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PAUL GLENDINNING

Abstract. A very simple two-dimensional map is discussed. It is shown that
for appropriate values of the parameters there is a two dimensional subset of the
plane on which the dynamics is transitive and periodic orbits are dense, but that
this topological attractor contains a one dimensional set which attracts almost all
points (i.e. it is a Milnor attractor). This arises naturally as a precursor to a blowout
bifurcation to on-o� intermittency in this system, and con�rms a conjecture due to
Pikovsky and Grassberger.
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1. Introduction

Since the pioneering work of Fujisaka and Yamada [11,12,13,29] the study of the
stability of synchronized states, and especially the stability of these states to non-
synchronized (transversal) perturbations, has been a subject of interest. Many of the
models of this phenomenon involve coupling identical nonlinear systems. These mod-
els are particularly interesting when the nonlinear systems are chaotic in the absence
of coupling due to the possibility of Milnor attractors and riddled basins appearing
when the systems are coupled [1,3,21]. These exotic objects arise naturally as part
of a blowout bifurcation: as a parameter is varied we may imagine that some orbits
of the synchronized attractor lose stability in transverse directions although typical
synchronized orbits remain transversally stable. At this stage the synchronized state
is no longer Liapunov stable, although it is possible that almost all orbits are eventu-
ally attracted to the synchronized state (the precise details depend on global features
of the system [2,3,23]) which is called a Milnor attractor. As a parameter is varied
further the typical orbits in the synchronized state may lose transverse stability in
a blowout bifurcation, leading to dynamics with intermittent characteristics { orbits
spend a long time close to the synchronized state interspersed with larger 
uctuations
away from the synchronized state. This implies that there is a discontinuous change
in the geometry of the attracting set as the parameter passes through the blowout
bifurcation point. The aim of this paper is to show that in some examples this is
part of a continuous change in the topological structure of orbits. In the example
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considered below we show that for parameter values for which the synchronized state
is a Milnor attractor, there is a larger invariant set, containing a dense orbit and
the synchronized state, which is the attractor of open sets in the system. This topo-
logical attractor is the object which becomes the attractor of almost all orbits after
the blowout bifurcation. In this way, this example provides one way by which the
apparently discontinuous jump in topology at the blowout bifurcation can be seen
as a continuous phenomenon. It is hoped that this will be a more general feature of
supercritical blowout bifurcations. The analysis also provides a concrete example of
one of the possible structures for Milnor attractors described in [4].
Pikovsky and Grassberger [25] introduced a family of two dimensional non-invertible

maps as a simple paradigm of synchronization:

xn+1 = (1� !)fa(xn) + !fa(yn)
yn+1 = !fa(xn) + (1� !)fa(yn)

(1:1)

where ! 2 (0; 1
2
) and fa : R! R is the skew tent map

fa(z) =
az if z � a�1
a

a�1(1� z) if z � a�1 a > 1 (1:2)

It should be obvious that this system has a synchronized state in which xn = yn for all
n 2 N. Geometrically, this corresponds to motion on the diagonal, and this motion
is governed by the one-dimensional skew tent map (1.2) since if (xn; yn) = (zn; zn)
then (xn+1; yn+1) = (fa(zn); fa(zn)). It should be equally clear that the unit square
S = [0; 1]2 is invariant, and henceforth all remarks will be con�ned to the map
restricted to S. For this example it is possible to determine the transverse stability
of any periodic orbit embedded in the chaotic synchronized state (see section two
and [15,25]) and also �nd the natural invariant measure on the synchronized state
(it is simply Lebesgue measure [5]). Thus, if a is regarded as �xed, as ! decreases
from 1

2
it is possible to determine the parameter at which the �rst synchronized orbit

loses transverse stability (the point at which the synchronized state as a whole loses
asymptotic stability), the point at which `typical' trajectories lose transverse stability
(the blowout bifurcation point in the language of [3,8]) and �nally the point beyond
which all synchronized states are transversely unstable. For the range of values
of a considered below, there is on-o� intermittency immediately after the blowout
bifurcation [1,2,3,19,24,25,26], and between the loss of asymptotic stability and the
blowout bifurcation the synchronized state is a Milnor attractor (i.e. it attracts
almost all initial conditions locally in a measure theoretic sense [1,3,4,8,17,21,25]).
Pikovsky and Grassberger [25] conjecture that for this range of parameter values
this Milnor attractor is embedded in a closed quadrilateral inside which periodic
points are dense, and this closed quadrilateral (in some sense the topological attractor
before the blowout bifurcation) is e�ectively the object which becomes both the
measure theoretic and the topological attractor after the blowout bifurcation. In
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this picture, then, there is no discontinuous jump in the topological attractor at
the blowout bifurcation point { it is only the geometry of the measure theoretic
description of the dynamics which changes radically. By generalizing the idea of the
locally eventually onto property (which was used by Williams [28] to prove results
about one-dimensional Lorenz maps [16]) to piecewise a�ne maps of the plane we
prove this conjecture, showing that between the loss of asymptotic stability of the
synchronized state and the point of blowout bifurcation there is a closed quadrilateral
on which the dynamics is transitive (there is a dense orbit) and periodic points are
dense. The proof works only for a limited range of values of a, and it will also become
apparent that the cases 1 < a < 2 and a > 2 lead to di�erent results, particularly on
the geometry of absorbing regions.
The remainder of this paper is organized as follows. In section two we review the

results known for (1.1,2) [15,17,25] and state the main theorem, which was announced
in [15]. In section three we describe an absorbing region in a subset of the case
1 < a < 2, and in section four we give the formal de�nition of the a�ne locally
eventually onto property and prove that the dynamics restricted to the absorbing
region is transitive if 1

2
(1 +

p
5) < a < 2. In section �ve we complete the proof of

the theorem. In section six we turn attention to the absorbing region in the case
a > 2. A brief appendix outlines the consequences of the a�ne locally eventually
onto property used in the proof of the theorem.
Acknowledgements: I am grateful to Gian-Italo Bischi for introducing me to the

idea of absorbing regions and to Peter Ashwin for pointing me towards the paper of
Pikovsky and Grassberger [25]. A referee suggested a simpli�cation used in the proof
of Lemma 4.3.

