sections, we will discuss in some detail the types of polarizations

which arise from this equation with application to isotropic medium. The main

reason of choosing the isotropic medium, is that this medium has the ability to

retain the state of polarization as the wave propagates through it.
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3.2.1 Linear polarization

There are some special cases for the equation of polarization. The first case

occurs when the relative phase difference between the orthogonal components of

the wave is δ = 0 or π. As a result of this difference, the orthogonal components

will either arrive to their maximums and minimums exactly at the same time or

one will achieve its maximum and the second one will achieve its minimum. The

tip of resultant wave vector which come from the sum of these orthogonal waves,

will trace a straight line in a plane perpendicular to the direction of propagation

[32].

(
Ex

Ax

)2 + (
Ey

Ay

)2 ± 2ExEy

AxAy

= 0, (3.4)

which can be written as

Ey = ±Ay

Ax

Ex. (3.5)

To illustrate the linear polarization, we will consider two waves which propagate

inside isotropic medium, with phase difference zero as illustrated in figure 3.1 and

figure 3.2. Linear polarization is obtained when these two perpendicular waves

combine together as illustrated in figure 3.3 and figure 3.4.

3.2.2 Circular polarization

The state of polarization is said to be circular, when the tip of the resultant wave

vector traces a circle around the origin in a plane perpendicular to the direction

of propagation. This case can be achieved when the orthogonal components have

exactly the same amplitude and are out of phase by 90◦. By replacing the relative
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Figure 3.1: Two waves propagates inside isotropic medium with phase difference
zero.

Figure 3.2: The above two waves propagate perpendicular to each other .
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Figure 3.3: Shows the sum of these two waves .

Figure 3.4: This figure shows the resultant linear polarization.
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Figure 3.5: Two waves propagates inside isotropic medium with ninety degrees
phase shift between them.

phase by 90, the equation of polarization 3.3 reduces to

(
Ex

Ax

)2 + (
Ey

Ay

)2 = 1, (3.6)

which can be rewritten as

E2
x + E2

y = A2
y. (3.7)

This equation describes a circle with center at origin and radius A. A good ex-

ample to illustrate this concept is the isotropic medium. Suppose, for example,

that a circular polarization enters isotopic medium, the medium will retain the

polarization state throughout the medium. Figure 3.5, figure 3.6, figure 3.7 and

figure 3.8 illustrate the circular polarization concept.
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Figure 3.6: The above two waves propagate perpendicular to each other.

Figure 3.7: Shows the sum of these two waves together with the type of resulting
polarization.
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Figure 3.8: This figure shows the type of polarization which is a circular polar-
ization.

3.2.3 Elliptical polarization

When the state of polarization is neither linear nor circular, then it is called

elliptical polarization. This occurs when the relative phase is not exactly 0 or 90

or the amplitudes of the orthogonal components are not the same. The tip of

resultant wave vector in this case will trace an ellipse, in a plane perpendicular

to the direction of propagation. In fact, both linear and circular polarizations are

special cases of the elliptical polarization. The general equation of the ellipse is

(
Ex

Eox

)2 + (
Ey

Eoy

)2 − ExEy

EoxEoy

cos δ = sin2 δ. (3.8)

The principal axes of the ellipse traced in a plane perpendicular to the propagation

direction do not lie in general on the xy-axes. However, it is not difficult to show

that the angle between the x-axis and the major axis of the ellipse is

tan 2ϕ =
2EoxE0y

E2
ox − E2

0y

cos δ, (3.9)
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and the length of these axes are

a =
√
E2

ox cos2 ϕ+ E2
0y sin2 ϕ+ EoxE0y cos δ sin 2ϕ, (3.10)

b =
√
E2

ox sin2 ϕ+ E2
0y cos2 ϕ− EoxE0y cos δ sin 2ϕ. (3.11)

3.3 Jones concept of polarized light

Over the last decades, several methods have been used to describe and charac-

terize the propagation of a light beam through optical devices. Jones matrix

method which was introduced by R. C. Jones in 1941, is an effective and a suffi-

cient method to analyze the effect of the optical device on the polarization state,

when the incident light beam is completely polarized. This method will be intro-

duced in the coming two sections.

3.3.1 Jones vector

Jones was able to represent a monochromatic plane wave, which propagates in

z-direction and perpendicular to xy-plane, as a column vector in terms of its

complex amplitudes [10], [17]

J =

 Ex

Ey

 =

 A0x exp(iξx)

A0y exp(iξy)

 ,

where A0x and A0y are the initial amplitudes of the electric field in the x-direction

and y-direction respectively, ξx and ξy are the phases of the wave components.

This vector is known as the Jones vector which provides us with complete informa-

tion about intensity, amplitudes and the phase difference between the components
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of the electric field. One might notice that if time is added to Jones vector then

it is called the Maxwell vector

E(x, t) = Re (E(x) exp(iωt)) , (3.12)

where ω is the angular speed of the light beam. In practice, Jones vector is

written in terms of a phase difference of the electric field components

J(z) =

 A0x

A0y exp(i[ξy − ξx])

 ,

and this representation gives us exactly the same information about amplitudes

and intensity.

Since the state of polarization does not depend on the exact amplitudes of

the electric field components, the Jones vector is often written in much more

simplified form, by normalizing the components of the vector. This can be done

by forcing the Jones vector to satisfy the following condition

J∗ · J = 1, (3.13)

where ∗ denote the complex conjugate. To show this concept, we will consider,

for example, the Jones vector for a lift circular polarization which is given by [17]

J =

 A0x exp(iξx)

A0y exp(i[ξx + π
2
])

 .

The corresponding normalized vector for the above Jones vector representation
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is

J =

√
2

2

 1

i

 .

One might notice that these two representation have different degrees of infor-

mation, but indeed give us the same state of polarization, which is lift circular

polarization. In addition, the normalized representation of Jones vector for some

selected states of polarization can be found in table 3.1

Table 3.1: Shows the normalized form of the Jones vector for some selected
polarization states.
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3.3.2 The Jones matrix

Mathematically speaking, Jones matrix is simply a linear transformation which

transforms the Jones vector of a monochromatic plane wave, from one boundary

to the second boundary. This transformation is a square 2 × 2 matrix which is

given by  Ex

Ey

 =

 J11 J12

J21 J22


 E0x

E0y

 .

The elements of the Jones matrix in fact depend on the optical device. When the

optical device has isotropic media for example, then the Jones matrix is given by

J =

 exp(−iω
c
noz) 0

0 exp(−iω
c
noz)

 ,

where no is the refractive index of the optical device. When an optical system

consists of more than one optical device, then one must calculate the Jones ma-

trix for each device and the Jones matrix for the optical system is obtained by

multiplying all obtained Jones matrices in a correct order.

3.4 Jones matrix for anisotropic medium with a

fixed transmission axis

In a non-twisted sample, the liquid crystal molecules in both boundaries align

parallel to each other. If the applied voltage is less than the threshold, then the

director, which is the vector of average molecular direction remains parallel as

we travel from one side of the sample to the other. Since the sample is uniaxial,

two eigen-modes will propagate inside the sample with two different velocities,
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provided that the Maugin condition is satisfied [36]

∆nko � a, (3.14)

where ∆n is the birefringence, ko is the wavelength in vacuum and a is the twist

angle per unit length. While one of the eigen-modes travel along the director, the

second eigen-mode will travel perpendicular to the director. The eigen-modes are

given by [16], [17], [27], [47]

 exp(−iω
c
nez) 0

0 exp(−iω
c
noz)



= exp(
1

2
(ne + n0)

ω

c
z)

 exp( iω
c
∆nz) 0

0 exp(−iω
c

∆nz)

 .

When multiple reflections due to wave propagation are small, then the scalar

phase factor is of no consequence and can even be negated [57]. By using the

Quantum Mechanics notation, this matrix can even be written further in terms

of a spin operator

 exp(−iω
c

∆nz) 0

0 exp(−iω
c

∆nz)

 = exp(σz
−iω
c

∆nz),

where σz is matrix and given by [44]

σz =

 1 0

0 −1

 .
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This is one of the well known matrices which are known as the Pauli matrices σx,

σy and σz and defined as [44]

σx =

 0 1

1 0

 ,

σy =

 0 i

−i 0

 ,

σz =

 1 0

0 −1

 .

The point here is to try perfectly interpreting and understanding the above

operator. In Quantum Mechanics, this operator simply represents a rotational

operator, which rotates a spin around the z-axis one half wave functions with an

angle. However, from the optics point of view, the interpretation is quite differ-

ent. To understand the issue, let us consider that a light beam propagates along

the z-axis in anisotropic medium. Since the optical system is anisotropic, and

has two propagation velocities, the medium will break the incoming light beam

into two waves. One of the waves will propagate parallel to the director and

the other one will propagate perpendicular to the director. As the waves start to

propagate inside the optical system, and as we mentioned earlier that the medium

has two velocities, one component of the decomposed light will be retarded when

compared to the second component. This retardation will accumulate and even-

tually will introduce a change of the state of polarization, as the two components

recombined again as they leave the medium. The phase difference between the
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waves can be measured via the following formulae

Phase difference =
−iω
c

∆nz, (3.15)

where ∆n = ne − n0 is the birefringence of the medium, c is the speed of light in

vacuum, ω is angular speed of the light beam and z is distance measured from

the beginning of the medium. In addition, as mentioned before the scalar factor

F =
iω

2c
[ne + n0]z, (3.16)

has no consequence and can be negated when the multiple reflections due to the

propagation is small.

3.5 Relationship between the Jones vector and

the Stokes parameters

In studying polarized light which propagates through an optical element in the

direction of z-axis, there are two different methods to relate the output to the

input electric field components of the light beam. The first method is the Jones

matrix method which has been fully discussed in the previous sections. This

method can be written as Ex

Ey

 =

 J11 J12

J21 J22


 E0x

E0y

 ,

where the 2 × 2 square matrix is the Jones matrix of the optical device, E0x

and E0y are the input electric field along the x-axis and y-axis respectively. The
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second method is the Berreman 4 × 4 matrix method which has been derived

directly from Maxwell’s equations. In fact, this method will be discussed in more

details in the coming chapters. In the meantime, we will pay attention to the

third method and its relationship with the Jones matric method.

3.5.1 Stokes parameters

The third method uses the Stokes vector and Muller matrix to relate the output

electric field components to the input ones

S(ω) =



s0

s1

s2

s3


= MS(ω)i.

The first element of the Stokes vector s0 gives us the total power of the light beam.

The power difference between the orthogonal components is given by the second

element of the Stokes vector s1. The third element s2 gives us the component of

the light polarized at 45◦ and −45◦, whereas the left and right polarized beam

component is given by the fourth element s3. In fact, a relationship between the

elements of the Stokes parameters exists, and is given by the following equation

s2
0 = s2

1 + s2
2 + s2

3. (3.17)

The previous paragraph can be mathematically written as [56], [26]

s0 = E2
x + E2

y , (3.18)
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s1 = E2
x − E2

y , (3.19)

s1 = 2ExEy cos(δ), (3.20)

s1 = 2ExEy sin(δ), (3.21)

where δ is the phase difference between the orthogonal components of the electric

field. These equations show the exact relation between the Stokes vector and the

Jones vector. From these relations, one might easily switch between Stokes and

Jones to determine the Jones matrix or between Jones and Stokes to determine

the Muller matrix.

Moreover, the above Stokes parameters can be used to determine light polar-

ization. In practice, light polarization can be characterized by two elements. The

first element is the azimuth angle which is the angle between the x-axis and the

major axis of the polarized ellipse. The second element is the ellipticity of the

ellipse which is defined as the square of the ratio of the major axis to the minor

axis of the polarized ellipse

ε =
Major axis

Minor axis
. (3.22)

The relationships between the Stokes parameters and these elements are given by

[8]

α =
1

2
arctan(

s2

s1

), (3.23)

ζ =
1

2
arcsin(

s3√
s2
1 + s2

2 + s2
3

) =
1

2
arcsin(

s3

s0

), (3.24)

ζ =
1√
ε
. (3.25)
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Figure 3.9: The representation of the state of polarization by the Poincare sphere
using the Stokes parameters.

3.5.2 Poincare sphere

According to Stokes parameters, the total power of a monochromatic plane wave

of a light beam is always constant and given by the following relationship [20],

[59]

s2
0 = s2

1 + s2
2 + s2

3. (3.26)

This relationship has a good geometric representation, which is a sphere if one

regards s1, s2 and s3 as the Cartesian coordinates. For each fixed Stokes vector,

there is only one point on the sphere corresponding to the Stokes vector with total

power s0 as shown in the figure 3.9. This sphere is known as the Poincare sphere

and has the ability to represent all possible states of polarization. To clarify the

last point, all points lying, for example, in the equatorial plane represent the linear

polarization. However, the north and south poles of the sphere represent the right

and left handed circular polarization respectively. The remaining points on the

sphere represent the elliptic polarization which is the general type of polarization.
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3.6 Conclusion

In this chapter some of the basic concepts needed to understand the propagation

of light inside the materials has been reviewed. This includes the polarization,

Jones treatments and Stokes treatment. These concepts will help us to under-

stand some of the contents of the coming chapters and more details can be seen

in the given references.



Chapter 4

Experiment and Berreman

solution

4.1 The experimental setup

The starting point to describe the experimental setup is to begin with the for-

mulation of the nematic cell. A thin cell of nematic liquid crystal is sandwiched

between two parallel glass plates. To avoid a possible change in the direction of

the director orientation at the boundaries, the outside glass plates are coated with

certain chemicals. This coating is to set the boundary condition of the director.

A beam with known frequency ω is directed to the nematic liquid crystal

cell. After the beam passes through the polarizer, it will be polarized and the

state of polarization will be recorded. Then, the polarized beam will penetrate

the nematic liquid crystal sample. After that, the laser beam will pass through

a polarimeter which again measures the polarization state and intensity of the

laser beam. In fact, this polarimeter gives the normalized Stokes parameters.

In order to change the angle of incidence, we rotate the cylindrical box that

61
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Figure 4.1: This figure shows the experiment setup used at Hewlett Packard
Laboratories in Bristol(HPLB). The nematic liquid crystal sample is fixed inside
the cylindrical mount and the incident angle can be changed by rotating the
cylindrical mount.

contains the nematic liquid crystal sample as shown in figure 4.1. By measuring

the polarization state and intensity of the outgoing laser beam, some information

can be gathered about the director configuration inside the cell.

Moreover, it should be noted that the collected information is affected by

some factors such as:

• The thickness of the nematic liquid crystal sample.

• The orientation of the director at the boundaries with the glass plates.

