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Abstract

We derive explicit solutions to the problem of completing a partially specified
correlation matrix. Our results apply to several block structures for the unspecified
entries that arise in insurance and risk management, where an insurance company
with many lines of business is required to satisfy certain capital requirements but
may have incomplete knowledge of the underlying correlation matrix. Among the
many possible completions we focus on the one with maximal determinant. This
has attractive properties and we argue that it is suitable for use in the insurance ap-
plication. Our explicit formulas enable easy solution of practical problems and are
useful for testing algorithms for the general correlation matrix completion problem.

Keywords. Matrix completion, correlation matrix, positive definite matrix, maximal
determinant, chordal graph, covariance selection, insurance, risk management.

1 Introduction

In many applications missing values in a set of variables lead to the construction of an
approximate correlation matrix that lacks definiteness and hence is not a true correlation
matrix. Replacing the approximate correlation matrix by the nearest correlation matrix
is a popular way to restore definiteness, and good numerical methods are available for
this task: [4], [13], [14], [19]. Here we are concerned with problems in which the missing
values are in the correlation matrix itself. Some of the matrix entries are known, having
been estimated, prescribed by regulations, or assigned by expert judgement, but the
other entries are unknown. The aim is to fill in the missing entries in order to produce
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a correlation matrix. Of course there are, in general, many possible completions. For
example, the partially specified matrix A =

[
1 a12
a12 1

]
is a correlation matrix for any a12

such that |a12| ≤ 1. Our focus is on the completion with maximal determinant (given by
a12 = 0 in this example), which is unique when completions exist.

This work is motivated by an application in the insurance industry, where a correla-
tion matrix is used in the aggregation of risk exposures required by industry regulations.
Correlations are particularly likely to be missing in areas of risk management and in-
surance where data and loss event history is scarce and so there are large gaps in the
data records, such as in operational risk, reinsurance, catastrophe insurance, life insur-
ance, and cyber risk. The estimation of missing correlations is also important in banking
capital calculations, for example in the internal model-based approach to market risk
and the advanced measurement approach for operational risk. We give explicit solutions
for the maximal determinant completion problem with some practically occurring block
structures. The solutions are obtained by exploiting a duality between the completion
problem and the covariance selection problem, the consequence of which is that the re-
quired completion is characterized by having zero elements in its inverse in the positions
corresponding to the unknown elements of the original matrix. The explicit solutions
are expressed as matrix operations and so are trivial to translate into code, unlike exist-
ing solution representations in the literature. In contrast to most previous work on this
problem our proofs are entirely linear algebra-based and do not employ graph theory.

In the next section we describe the insurance regulation application and explain why
the maximal determinant completion is appropriate. We give explicit solutions in Sec-
tion 4 for matrices with certain practically important block 3 × 3 and 4 × 4 structures.
In Section 5 we give a numerical example in which we compare the maximal determi-
nant completion with the nearest correlation matrix and show its use with shrinking. In
Section 6 we treat larger block structures. Concluding remarks are given in Section 7.

2 Insurance application

Calculations of the capital that financial firms are required to hold can allow for some
diversification between types of risks. Diversification can be derived from the dependency
relations between capital for individual risks, specified in the form of a correlation matrix.
For example, European insurers subject to the Solvency II Directive [9] are allowed to take
diversification effects into account when calculating their Solvency Capital Requirement
(SCR). The SCR is defined as the value at risk of the surplus of assets over liabilities of an
insurance undertaking subject to a confidence level of 99.5% over a one-year period. The
standard formula for aggregating the capital requirement for different risk exposures is
the square root of a linear function of the correlation matrix Σ specifying the dependence
between them:

√
vTΣv, where v is a vector of capital requirements for the individual risk

category and Σ is specified by the regulations. The assumption is that the underlying
distribution of risk capital is multivariate normal, or more generally elliptically contoured.