2. Preliminaries and statement of results

The system (1.1,2) was introduced because it is possible to compute stability ex-
ponents (Liapunov exponents) explicitly and the natural equilibrium (Sinai-Bowen-
Ruelle) measure is known. It is therefore a very natural example to use in the
exploration of synchronization and blowout bifurcations. A synchronized state may
be described via the behaviour of either coordinate, since both coordinates evolve
by (1.2): zn+1 = fa(zn) (note that this equation is independent of the second pa-
rameter, !, so ! is a normal parameter in the jargon of [3,8]). The dynamics of
points under this one dimensional map can be described topologically using kneading
theory [9,20,27]. Let c(z) = 1 if z > a�1 and c(z) = 0 if z < a�1. Then the knead-
ing sequence of a point which is not a preimage of a�1 is the sequence of 0s and 1s,
k(z) = c(z)c(fa(z))c(f

2
a (z)) : : : . If z is a preimage of a�1 then two kneading sequences

(the upper and lower kneading sequences) are associated to z, one by approaching z
from above through points which are not preimages of a�1 and one by approaching z
from below through points which are not preimages of a�1. Such sequences will be of



4 PAUL GLENDINNING

the form A101 and A01 (not necessarily respectively) where A is a �nite sequence
of 0s and 1s and 01 represents an in�nite sequence of 0s. All possible sequences of
1s and 0s arise as the kneading sequence (possibly upper or lower) of some point in
the unit interval, and every periodic sequence corresponds to a point on a periodic
orbit of the same period as the sequence (a statement which is not true for general
unimodal maps). It is not surprising, given the piecewise linear nature of fa, that the
stability of orbits is related to the proportion of 0s and 1s in its kneading sequence.
The form of the coupling between the maps means that in the full system (1.1,2), the
stability of a synchronized state can be read o� from the stability of the correspond-
ing one-dimensional map [10,11,12,13,14,18,29]. This stability in turn determines the
blowout bifurcation point.
Let z 2 [0; 1]. Then the Liapunov exponent of z under fa, �(z), is the limit

�(z) = lim
n!1

1

n

n�1X
k=0

log jf 0a(fka (z))j (2:1)

provided the limit exists. Similarly, if A is a uniquely ergodic invariant set with
invariant measure m then the Liapunov exponent of A is

�(A) = [m(A)]�1
Z
A
log jf 0a(x)j dm: (2:2)

With these de�nitions it is easy to prove the following lemma.

Lemma 2.1. The unit interval, I = [0; 1] is uniquely ergodic and the invariant
measure is Lebesgue measure. Furthermore,

�(I) = log a� (1� a�1) log(a� 1):

If �(z) = ` for some z 2 I then ` = log a � � log(a � 1) for some � 2 [0; 1].
Conversely, for all � 2 [0; 1] there exists z 2 [0; 1] such that �(z) exists and equals
log a� � log(a� 1).

Proof: The �rst statements follow immediately from [5] and direct integration (see
also [15,17]). Now for z 2 I let

�n(z) =
1

n

n�1X
k=0

c(fka (z)) (2:3)

with c(z) as de�ned at the beginning of this section, and

�n(z) =
1

n

n�1X
k=0

jf 0a(fka (z))j (2:4)

Then by direct calculation,

�n(z) = log a� �n(z) log(a� 1) (2:5)
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and so �n tends to a limit if and only if �n tends to a limit. If �n does tend to a
limit then that limit is in [0; 1] and so in such a case �n(z) ! log a � � log(a � 1)
for some � 2 [0; 1] as required. To complete the proof we need only show that for
each � 2 [0; 1] there exists z 2 I such that limn!1 �n(z) = �. But this is true since
given any � 2 [0; 1] there is certainly an in�nite sequence of 0s and 1s such that
the proportion of 1s in that sequence is asymptotically equal to �. But for any such
sequence, s say, there is a point z such that k(z) = s and so �(z) = log a�� log(a�1).

�
Lemma 2.1 gives the �rst indication that the cases 1 < a < 2 and a > 2 will be

di�erent: If 1 < a < 2 then the most unstable point (largest Liapunov exponent) is
the non-trivial �xed point which corresponds to � = 1, i.e. z = a=(2a � 1), whilst
the least unstable is the �xed point with � = 0, i.e. z = 0. These are reversed in the
case a > 2.
If we now consider the stability of synchronized orbits of the full two dimensional

system (1.1,2) it is not hard to see that the Jacobian matrix has an eigenvector of
(1; 1)T , (the superscript T indicates the transpose of the vector) corresponding to per-
turbations in the synchronized direction, and an eigenvector of (1;�1)T , correspond-
ing to transverse perturbations. A synchronized orbit therefore has two Liapunov
exponents: one, in the synchronized direction, is simply the Liapunov exponent un-
der the one dimensional map fa given by (2.1). The second, �?(z), is in the transverse
direction:

�?(z) = log j1� 2!j+ �(z) (2:6)

which clearly exists if �(z) exists. Equation (2.6), together with Lemma 2.1 allows
us to obtain the transversal bifurcation structure of synchronized states. Let

!b =
1

2

�
1� e��(I)

�
(2:7)

with �(I) given by Lemma 2.1 (!b is the blowout bifurcation value).

Lemma 2.2. Let (�1; �2) = (a�1
2a
; 1
2a
) if a 2 (1; 2) and (�1; �2) = ( 1

2a
; a�1

2a
) if a > 2.