• The degree of polarization.

• The angle of incidence.

• The intensity of the laser beam.
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4.2 The solution of the Berreman wave equation

The solution of the Berreman equation can be written by the use of the evolution

matrix, which relates the tangential components of both electric and magnetic

fields at the input z1 to those at the output z2 [55]

ψ[z2] = F [z1, z2]ψ[z1]. (4.1)

The following two sections will explain how to obtain this fundamental matrix.

4.2.1 Fundamental matrix for single layer

The main challenge to the Berreman method is to find and calculate the funda-

mental matrix F [z1, z2] for a nematic liquid crystal sample. This matrix relates

the output fields to the input fields. To overcome this difficulty, in practice, the

nematic liquid crystal sample is divided into thin slabs with thickness h as it is

shown in figure 4.2.

For a sufficiently thin layer of thickness h, the director orientation will be uni-

form and can be considered as constant. According to Berreman, if a monochro-

matic plane wave with known frequency ω is incident on this thin layer, the

output field is given by [7]

ψ[zout] = F [h]ψ[zin], (4.2)

where F [h] is 4 × 4 matrix known as the transfer matrix for the single layer of

thickness h which is given by [40]

F [h] = exp[
ihω

c
M(z)]. (4.3)
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Figure 4.2: The nematic liquid crystal sample is divided into thin layers with
thickness h. For each layer, the orientation of the director is considered to be
constant.

The matrix M(z) is obtained during the derivation of the Berreman equation

from Maxwell’s equations. Also, as we will mention later in chapter seven in this

thesis that the matrix M(z) depends mainly on

• The dielectric constants

• The extraordinary and ordinary refractive indices.

• The Euler angles of the local director no within the cell.

Since the director orientation is uniform within a single thin layer of thickness h,

the transfer matrix for the layer is given by the following expression [19]

F [h] = exp(
iωhM

c
) = I +

iωh

c

M

1!
+ (

iωh

c
)2M

2

2!
+ ... (4.4)

Also, since h � λ, the above Taylor series can be truncated by neglecting the

higher order terms of h. As a result of this truncation, the fundamental matrix
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F [h] is obtained for each single layer.

4.2.2 Fundamental matrix for the sample

In order to calculate the overall transfer matrix for the nematic liquid crystal

sample, we first have to label the layers as 1, 2, ...,m as it is shown in figure

4.2. Once the calculation for each layer has been done, the boundary conditions

between the two dielectric media are needed to find the overall evolution matrix

for m layers. More precisely, according to electromagnetic theory, the parallel

components to the interface between two dielectric layers of both electric and

magnetic fields have to be continuous with the condition that there is no charge

or current at the interface between the two layers. As a result of this concept,

the Berreman vector is continuous at the interface between the two layers, since

it contains only the parallel components due to the derivation of the Berreman

equation. In other words, the normal components of both electric and magnetic

fields have been canceled. However, the parallel components remained and formed

what is known as the Berreman vector field. The overall fundamental matrix for

m layers is formed by multiplying the evolution matrix for each layer in the

following sequences [34], [3]

F [z2, z1] = Fz2,z1+mh(h)Fz1+(m−1)h(h)....Fz1+2h(h)Fz1+h(h). (4.5)

Hence, the solution for the Berreman equation form layers is given by equation

4.1.
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4.3 Discussion for propagation matrix

In order to understand the issue behind the last section, we will address a simple

example where we can calculate the exact propagation matrix. For simplicity,

we will consider isotropic medium in which the dielectric tensor has the following

form εij = n2δij where n is the refractive index of the medium. Moreover, the

Berreman matrix will have the following simple structure

M(z) =



0 1− A2

ε
0 0

ε 0 0 0

0 0 0 1

0 0 ε− A2 0


.

According to Berreman, the plane wave will propagate inside the layer and

a propagation matrix will be formed to connect the fields at the boundaries. In

fact, the propagation matrix for this example will be calculated by two different

methods as illustrated in the coming subsections.

4.3.1 Exponential series expansion method

Since the medium is homogeneous, then the propagation matrix for the whole

sample is given by

F [h] = exp(
iωhM

c
). (4.6)

The beauty behind the above example is M2 = λ2I where λ is the eigenvalue

of the Berreman wave matrix and I is 4 × 4 identity matrix. This property of

the above Berreman matrix allows us to calculate the exact propagation matrix
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which connects the fields at the boundaries of the layer.

F [h] = exp(
iωhM

c
) (4.7)

= I +
iωh

c

M

1!
+ (

iωh

c
)2M

2

2!
+ ... (4.8)

= [I + (
iωh

c
)2M

2

2!
+ ...] + [

iωh

c
M + (

iωh

c
)3M

3

3!
+ ...] (4.9)

= [1− (
ωhλ

c
)2 1

2!
+ ...]I +

i

λ
[
ωhλ

c
− (

ωhλ

c
)3 1

3!
+ ...]M (4.10)

= [cos(
ωhλ

c
)]I +

i

λ
[sin(

ωhλ

c
)]M. (4.11)

and by writing down the identity and the matrix M , the propagation matrix will

take the following form

F [h] = [cos(
ωhλ

c
)]



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


+
i

λ
[sin(

ωhλ

c
)]



0 1− A2

ε
0 0

ε 0 0 0

0 0 0 1

0 0 ε− A2 0


.

By adding up the above two matrices together, we obtain the final form for the

propagation matrix

F [h] =



cos(ωhλ
c

) i
λ
[1− A2

ε
] sin(ωhλ

c
) 0 0

iε
λ

sin(ωhλ
c

) cos(ωhλ
c

) 0 0

0 0 cos(ωhλ
c

) i
λ

sin(ωhλ
c

)

0 0 i
λ
[ε− A2] sin(ωhλ

c
) cos(ωhλ

c
)


.

4.3.2 Caylay- Hamilton method

It worths to mention that this exact propagation matrix can be obtained by

another method. According to Caylay- Hamilton theorem, the following matrix
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expansion

F [h] = exp(
iωhM

c
) = I +

iωh

c

M

1!
+ (

iωh

c
)2M

2

2!
+ ..., (4.12)

can be obtained exactly by a finite series up to a power of n − 1 where n is the

order of the matrix M . In other words, the propagation matrix for the Berreman

equation with a homogenous medium is given by the following expression [1], [38]

F [h] = exp(
iωhM

c
) = a0I + a1M + a2M

2 + a3M
3. (4.13)

The scalers ai, i = 0, 1, 2, 3, in the above equation are given via the following

equations

exp[iωhλi] = a0 + a1λi + a2λ
2
i + a3λ

3
i , (4.14)

where λi and i = 1, 2, 3, 4. are the eigenvalues for the Berreman matrix. Moreover,

nice formulas have been worked out for the above scalars and they are given in

terms of the eigenvalues of the Berreman matrix.

a0 = −
i=4∑
i=1

λjλkλl
fi

λijλikλil

, (4.15)

a1 = −
i=4∑
i=1

[λiλk + λjλl + λkλl]
fi

λijλikλil

, (4.16)

a2 = −
i=4∑
i=1

[λk + λj + λl]
fi

λijλikλil

, (4.17)

a3 = −
i=4∑
i=1

fi

λijλikλil

, (4.18)

where λij = λi − λj and fi = exp[iωhλi] and all the indices i, j, k, l run between

1, 2, 3, 4. For the above example, these scalars had been worked out in [38]
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a0 =
1

2
[cos(ωhq) + ωhq sin(ωhq)], (4.19)

a1 =
i sin(ωhq)

2q
[2− ωhq], (4.20)

a2 =
1

2q2
[cos(ωhq)− ωhq sin(ωhq)], (4.21)

a3 =
i

2q2
cos(ωhq). (4.22)

By using these scalars and according to the Cayley-Hamilton theorem, the prop-

agation matrix is

F [h] = exp(
iωhM

c
) = a0I + a1M + a2M

2 + a3M
3 (4.23)

= a0I + a1M + a2q
2I + a3q

3M (4.24)

= [a0 + a2q
2]I + [a1 + a3q

3]M. (4.25)

By substituting the values of the above scalars and adding up the matrices we

end up with the same matrix

F [h] =



cos(ωhλ
c

) iλ
ε

sin(ωhλ
c

) 0 0

iε
λ

sin(ωhλ
c

) cos(ωhλ
c

) 0 0

0 0 cos(ωhλ
c

) i
λ

sin(ωhλ
c

)

0 0 iλ sin(ωhλ
c

) cos(ωhλ
c

)


.

One can notice that, this propagation matrix is exactly the same one which was

obtained by the exponential series expansion.
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4.4 Conclusion

In this chapter, the experiment used at HPLB was introduced and explained.

Also, this chapter explains in detail the technique used to solve the forward

problem. By employing isotropic medium, for the seek of understanding, we

were able to calculate the exact propagation matrix for the Berreman equation.

However, in most cases, the propagation can be found only numerically. The

reason is that the Berreman is more general and is used for all media such as

inhomogeneous anisotropic medium.

If the medium is inhomogeneous isotropic then the medium is sliced into

sufficiently thin slices in which each slice can be treated as isotropic medium and

the exact propagation matrix is given by F [h] for each layer. Since the tangential

components of the Berreman field continuous, then the approximated solution is

given by equation (4.5).

Equation (4.5) can also be extended to be used for an inhomogeneous anisotropic

medium. This can be done by dividing the medium into sufficiently thin slices for

which each slice is treated as homogenous anisotropic medium. Later we will use

a new technique to find the propagation matrix for twisted nematic liquid crys-

tals which is an inhomogeneous anisotropic medium without dividing the medium

into slices.



Chapter 5

Maxwell’s equations and

dielectric tensor

We start this chapter by introducing the basic equations governing the propaga-

tion of electromagnetic waves in materials known as Maxwell’s equations. The

first section involves some discussion which shows how James Clerk Maxwell

obtained his set of four partial differential equations. In the second section,

the concept of dielectric tensor is explained in some details for both isotropic

and anisotropic media. Particular attention is given in the final sections of this

chapter to dielectric tensor for uniaxial materials, for both positive and negative

birefringence.

5.1 Maxwell’s equations

Maxwell’s equations are a set of four partial differential equations which had been

devised by James Clerk Maxwell (1831-1879). From Ampere’s law, Faraday’s law

and the Gaussian theorem, Maxwell introduced the basic equations that govern

71
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the electromagnetic fields.

The first equation of Maxwell has been totally derived from Ampere’s law.

According to Ampere’s law, the electric current in the medium generates an

induced magnetic field

∇×H = J. (5.1)

However, if the electric field in the medium varied with time, Maxwell noticed that

there is another factor which will induce a magnetic field. This factor is called

the displacement current ∂D
∂t

which comes from the varying electric field in the

medium. By combining these two factors, Maxwell introduced his first equation

which briefly says that the induced magnetic field in the medium is coming from

both the conductive current and the displacement current. Mathematically, this

statement can be expressed as:

∇×H = J +
∂D

∂t
. (5.2)

Maxwell derived his second equation from Faraday’s principle. According to

Faraday’s principle, a moving magnet will generate an alternating current and

Faraday formulates his principle as

E = −∂ψ
∂t
, (5.3)

where ψ is the magnetic potential. By taking the cross product for both sides,

Maxwell obtained his second equation

∇× E = −∂B
∂t
. (5.4)

In short, this equation basically means that the magnetic variation induces electric
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field into the medium.

The remaining two equations, one for the magnetic field and one for the

electric field have been derived from the Gaussian theorem

∇ ·D = ρ, (5.5)

∇ ·B = 0. (5.6)

This theorem states that the integration of a vector field over an entire closed

surface is equivalent to the integration of the divergence of a vector field over the

volume containing the surface

∮
S

V · ds =

∫ ∫ ∫
∇ · V dv. (5.7)

For linear medium, the electric and magnetic fields are connected through the

constitutive relations [2], [19]

B = µH, (5.8)

D = εE, (5.9)

where µ is the permeability of the medium and ε is the permittivity of the medium

which will be discussed in more detail in the coming section.

5.2 Dielectric tensor

The starting point to describe the dielectric tensor which represents the material’s

properties is the Maxwell equations. The electric field, in Maxwell’s equations,

is related to the displacement by a relative electric primitivity ε. If the medium
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under investigation is an absorbing medium, then the electric primitivity will be

complex. On the other hand, it will be real if the medium is non-absorbing [18].

For isotropic materials whose characteristics are independent of direction of

propagation, the electric primitivity is a real scalar. In the other hand, the

electrical primitivity is a real tensor for anisotropic materials whose characteristics

depend on the direction of propagation. In our study, the medium is a source free

interior. In such medium, the liquid crystal is known to be inhomogeneous and

electrically anisotropic. Moreover, the electrical primitivity or dielectric tensor

which is used to describe the electrical properties of the medium, is defined in

term of 3× 3 symmetric positive definite tensor [18], [48]:

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 .

With a certain rotation of axes, the above dielectric tensor can be always written

in a diagonal form

ε =


ε11 0 0

0 ε22 0

0 0 ε33

 .

The new Cartesian system in which the dielectric tensor is diagonal, is known as

the proper reference system of the material medium. The directions of axes in

the proper system are called the eigen-axes or sometimes principal axes [13].

In order to understand the idea behind the proper system and eigen-axes,

we will consider an example. Suppose that we have a twisted uniaxial sample

with ordinary refractive index n0 = 1.400 and extraordinary refractive index

n0 = 1.550. For simplicity, we will assume that this sample has a vanishing tilt
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angle and the extraordinary axis along the x-axis at the first boundary. Based on

these data the dielectric tensors at z = 0.2 and at z = 0.6 are given respectively

by

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


2.3602 0.1300 0

0.1300 2.0023 0

0 0 1.9600

 ,

and

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


2.1129 0.2104 0

0.2104 2.2496 0

0 0 1.9600

 .

In the proper system, the above dielectric tensors have the following values

ε =


ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =


2.4025 0 0

0 1.9600 0

0 0 1.9600

 .

Since this sample has a vanishing tilt angle, one of the eigen-axes will not change

throughout the sample. Figure 5.1 and figure 5.2 show the projection of the

eigen-axes on the xy-plane. The directions of axes of the ellipse are the directions

of the principal axes in which the dielectric tensor has a diagonal form.

5.3 Dielectric tensor for uniaxial materials

Two values of the diagonal elements for uniaxial materials are the same when

the dielectric tensor is written in a diagonal form. These values are called the

ordinary refractive index or ordinary principal value [12]. The third one is called

the extraordinary refractive index or extraordinary principal value [12]. Moreover,
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Figure 5.1: The axes of the ellipse give us the direction of the principal axes for
z = 0.2, in which the dielectric tensor has a diagonal form.