However, it is often the case that not all of the entries in the correlation matrix Σ are
known. For example, the insurer may be exposed to different risks than those considered
in the standard formula, or may not be using the standard formula at all. The question
arises of how to specify the dependency relations between the risks. Generally, some of
the individual correlation coefficients are known because they have been estimated with
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Table 2.1: Example with two business units where correlations are not specified between
risk z in BU1 and the risks x and y in BU2.

Correlations x y z x y

BU1

x 1 0.7 0.85 0.85 0.75

y 0.7 1 0.6 0.5 0.85

z 0.85 0.6 1 * *

BU2
x 0.85 0.5 * 1 0.75

y 0.75 0.85 * 0.75 1

reasonable confidence from data, specified by regulations (as in the case of the standard
formula), or derived by expert judgement. However, the firm may be modelling a risk
exposure not considered by the standard formula that is present in one business unit
but not in another (a business unit-specific or BU-specific risk). This is particularly
relevant where the insurance group operates in many different countries and underwrites
different risks, has insufficient data to reliably estimate a correlation, and has insufficient
expertise to set the assumption by expert judgement. The problem is to complete a
partial correlation matrix with a particular pattern of unspecified entries. This same
problem arises in banking capital calculations. It is worth remarking that without formal
matrix completion methods such as the one developed here, the heuristic approaches
that are currently adopted in practice can be subject to moral hazard, where a firm
may be incentivized by a capital reduction to perform matrix completions which increase
diversification gains, thereby reducing the required capital they must hold.

Correlation coefficients are typically fully specified in the business unit with the BU-
specific risk. Correlations are also specified between similar risk families in different
business units. For example, in Table 2.1, which illustrates the case of just two business
units, both are exposed to risks x and y, but only BU1 is exposed to risk z. Correlations
are specified between risk z, x, and y in BU1, but not between x and y in BU2, and z in
BU1. This is a simplified example used for illustrative purposes only. In a more complex
case, the second business unit would also have a BU-specific risk. In the most general case,
there are many business units with many BU-specific risks as well as different numbers
of risk families, and the matrices involved can have hundreds of columns.

We want to complete the partial correlation matrix Σ̄ to a fully specified correlation
matrix; that is, since the diagonal is fully specified as ones, to a positive definite ma-
trix. Many completions are possible, which introduces uncertainty around the range of
potential capital outcomes. The completion of most interest is usually a best-estimate
completion in some sense. A good candidate is that completion which has maximum
determinant, denoted MaxDet. MaxDet has several useful theoretical properties.

1. Existence and uniqueness : if positive semidefinite completions exist then there is
exactly one MaxDet completion [11].

2. Maximum entropy model : MaxDet is the maximum entropy completion for the
multivariate normal model, where maximum entropy is a principle of favouring the
simplest explanations. In the absence of other explanations, we should choose this
principle for the null hypothesis in Bayesian analysis [10].
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Figure 2.1: Chordal graph corresponding to the example with only one BU-specific risk
in Table 2.1.

3. Maximum likelihood estimation: MaxDet is the maximum likelihood estimate of
the correlation matrix of the unknown underlying multivariate normal model.

4. Analytic centre: MaxDet is the analytic centre of the feasible region described by
the positive semidefiniteness constraints, where the analytic centre is defined as the
point that maximizes the product of distances to the defining hyperplanes [21].

Properties 1–3 above are discussed in the context of the covariance selection problem
by Dempster [7]. We note that the determinant of a correlation matrix is at most 1, as
can be seen by applying Hadamard’s inequality [16, Thm. 7.8.1].

Grone et al. [11] show that a partially specified Hermitian matrix with specified pos-
itive diagonal entries and positive principal minors (where specified) can be completed
to a positive definite matrix regardless of the values of the entries if and only if the
undirected graph of the specified entries (ignoring the leading diagonal) is chordal. A
graph is chordal if every cycle of length ≥ 4 has a chord, which is an edge that is not
part of the cycle but connects two vertices of the cycle. If the graph is not chordal,
then whether a positive semidefinite completion exists depends on the specified entries.
It is straightforward to show that all the sparsity patterns considered in this paper are
chordal, and therefore a positive semidefinite completion is possible. For example, the
adjacency graph for the case in Table 2.1 is shown in Figure 2.1.