If a > 1 and a 6= 2 then
(i) if ! > �2 then the synchronized state is asymptotically stable;
(ii) if ! 2 (!b; �2) then at least some of the synchronized orbits are transversely
unstable, but I is transversely stable (i.e. �(I) < 0);
(iii) if ! 2 (�1; !b) then at least some of the synchronized orbits are transversely
stable, but I is transversely unstable;
(iv) if ! 2 (0; �1) then all synchronized orbits are transversely unstable.

Proof: See [15,17].
�
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It is the parameter regions characterized by Lemma 2.2(ii) with a < 2 which
will be our main focus of attention below. Here, typical orbits in the synchronized
subspace are transversely stable, but there are transversely unstable orbits embedded
in I. This means that the immediate basin of attraction of the synchronized state is
locally riddled [1,2,3,4,8,19,23], i.e. the diagonal is a Milnor attractor [1,4,17].
The proof of the main result of this paper relies on a generalization of the idea of

the locally eventually onto property exploited by Williams [28] in the context of one
dimensional maps, see section 4 and the Appendix. The result is as follows.

Theorem A. Fix a 2 (1
2
(1+

p
5); 2) and let O = (0; 0), I = (1; 1), R = (2!; 1�2!+2!

2

1�! )

and R0 = (1�2!+2!
2

1�! ; 2!). If D is the �lled in quadrilateral ORIR0 and if ! 2 (!b;
1
2a
)

then
(i) F is transitive on D (i.e. there is a dense orbit in D); and
(ii) periodic points are dense in D.
This con�rms a conjecture of Pikovsky and Grassberger [25]. The next two sections

contain the proof of this result. It will become apparent in the next two sections that
D may be called the global attractor: D is a global attractor for S if D is invariant
and for all open U � S there exists n0 (which depends on U) such that F n(U) � D
for all n > n0. Indeed, in our case

D = [n>n0F n(U)

for any such U (this result follows from the a�nely locally eventually onto property
proved in section 4). It is possible that this way of seeing the result provides a clue
to a more general feature of systems undergoing supercritical [2,3,8] (or hysteretic
[23]) blowout bifurcations. We conjecture that if a system undergoes a generic super-
critical blowout bifurcation then for parameter values just before bifurcation (when
the synchronized state is a Milnor attractor) then the system has a non-trivial global
attractor which contains a continuation of the support of the invariant measure for
dynamics in the regime of on-o� intermittency after the blowout bifurcation.

3. Absorbing region: a 2 (1; 2)

The aim of this section is to establish the existence of an invariant region D which
attracts all orbits in the unit square S. The critical lines of the skew tent map (1.2)
divide S into four regions on each of which the map (1.1) is a�ne, and D intersects
each of these a�ne regions. The strategy of this section will be to de�ne D in terms
of iterates of the critical lines, then to show that the images of the four parts of D in
the a�ne regions are in D, thus establishing the invariance of D. Finally it is shown
that orbits in S are attracted to D.
Consider (1.1,2) with a 2 (1; 2). The critical lines x = a�1 and y = a�1 divide the

square S into four regions on which the map acts as an a�ne map, and so given two
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Figure 1. Sketch of the construction of the absorbing region D =
ORIR0. The points labelled are de�ned in the main text but for ease of
reference recall: A = (a�1; a�1), O = (0; 0), I = (1; 1), T = F (0; a�1),
F (O) = F (I) = 0, F (A) = I and F (M) = R0. Primed variables are
obtained from unprimed variables by re
ection in the diagonal.

points in the same region, the line between them is mapped to the line connecting
their images. For convenience we shall give these four regions names:
Region 1: f(x; y) 2 S j x � a�1; y � a�1g
Region 2: f(x; y) 2 S j x � a�1; y � a�1g
Region 20: f(x; y) 2 S j x � a�1; y � a�1g
Region 4: f(x; y) 2 S j x � a�1; y � a�1g.
In general, primed points and regions will denote the re
ection of the unprimed

point or region in the diagonal, re
ecting the invariance of the equations under the
symmetry

(x; y)! (y; x) (3:1)

and wherever possible we shall use primes to denote points which are below the
diagonal, so sometimes a point (for example, R below) wil be de�ned via its prime
point (R0 below). By Lemma 2.2, the synchronized state is asymptotically stable if
2a! > 1, so assume that

2a! < 1: (3:2)

The absorbing region is constructed following [6,7,22] by considering the images of
the critical lines. Figure 1 shows the geometry of these lines and their images for the
parameter values considered below.
Let I = (1; 1) and O = (0; 0) and let F : R2 ! R2 denote the map (1.1,2), so by

direct calculation, F (I) = F (O) = O, and if A = (a�1; a�1) then F (A) = I. The
image of the line y = a�1 is the union of the image of the line segment from A to
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(0; a�1) and the line segment from A to (1; a�1), and by direct calculation again

F (1; a�1) = F (0; a�1) = (!; 1� !)

so, since F (A) = I the image of y = a�1 is IT , where

T = (!; 1� !): (3:3)

By de�nition, ! < 1
2
(see immediately below (1.1)), and a 2 (1; 2), so ! < a�1. Thus

T lies either in region 1 or region 2. The line IT intersects the critical line x = a�1

at M where

M =

�
a�1; 1� !

1� !

a� 1

a

�
(3:4)

and so M lies above the critical line y = a�1 provided

1� !

1� !

a� 1

a
> a�1:

Although this inequality looks complicated, a little manipulation shows that it is
equivalent to a > 1, and so M always lies above A. We now consider the image
of IM . Since IM lies in region 4, the image of IM is the straight line between
F (I) = O and F (M) = R0. Since M is on the critical curve x = a�1, R0 is on
IT 0 (recall that the primes denote re
ection in the diagonal, and R0 lies below the
diagonal, so R = F (M 0) is obtained from R0 using the symmetry (3.1)). Now, by
direct calculation,

R0 =

�
1� 2! + 2!2

1� !
; 2!