Figure 5.2: The axes of the ellipse give us the direction of the principal axes for
z = 0.6, in which the dielectric tensor has a diagonal form.
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Figure 5.3: Director orientation inside the sample with tilt angle θ and azimuthal
angle φ.

the direction of the extraordinary principal axis is known as the director.

In general, The dielectric tensor for uniaxial materials can be written in terms

of the polar and azimuthal angles. In other words, if the director has tilt angle θ

and twist angle φ as illustrated in figure 5.3, then the dielectric tensor elements

are given by the following equations [13], [27], [29]:

ε11 = n2
0 + (n2

e − n2
0) cos2(θ) cos2(φ), (5.10)

ε12 = (n2
e − n2

0) cos2(θ) cos(φ) sin(φ), (5.11)

ε13 = (n2
e − n2

0) sin(θ) cos(θ) cos(φ), (5.12)

ε22 = n2
0 + (n2

e − n2
0) cos2(θ) sin2(φ), (5.13)

ε23 = (n2
e − n2

0) sin(θ) cos(θ) sin(φ), (5.14)

ε33 = n2
0 + (n2

e − n2
0) sin2(θ). (5.15)
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5.4 Discussion

In fact, there are four special cases in which the dielectric tensor reduces to a

diagonal form. The first case is for the isotropic materials which have only one

refractive index. As a result of that, the components of the dielectric tensor will

be zeros except the diagonal elements. Also, all the diagonal elements are the

same as mentioned in the beginning of this section and the dielectric tensor will

take the following form

ε =


n2

0 0 0

0 n2
0 0

0 0 n2
0

 ,

where n0 is the refractive index of the medium.

The second case is for anisotropic materials with transmission axis along the x-

axis throughout the sample, with vanishing tilt angle. In this case the orientation

of the director is along the x-axis and the dielectric tensor is given by

ε =


n2

e 0 0

0 n2
0 0

0 0 n2
0

 ,

where n0 is the ordinary refractive index and ne is the extraordinary refractive

index for the medium.

The third and forth cases are similar to the second case except that the orien-

tation of the director, is either along the y-axis or z-axis throughout the sample

and the tilt angle is zero. The dielectric tensor for transmission oriented along
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the y-axis is given by

ε =


n2

0 0 0

0 n2
e 0

0 0 n2
0

 ,

and the dielectric tensor with transmission axis oriented along the z-axis is given

by

ε =


n2

0 0 0

0 n2
0 0

0 0 n2
e

 .

In conclusion, if the director has a non-vanishing tilt and twist angles, then

the dielectric tensor is given in general by [21]

ε = R(ϕ)−1R(θ)−1εxR(θ)R(ϕ), (5.16)

where ϕ and θ are the tilt and twist angles of the director respectively. R(ϕ) and

R(θ) are the rotational matrices, εx is the dielectric tensor where the orientation

of the director is along the x-axis throughout the sample. Later in the coming

chapter we will use an elegant way to diagonalize the dielectric tensor if the tilt

angle is zero and the twist angle is either fixed or changing through the sample,

such as twisted nematic liquid crystal. This idea will enable us to solve the

wave equation analytically and the obtained solution will be compared with the

solution obtained by the Jones matrix method.
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Figure 5.4: The twist(Green) and tilt(Blue) angles profiles for some voltages
applied across the sample. The voltage in the above graph are 0.2, 0.4, 1.2, 1.9,
2.9, and high voltage 5

5.4.1 Profiles of the elements of dielectric tensor for twisted

nematic liquid crystal cell in the off state

One of the challenging problems in liquid crystal cells, is to deduce the dielectric

tensor throughout the cell as an electrical field is applied through the cell. The

main challenge is that the dielectric tensor depends on the director, which coin-

cides with long optical axis of the molecules. Unfortunately, this optical axis in

twisted nematic liquid crystal has a continuous change throughout the cell from

one position to another and is affected by the applied electrical voltage. When

a high enough voltage is applied, the twist will concentrate in the middle of the

cell. Figure 5.4 shows the profiles for both twist and tilt angles for some different

voltages applied across a twisted liquid crystal sample.

However, in the field-off-state this change is linear throughout the cell from

one side to the other side. Mathematically, the optical axis, in field off state,
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Figure 5.5: The profile of the optical axis which coincides with the director as a
function of position.

inside the cell can be tracked with the following equation

Twist angle = αx, (5.17)

where α is the total twist for the optical axis inside the cell. Figure 5.5 shows

the profile of the optical axis which coincides with the director as a function of

position. The knowledge of both the optical refractive indices of the cell and the

director profile, allows us to obtain all six elements of the dielectric tensor of the

cell.

5.4.2 Relationship between the diagonal elements of di-

electric tensor

A closer look at the main diagonal elements of the dielectric tensor, shows that a

relationship between these elements exists, as the optical axis twists through the
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cell. By adding these elements, we obtain the following relation

ε11 + ε22 + ε33 = n2
0 + (n2

e − n2
0) cos2(θ) cos2(φ) + n2

0

+(n2
e − n2

0) cos2(θ) sin2(φ) + n2
0 + (n2

e − n2
0) sin2(θ)

= 3n2
0 + (n2

e − n2
0) cos2(θ)[cos2(φ) + sin2(φ)]

+(n2
e − n2

0) sin2(θ)

= 3n2
0 + (n2

e − n2
0)[cos2(θ) + sin2(θ)]

= 2n2
0 + n2

e.

This relation shows independence of the twist and tilt angles of the sample in

any position. In other words, no matter what the values of twist θ and tilt φ

angles are or whether no field is applied to the sample or even a high voltage

is applied, this relation between the diagonal elements has to be satisfied at

any position inside the sample. In order to clarify the above concept, we have

investigated this relationship in the field off state where the twist in the sample

varies linearly throughout the cell as illustrated in figure 5.5. The liquid crystal

sample is modeled as continuous layers and the twist is varied along the z-axis

with the fast axis of anisotropy is oriented along the x-axis at the first boundary.

This model allows us to calculate exactly all six elements of the dielectric tensor

throughout the sample as we will show in the coming sections.

5.4.3 Positive birefringence

Figure 5.6 shows how the profile of first element ε11 of the dielectric tensor is

changing as we travel inside the cell. Figure 5.6 shows clearly that this element

achieves its maximum value which is ne at the first boundary, since it has been

assumed that the fast axis of anisotropy lies on the x-axis at the first boundary,



chapter 5 Maxwell’s Equations and Dielectric Tensor 83

and reaches its minimum value which is n0 at the second boundary, since the slow

axis of anisotropy is oriented along the y-axis and the total twist of the director

is 90 degrees.

Figure 5.7 shows the profile of the second diagonal element ε22 for the dielectric

tensor and shows the opposite story to the first element ε11. In other words, the

second element ε22 has its minimum value which is n0 at the first boundary

since the slow axis of anisotropy is oriented along the y-axis. As we move across

the sample and due to the twist in the sample, the fast axis of anisotropy will

eventually become oriented along the y-axis and this element will achieve its

maximum value which is ne.

Figure 5.8 shows the profile of the third diagonal element ε33 for the dielectric

tensor, together with previous diagonal elements. From this profile, one may

notice that this element has a constant value, which indeed equals to the ordinary

refractive index no, as we travel across the sample. Finally, figure 5.9 shows the

profiles of the off diagonal elements of the dielectric tensor. The blue profile

belongs to ε12 = ε21 and the red profiles belong to the remaining off diagonal

elements.

Dielectric tensor profile of a positive birefringence

In order to see the profiles of all dielectric tensor elements in one figure, a simple

trick has to be made to put the elements of the dielectric tensor on the same

scale. This can be done by subtracting the value of the ordinary refractive index

n0 from all diagonal elements only. Once we do that, it is possible to see the

continuous change of all dielectric tensor elements as we travel across the entire

sample. Figure 5.10 shows how the profiles of all six elements of the dielectric

tensor in off-state, change across the sample.
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Figure 5.6: The profile of the first diagonal element of the dielectric tensor in the
off state as we travel though the sample with a positive birefringence.

Figure 5.7: The profile of the second diagonal element of the dielectric tensor in
the off state as we travel though the sample with a positive birefringence.
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Figure 5.8: The profiles of all diagonal elements of the dielectric tensor in the off
state as we travel though the sample with a positive birefringence.

Figure 5.9: This graph shows the profiles of all remaining off diagonal elements
of the dielectric tensor in the off state for a sample with a positive birefringence.
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Figure 5.10: The profiles of all elements of a dielectric tensor in the off-state after
re-scaling the diagonal elements.

5.4.4 Negative birefringence

For a negative birefringence, where the refractive index along the director is lower

than the refractive index perpendicular to the director, the first element ε11 of the

dielectric tensor achieves its minimum value, which is n0 at the beginning of the

sample, since it is assumed that the fast axis of anisotropy is oriented perpendic-

ular to the x-axis. Figure 5.11 shows that this element ε11 will reach its maximum

value which is the extraordinary refractive index ne at the opposite boundary as

we travel through the sample, since the director will twist and eventually become

oriented along the y-axis.

Since the fast axis of anisotropy is oriented along the y-axis on the first bound-

ary and linearly changes as we travel across the cell, figure 5.12 illustrates how

the profile of the second diagonal element ε22 for the dielectric tensor is changing

inside the cell. Since the third diagonal element is constant in field off state, the

amount of decay of the second diagonal element is gained by the first element to
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Figure 5.11: The profile of the first diagonal element of the dielectric tensor in
the off state as we travel though the sample with a negative birefringence.

achieve the balance between the diagonal elements.

The profiles of the off diagonal elements of the dielectric tensor, are shown

in figure 5.14. It should be noted that the values are non-positive for a negative

birefringence. The blue curve shows the profile for both elements e12 = e21 and

the red profiles belongs to the other remaining off diagonal elements e13, e31, e23

and e32.

Dielectric tensor profile of a negative birefringence

In order to achieve this goal and to see the profiles of all elements in one figure,

some adjustment has to be made to the diagonal elements. This adjustment is to

remove the value of the ordinary refractive index n0 from all diagonal elements.

Once this has been done the profiles can be seen in the figure 5.15.

Now let’s try to calculate the dielectric tensor for a negative birefringence at

four different locations, for calcite CaCo2 where the ordinary refractive index is
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Figure 5.12: The profile of the second diagonal element of the dielectric tensor in
the off state as we travel though the sample with a negative birefringence.

Figure 5.13: The profiles of all diagonal elements of the dielectric tensor in the
off state as we travel though the sample with a negative birefringence.
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Figure 5.14: This graph shows the profiles of all remaining off diagonal elements
of the dielectric tensor in the off state for a sample with a negative birefringence.

n0 = 1.658 and the extraordinary refractive index is ne = 1.486. The table 5.1

shows the values of all dielectric tensor elements at four different locations inside

the sample.

Table 5.1: This table shows the values of the dielectric tensor elements at some
different locations for calcite CaCo2 which is has a negative birefringence.
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Figure 5.15: The profiles of all elements of a dielectric tensor in the off-state with
a negative dielectric tensor after re-scaling.

5.5 Summary

In this chapter, we have studied the concept of the dielectric tensor which repre-

sents the material properties. For uniaxial materials with a vanishing tilt angle,

we were able to project the eign-axes into the xy-plane since the third axis is not

changing throughout the sample. This projection gives us the directions of the

principal axes. In fact, these directions is the directions in which the extraordi-

nary and ordinary waves propagate. Later in chapter seven, we will talk about

these directions and the propagating modes.

A relationship between the diagonal elements obtained and this relationship

shows independence of the tilt and twist angles of the sample. In other words, this

relationship holds everywhere regardless the values of the tilt and twist angles.

Two example, one for positive birefringence and one for negative birefringence,

have been discussed to explain this independence.



Chapter 6

Matrix Shrödinger equation

6.1 Introduction

During the 1925, both Erwin Schrödinger and Werner Heisenberg made important

contributions to the field of Quantum Mechanics by introducing their methods.

Schrödinger derived his method on the bases of the partial differential equations,

whereas Heisenberg derived his method on the idea of matrix Mechanics. One

year later, it had been confirmed, that these two methods were indeed equivalent.

In fact, the Schrödinger equation is a partial differential equation which de-

scribes the dynamic of a system. This equation plays exactly the same role as

Newton’s law in classic Mechanics. In other words, the future of a dynamic

system and its properties may be calculated from the Schrödinger equation [9].

There are actually two ODE forms of the Schrödinger equation. The first one

is the time dependant and used to describe the evolution of the waves [42], [25]

ih
dΘ(z)

dz
= H(z)Θ(z), (6.1)

91
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where H(z) is a hamiltonian operator depending on the physical problem. The

second form of the Schrödinger equation is the time independent which of the

second order with respect coordinate and of the first order with respect to time.

The second form takes the following form for standing waves [42], [50], [25]

aΘ(z) = −Θθ′′(z) + V (z)Θ(z), (6.2)

where a is constant and V (z) is known as the potential Quantum Mechanics.

6.2 Our solution for the Schrödinger equation

in matrix form

In order to put our analytical solution in perspective, we need first to formulate

our problem of propagation of light and write it in the form of a Schrödinger

equation. Mathematically, our problem can be formulated on the basis of the

following problem. Suppose that a monochromatic plane light wave incident on

an inhomogeneous slab with thickness d and refractive index n(z). If the electric

field is harmonic

E(z, ω) = Ẽ exp(iωz), (6.3)

where

Ẽ = A exp(i
ω

c
n(z)z),

is the amplitude of the wave, then the amplitude inside the nonhomogeneous slab

satisfies the Schrödinger equation with vanishing potential [49]

E ′′ +
ω

c
n2(z)E = 0. (6.4)
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From the optical point of view, obviously this equation is suitable for a medium

with one constant refractive index, such as the isotropic medium or for a medium

with one variable refractive index, such as a nonhomogeneous medium. It is

clear that this equation is not suitable for uniaxial medium since there are two

refractive indices. In fact, if the medium is homogenous and uniaxial then, we

can extend the above equation to take the following matrix form, as we will see

later in the coming chapters

d2

dz2

 Ex

Ey

 +
ω

c
n2

0

 Ex

Ey

 = V (z)

 Ex

Ey

 , (6.5)

where n0 is the ordinary refractive index and ∆n is the birefringence of the

medium. One might notice that if the medium is isotropic then our Schrödinger

equation in matrix form will reduce to the above one dimensional Schrödinger

equation (6.4) with vanishing potential.