Grone et al. show, additionally, that if a positive definite completion exists then there
is a unique matrix in the class of all positive definite completions whose determinant is
maximal. See also Johnson [17] for a survey of these and related results.

Since we will be dealing with large matrices with block patterns of specified and
unspecified entries, it is convenient to introduce the definition of a “block chordal” graph
equivalent to the above. A block is a subgraph which is complete in terms of edges (a
clique). Two blocks are connected by an edge if every vertex has an edge to every other
vertex, so the two blocks considered together also form a clique. A graph is block chordal
if every cycle of blocks of length ≥ 4 has a chord. Finally, a block chordal graph is also
chordal since every block is either fully specified or fully unspecified, so collapsing each
block into one node means that we do not lose any information in the graph.

3 Dual problems

Dempster [7] proposes a related problem, covariance selection, and Dahl, Vandenberghe,
and Roychowdhury [6] and Vandenberghe, Boyd, and Wu [21] show that MaxDet com-
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pletion and covariance selection are duals of each other. Covariance selection aims to
simplify the covariance structure of a multivariate normal population by setting elements
of the inverse of the covariance matrix to zero. The statistical interpretation is that
certain variables are set to be pairwise conditionally independent. For random variables
a, b, c, the variables a and b are conditionally independent given c if

f(a|b, c) = f(a|c). (3.1)

In other words, once we know c, knowledge of b gives no further information about a. In
a multivariate normal setting, (3.1) is equivalent to the inverse of the covariance matrix
for those three variables having zero in the position corresponding to the covariance
between a and b. To see this in general, partition a multivariate normal random variable
X into two sets: I and J (the idea being that the I variables are independent of each
other, conditioning on J). The conditional distribution of XI given XJ is shown in [1,
Thm. 2.5.1] to be normal with covariance matrix

ΣI|J = ΣII −ΣIJΣ
−1
JJΣJI .

Conditional independence means that ΣII −ΣIJΣ
−1
JJΣJI is diagonal, i.e., that Xi and Xj

are conditionally independent for I = (i, j). The expression for ΣI|J is identical to the
inverse of the Schur complement of ΣJJ in Σ:

(Σ−1)II =

[
ΣII ΣIJ

ΣJI ΣJJ

]−1
II

= (ΣII −ΣIJΣ
−1
JJΣJI)

−1.

Therefore we require this block to be diagonal or (Σ−1)ij = 0 for i, j ∈ I with i 6= j.
Another way to see that a determinant-maximizing completion of MaxDet must have

zeros in the inverse corresponding to the free elements of Σ is by a perturbation argument.
We need the following lemma [5, Lem. 26].

Lemma 3.1. For v, w, x, y ∈ Rn,

det(I + vxT + wyT ) = (1 + vTx)(1 + wTy)− (vTy)(wTx).

Using the lemma, we consider how the determinant of a symmetric positive definite
matrix A ∈ Rn×n changes when we perturb aij (and aji, by symmetry). Let

A(ε) = A+ ε(eie
T
j + eje

T
i ),

where ei is the ith column of the identity matrix. Let B = A−1 and partition B =
[b1, . . . , bn]. Applying the lemma we have

detA(ε) = det(A) det(I + ε(bie
T
j + bje

T
i ))

= det(A)
[
(1 + εbTi ej)(1 + εbTj ei)− ε2(bTi ei)(bTj ej)

]
= det(A)

[
(1 + εbji)(1 + εbij)− ε2biibjj

]
= det(A)

(
1 + 2εbij + ε2(b2ij − biibjj)

)
.