�
(3:5)

and we now wish to show that R0 is in region 20 as shown in Figure 1. Clearly (3.2)
implies that 2! < a�1, so R0 lies in y < a�1. It is therefore necessary to show that

1� 2! + 2!2

1� !
> a�1

or equivalently

2!2 � (2� a�1)! + 1� a�1 > 0: (3:6)

Fix a 2 (1; 2).The left hand side of (3.6) has a minimum at ! = 1
4
(2�a�1) and so the

minimum value of the left hand side is 1
8
(8� (2 + a�1)2). Thus (3.6) holds provided

1

2(
p
2� 1)

< a < 2: (3:7)

It is worth noting that this result is not improved if we include the constraint that
! 2 (0; 1

2a
). If (3.7) does not hold then there will be some values of ! < 1

2a
for which

R lies in region 1; these would need to be treated separately if the analysis were to
be extended to values of a close to 1.
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Proposition 3.1. If 1=[2(
p
2 � 1)] < a < 2 and 0 < ! < 1

2a
then the region

D = ORIR0 is invariant and if, in addition, a > 3
2
then F 2(S) = D.

Proof: We have already established that for these values of the parameter, R lies in
region 2 and so the geometry is as shown in Figure 1. By de�nition,

F (AMIM 0) = ORIR0 = D (3:8)

which establishes that a point inside the part of D in region 4 remains in D under
one iteration of the map, and will also be useful in the transitivity argument later.
Now consider the part of D which lies in region 1: this is OSAS 0 where

S =

�
2!(1� !)

a(1� 2! + 2!2)
; a�1

�
(3:9)

Since S lies on the critical line y = a�1, its image will lie on IT . Moreover, since
F (A) = I and F (O) = O we see that F (OSAS 0) � D provided F (S) lies to the right
of R. By direct calculation again, this condition is

2!(1� !)2

1� 2! + 2!2
+ ! > 2! (3:10)

which, after some manipulation is seen to hold i� ! < 1
2
. Hence F (OSAS 0) � D.

To complete the proof of the invariance of D it is therefore su�cient to prove that
F (SAMR) � D. We already know that F (A) = I, F (M) = R0 and F (S) is on the
line segment RI, hence all that remains is to show that F (R) 2 D. We shall do this
in a number of steps. First note that if R is in region 2 then

F (R) =

�
2a!(1� !) +

a!2(1� 2!)

(1� !)(a� 1)
; 2a!2 +

a!(1� !)

a� 1

�
(3:11)

The �rst two steps establish that F (R) lies inside the cone formed by the lines through
OR and OR0 by checking that the slope of the line OF (R) is less than the slope of
OR and greater than the slope of OR0. After a little tidying up the slope of OF (R)
is

2(a� 1)!(1� !) + (1� !)(1� 2!)

2(a� 1)(1� !)2 + !(1� 2!)
(3:12)

Step 1: The slope of OR0 is less than the slope of OF (R), i.e.

2!(1� !)

1� 2! + 2!2
< (1� !)

�
2(a� 1)! + (1� 2!)

2(a� 1)(1� !)2 + !(1� 2!)

�

Cancelling the factors of 1�! and rearranging we �nd that this condition is equivalent
to 2a! < 1 and hence always holds.
Step 2: The slope of OR is greater than the slope of OF (R), i.e.

1� 2! + 2!2

2!(1� !)
>

2(a� 1)!(1� !) + (1� !)(1� 2!)

2(a� 1)(1� !)2 + !(1� 2!)
:
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After some further manipulation this inequality can be seen to be equivalent to the
condition

2a!2 � (4a� 3)! + 2(a� 1) > 0: (3:13)

Viewing (3.13) as a quadratic in ! with a �xed we see that it takes its minimum
value if ! = 1

4a
(4a� 3) and at this value the quadratic is

� 1

8a
(4a� 3)2 + 2(a� 1) =

1

8a
(8a� 9):

Thus, provided a > 9
8
, the quadratic is always positive, and since 9

8
< 1

2(
p
2�1) , F (R)

is always below the line obtained by extending OR.
To complete the invariance proof for D we now repeat the process for the cone

obtained by extending the lines RI and R0I. For future reference, the slope of RI is
the same as TI, which from (3.3) is !=(1�!). Similarly, the slope of R0I is (1�!)=!.
Step 3: F (R) lies to the left of the line R0I.

The line R0I is the line
x = 1� !

(1� !)
(1� y): (3:14)

Consider a horizontal line (y = constant) through the point F (R). This will intersect
the line (3.14) at x1 obtained by substituting the y�coordinate of F (R) into (3.14).
We require the x�component of F (R) to be less than x1, i.e.

2a!(1� !) +
a!2(1� 2!)

(a� 1)(1� !)
< 1� !

(1� !)

�
1� 2a!2 � a!(1� 2!)

a� 1

�
:

After some miraculous cancellations this condition is seen to be equivalent to 2a! < 1
and so it holds for all relevant parameter regions.
Step 4: F (R) lies below the line RI.

The line RI is the line
y = 1� !

(1� !)
(1� x) (3:15)

Consider a vertical line through the point F (R) which meets (3.15) at y2. We wish
to show that the y�coordinate of F (R) is smaller than y2, i.e.

2a!2 +
a!(1� 2!)

a� 1
< 1� !

(1� !)

�
1� 2a!(1� !) +

a!2(1� 2!)

(a� 1)(1� !)