From the literature, one must distinguish between the methods used to solve

direct and inverse problems for the Schrödinger equation. In general, there are

two methods to solve the Schrödinger equation. The first method is the Green

function method which is used to represent the solution of the Schrödinger equa-

tion

E(z) = Ei(z) +

∫ d

0

G(z, s)V (s)U(s)ds, (6.6)

where Ei(z) is the field when the medium is homogenous. The second method is

the Gel´fand-Levitan and Marchenko method, which is used to solve the inverse

problem to recover the potential in the Schrödinger equation [52]

V (z) = −2
dA(z, z)

dz
, (6.7)
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where A(z, z) is the solution of

A(z, s) = A0(z + s) +

∫ ∞

r

A(z, s)A0(z + s)ds. (6.8)

Our approach is quite different from the Green function approach. In fact,

our method to solve the Schrödinger equation is a rotational frame method. This

method will be presented in some detail with application in the coming chapters.

For twisted nematic liquid crystal, for example, the rotational frame method gives

us the following analytical solution for the Schrödinger equation

U(z) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)


 exp(−iω

c
nez) 0

0 exp(−iω
c
n0z)

 .

In the rest of this section, two examples will be presented to compare the numer-

ical and analytical solutions of the Schrödinger equation.

Using the Matlab software, we solve the Schrödinger equation numerically

and the numerical solution is compared with the analytical solution which has

been obtained by the rotational frame technique. In the first example, the fol-

lowing data is used, n0 = 1.4 as an ordinary refractive index, ∆n = 0.550 is the

birefringence of the medium with a twist of ninety degrees across the sample.

The x-component for both numerical and analytical solution of the Schrödinger

equations is shown in figure 6.1 whereas numerical and analytical solutions for

the second component, which is the y-component is shown in figure 6.2. The

two components of the numerical solution of the Schrödinger equation as they

propagate through the sample, is illustrated in figure 6.3. Finally, the analytical

solution of the Schrödinger equation is presented in figure 6.4.

Our second example uses exactly the same data which has been used in the
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Figure 6.1: This graph shows the x-component for the exact and numerical solu-
tion of the Schrödinger equation.
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Figure 6.2: This graph shows the y-component for the exact and numerical solu-
tion of the Schrödinger equation.
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Figure 6.3: This graph shows both x-component and y-component for the numer-
ical solution of the Schrödinger equation as they propagate through the medium.
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Figure 6.4: This graph shows both x-component and y-component for the exact
solution of the Schrödinger equation as they propagate through the medium.
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first example except that the domain has been increased from 8.66 nm to 13nm.

Figure 6.5 shows the first component, which is x-component for numerical and

analytical solution of the Schrödinger equation, whereas the numerical and ana-

lytical solution for the y-component is shown in figure 6.6. The two components

for the numerical solution of the Schrödinger equation is illustrated in figure 6.7.

Finally, the two components of the analytical solution of the Schrödinger equation

as they propagate through the domain is presented in figure 6.8.
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Figure 6.5: This graph shows the x-component for the exact and numerical solu-
tion of the Schrödinger equation.
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Figure 6.6: This graph shows the y-component for the exact and numerical solu-
tion of the Schrödinger equation.
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Figure 6.7: This graph shows both the x-component and y-component for the
numerical solution of the Schrödinger equation as they propagate through the
medium.
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Figure 6.8: This graph shows both x-component and y-component for the exact
solution of the Schrödinger equation as they propagate through the medium.
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6.3 Relationship between the Schrödinger equa-

tion and the Jones matrix formalism

If waves enter a birefringent sample and propagate for some distance d inside

it, then the relationship between the waves at the boundaries can be written in

matrix form as:

 Ex

Ey

 =

 v11 v12

v21 v22


 α2

1 0

0 α2
2


 v11 v12

v21 v22


−1  Eox

Eoy


= V (z)P (z)V −1(z)E(o), (6.9)

where vij are elements of the dynamical matrices, which are responsible for the

direction of the waves inside the birefringent material and P (z) is the propagation

matrix for the uniaxial sample, with a fixed transmission axis throughout the

sample.

The mathematically differential equation that describes this dynamic system

is the time dependent Schrödinger equation, which has been derived earlier from

Maxwell’s equations. The solution of the time dependent Schrödinger equation

which is given by equation 6.5 can be written in a form exactly similar to Jones

form  Ex

Ey

 = T (z)P (z)T−1(z)

 Eox

Eoy

 ,

where P (z), T (z) and T−1(z) are given above.
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6.4 Polarization in Quantum Mechanics

From the Quantum Mechanics point of view, this equation is known as the

time dependent Schrödinger equation which has been derived from the original

Schrödinger equation. In fact, the Schrödinger equation has been actively stud-

ied in the field of Quantum Mechanics and solutions for some special cases, and

applications have been reported in the literature. The question to be answered

at this stage: is it possible to identify the emerging polarization as the system

evolves? This question implies that the problem to solve is the time-dependent

Schrödinger equation with some initial input polarization. Before answering the

above question, let’s us first try to make some connections between our prob-

lem which has been developed from the field of optics with the time dependent

Schrödinger equation which comes from the field of Quantum Mechanics.

Without losing the generality and for the sake of understanding our problem,

we will consider a system that contains only two equations.

i
d

dz

 Ex

Ey

 =

 Energyx axy

byx Energyy


 Ex

Ey

 .

In Quantum Mechanics, x and y represent the two states of a quantum system

and their corresponding amplitudes, as the system evolves with time, are Ex and

Ey. Moreover, Energyx and Energyy represent the energy states of the quantum

system and the difference between them is called the energy separation. However,

in the field of optics, these two states represent the paths in which the ordinary

and extraordinary waves follow, as the electric fields components propagate inside

the birefringence materials. These paths need not to be straight as we will see

later and the amplitudes of these two states will give us the polarization state.
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The elements on the main diagonal of the dielectric tensor correspond to the

energy states, and the difference between them is the separation energy as we

have already mentioned.

6.5 Interpretation of our model with Schrödinger

model

In this thesis one of our main interests is to pay some attention to the system

which has been derived in the previous section. We mean the system of 2 ×

2 differential equation which is known in the literature as the time dependent

Schrödinger equation.

d

dz

 Ex

Ey

 = P (z)

 Ex

Ey

 .

This equation, which first arises in the field of atomic research, in fact can be

utilized as we will see later to make some clarifications in both our research and

the field of optics.

By recalling some of the previous work, we see that the x and y represent the

atomic states and Ex and Ey are their corresponding amplitudes. It should be

clear that the potential of the Schrödinger equation is responsible for the interac-

tions of these states as they progress in time. To see the connection between these

states and our model which is the propagation of light through both isotropic and

anisotropic media, we need to consider a specific example. Let us consider, for

instance, the propagation of light in anisotropic medium. It is worth mentioning

that the propagation of light in isotropic medium will be a special case.
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Suppose that a light propagates through anisotropic medium in the z-direction

and the axis of anisotropic of the medium makes an angle θ, with the x-axis and

perpendicular to the z-axis. As the light propagates through the medium the

initial atomic states, that is the state of polarization, will be affected by the

anisotropy of the medium. The result of this action will be clear on the final

atomic states as they leave the medium. In fact, the potential in the Schrödinger

equation is the responsible term of the interaction between the anisotropy of the

medium and the atomic states.

6.6 Floquet’s theory

In 1883, remarkable work was done by Floquet in developing the solution of a

linear periodic system. This work is known today as Floquet’s theory [45]. In

fact, the Floquet’s theory gives us useful information about the solution of a

linear periodic system in terms of the state transition matrix. Before we state

the basic idea behind this work, the following definitions are needed

Definition: A matrix function X(x) is said to be periodic with period T if

there exists T > 0 such that X(x + T ) = X(x) for all x and X(x) is said to be

T-periodic.

Definition: A matrix function X(x) is said to be antiperiodic with period T

if there exists T > 0 such that X(x + T ) = −X(x) for all x and X(x) is said to

be T-antiperiodic.

Now suppose that we have a linear T-periodic system

dψ

dz
= A(z)ψ, (6.10)
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where A(z) is a square complex matrix with n-dimension and ψ is a complex

n-column vector. According to the classical Floquet’s theory, the fundamental

matrix solution of the above system has the following decomposition [51], [53]

U(z, zo) = F (z) exp(iQt)F−1(zo), (6.11)

where F (z) is a periodical matrix with period T and Q is a diagonal matrix with

constant elements [45].

6.7 Existence of the solution of the Schrödinger

equation

Our goal is to recover and trace the director orientation inside birefringence ma-

terials. This can be done by studying the polarization state which results from

the solution of the Schrödinger equation in the matrix form

i
d

dz

 Ex

Ey

 =

 n0 + ∆na2 ∆nab

∆nab n0 + ∆nb2


 Ex

Ey

 ,

where ∆n is the birefringence of the uniaxial material. Before doing this, we will

first state the general form of the solution for the Schrödinger equation from the

literature, and then we will introduce a novel idea to find the exact solution for

the case of twisted uniaxial materials.

Now let us go back and investigate the solution of the Schrödinger equation.

Floquet’s theory guarantees the existence of the solution of the Schrödinger equa-

tion when the elements of the Hermitian matrix have periodical functions. The
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general form of the solution according to Floquet’s theory is

U(z) = φ(z) exp(−iAz),

where φ(z) is a matrix which also has periodical coefficients. A is a diagonal

matrix with constant elements and the elements are called the characteristic ex-

ponents. The evolution operator of the Schrödinger equation can be written as

E(z) = U(z, z0)E(z0). (6.12)

Also, it can be shown from the solution of the Schrödinger equation that the

solution satisfies this relation [45]

det[U(z, z0)] = exp(−i
∫ z

z0

Tr(M(z))dz). (6.13)

6.8 Eigenvalues and the corresponding poten-

tial for the Schrödinger equation

This section will give us some information about the relationship between the

potential and the eigenvalues of the Schrödinger equation and the direction of

the director in the investigated sample. In order to do that, we need first to

rewrite the time dependent Schrödinger equation in this matrix form

d

dz

 Ex

Ey

+i
ω

c
no

 Ex

Ey

 = −iω
c
∆n

 cos2 θ(z) cos θ(z) sin θ(z)

cos θ(z) sin θ(z) sin2 θ(z)


 Ex

Ey

 ,

(6.14)
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which can be written as

dE

dz
+ λE = V(z)E, (6.15)

where λ is the eigenvalue and V (z) is the potential for the Schrödinger equation.

As we will see later, the information for the director inside the sample is encoded

inside the potential of the Schrödinger equation, as the light propagates through

the material. The following sections will discuss the potential for isotropic sample,

anisotropic sample with fixed transmission axis and anisotropic sample with a

twisted transmission axis.

6.8.1 Potential for isotropic sample

Since the magnitude of the birefringence ∆n is zero, the potential V(z) in the

above Schrödinger equation will reduce to zero. As a consequence of zero po-

tential, the Schrödinger equation will reduce to two simple separable differential

equations. One can easily solve the resulting system to obtain the corresponding

electric field components Ex and Ey, and the obtained solution is exactly equiva-

lent to that obtained by using the Jones matrix treatment for isotropic case. The

corresponding eigenvalues for this case are

λ1 = λ2 = i
ω

c
n0. (6.16)

Indeed this is what is expected from the Schrödinger equation in the case of

isotropic. The reason behind this expectation is that the light has no preferred

direction as it propagates inside isotropic samples. In other words, the isotropic

sample has only one refractive index.
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6.8.2 Potential for anisotropic sample with a fixed trans-

mission axis

For anisotropic materials, the magnitude of the birefringence ∆n is not equal

to zero and as a consequence of that the potential of the Schrödinger equation

will not vanish. This makes the system difficult to solve analytically since the

differential equations in this system are not decoupled in most cases. We should

point out that there are, in fact, two special cases where the system can be solved

analytically to obtain the electric field components Ex and Ey. The first special

case is when the transmission axis is along the x-axis and the second case is when

the transmission axis is along the y-axis. In both cases, the obtained solutions are

exactly the same solutions obtained by the Jones matrix treatment for anisotropic

with a fixed transmission axis. Table 6.1 gives us the possible direction for the

transmission axis, together with the corresponding potential and eigenvalues of

the Schrödinger equation, for anisotropic sample with a fixed transmission axis.

Table 6.1: The possible direction for the transmission axis together with corre-
sponding potential and eigenvalues of the Schrödinger equation for anisotropic
sample with a fixed transmission axis.
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6.8.3 Potential for anisotropic sample with a twisted trans-

mission axis

In this case, which is the twisted nematic sample, the potential is location de-

pendent. In other words, the potential of the Schrödinger equation is changing

from one position to another. This did not surprise us, since the orientation of

molecular director in a twisted nematic sample is changing from one position to

another. It is really difficult to solve the wave equation, Schrödinger equation,

analytically to obtain the electric field components since the potential of the

Schrödinger equation is changing throughout the sample. The coming chapter,

we will use an elegant idea to solve this Schrödinger equation analytically and

the resulting solution will be tested via the numerical calculation.

It is worth mentioning that the previous two cases, isotropic sample and

anisotropic sample with a fixed transmission axis, are just special cases of the

twisted nematic sample. Solving Schrödinger equation at any location gives us

these two eigenvalues

λ1 = i
ω

c
ne, (6.17)

λ2 = i
ω

c
n0, (6.18)

which are the same as the eigenvalues obtained in the case of anisotropic sample

with a fixed transmission axis. Again this did not surprise us since the medium

has only two refractive indices.

6.9 Conclusion

In this chapter, we studied the polarization states from the Quantum Mechanics

point of view. In another wards, we have showed that there is a strong relationship
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between the Jones analysis in optics and the Schrödinger equation in Quantum

Mechanics.

Also, in this chapter we showed that the corresponding differential equation

for the Jones analysis is in fact the Schrödinger equation in matrix form. The

last three sections explains in detail the information encoded in eigenvalues and

their corresponding potentials of the Schrödinger equation from optics point of

view.



Chapter 7

Equation of propagation

7.1 Introduction

The propagation of light in liquid crystal layers has been widely studied in liter-

ature. Jones first introduced the 2 × 2 matrix technique which is useful to get

some information about the amplitudes of the electric fields, and the emerging

polarization of the light. Sometime later, more exact method which is known as

the Berreman 4× 4 matrix technique had been introduced to study the propaga-

tion of light. This method had been derived directly from Maxwell’s equations

which describe the propagation of light, and as a consequence, it has the ability

to produce the exact solution.