�
:

After some simpli�cation, this condition is equivalent to

2a!2 � (2a� 1)! + (a� 1) > 0

and, viewing this as a quadratic in ! with a �xed, the minimum value is (2a �
1)2=(8a) > 0, so this condition always holds.
Step 4 completes the proof that D is invariant for the stated parameter values, it

only remains to show that it is attracting if a > 3
2
in the sense that F 2(S) = D. By

considering the image of the points (1; 0), (0; a�1) and so on it is easy to see that
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F (S) = OTIT 0. If 1� ! > a�1 then T lies in region 2. But 1� ! > a�1 i� ! < a�1
a

and since 1
2a
< a�1

a
if a > 3

2
this condition holds, so T is in region 2 and the line OT

intersects the critical line at a point Q. Since D is invariant we need only show that
the images of OSQ (a triangle in region 1) and SRTQ (a quadrilateral in region 2)
are in D to complete the proof. We know enough about all points except Q and T
already, and it is an easy calculation to check that F (Q) lies on the line RI between
R and F (S). Hence the image of the region OSQ lies in D as required.
To establish the position of F (T ) we need two small results. First, the slope of the

line OF (T ) is
(1� !) + !(a� 1)

(1� !)(a� 1) + !
(3:15)

from which it is straightforward to show that the line OF (T ) lies between the lines OR
and OR0 provided ! < a�1

a
and ! < 1

a
respectively, both of which hold in this region

of parameter space. Second, if we compare the x�component of R with that of F (T )
we �nd that F (T ) lies to the right of R provided ! < a�1

a
(these are straightforward

calculations which will be omitted). Taken together, these facts imply that F (T ) is
in D and so the image of SRTQ also lies in D and the proof of the proposition is
complete.

�
We have not bothered to consider what happens if a < 3

2
in detail, but expect that

D remains an attracting region (unless a is close to 1), but it may take more steps
before orbits enter the region.

4. The affinely locally eventually onto property for D:
a 2 ((1 +

p
5)=2; 2).

We now want to show that the dynamics on D is transitive and that periodic points
are dense in D. The proof of both of these properties is obtained by proving that the
dynamics on D satis�es a stronger condition that we call a�nely locally eventually
onto or a.l.e.o. In the Appendix we show that this property implies that the dynamics
in D is transitive and that periodic points are dense, so this property implies the two
results of Theorem A in section 2.
De�nition: An open set U in D has the a.l.e.o property i� there exists n > 0 and
a set W � U homeomorphic to a closed disc, such F njW is a�ne and invertible, and
that F n(W ) = D. The map F is a.l.e.o. on D i� every open set U � D has the
a.l.e.o property.
The proof that the a�ne map (1.1,2) is a.l.e.o. on D if a 2 (1

2
(1 +

p
5); 2) and

! 2 (!c;
1
2a
) follows the corresponding proof for one dimensional tent maps quite

closely (cf. [27]). First, we show that every open set must eventually intersect one of
the two critical lines x = a�1 or y = a�1, and use this to show that it must in fact
eventually contain a piece of the diagonal. Then we can use the properties of the
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skew tent maps to show that any open region eventually contains a neighbourhood
of the non-trivial synchronized �xed point, and then �nally properties of this �xed
point are used to establish the result. Throughout this process, if U is mapped across
a critical line we choose to follow only one branch of the iterates so that the map
(restricted to an appropriate subset of U) remains a�ne. Before going through this
argument in more detail we need a couple of technical asides.
In each of the four regions of S separated by the critical lines, F is an a�ne

map, and det DF is non-zero and has modulus greater than one if ! 2 (0; 1
2a
) and

a 2 (1
2
(1 +

p
5); 2) (see below). Hence if x is not a preimage of a critical line,

jdetDF n(x)j > 1 for all n � 0 and so F n is invertible at such points. In order to
control the geometry of iterates of sets, we choose to work with convex polygons for
much of this proof. Recall that U is a convex polygon if the boundary of U is a
collection of line segments and if for all x; y 2 U and � 2 [0; 1], �x + (1 � �)y 2 U .
Three properties of open convex polygons and their images will be important below.
First, if U is an open convex polygon and F jU is a�ne and invertible, then both
F (U) and F�1(U) are open convex polygons (this is obvious as straight lines map to
straight lines under a�ne maps). Second, if F and U are as before and L is a straight
line, then L \ U 6= ; implies that L divides U into two non-empty open convex
polygons separated by the connected line segment L \ U . The important point here
is that the images of convex polygons are divided into two connected components
and no more. Finally note that given any open subset J � S there exists an open
convex polygon K � J , so if we can show that all open convex polygons eventually
intersect the diagonal, then the result is also true for all open sets. Moreover, since
we have already established that the images of any open set in S eventually lie in D
we may restrict attention to open sets in D.
Throughout the remainder of this section Ui and Vi will represent open convex

polygons in D, and jU j will denote the area of U .
Suppose that U does not intersect a critical line. Then F jU is a�ne, and the area

of F (U) is the product of jU j with the determinant of the relevant a�ne map. So if
U lies in region 1 (se the beginning of section 3)

jF (U)j = a2(1� 2!)jU j (4:1)

Similarly, if U lies entirely in region 2 or 20 then

jF (U)j = a2

a� 1
(1� 2!)jU j (4:2)

whilst if U lies entirely in region 4 then

jF (U)j = a2

(a� 1)2
(1� 2!)jU j: (4:3)
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If a < 2 then region 1 is the least expansive, but areas are increased under iteration
provided a2(1�2!) > 1. Now, 2! < a�1, so 1�2! > 1�a�1, and a2(1�2!) > a2�a.
Hence a2(1� 2!) > 1 if a2 � a� 1 > 0, i.e. if a > (1 +

p
5)=2.