According to Berreman, if the medium is homogenous in the xy-plane and the

optical axis varies in the direction of light propagation, then Maxwell’s equations

are easily transformed into a system of first order differential equations

dψ

dz
=
−iω
c
M(z)ψ, (7.1)

114



chapter 7 Equation of Propagation 115

where ω and c are the angular frequency and the speed of light in space respec-

tively. The matrix M(z) which depends completely on the dielectric tensor is

given by

M =



− ε13
ε33
m c ε33−m2

ε33
− ε23

ε33
m 0

ε0c[ε11 − ε213
ε33

] − ε13
ε33
m ε0c[ε12 − ε12ε23

ε33
] 0

0 0 0 c

ε0c[ε12 − ε12ε23
ε33

] − ε23
ε33
m ε0c[ε22 − ε223

ε33
−m2] 0


,

where m is related to the incident angle of the light via the relation m = n sin θi

and ψ is known as the Berreman vector field which is given by

ψ = (Ex, Hy, Ey,−Hx)
T . (7.2)

In general, the Berreman matrix method is used for the case of oblique incidence,

whereas the Jones matrix method is used for normal incidences. A lot of research

has been done to extend the Jones method to oblique incidence, since it is more

easily understood than the Berreman method. In this chapter, we derive a first

order differential equation, which based on the Maxwell equations and is equiva-

lent to the Berreman equation. Our differential equation which is a 2× 2 matrix

method contains only the electric fields components.

7.2 Detailed derivation for the Berreman equa-

tion from Maxwell’s equations

In this section we will present a detailed derivation of the Berreman method

which is used to study and compute the electromagnetic wave propagation in the
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materials. The computation problem behind the propagation of electromagnetic

waves in an anisotropic stratified medium, has been extensively studied in the

literature. The Berreman matrix method is derived directly from the Maxwell

equations. Although this method needs a lengthy calculation and is time consum-

ing, it produces an exact solution. On the other hand, several approximations to

the Berreman method have been proposed in the literature to overcome the prob-

lem of lengthy computation. One of them, for instance, is the fast 4×4 method

which gives reasonable accuracy for the exact Berreman method and reduces the

computation time [54].

As we mentioned perviously, the propagation of light in stratified anisotropic

media can be calculated by using the Berreman method. This method depends

on the tangential components of the electric and magnetic fields. In order to

derive the mathematical equations for this model, we will start from the following

Maxwell equations for a dielectric medium

∇ ·D = 0, (7.3)

∇ ·B = 0, (7.4)

∇ × E = −∂B
∂t
, (7.5)

∇ ×H =
∂D

∂t
. (7.6)

At this stage, to proceed with the derivation, we have to specify the incident

plane for the wave vector. Also to simplify the calculation, we shall assume that

(E,H) is the medium satisfies frequency domain Maxwell’s equations. In other
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words, we will assume time harmonic waves.

E(x,t) = exp(iωt)E(x), (7.7)

H(x,t) = exp(iωt)H(x), (7.8)

Now, by differentiating these two equations with respect to time, we will get these

relationships

∂E(x,t)

∂t
= iω exp(iωt)E(x) = iωE(x,t), (7.9)

∂H(x,t)

∂t
= iω exp(iωt)H(x) = iωH(x,t). (7.10)

As a result of that, the above Maxwell equations can further be simplified and

written as:

∇ ·D = 0, (7.11)

∇ ·B = 0, (7.12)

∇ × E = −iωB, (7.13)

∇ ×H = iωD. (7.14)

According to the experiment in HPLB, the wave vector had been chosen in the

xz-plane. By this choice, the dielectric tensor will vary only along the z−direction

and will be a constant along the xy−plane. Moreover, since the incidence plane

was taken to be the xz−plane, the problem will be invariant in the y−direction,

so that

ky = 0, (7.15)

∂

∂y
= 0. (7.16)
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As a consequence of this choice, Ampere’s law can be written as:


0 − ∂

∂z
0

∂
∂z

0 −ikx

0 ikx 0




Ex

Ey

Ez

 = iωµ0


Hx

Hy

Hz

 .

Similarly Faraday’s law can be written as:


0 − ∂

∂z
0

∂
∂z

0 −ikx

0 ikx 0




Hx

Hy

Hz

 =


εxxEx + εxyEy + εxzEz

εyxEx + εyyEy + εyzEz

εzxEx + εzyEy + εzzEz

 .

Before we go further in the derivation, we must mention to the reader that another

orientation (i.e incident plane ) can be used by redefining the axis frame. Also,

the derivation will be parallel to our derivation but there will be a slight change

in both Ampere’s and Faraday’s laws. For our purpose, we will assume the

permeability of the medium is unity and the constitutive relations are linear. In

other words,

D = εεE, (7.17)

B = µ0H. (7.18)

The above matrices, Ampere’s and Faraday’s laws, can be decomposed into six

linear equations

−∂Ey

∂z
= iωµ0Hx, (7.19)

−∂Ex

∂z
− ikxEz = iωµ0Hy, (7.20)

ikxEy = iωµoHz, (7.21)
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−∂Hy

∂z
= εxxEx + εxyEy + εxzEz = εxkEk, (7.22)

−∂Hx

∂z
− ikxHz = εyxEx + εyyEy + εyzEz = εykEk, (7.23)

ikxHy = εzxEx + εzyEy + εzzEz = εzkEk. (7.24)

Now if we take a close look at this system of equations, it can be noticed that this

system of equations contains two types of equations. The first type of equations

is the tangential components of both electric and magnetic fields

−∂Ey

∂z
= iωµ0Hx, (7.25)

−∂Ex

∂z
− ikxEz = iωµ0Hy, (7.26)

−∂Hy

∂z
= εxxEx + εxyEy + εxzEz = εxkEk, (7.27)

−∂Hx

∂z
− ikxHz = εyxEx + εyyEy + εyzEz = εykEk. (7.28)

and the second type of equations is for normal components which are independent

of the derivative

ikxEy = iωµoHz, (7.29)

ikxHy = εzxEx + εzyEy + εzzEz = εzkEk. (7.30)

In fact, the latter type can be eliminated from the system by substituting the two

equations that are independent of derivative. As a result of the elimination, the

above system is reduced to a tangential field which is well known as the Berreman
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field

d

dz



Ex

Hy

Ey

−Hx


=



− ε13
ε33
A c ε33−A2

ε33
− ε23

ε33
A 0

ε0c[ε11 − ε213
ε33

] − ε13
ε33
A ε0c[ε12 − ε12ε23

ε33
] 0

0 0 0 c

ε0c[ε12 − ε12ε23
ε33

] − ε23
ε33
A ε0c[ε22 − ε223

ε33
− A2] 0





Ex

Hy

Ey

−Hx


.

By using linear algebra the above system can be written in matrix compact

form and the resulting equation is well known in mathematics and optics as the

Berreman equation.

dψ

dz
=
−ik
c
M(z)ψ, (7.31)

and ψ = (Ex, Hy, Ey,−Hx)
T is known as the Berreman vector field.

7.2.1 Berreman in the presence of a source

The Berreman equation was derived on the basis that the medium is source free.

However, in the presence of a source polarization in the medium, the Berreman

equation will include an extra term. By adding this extra term, the Berreman

equation will take the following form [23]

dψ

dz
=
−ik
c

[M(z)ψ + 4πΩ(z)]. (7.32)

The inhomogeneous term that is the extra term in the Berreman equation, will

be responsible for the source polarization in the medium. The inhomogeneous

term is a vector with dimension 4×1 and the components of this vector are given
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by [23]

Ω(z) =



−pz
ckx

wε33

px − pz
ε13
ε33

0

py − pz
ε23
ε33


.

7.2.2 Solution of Berreman in the presence of a source

The inhomogeneous Berreman equation is solved by first solving the homogeneous

equation that is the source free equation. In general, as it will be explained later,

the fields at the boundaries are related by a 4× 4 transfer matrix

ψ[z2] = P (z1, z2)ψ[z1], (7.33)

which can be formally defined as [41]

P (z1, z2) = exp(−iω
c

∫ z2

z1

M(z)dz). (7.34)

After finding the propagation matrix which connects the fields at the boundaries,

the inhomogeneous Berreman wave equation admits the following general solution

[23]

ψ[z2] = P (z1, z2)ψ[z1]− 4π
iω

c

∫ z2

z1

P (z1, z)Ω(z)dz, (7.35)

where P (z1, z2) is the Green function of the problem [23].
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7.3 Derivation of a 2 × 2 differential equation

from Berreman

In a twisted nematic liquid crystal sample, the optical properties of the medium

are described by a dielectric tensor which rotates around one axis. For the sake

of simplicity, it will be assumed that the director rotates around the z-axis. As

a result of this assumption, the principal axes of the director in this model are

fully identified by two angles which are the tilt θ(z) and twist φ(z) angles. If the

director stays in the xy- plane throughout the sample, the dielectric tensor will

have two of its axes normal to the z-axis and the dielectric tensor is reduced to

ε =


ε11 ε12 0

ε21 ε22 0

0 0 ε33

 .

Since the dielectric tensor has some elements off diagonal, the two linearly po-

larized local modes of the electric field will couple as they propagate inside the

birefringence materials. This coupling is caused mainly by the variation in the

director orientation. In other words, as the director twists inside the birefrin-

gence materials, the orientations of the two local birefringence axes which are

parallel and perpendicular to the direction of the director change. According to

the formulism [31], [33] and [61] , the local modes of the electric field at position

z+ ∆z, see figure 7.1, can be written in terms of the electric field at the position

z as:

Ex(z + ∆z) = [Ex(z) cos ∆Ω + Ey(z) sin ∆Ω] exp(−iBx∆z), (7.36)

Ey(z + ∆z) = [−Ex(z) sin ∆Ω + Ey(z) cos ∆Ω] exp(−iBy∆z). (7.37)
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Figure 7.1: This figure illustrates the change in the orientation of the local bire-
fringence axes from the initial input at the position z to the new position z+∆z.

When dividing both sides of the above equation by ∆z and keeping the first order

terms as the limit ∆z approaches zero, then the coupling mode equations can be

expressed as [61]

dEx

dz
= −iBxEx + ξ(z)Ey, (7.38)

dEy

dz
= −iByEy − ξ(z)Ex, (7.39)

where Bx and By are the constants of propagation of the light polarized along

the birefringence axes, and ξ(z) is the total twist of the medium. These coupling

equations have two plane waves solution and the twist in the medium causes these

plane waves to couple i.e interchange their energy as they propagate through

the medium. In principle, these equations can be solved by introducing some

constraints. For example, when the twist rate is constant through a slice of the

medium, then the solution by the Laplace transform method is [31]

Ax = {p cos(
ξz√
F

) +
√
F (ipX + q) sin(

ξz√
F

)} exp(iBs), (7.40)
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Ay = {q cos(
ξz√
F

)−
√
F (iqX + p) sin(

ξz√
F

)} exp(iBs), (7.41)

where Bs = 1
2
(Bx +By) and Bs = 1

2
(Bx−By) and the rest of the parameters can

be found in [31].

When the twist is a function of position ξ = ξ(z), there is no analytical

solution to these coupling equations [31]. Of course, there are some exceptional

cases. The first case is when the total twist is zero and the second case is when

the propagation constants are the same. In both cases the above equation will

be uncoupled and the solution is trivial as it was explained in this thesis.

7.3.1 Modes inside the infinitesimal layer

The above coupling modes equations are in fact a reformulation of Maxwell’s

equations as it can be seen in this section. To analyze the propagation of waves

inside a twisted medium, an alternative method can be used, known as normal

modes. These modes, which can be obtained by diagonalizing the coupled modes

equations, propagate in medium without changing their shapes. The main differ-

ence between them is that they travel with different velocities. In order to obtain

these modes, Maxwell’s equations have to be solved exactly.

For any infinitesimal layer, there are four propagation modes in which two

of them travel forward and the other two travel backward [28]. These traveling

modes can be obtained by solving the following eigenvalue Berreman equation

MX = αX. (7.42)

Since the Berreman equation for a twisted nematic liquid crystal sample has

special form, it is possible to reduce it from 4 × 4 to 2 × 2 without losing these
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modes. This can be done as follows:

m12Hy = αEx, (7.43)

−m34Hx = αEy, (7.44)

m21Ex +m23Ey = αHy, (7.45)

m41Ex +m43Ey = −αHx. (7.46)

These equations can be combined together to eliminate the magnetic field com-

ponents. After eliminating the magnetic field components, the resulting system

is

m12m21Ex +m12m23Ey = α2Ex, (7.47)

m34m41Ex +m34m43Ey = α2Ey. (7.48)

This system can be written as

S(z)E = α2E. (7.49)

A direct calculation shows that the elements of the matrix S(z) are

s11(φ,m) = µoεoc
2εxx(1−

m2

εzz

) = εxx(1−
m2

εzz

), (7.50)

s12(φ,m) = µoεoc
2εxy(1−

m2

εzz

) = εxy(1−
m2

εzz

), (7.51)

s21(φ,m) = µoεoc
2εyx = εxy, (7.52)

s22(φ,m) = µoεoc
2(εyy −m2) = (εyy −m2). (7.53)

For uniaxial anisotropic sample, as it is known, there are only two eigenvalues
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which are along the principal axes of the director. As S(z) is symmetric and

positive definite, it can always be written as

S(z) =

 s11 s12

s21 s22

 =

 v11 v12

v21 v22


 α2

1 0

0 α2
2


 v11 v12

v21 v22


−1

.

Here, vij are the elements of the dynamic matrix that follows the rotation of

the director inside the sample. By taking the square root of the eigenvalues, we

obtain the new matrix

H(z) =

 v11 v12

v21 v22


 α1 0

0 α2


 v11 v12

v21 v22


−1

,

and the new eigen-system with the above matrix is

H(z)E = αE. (7.54)

7.3.2 Elements of 2× 2 system

The elements of the matrix H(z) can be obtained by performing the above mul-

tiplication

h11(φ,m) = α1 + ∆α cos2 φ, (7.55)

h12(φ,m) = h21(φ,m) = ∆α cosφ sinφ, (7.56)

h22(φ,m) = α2 + ∆α sin2 φ, (7.57)

where 4α = α1 − α2. In the case of normal incidence the above elements will

reduce to

h11(φ, 0) = no + ∆n cos2 φ, (7.58)
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h12(φ, 0) = h21(φ,m) = ∆n cosφ sinφ, (7.59)

h22(φ, 0) = no + ∆n sin2 φ. (7.60)

where 4n = ne − no is the real birefringence of the material.