Hence if a > (1 +
p
5)=2 there exists � > 0 such that if F k(U) lies entirely in one

of the four regions separated by the critical lines de�ned in section three for each
k = f0; 1; 2; : : : ; ng, then

jF n+1(U)j � (1 + �)njU j (4:4)

If U � D then the left hand side is bounded by the area of D and so there must exist
N > 0 such that the interior of FN(U) intersects one of the critical lines x = a�1 or
y = a�1. In this case, the region is folded over itself at the next iteration, but it is
still possible to obtain a lower bound on the expansion. Before giving these results
note that we have used two very important inequalities which hold for our chosen
range of parameters: a2� a > 1 and 1� 2! > (a� 1)=a. Hence we may assume that
there exists � > 0 such that

a(a� 1) > 1 + � (4:5)

and

1� 2! >

�
a� 1

a

�
(1 + �): (4:6)

Suppose that U intersects SA and no other critical lines. Then (as U is an open
convex polygon) SA divides U into two (open convex) components, U1 in region 1
and U2 in region 2, such that U = U1 [ U2 [ (SA \ U), and F jUi , i = 1; 2, is a�ne.
Thus for some � 2 (0; 1) jU1j = �jU j and jU2j = (1��)jU j. Hence if d1 = a2(1� 2!)
and d2 = a2(1� 2!)=(a� 1), (cf. (4.1,2))

jF (U)j � max(d1�jU j; d2(1� �)jU j):
Clearly, the worst possible case is if the two quantities are equal, i.e. if � = d2=(d1+d2)
giving a minimal expansion or contraction of d1d2=(d1 + d2) times jU j. Evaluating
this expression we �nd that there exists k 2 f1; 2g such that

jF (Uk)j � a(1� 2!)jU j: (4:7)

The same expression holds if U intersects S 0A and no other critical curves of course.
Similarly, if U intersects AM but no other critical line, U is divided into two com-
ponents, U3 in region 2 and U4 in region 4 with F jUi a�ne, i = 3; 4, and a simi-
lar argument leads to an expansion or contraction of areas by at least a factor of
d2d3=(d2 + d3) where d3 = a2(1� 2!)=(a� 1)2, cf. (4.3). Thus in this case, or in the
equivalent case involving M 0A, there exists Um � U such that F jUm is a�ne and

jUmj � a

a� 1
(1� 2!)jU j: (4:8)
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If ! < 1
2a

then a(1 � 2!)=(a � 1) > 1 + � so (4.8) represents an increase in area
again. These expansion results are the main ingredients of the proof of Lemma 4.2,
for which we will also need to know about the position of F (R).

Lemma 4.1. Let F (R) = (F (R)1; F (R)2). If a 2 ((1 +
p
5)=2; 2) and ! 2 (0; 1

2a
)

then F (R)1 > F (R)2, i.e. F (R) lies below the diagonal.

Proof: F (R) is given by (3.11), so all that needs to be shown is that

2a!(1� !) +
a!2(1� 2!)

(1� !)(a� 1)
> 2a!2 +

a!(1� !)

a� 1
(4:9)

Multiplying through by (1 � !)(a � 1) > 0 and rearranging terms, this condition is
equivalent to 2(a� 1)(1� !) > 1� 2! or

a >
3

2
� !

2(1� !)
(4:10)

which is clearly satis�ed.
�

Lemma 4.2. Let U be an open convex polygon in D. Then there exists k > 0 and
V � U such that F kjV is a�ne and F k(V ) intersects the diagonal, OI.

Proof: Suppose not. We have already argued that an iterate of U must intersect a
critical line, and since (by the argument below (4.8)) areas are increased even if an
iterate falls on AM or AM 0 alone, either there exists n and U1 � U such that F njU1
is a�ne, jF n(U1)j > (1 + �)njU j (where � is de�ned by (4.5,6)) and either
(a) F n(U1) intersects SA alone; or
(b) (equivalently) F n(U1) intersects S

0A alone; or
(c) F n(U1) intersects at least two critical lines.
The easier case is (c), so we consider this �rst. Since (by hypothesis) F n(U1) does

not intersect the diagonal, it must intersect both SA and AM or (equivalently) S 0A
and AM 0. Take the unprimed case. Let U2 be the component of F n(U1) in region
2 (there is only one such connected component since F n(U1) is a convex polygon),
and note that there exists U3 2 U1 such that F n(U3) = U2 and F n+1jU3 is a�ne.
Now, U2 contains a segment of SA and a segment of AM in its boundary, and hence
F (U2) = F n+1(U3) contains a segment of RI (i.e. the image of AS) and a segment of
R0I (i.e. the image of AM). But this implies that F n+1(U3) contains a piece of the
diagonal, contradicting the hypothesis.
Now take case (a), or equivalently (b). If F n(U1) intersects SA alone the AS

divides F n(U1) into two components on which F is a�ne: U4 in region 1 and U5 in
region 2, both of which have F n(U1) \ SA on their boundaries. By the argument at
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the beginning of this section we know that for at least one of these polygons, Um say
(m 2 f4; 5g),

jF (Um)j > a(1� 2!)jF n(U1)j: (4:11)

Now either F (Um) lies in region 2, or in region 4, or it intersects a critical line. In
either of the �rst two cases the expansion is at least that of region 2, so

jF 2(Um)j > a3

a� 1
(1� 2!)2jF n(U1)j:

Since 1 � 2! > (a � 1)=a, the growth factor here is larger than a(a � 1) which is
greater than one (cf. (4.5)). Moreover, by the choice of intervals, there exists U6 � U1

such that F n+2jU6 is a�ne and F n(U6) = Um, i.e.

jF n+2(U6)j > (1 + �)n+1jU j: (4:12)

This represents a continued increase in area, and so cannot happen in�nitely often.
The second possibility for case (a) is that F (Um) intersects a critical line (but not

two critical lines by the argument already rehearsed for case (c)). If F (Um) intersects
AS we are done, since the connected component of F (Um) in region 2, U7, contains a
piece of RI on its boundary (the image of AS { if this did not lie in region 2 then we
would have an intersection with AM leading to a contradiction) and a piece of AS.
Hence the boundary of F (U7) contains a segment below the diagonal (the image of IR
lies below the diagonal by Lemma 4.1) and a segment above the diagonal (the image
of AS in RI) and hence F (U7) contains a piece of the diagonal: a contradiction.
This leaves only case (a) with Um de�ned by (4.11) and F (Um) intersects AM and

has piece of RI on its boundary. This is the beginning of a sequence of iterations
which must be dealt with inductively. AM divides F (Um) into two pieces, one in
region 2 and the other in region 4. Let U8 denote the component which maximizes
the area of its image. By (4.8),

jF (U8)j > (1 + �)jF (Um)j (4:13)

and F (U8) contains a piece of IR0 on its boundary. If F (U8) does not intersect
a critical line then it lies either in region 20 or in region 4 and we have a continued
increase in area by the same argument as that which gives (4.12), whilst if it intersects
AS 0 we obtain a contradiction equivalent to that obtained in the previous paragraph.
Hence, to avoid a continued net expansion (compared to jU j) we �nd that F (U8)
intersects AM 0 and we are in the same situation as before but with Um replaced by
U8 and primed symbols exchanged with unprimed line symbols. The only way to
continue to avoid a net increase in area (compared with jU j) is for the largest image
to intersect AM then AM 0, then AM again and to keep oscillating. But even this
produces a small increase in area (by a factor of 1 + �) and so it cannot continue
inde�nitely, and eventually there is an increase in area compared to jU j.
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This implies that if images of U avoid the diagonal, the area of the images becomes
arbitrarily large, a contradiction as the images remain in D.

�
Let k and V have the properties de�ned in Lemma 4.2, so F k(V ) contains a piece

of the diagonal. If a < 2 then the non-trivial synchronized �xed point, G given by

G =

�
a

2a� 1
;

a

2a� 1

�
(4:14)

is unstable in both the synchronized direction and the transverse direction, see section
2. Moreover, since preimages of the �xed point a=(2a � 1) are dense for the one di-
mensional skew tent map (1.2), there exists p � 0 and V1 � V such that such F k+pjV1
is a�ne and G 2 F k+p(V1). Our �nal lemma ensures that every such neighbourhood
of G contains a preimage of D.
Lemma 4.3. Suppose that 0 < 2a! < 1 with a 2 (1; 2) and let U � D be an open
neighbourhood of G. Then there exists q � 0 and a compact convex polygon W � U
such that F qjW is a�ne and F q(W ) = D.
Proof: Since F (AMIM 0) = D (cf. (3.8) above), all we need to do is show that in
any neighbourhood of G there is a compact convex polygon W such that F q�1(W ) =
AMIM 0. Now, G is in region 4 where F has Jacobian matrix

� a

a� 1

�
(1� !) !

! (1� !)

�

with eigenvalues �s = �a=(a � 1) and �? = �a(1 � 2!)=(a � 1), which both have
modulus greater than one. Hence the inverse of this map, F�14 , is an a�ne contraction
mapping and the sets F�n4 (AMIM 0) are convex polygons which accumulate on the
�xed point G. Hence given any open neighbourhood U of G there exists n such that
F�n4 (AMIM 0) � U and we may set W = F�n4 (AMIM 0).

�
Corollary 4.4. If a 2 ((1 +

p
5)=2; 2) and 0 < 2a! < 1 then F is a.l.e.o. on D.

Proof: By Lemma 4.2, every open subset J in D contains an open convex polygon V2
such that F njV2 is a�ne and F n(V1) intersects the diagonal for some n � 0. By the
argument above the statement of Lemma 4.3, this implies that there exists an open
convex polygon V1 � V2 and p � 0 such that F n+pjV1 is a�ne and G 2 F n+p(V1). But
then by Lemma 4.3 there exists q � 0 and a compact convex polygon W 2 F n+p(V1)
such that F qjW is a�ne and invertible, and F q(W ) = D. By choosing the appropriate
preimage of W in V1 we �nd a compact convex polygon W 0 in V1 (and hence in J)
such that F n+p+qjW 0 is a�ne and invertible, and F n+p+q(W 0) = D.

�
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Figure 2. Numerical simulation of the attractor with a = 1:8 and
! = 0:24 (just after the blowout bifurcation which is at !b � 0:24845
but before the synchronized state becomes completely transversely
stable at ! � 0:2222). 50000 iterates are plotted with initial value
(x; y) = (0:2; 0:25). Note that they are concentrated close to the diag-
onal indicating on-o� intermittency. The attractor is D.

Statements (i) and (ii) of Theorem A now follow immediately from the a.l.e.o. prop-
erty as shown in Theorem B of the Appendix. Figure 2 shows the numerically com-
puted attractor of (1.1,2) just after the blowout bifurcation (i.e. with ! a little less
than !b). The support of the attractor is clearly D, and points seem to be con-
centrated close to the diagonal (the Milnor attractor when ! is a little larger than
!b).

5. The Milnor attractor: a 2 ((1 +
p
5)=2; 2)

If a 2 ((1 +
p
5)=2; 2) and ! 2 (0; 1

2a
) then the dynamics on D is transitive. If

! 2 (!b;
1
2a
) then at least some of the synchronized orbits are transversely unstable,

but `typical' synchronized states are still transversely stable: the diagonal is a Milnor
attractor with locally riddled basin, B(V ), where, for any open neighbourhood V of
the diagonal T ,

B(V ) = fX 2 V j F n(X) 2 V all n > 0 and F n(X)! T g (5:1)

The relative measure of B(V ) tends to one as the measure of V (m(V )) tends to zero
[1,3,4,8,17]. Thus, B(V ) is large in a measure-theoretic sense. On the other hand,
B(V ) contains no open sets (every open set expands to cover the whole of D) and is
in this sense small from a topological point of view. These remarks, e�ectively proved
in [1,17], establish the claims made in the Introduction.
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6. Absorbing regions: a > 2

If a > 2 then the geometry of the absorbing regions can be quite di�erent to that
described above, and has an interesting bifurcation structure. We shall not go into
full detail of the absorbing regions, but we can indicate some of the e�ects observed.
Recall from section two that if a > 2 then the synchronized state loses asymptotic
stability at ! = a�1

2a
and becomes completely transversely unstable at ! = 1

2a
, with

the blowout bifurcation at !b 2 ( 1
2a
; a�1

2a
).

Recall the de�nition of the point R in section 3, equation (3.5). If 2!a < 1 (as in
section 3) R is in region 2, and the geometry is as before, with D an absorbing region
provided F (R) 2 D. The interesting new case is ! 2 ( 1

2a
; a�1

2a
).