Surprisingly, this system is equivalent in some sense to the Berreman eigen-

value equation, since it gives exactly the same local traveling modes in any in-

finitesimal layer of the medium. In fact, the differential equation that can be

used instead of Berreman’s equation to study the emerging polarization is

dE

dz
=
−iω
c
H(z)E. (7.61)

The electric field vector is called the Jones vector of the propagating light, and

the solution of this differential equation as we will see later is a transfer matrix,

which relates the electric fields at the input to the output ones.

In practice, there are two kinds of media that affect the plane of polarization of

a polarized wave. In the first one, the medium will keep the plane of polarization

fixed as long as the waves propagate through the medium. As a result of that, the

transfer matrix will either maintain the phase shift between the two orthogonal

components of the electric fields and the medium will not change the type of

polarization, and this medium is called isotropic medium, Or it will introduce

a phase shift between the two orthogonal components as they propagate inside

the medium, and eventually will change the type of polarization. This medium

is called anisotropic medium. The other kind continuously rotates the plane of

polarization of the polarized wave, as the waves propagate inside the medium.

In this case, the medium will introduce a phase shift between the orthogonal

components and a rotation of the plane of polarization through some angle.
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7.4 Modes of propagation

The solution of the 2 × 2 differential equation which has been derived from the

Maxwell equations for the case of normal incident, is exactly the same solution

introduced by Jones. As it is known that his method relates the electric field

components at the boundaries and involve no derivatives

E(out) = J(z)E(i) =

 j11 j12

j21 j22

E(i).

According to Berreman’s paper [6], if H(z) is independent of z for a short interval,

then there are modes propagating in the medium and these modes can be defined

in terms of the eigenvalues equation

Ej(z) = exp(−iω
c
λjz)Ej(z0),

where λj are the eigenvalues of the 2 × 2 matrix H(z) which appears in the

differential equation, Ej are the eigen-direction multiplied by amplitudes of the

electric fields components in the x-direction and y-direction respectively.

7.4.1 Modes of propagation when H(x) is constant

Fortunately, for isotropic medium or even anisotropic medium with a fixed trans-

mission axis of anisotropy, these modes can be obtained exactly, since the 2 × 2

matrix is constant in both cases. It is possible to plot these modes in one graph

by using the Matlab software. However, it should be clear that these modes are

perpendicular to each other inside the medium and the direction of propagation is

the eigen-direction. Figure 7.2 shows these modes inside isotropic medium with
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Figure 7.2: This figure shows the modes that propagate in isotropic medium with
a circular polarization input. These modes propagate in the eigen-direction that
is along the molecular axes.

amplitudes equal to one. By paying a closer look to the figure 7.2 , it can be

noticed that these modes travel with the same velocity, and as a result of that,

they retain the input polarization state.

On the other hand, this is not the case for anisotropic medium. As it can be

seen from the figure 7.3. For anisotropic medium with axis of anisotropy along the

x-axis, these modes travel with two different velocities. As a consequence of that,

the input polarization state is changing as it progresses through the medium.

7.4.2 Modes of propagation when H(z) is a function of z

When H(z) is not a constant, then the exact propagation matrix which connects

the boundaries maybe hard to obtain. In such situations, the medium is divided

into intervals of length h, in which the difference between H(z + h) and H(z) is

negligible [14]. As a consequence of this, H(z) will be constant and local modes

can be obtained as we explained in the previous section. The overall modes for the



chapter 7 Equation of Propagation 130

Figure 7.3: This figure shows the local modes for a sample with a fixed axis of
anisotropy.

entire medium can be obtained by performing the correct order of multiplications

P [z1, z2] = F (z1 + (m− 1)h, z2)F (z1 + (m− 2)h, z1 + (m− 1)h)

+ . . . F (z1 + h, z1 + 2h)F (z1, z1 + h).

It should be clear that the local propagation matrix can be obtained by integrating

the 2× 2 differential equation directly and the solution is

ψ[z +mh] = F [h]ψ[z + (m− 1)h]

= exp(
iωh

c
Mz+mh)ψ[z + (m− 1)h]

= [I +
iωh

c

Mz+mh

1!
+ (

iωh

c
)2M

2
z+mh

2!
+ . . .]ψ[z + (m− 1)h]

If a closed form of the matrix H(z) does not exist, the numerical analysis tells

us that the series provides a sufficient accuracy, when the first few terms are

considered, since the ωh
c

is small enough.
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Figure 7.4: This figure shows the local modes for a sample with a twisted axis of
anisotropy.

In short, it is clear from the above discussion that the modes which propagate

in the medium, depend entirely on the propagation matrix. In other words, when

the H(z) is constant, then the exact transfer matrix obtainable and when the

H(z) is a function of z then the modes can be approximated. In the coming

section, our technique will allow us to obtain the exact propagating modes for

twisted axis of anisotropy in which H(z) is a continuous function of z. The basic

idea behind the technique is to travel within the frame of anisotropy, which can

be called anisotropy frame of reference. Figure 7.4 shows the modes that travel

in a twisted medium which will be obtained in the coming sections.
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7.5 Propagation matrix

Equation (7.61) is analogous to the time independent Schrödinger equation. In

other words, the solution of this first order differential equation is determined

completely for any location z inside the sample once it is specified at the input zo

[9]. The solution of the system can be written in terms of a propagating matrix,

that relates the input components of the electric fields to the emerging fields as

[9]

E(z) = P (z, z0)E(z0), (7.62)

with initial condition

P (z0, z0) =

 1 0

0 1

 .

If this solution, which subject to the initial condition, is substituted into the

differential equation, the propagation matrix P (z, zo) satisfies exactly the same

differential equation

dP (z, z0)

dz
=
−iω
c
H(z)P (z, z0). (7.63)

In addition to that, this differential equation with above initial condition can be

replaced by the integral equation

P (z, z0) = I − iω

c

∫ z

z0

H(x)P (x, z0)dx. (7.64)

A formal solution of this integral equation can be obtained by iteratively replacing

the transfer matrix under the integral sign by it value from the left hand side.
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The right hand side will eventually lead to the Born-Neumann series [15]

P (z, z0) = I + (
−iω
c

)

∫ z

z0

H(x1)dx1 + (
−iω
c

)2

∫ z

z0

H(x1)dx1

∫ x1

z0

H(x2)dx2 + ...

(7.65)

Later at the end of this thesis, we will use the Calderón [11] argument to

discuss the convergence of the Born-Neumann series.

7.6 Application to isotropic medium

For isotropic medium, there will be only one refractive index and the matrix H(z)

will be a diagonal matrix

H(z) =

 α 0

0 α

 = αI.

The elements on the main diagonal depend on the incident angle. The analytical

solution can be obtained easily by solving equation 7.61. This solution agrees

with the Berreman solution. For normal incident, for example, the eigenvalues

equal exactly to the refractive index no of the medium and the solution is

E(z) = (Ex, Ey)
T = (exp(

−iω
c
noz), exp(

−iω
c
noz))

T . (7.66)

The propagation matrix that relates the incident electric field to the emerging

electric field is

E(out) = P (z)E(i) =

 exp(−iω
c
noz) 0

0 exp(−iω
c
noz)

E(i).
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Figure 7.5: Dependence of the eigenvalue on the incident angle of a sample with
refractive index no = 1.400.

It should be clear that the propagation matrix P (z) is exactly the same as the

Jones propagation matrix for normal incident. As it can be seen, the propagation

matrix will maintain the plane of polarization, and will not introduce any shift

in the phase between the orthogonal components as they propagate inside the

medium. Furthermore, the ratio of the electric field components

R =
exp(−iω

c
noz)

exp(−iω
c
noz)

= 1. (7.67)

at any location is constant and this is exactly the same as the Rytov [43] law

for isotropic medium. Figure 7.5 shows the dependence of the eigenvalue on

the incident angle of a sample with refractive index no = 1.400. In fact, the

propagation matrix which can be easily worked out for any incident angle θi is
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given by

H(z) =

 p11 0

0 p22

 = αI,

where

p11 = p22 = exp(
−iω
c

[
√
n0 −m2]z). (7.68)

As we mentioned before, the isotropic medium has the ability to maintain the

phase shift between the waves, that propagate inside it, without any delay. This

concept will be illustrated in the following two cases.

7.6.1 Two waves with phase shift zero

Figure 7.6 shows two plane waves which propagate according to the above solution

inside isotropic medium. These waves have the same amplitude with phase shift

zero between them and they, in fact, propagate perpendicular to each other which

can be seen easily in figure 7.7. Since there is no change in the phase between

them as long as they propagate inside the medium, they leave the medium with

exactly the same incoming polarization which is the linear polarization in this

case. Figures 7.7 and 7.8 illustrate the type of polarization at any location inside

the medium

7.6.2 Two waves with phase shift ninety

In this example the waves begin to propagate inside the medium with phase shift

ninety. Figure 7.9 shows again two plane waves inside isotropic medium with

phase shift 90 degrees between them. Figure 7.10 illustrates how these waves

propagate inside the medium. Since the phase between them stays fixed as long

as they propagate inside the medium, they leave the medium with the same
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Figure 7.6: The propagation of the plan waves inside isotropic medium with phase
shift zero according the above solution.

Figure 7.7: The directions of propagation of the waves inside the medium.



chapter 7 Equation of Propagation 137

Figure 7.8: The resulting type of polarization at any location inside the medium
with input phase shift zero.

polarization which is a circular polarization, as illustrated in figures 7.10 and

7.11.

7.7 Application to a non-twisted medium

Again in this case, the non-diagonal elements are zeros and the analytical solution

can be obtained by solving equation (7.61). For simplicity, it will be assumed that

the axis of anisotropic is along the x-axis. As a consequence, the matrix H(z)

can be written as

H(z) =

 √
εxx

εzz

√
εzz −m2 0

0
√
εyy −m2

 .
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Figure 7.9: The propagation of the plan waves inside the isotropic medium with
phase shift ninety.

Figure 7.10: The directions of propagation of the waves inside the medium with
input phase shift ninety.
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Figure 7.11: The resulting type of polarization at any location inside the medium
with input phase shift ninety.

For normal incidence (m) equals to zero and the matrix H(z) will take the fol-

lowing form

H(z) =

 √
εxx 0

0
√
εyy

 =

 ne 0

0 no

 ,

and the analytic solution for this case is

E(z) = (Ex, Ey)
T = (exp(

−iω
c
nez), exp(

−iω
c
noz))

T . (7.69)

The associated propagation matrix for uniaxial anisotropic medium with director

along the x-axis is

E(z) = P (z)E(i) =

 exp(−iω
c
nez) 0

0 exp(−iω
c
noz)

E(i),

where E(i) is the input polarization and E(z) is the polarization at the location

z.
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7.7.1 Discussion

Our calculations showed that the phase difference between the waves as the prop-

agate inside the sample is given by

R(z) =
exp(−iω

c
nez + θi)

exp(−iω
c
noz)

= exp(
−iω
c
4nz + θi), (7.70)

where 4n and θi are the difference between the refractive indices of the medium

and the initial phase difference between the waves respectively. Figure 7.12 illus-

trates how the ratio function R(z) works. The ones indicate that the waves are

in phase, the zeros indicate that the waves are out of phase by 90 degrees and

the minimums, which are the minus ones indicate that the waves are out of phase

by 180 degrees. In fact, the linear polarization is obtained at the minimums and

the maximums of the ration function. The circular polarization is achieved at

the zeros and the elliptical polarization is obtained otherwise. The accumulated

relative phase difference between the waves is given by

Relative phase =
ω

c
4nz. (7.71)

Figure 7.13 and figure 7.14 show the behavior of the eigenvalues with incident

angle. As the incident angle increase, the eigenvalues decrease and the difference

between them is getting closer. In the case of a positive birefringence, the differ-

ence between the eigenvalues is a decreasing function as illustrated in figure 7.15.

Figure 7.16 shows that the difference between the eigenvalues is an increasing

function for the case of a negative birefringence.
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Figure 7.12: Illustration of the polarization in terms of the ratio of electric field
components inside a medium with a fixed transmission axis of anisotropy.

Figure 7.13: This figure shows the behavior of the eigenvalues with incident angle
for a positive birefringence.



chapter 7 Equation of Propagation 142

Figure 7.14: This figure shows the behavior of the eigenvalues with incident angle
for a negative birefringence.

Figure 7.15: This figure shows the difference between the eigenvalues as the
incident angle increases for a positive birefringence.
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Figure 7.16: This figure shows the difference between the eigenvalues as the
incident angle increases for a negative birefringence.

7.7.2 linear polarization with phase shift zero

To illustrate the propagation of the solution inside anisotropic medium, we will

discuss two different input polarizations. First a linear polarization with phase

shift zero between the input waves will be considered in some detail. Figure 7.17

shows that the waves started with a phase shift zero between them, and as they

propagate inside the medium the phase shift between them accumulate. The

length of the sample has been chosen such that the wave which propagates along

the fast axis will be ahead by one period and a half. Figure 7.17 shows that the

wave entered the medium with linear polarization +45 degrees and it emerged

from the medium with linear polarization −45 degrees. The state of polarization

at any location inside the medium can be easily seen from figures 7.18 and 7.19.
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Figure 7.17: This figure shows the propagation of the wave inside anisotropic
medium with a fixed transmission axis of anisotropy and a linear polarization
input.

Figure 7.18: This figure illustrates the state of polarization at any location inside
the medium together with the orthogonal waves.
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Figure 7.19: The state of polarization at any location inside the medium.

7.7.3 a circular polarization

On the Second example, we consider a circular polarization input. Figure 7.20

shows that the waves started with a phase shift ninety between them, and as they

propagate inside the medium the phase shift between them accumulate. Again

the length of the sample, has been chosen such that the wave which propagates

along the fast axis will be ahead by one period and a half. Figure 7.20 shows

that the wave entered the medium with a circular polarization and it emerged

from the medium with a circular polarization. The state of polarization at any

location inside the medium is changing, and can be deduced from figures 7.21

and 7.22.
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Figure 7.20: This figure shows the propagation of the wave inside anisotropic
medium with a fixed transmission axis of anisotropy and a circular polarization
input.

Figure 7.21: This figure illustrates the state of polarization at any location inside
the medium together with the orthogonal waves.
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Figure 7.22: The state of polarization at any location inside the medium.

7.8 Application to a medium with a twisted trans-

mission axis

In this section, we will introduce the main result of this thesis. First, the solution

of equation (7.61) will be addressed for the case of normal incidence where the

elements of the matrix are given by equations (7.58), (7.59) and (7.60). Then,

the general case for oblique incident will be addressed in some detail.