In this case, R is in region 4 and D = ORIR0 remains an absorbing area, but is no
longer the smallest such region (see Figure 3). Let S denote the intersection of OR
with y = a�1 and P denote the intersection of OR with x = a�1. The image of OS
is OF (S), where F (S) is on RI, and OF (S) intersects x = a�1 at a point we shall
denote D, which is above A. Now, F 2(S) is on OR0 and F (D) is on IR0 (as it is on
the critical line x = a�1). These points allow us to build a closed region from the
images of critical curves as follows.
Let L be the region shown in Figure 3a,b, bounded by the curves listed below

(always starting with the line which lies above the diagonal)
� F (S)I and F (S 0)I;
� OF 2(S 0), which is the image of F (S 0)I, and OF 2(S);
� the segment of F 2(S 0)F (D0) which lies to the left of OF (S) (and which is part of
the image of the line OF (S 0)), and the image of this segment under re
ection in the
diagonal;
� the segment of OF (S) which lies above F 2(S 0)F (D0) and the image of this segment
under re
ection in the diagonal.
The region L is an absorbing area provided the obvious set of invariance conditions

hold (cf. [6,7,22]): we shall not write them down as they are not illuminating, and
furthermore, they hold in all of the numerical examples we have examined. As ! is
decreased through 1

2a
, L loses invariance because the transverse unstable manifold of

the non-trivial �xed point (which does not exist if ! > 1
2a
) now pierces the boundary

of L, and D becomes the smallest absorbing region. At the bifurcation value, ! = 1
2a

there is an orbit of period two on the boundary of L. In fact, the invariant transverse
manifold of the non-trivial �xed point in region 4 consists of marginally stable points
of period two since the corresponding eigenvalue of the Jacobian is �1. The change in
nature of the �xed point in region 4 is clearly visible in Figures 4b,c. In Figure 4b the
characteristic behaviour of a saddle is seen (the eigenvalues of the a�ne map at the
�xed point can be read o� from the calculation in the proof of Lemma 4.3 { they are
approximately �1:14 and �0:914), whilst in Figure 4c the behaviour is characteristic
of a node (unstable in this case, with eigenvalues of�1:14 and�1:028 approximately),
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Figure 3. (a) Geometry of the critical lines in the construction of
the region L; (b) numerical simulation of the attractor with a = 8 and
! = 0:1, which is after the blowout bifurcation !b � 0:15696) but before
the bifurcation at ! = 1

16
= 0:0625 below which all synchronized states

are transversely unstable; (c) numerical simulation of the attractor with
a = 8 and ! = 0:05 showing that the attractor is D.
50000 iterates are plotted with initial conditions (0:2; 0:25) in both (b)
and (c).
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where orbits are tangent to the weaker unstable direction, the transverse eigenvector
in this case.
With more work a more detailed description of the absorbing regions and attractors

for a > 2 could no doubt be established. The remarks above give some indication
as to how the boundary of the attractor can evolve, and how it may di�er from the
cases studied in the main part of this paper.
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APPENDIX

The aim of this appendix is to prove two basic results which follow from the a�ne
locally eventually onto property. I am grateful to Mark Muldoon for suggestions as
to how to simplify some of the proofs below. Although the results are still nowhere
near optimal, they are enough for the purposes of this paper.
Consider a piecewise a�ne map f : R2 ! R2 and letDfn denote the 2�2 Jacobian

matrix of fn. Recall that f is is a�ne locally eventually onto an invariant set D � R2

(a.l.e.o) i� for every open set U in D there exists a compact W � U homeomorphic
to a disc, and n > 0 such that fnjV is a�ne and invertible, fn(V ) = D.
Theorem B. Suppose that the piecewise a�ne map f : R2 ! R2 is a.l.e.o. on D.
Then
(i) periodic points are dense in D; and
(ii) f is transitive on D (i.e. there exists a dense orbit in D).
To prove this result we need the following easy lemma.

Lemma. Consider the linear map x! Bx where B is an invertible matrix. If W is
a compact subset of R2 homeomorphic to a disc, and W � BW then W contains a
periodic point of the map.

Proof: Since B is invertible, B�1W � W and the map B�1 is continuous on W .
Thus we may apply the Brouwer �xed point theorem to deduce the existence of a
�xed point in W .

�
Proof of Theorem B: Part (i) is a trivial consequence of the above Lemma (after

a translation of coordinates). Part (ii) follows from the standard style of argument,
which is given below for completeness.
Let �i be a monotonic sequence of positive real numbers with �i ! 0 as i ! 1.

Let Ci be a collection of Ni (Ni < 1) �i�balls, Bij, 0 � j � Ni � 1, such that
D � [jBij and Bij\D 6= ;. Choose this cover (adding an extra �i+1�ball if necessary)
so that Bi+1;0 � Bi;Ni . By taking appropriate inverses it is easy to see that the
a.l.e.o. property implies that for each i there exists compact connected Vi � Bi0 and
increasing sequence p(i; r), 1 � r � Ni such that fp(i;Ni)jVi is a�ne, fp(i;r)(Vi) � Bir,
1 � r < Ni, and f

p(i;Ni)(Vi) = c`(Bi+1;0).

Let qi =
Pi�1

k=1 p(k;Nk). By taking appropriate inverses, for eachm > 0 there exists
a closed connected subset Um � B11 such that f qi+p(i;r)(Um) � Bir, for 1 � i < m,
0 � r < Nm, and f qm+1(Um) = Bm+1;0 with f qm+1 jUm a�ne. Moreover, Um+1 � Um.
Hence the limit

U1 =
1\

m=1

Um



MILNOR ATTRACTORS 23

exists and is non-empty. Indeed, U1 must consist of a point (by the a.l.e.o. property
there are no wandering domains) and the orbit of U1 is clearly dense in D, as re-
quired.
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