7.8.1 Normal incident

In the case of normal incidence, the differential equation which is equivalent to

the Maxwell equations can be rewritten as

d

dz

 Ex

Ey

 + i
ω

c
no

 Ex

Ey

 = −iω
c
∆n

 a2 ab

ab b2


 Ex

Ey

 , (7.72)
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where a = cos(φ(z)) and b = sin(φ(z)). Also, a second order differential equation,

which is equivalent to this first order can be derived from the Berreman equation

by eliminating the magnetic field

d2

dz2

 Ex

Ey

 + [
ω

c
no]

2

 Ex

Ey

 = −[
ω

c
]2∆n

 a2 ab

ab b2


 Ex

Ey

 . (7.73)

This equation can be rewritten as

d2E

dz2
+ λ2E = V(z)E, (7.74)

where V (z) is called the potential. Both of these equations are equivalent and they

have the same solution. Equation (7.74) is known as the Schrödinger equation

in Quantum Mechanics and it can be solved only for special cases where the

potential decay as z goes to infinity [50]. although our potential does not decay,

but we will manage to solve the Schrödinger equation for these classes of potential

as we will see later. Experiments showed that the components of the electric fields

follow the twist of the director inside the sample. In order to solve the first order

differential equation, we have to transform the differential equation into a frame

that continuously rotates with rotation of the director. This can be done by

rearranging equation (7.74)

d

dz

 Ex

Ey

 = −iω
c

 n0 + ∆na2 ∆nab

∆nab n0 + ∆nb2


 Ex

Ey

 , (7.75)

d

dz

 Ex

Ey

 = −iω
c

 a −b

b a


 ne 0

0 n0


 a b

−b a


 Ex

Ey

 . (7.76)
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By multiplying both sides, by the inverse of the first matrix in the left we obtain

the following equation

 a b

−b a

 d

dz

 Ex

Ey

 = −iω
c

 ne 0

0 n0


 a b

−b a


 Ex

Ey

 . (7.77)

In this rotational frame, the differential equation can be written as

d

dz

 ERx

ERy

 = −iω
c

 ne 0

0 n0


 ERx

ERy

 . (7.78)

This equation, which is in continuous rotational frame, is equivalent to the case of

a non-twisted anisotropic case, where the fast axis of the anisotropy is along the

x-axis. The solution has been found in the previous section, and the associated

Jones matrix is ERx

ERy

 = PR(z)

 Ex

Ey


i

=

 exp(−iω
c
nez) 0

0 exp(−iω
c
n0z)


 Ex

Ey


i

.

(7.79)

Now, in order to find the solution in the original frame, we have to transform the

solution back ERj
→ Ej

 Ex

Ey

 =

 cos(φ) − sin(φ)

sin(φ) cos(φ)


 exp(−iω

c
nez) 0

0 exp(−iω
c
n0z)


 Ex

Ey


i

,

(7.80)

which can be simplified to

 Ex

Ey

 =

 cos(φ)A − sin(φ)B

sin(φ)A cos(φ)B


 Ex

Ey


i

, (7.81)
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where A = exp(−iω
c
nez) and B = exp(−iω

c
n0z). Figure 7.23 shows the solution

for the differential equation inside the twisted nematic liquid crystal. As we

mentioned earlier, the sold blue curve gives us the state of polarization inside the

sample at any location. The parameters used to obtain this solution are: the

twist angle 90 degrees, wavelength 0.65µm, thickness of the sample 13µm and

the birefringence ∆n = 0.15. One can notice that the solution achieved absolute

maximum when the twist is 45. Also, at the location of the linear polarization

the twist angle can be recovered from the solution. The absolute maximum, for

example, is always
√

2 which is attained at the 45 degrees twist.

7.8.2 Oblique incident

For the case of oblique incident, the elements of the matrix H(z) are given by

equations(7.55), (7.56)and (7.57). By carrying out exactly the same procedure of

the last section, we obtain similar equations except that the birefringence is given

by 4α = α1 − α2 which depends on the incident angle as we explained before.

7.9 Berreman approximation

In this section, we will discuss the convergence of the Berreman approximation.

As mentioned earlier in this thesis that Berreman equation

dψ

dz
=
−ik
c
M(z)ψ. (7.82)

has four periodic solutions when the Berreman matrix is approximately inde-

pendent of z. In other words, when the berreman matrix is homogenous then

Berreman method solves the Maxwell equations exactly. However, when the
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Figure 7.23: This figure shows how the waves propagate inside a sample with a
twisted axis of anisotropy.
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Figure 7.24: Berreman approaches to solve the Maxwell equations for inhomoge-
neous medium anisotropic medium.

medium is not homogenous, Berreman suggests that the solution can be approx-

imated by partitioning the medium as illustrated in figure 7.24 and replacing the

matrix M(z) by a piecewise continuous function on each interval. Berreman then

solves the Maxwell equations and matches the boundary conditions since there

is no source inside the medium. The question is, does Berreman approximation

convergence to a solution with M(z) smooth as ∆z → 0?

Let us consider a twisted anisotropic medium. In such medium, the Berreman

matrix is inhomogeneous for any choices of partitions. As we stated in the last

section, that the analytical solution of Berreman equation is given by equation

(7.80). Our numerical analysis shows that the Berreman approximated solution

will not converge to the exact solution when the numbers of partitions are not

enough. Figure 7.25 and figure 7.26, for example, show that the Berreman ap-

proximated solution for a sample with twist 22.5◦, ordinary refractive index 1.4

and birefringence 0.15 is not convergent to the analytical solution everywhere.

When number of partitions is increased, then the Berreman approximation

solution will start to converge to the analytical solution everywhere as illustrated

in figure 7.27. However, after some number of partitions, the error will not im-

prove. Further investigation showed that the error in the Berreman approximated
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Figure 7.25: The first electric field component of Berreman approximated solution
is not converging to the analytical solution for inhomogeneous sample with twist
22.5◦.

Figure 7.26: The second electric field component of Berreman approximated so-
lution is not converging to the analytical solution for inhomogeneous sample with
twist 22.5◦.
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solution depends on two factors. These factors are the length of the medium and

the frequency of the used light beam.

Numerical calculation showed that the error between the Berreman approx-

imated solution and the analytical solution can be improved by increasing the

frequency of the used light beam. Figure 7.28 shows the error of the first compo-

nent of the electric field for a fixed medium with seven different wavelengths. This

figure tells us that the Berreman approximated solution converges linearly to the

analytical solution. On the other hand, the error in the second component with

the same frequencies is shown in figure 7.29. This figure tells that the solution in

this components convergence linearly as well.

Figure 7.30 shows the error in the electric field with the same frequencies. In

order to find the error in the electric field, we utilize the logarithmic scale. Figure

7.31 shows the log-log plot of the error for these frequencies. The corresponding

equation for this figure is

ln y = m lnx+ b (7.83)

where the slope is m = 1.50 and the intersection is b = 4.52 for the log-log plot.

This figure tells us that the error decreases as the wavelengths decreased.

7.10 Conclusion

This chapter contains some detailed derivation of the Berreman model from the

Maxwell equations. By putting extra constraints on the Berreman model we were

able to derive a system of 2× 2 differential equations which contains only electric

fields components. It should be noticed that this system works for both normal

and inclined incident angles.
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Figure 7.27: This figure shows the convergence of Berreman approximated solu-
tion to the exact solution of an inhomogeneous sample of length 8.666µm. In this
figure, the number of partition is 83557

Figure 7.28: The error of the first component of the electric field Ex for a fixed
medium with seven different wavelengths.
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Figure 7.29: The error of the first component of the electric field Ey for a fixed
medium with seven different wavelengths.

Figure 7.30: The error of the electric field for a fixed medium with the same seven
different wavelengths.



chapter 7 Equation of Propagation 157

Figure 7.31: The log-log plot for the error of the electric field the same seven
different wavelengths.

This system of differential equations has exactly the same form of the Schrödinger

equation in Quantum Mechanics. One of the main advantage of this system is

the visualization of the propagating modes inside the medium. In other words,

it hard to visualize the propagating modes when there is a coupling between the

differential equations such as twisted anisotropic medium.

In this chapter, a novel idea presented to solve these differential equations

when there is a coupling between them. This idea has been called a rotational

frame method. The obtained solution sketched in both rotational and original

frames. The sketched in the original frame shows clearly the coupling between

the waves and some other valuable information.

Furthermore, the analytical solution gives us a tool to test the accuracy of the

Berreman approximated solution for inhomogeneous anisotropic medium. When

Maugin condition is just satisfied, then the Berreman approximated solution will

converge towards the analytical solution. However, the accuracy of the Berreman

solution will not improve after some number of partitions. Further investigation
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showed that the accuracy of the Berreman approximated solution depends on

both wavelength of the used light beam and the length of the medium. In con-

clusion, for a fixed medium, there is a direct relation between the error and the

wavelength.



Chapter 8

Forward and inverse problem

8.1 Derivation from Maxwell’s equations

From Maxwell’s equations for dielectric materials and harmonic field solution, we

can derive the following equation [24]

d2

dz2

 Ex

Ey

 = − k0

ε33
M

 Ex

Ey

 , (8.1)

where k0 is the wave number in the vacuum and M is a 2× 2 symmetric matrix.

This matrix has components that depend on the dielectric tensor which appears

in the Maxwell equations. This tensor also depends on the dielectric permittivity

which is given by the following equation

εij = ε⊥δ33 + εaninj, (8.2)

where εII and ε⊥ are the parallel and perpendicular dielectric permittivity re-

spectively and εa = εII − ε⊥. Also, the matrix for the above system is given

159
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by

M =

 ε13ε33 − ε213 ε12ε33 − ε13ε23

ε12ε33 − ε13ε23 ε22ε33 − ε223

 .

As we mentioned previously, this equation has been derived on the basis that

the medium varies in one direction, namely the z-direction. Moreover, the matrix

has been derived for the case of normal incidence. The component of the electric

field in the z-direction is given by [24]

Ez =
ε13Ex + ε23Ey

ε33
. (8.3)

8.1.1 Ordinary and extraordinary matrices

In this section, we will try to rewrite the above matrix into ordinary and extraor-

dinary matrices. This can be done as follows

1

ε33

M =
1

ε33

 ε13ε33 − ε213 ε12ε33 − ε13ε23

ε12ε33 − ε13ε23 ε22ε33 − ε223



=

 ε11 0

0 ε22

− 1

ε33

 ε213 ε13ε23 − ε12ε33

ε13ε23 − ε12ε33 ε223

 .

By assuming uniaxial medium and using the equations of dielectric tensor com-

ponents which depend on the refractive indices of the medium, we can further

simplify the above matrices.

1

ε33

M =

 n2
o 0

0 n2
o

− 1

ε33

 a11 a12

a21 a22

 = Mo +Me.
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where the elements of the second matrix are given by the following equations

a11 = (n2
e − n2

0) cos2(θ) cos2(φ)ε33 − ε213, (8.4)

a22 = (n2
e − n2

0) cos2(θ) sin2(φ)ε33 − ε223, (8.5)

a12 = a21 = ε13ε23 − ε33ε12. (8.6)

By substituting the values of the dielectric tensor components into the above

equation and by using straight forward calculations, the elements of the second

matrix are given by

a11 = n2
0∆n cos2(θ) cos2(φ), (8.7)

a22 = n2
0∆n cos2(θ) sin2(φ), (8.8)

a12 = a21 = ∆n cos(θ) cos(φ) sin(φ)(∆n sin2(θ) cos(θ) + n2
0 −∆n sin2(θ)). (8.9)

A quick look at the above decomposition of the M matrix, we notice that

the first matrix Mo depends only on the ordinary refractive index. The second

matrix Me depends on both ordinary and extraordinary refractive indices of the

medium. Also, the second matrix depends on the Euler angles of the director

inside the sample.

8.1.2 Derivation of the Schrödinger Equation

The above equation (8.1) can be rewritten in a form similar to the Schrödinger

equation. This can be achieved by replacing the matrix M by the two matrices
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which have been derived in the previous section.

d2

dz2

 Ex

Ey

 = − k2
0

ε33
M

 Ex

Ey

 (8.10)

= −k2
0(

 n2
o 0

0 n2
o

− 1

ε33

 a11 a12

a21 a22

)

 Ex

Ey

 , (8.11)

d2

dz2

 Ex

Ey

 + k2
0

 n2
o 0

0 n2
o


 Ex

Ey

 =
k2

0

ε33

 a11 a12

a21 a22


 Ex

Ey

 , (8.12)

d2

dz2

 Ex

Ey

 + (k0no)
2

 Ex

Ey

 =
k2

0

ε33

 a11 a12

a21 a22


 Ex

Ey

 . (8.13)

By using linear algebra, the above equation can be written in matrix compact

form as:

d2

dz2
E(z) + λ2E(z) = V(z)E(z), (8.14)

where

E(z) =

 Ex

Ey

 ,

and

λ = k0no.

This is a well known equation in Quantum Mechanics and is known as the

Schrödinger equation. The potential for this Schrödinger equation is given by

V(z) =
k2

0

ε33

 n2
0∆n cos2(θ) cos2(φ) a12

a21 n2
0∆n cos2(θ) sin2(φ)

 . (8.15)

As it can be seen that the potential depends on Euler angles.
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8.2 Discussion

The spectral equation

d2

dz2

 Ex

Ey

 + (k0no)
2

 Ex

Ey

 =
k2

0

ε33

 a11 a12

a21 a22


 Ex

Ey

 , (8.16)

which has been derived in the previous section can in fact be rewritten as a set

of two, one dimensional Schrödinger equations

d2Ex

dz2
+ (

ω

c
)2(no + S11)Ex = (

ω

c
)2S12Ey, (8.17)

d2Ey

dz2
+ (

ω

c
)2(no + S22)Ey = (

ω

c
)2S21Ex, (8.18)

where the elements of the matrix S(z) is given by

S(z) =

 S11 S12

S21 S22

 = ∆n

 cos2(φ) cos(φ) sin(φ)

sin(φ) cos(φ) sin2(φ)

 . (8.19)

In practice, these two coupled time-independent Schrödinger equations describe

two orthogonal waves which propagate in a layer in the direction of the z-axis.

Also, in practice, these coupled time independent Schrödinger equations have a

unique pair of solutions which propagate in the medium when the frequency of

the used light is much smaller than the width of the sample.

As is known, an analytical solution for the two coupled time independent

Schrödinger equations is in general not possible due to the form of the potential

[60]. One of our goals in writing this section is to provide a model with an exact

analytical solution for the two coupled time independent Schrödinger equations.
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From an application point of view, an exact analytical solution is the most pow-

erful tool to check the accuracy of a numerical computational program. In the

coming subsections, the analytical solution together with a numerical solution

will be presented in three different media.

8.2.1 The Solution of the Schrödinger equation with a

vanishing potential

As mentioned in the previous section, our goal is to find an exact analytical

solution for the time independent Schrödinger equation in closed form. To pro-

ceed with this aim, we will consider three different media which are the isotropic

medium, anisotropic medium with a fixed transmission axis and anisotropic medium

with a twisted transmission axis. This section will deal with the first medium,

which is the isotropic medium and the remaining two media will be considered

later on the coming sections.

When the medium is isotropic then the potential S(z) of the two coupled

Schrödinger equations will vanish. As a consequence of this, the Schrödinger

equation will reduce to two uncoupled Schrödinger equations known also as the

Helmholtz equation

d2Ex

dz2
+ (

ω

c
)2n0Ex = 0, (8.20)

d2Ey

dz2
+ (

ω

c
)2n0Ey = 0. (8.21)

The solution is a transmission matrix which can be easily worked out. This

solution is known in optics as the Jones matrix for an optical device with refractive
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index n0

U(z) =

 e−i ω
c
n0z 0

0 e−i ω
c
n0z

 . (8.22)

This solution, the Jones matrix, will connect the input electric field components

of the light to the output ones. In fact, the input polarization of the electric field

components will remain unchanged as it passes through the optical device, since

the eigenvalues of the solution are the same.

8.2.2 The Solution of the Schrödinger equation with a

constant potential

A careful analysis of the Spectral equation shows that there are two special cases

in which the Schrödinger equation will reduce to two uncoupled equations. The

first case is when the potential is given by

P (z) =

 1 0

0 0

 , (8.23)

and the second case is when the potential is

P (z) =

 0 0

0 1

 . (8.24)

These potentials tell us that the transmission axis will stay along one direction

throughout the medium. The uncoupled Schrödinger equation for the above

mentioned potentials are

d2Ex

dz2
+ (

ω

c
)2neEx = 0, (8.25)
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d2Ey

dz2
+ (

ω

c
)2n0Ey = 0, (8.26)

and

d2Ex

dz2
+ (

ω

c
)2n0Ex = 0, (8.27)

d2Ey

dz2
+ (

ω

c
)2neEy = 0, (8.28)

respectively. The unique solution for these equations is a transmission matrix

which connects the input electric field components to the output ones. In the

remainder of this section, we will consider one case and the second one will be

almost similar.

When the transmission axis is along the x-axis then the transmission matrix

is given by

U(z) =

 e−i ω
c
nez 0

0 e−i ω
c
n0z

 . (8.29)

This solution of the two uncoupled Schrödinger equations is indeed the Jones

matrix for a device with fixed director along the x-axis. In fact, several valuable

pieces of information can be gathered from this solution:

• First of all, the solution shows that the wave traveling along the x-axis

propagates slower than the wave traveling along the y-axis for a positive

birefringence ∆n > 0 and the opposite is true for a negative birefringence

∆n < 0.

• The zeros, off diagonal elements, indicate that there is no coupling between

the two waves which are traveling in the medium.

• Also, since the eigenvalues of the solution are not the same any more, un-

like the vanishing potential case, the state of polarization of the incoming

electric field components will change as they travel through the medium.
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8.2.3 The Solution of the Schrödinger equation with a

non-vanishing potential

The previous two sections show that there are some special cases in which the

spectral equation in matrix form can be resolved into two uncoupled equations.

However, when the potential depends on the space variable, then there will be

coupling between the orthogonal components. Precisely speaking, there will be

energy exchange between the two plane waves as they travel in the medium.

According to the research conducted by [61], there is no analytical solution

to the spectral equation. The main reason is that the potential is a function

of position. This research [61] studied the evolution of the state of polarization

and the coupling between the equations through the Zeroth-order approximation

solution. This approximation solution was introduced by Huang [60]

Ex(z) = cos{tan−1(2Q(z))

2
}Wx(z) + i sin{tan−1(2Q(z))

2
}Wy(z), (8.30)

Ey(z) = i sin{tan−1(2Q(z))

2
}Wx(z) + cos{tan−1(2Q(z))

2
}Wy(z). (8.31)

According to the Gel´fand-Levitan and Marchenko results[60], the solutions

of the spectral equation in one dimension

d2U

dz2
+ λ2U = V (z)U, (8.32)

obeying the U(0) = 1 and U ′(0) = ik, can be written as:

U(z, k) = exp(ikz) +

∫ x

−x

K(z, y) exp(iky)dy. (8.33)
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Our approach to studying the coupling and the evolution of the state of polar-

ization of the spectral equation in matrix form is quite different. This approach

which has been presented in details in the previous chapters shows that the so-

lution of the spectral equation in matrix form

d2P (z)

dz2
+ λ2P (z) = V (z)P (z), (8.34)

obeying P(0)=I and

U ′(0) =

 k1 0

0 k2

 , (8.35)

where k1 = ωne

c
and k2 = ωn0

c
, has the following representation:

P (z) =

 cos θ(z)e−i ω
c
nez − sin θ(z)e−i ω

c
n0z

sin θ(z)e−i ω
c
nez cos θ(z)e−i ω

c
n0z

 . (8.36)

The solution of the spectral equation, is the transfer matrix for a devise with

axis of anisotropy along the x-axis at the first boundary. At the second boundary,

the axis of anisotropy is rotated through an angle θ(z) from the x-axis. The

solutions in terms of electric fields with initial polarization (Ex(i), Ex(i)) are

Ex(z) = cos θ(z)e−i ω
c
nezEx(i)− sin θ(z)e−i ω

c
n0zEy(i), (8.37)

Ey(i)(z) = sin θ(z)e−i ω
c
nezEx(i) + cos θ(z)e−i ω

c
n0zEy(i). (8.38)

In fact, the solution of the spectral equation gives us some valuable pieces of

information such as:

• The off diagonal elements indicate that there is a coupling between the

waves traveling through the medium.
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• The wave which propagates along the y-axis travels with its maximum ve-

locity at the beginning of the sample and starts to slow down to reach its

minimum velocity by the end of the sample and the opposite is true for the

wave traveling along the x-axis.

• Both of the waves will travel with the same velocity when the axis of

anisotropy is 45 degrees from the x-axis.

8.3 Inverse problem for Berreman

This section is devoted to study the linearized inverse problem. To begin with

that, the solution of the homogenous Berreman equation

dψ

dz
+
iω

c
M(z)ψ = 0, (8.39)

can be expressed means of a transfer matrix which connect the initial data to the

final data

ψ(z) = U(z, zo)ψ(zo). (8.40)

However, for a nonhomogeneous Berreman equation

dψ

dz
+
iω

c
M(z)ψ = S(z), (8.41)

the solution will have an extra term and the new form of the solution is

ψ(z) = U(z, 0)ψ(0) +

∫ z

0

G(z, z̃)S(z̃)dz̃. (8.42)

where is the Green’s function for inhomogeneous problem with zero initial con-

dition. For the sake of simplicity of our analysis, we shall denote the integral
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operator which contains the Green’s function by G(S).

Now let us consider a slight perturbation in the material parameter ε→ ε+δε.

As a consequence of that the Berreman matrix will change from M to M + δM

and the corresponding Berreman field should satisfy

d(ψ + δψ)

dz
= −iω

c
(M(z) + δM)(ψ + δψ). (8.43)

If we take the unperturbed Berreman matrix as the initial guess, then the above

perturbed Berreman matrix will reduce to

dδψ

dz
= −iω

c
(M(z)δψ + δMψ + δMδψ), (8.44)

or

(
d

dz
+
iω

c
M(z))δψ = −iω

c
(δMψ + δMδψ). (8.45)

Note that this differential equation is similar to nonhomogeneous Berreman equa-

tion. By using equation (8.57), this differential equation can be written in oper-

ator form as

δψ = −iω
c
G[δMψ + δMδψ] (8.46)

= −iω
c

(G[δMψ] + G[δMδψ]), (8.47)

or

(I +
iω

c
G[δM]δψ = −iω

c
G[δMψ]. (8.48)

A similar argument is used by the Calderón [11] in Electrical Impedance Tomog-

raphy (EIT)

δψ = −iω
c

(I +
iω

c
G[δM])−1G[δMψ], (8.49)



chapter 8 Derivation of spectral equation and its solution 171

provided that the operator norm satisfies

‖ω
c
G[δM]‖ < 1, (8.50)

in some norm. The coming section will discuss the convergence of the power

series.

8.4 Linearized inverse problem for Berreman

We start this section by the following claim:

If the norm of operator for the perturbed Berreman matrix δM in L∞ satisfies

‖δM‖∞ <
c

‖G‖ω
, (8.51)

then the final data for the linearized inverse problem is given by

δψ(d) =
−iω
c

∫ d

0

G(d, z)δM(z)δψ(0)dz. (8.52)

If we take a sufficiently small perturbation of Berreman matrix to make sure

the norm of the operator is ‖ω
c
G[δM]‖ < 1, then we can deal with the linearized

inverse problem of

δψ = −iω
c

(I +
iω

c
G[δM ])−1G[δMψ]. (8.53)

Let us pause to see what kind of power series we have. The power series of the

above equation is a convergent power series of operators and hence it is the Taylor

series. The linear term is indeed the Fréchet derivative of the forward problem.
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By deleting all nonlinear terms in δM(z) from the Neumann series

(I +
iω

c
G[δM])−1 = I + (

−iω
c
G[δM]) + (

−iω
c
G[δM])2 + ... (8.54)

we obtain the following equation

δψ = −iω
c
G[δMψ]. (8.55)

This equation can be rewritten in a differential form as

(
d

dz
+
iω

c
δM)δψ = −iω

c
δMψ, (8.56)

and the solution of the final data is given by

δψ(d) =
−iω
c

∫ d

0

G(d, z)δM(z)δψ(0)dz. (8.57)

8.5 Summary

In this chapter, we have showed that the Maxwell equations can be reduced into

an eigenvalue problem. This eigenvalue problem has exactly the same form as

the second order Schrödinger equation in Quantum Mechanics,

From optics point of view, the eigenvalues of this spectral equation gives us

the information about the refractive indexes of the sample whereas the potential

gives us the orientation of the optical axis inside the sample. Different potentials

has been considered and discussed.
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Finally, this chapter treats the inverse problem and its corresponding lin-

earized problem of Berreman model by considering perturbation about the Berre-

man matrix.



Chapter 9

Conclusions and future work

9.1 conclusion

The Jones matrix formalism may be conveniently used to analyze the propagation

of light in isotropic and anisotropic media. However, as it is known that the

Berreman model produces more exact solution of the Maxwell equations. One of

the main difficulties with the Berreman model is that the model consists of four

differential equations that is four traveling waves and these waves may coupled

as they travel for some types of media. The coupling between the waves makes

it impossible to obtain the analytical solution for the forward problem.

It is quite natural in the field of inverse problem to study the solution of the

forward problem before approaching the inverse problem. At the outset of this

investigation we expected that the forward problem was fully understood and

there is nothing to do. It turns out that this is not the case.

By solving the forward problem, we obtained the following interesting results.

A relationship between the diagonal elements of the dielectric tensor exists and

this relationship has a fixed value everywhere in the sample regardless of the twist

174
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and tilt angles of the director.

One of the interesting results in uniaxial media with vanishing tilt angle is that

there is only one distinguishable eigen-direction. This idea results in reducing

the the Maxwell equation into a system which contains only the electric field

components. This system gives us the tool to project the other eigenspace to

visualize the directions of the principal axes.

In fact, the 2×2 system has exactly the same form of the Schrödinger equation

in Quantum Mechanics. Further investigations showed that this system contains

some information encoded in the eigenvalues and the corresponding potential.

For instance, the orientation of the director inside the sample is encoded in the

potential as we explained in this thesis. This system works for both normal and

oblique incidence and the elements of the any incident angles have been worked

out in this thesis.

Finding the solution for the 2 × 2 differential equation was one of the main

challenge when there is a coupling between the system of differential equations

that this when the potential is non-vanishing. By combining the Schrödinger

theory and Floquet’s theory we were able to come up with new method to solve

the 2×2 differential equation. The method is termed in this thesis ”the rotational

frame method”. By using the idea of rotational frame, we were able to obtain an

analytical solution for the 2×2 system. This is interesting since it gives us a tool

to study convergence of the Berreman approximated solution for inhomogeneous

anisotropic medium. This tool can be used since both Berreman and 2×2 system

produce the same traveling modes in any infinitesimal layer. Our study showed

that the Berreman approximated solution will converge to the analytical solution

but will not improve the accuracy after some number of partitions when the

Maugin condition is just satisfied. It turns out that the error in the Berreman
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approximated solution is a function of both wave length used light beam and

the length of the medium. In another wards, for a fixed medium, Berreman

approximated solution can improve the accuracy if we decrease the wave length

of the used light beam.

Finally, a similar argument used by Calderón in (EIT) has been used to an-

alyze the inverse problem for the Berreman model. His argument gives us the

tool to study the convergence of the Neumann series. As a consequence of that

we manage to linearize the inverse problem and obtain the solution that connects

the final data with the initial data.

9.2 Future work

From Maxwell’s equations and Berreman model, we have shown in detailed how

to derive the 2× 2 system of differential equations which works for both normal

and oblique incidents. As a continuation, we will consider two cases:

9.2.1 Non-vanishing tilt angles

In this thesis, we have not considered the case in which the tilt angle in not

vanishing. In such situation, the Maxwell equations can not be reduced into a

2 × 2 system of differential equations which depends only on the electric field

components. The main reason is that the principal axes will not be normal to

the direction of variations and as a result of that the dielectric tensor will have

extra components compared with the case considered in this thesis.

In fact, this is a much more difficult problem since the magnetic field compo-

nents will coupled with the electric field components. This coupling between the
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components make it difficult to eliminate the magnetic field components and we

would like to investigate this case in the future.

9.2.2 Reconstruction of the potential

One of the results we obtained in this thesis is that the derivation allows us to

encode the orientation of the director inside the sample into the potential of the

Schrödinger equation. This equation has been studied in Quantum Mechanics

and some results have been published. In one dimension, the inverse problem for

this equation is to recover the potential from the scattering data. This problem

has been investigated by I. M. Gel´fand and B. M. Levitan. In matrix form, a po-

tential work has been done by Marchenko and others in this area and some results

has been established and published to recover the potential of the Schrödinger

equation. The reconstruction of the potential is indeed the recovering the optical

axis of the sample and this leads to recover the dielectric tensor. Some work

needed to investigate the application of the Marchenko results on our model.
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