We want to know when detA(0) is maximal. Since

d

dε
detA(ε)|ε=0 = 2 det(A)bij,
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we need bij = 0 for a stationary point at ε = 0, and from

d2

dε2
detA(ε)|ε=0 = 2 det(A)(b2ij − biibjj) < 0

(since B is positive definite), we see that when bij = 0, the quadratic function detA(ε)
has a maximum at ε = 0.

4 Maximal determinant completions

In general, solving the MaxDet completion problem (or, equivalently, the covariance
selection problem) requires solving a convex optimization problem on the set of positive
definite matrices [6]. We wish to obtain explicit, easily implementable solutions for
some practically important cases arising in the insurance application. Such solutions
are helpful for practitioners and also useful for testing algorithms that tackle the most
general problem.

Let Σ denote the solution of the MaxDet completion problem for the partially-
specified correlation matrix Σ̄. Using the property that Σ−1 will contain zeros in the
positions of the unspecified entries in Σ̄, we can use Gaussian elimination to find Σ. We
give a result for an L-shaped pattern of unspecified entries. Note that we do not require
a unit diagonal in Theorem 4.1, so it applies more generally than just to correlation
matrices.

Theorem 4.1. Consider the symmetric matrix

Σ̄ =


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where C, E, and F are unspecified, the diagonal blocks Aii, i = 1: 4 are all positive defi-
nite, and all specified principal minors are positive. The maximal determinant completion
is

C = DA−144 G
T , F = BTA−111D, E = FA−144 G

T . (4.1)

Proof. It is easy to check that the graph of the specified entries is block chordal
(there are no cycles of length at least 4), and therefore a unique determinant-maximizing
positive definite completion exists, according to [11, Thm. 7]. To find it, we need to solve
the linear system 

A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44



X1

X2

X3

X4

 =


Γ1

Γ2

Γ3

Γ4

 ,
that is,

A11X1 +BX2 + CX3 +DX4 = Γ1, (4.2)

BTX1 + A22X2 + EX3 + FX4 = Γ2, (4.3)

CTX1 + ETX2 + A33X3 +GX4 = Γ3, (4.4)

DTX1 + F TX2 +GTX3 + A44X4 = Γ4, (4.5)
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by Gaussian elimination in order to identify the inverse of the matrix Σ̄. In this sys-
tem we can think of C, E, and F as representing any positive definite completions, so
that the coefficient matrix is positive definite. We will find the determinant-maximizing
completions by enforcing zeros in the relevant blocks of the inverse.

The following patterns arise frequently in the working below so we assign them variable
names to condense the formulae:

B = B −DA−144 F
T ,

C = C −DA−144 G
T ,

E = E − FA−144 G
T ,

F = F − BT∆D,
G = G− CT∆D,

K = E − BT∆C,
M = A−144 + A−144D

T∆DA−144 ,

∆ = (A11 −DA−144D
T )−1,

Φ = (A22 − FA−144 F
T − BT∆B)−1,

Ξ = (A33 −GA−144 G
T − CT∆C − KTΦK)−1.

(4.6)

The inverses in the definitions of ∆, Φ, and Ξ exist because the matrices being inverted
are Schur complements arising in block elimination of the positive definite matrix Σ̄, so
are themselves positive definite. For example, A11−DA−144D

T is positive definite because
it is the Schur complement of A44 in the positive definite matrix

[
A11 D
DT A44

]
.

We first solve for X4 in (4.5), to obtain

X4 = A−144 (Γ4 −DTX1 − F TX2 −GTX3),

and substitute this expression into (4.2) to obtain

A11X1 +BX2 + CX3 +DA−144 (Γ4 −DTX1 − F TX2 −GTX3) = Γ1.

We can then express X1 and X4 in terms of X2 and X3 only:

X1 = (A11 −DA−144D
T )−1

(
Γ1 −DA−144 Γ4 − (B −DA−144 F

T )X2 − (C −DA−144 G
T )X3

)
= ∆(Γ1 −DA−144 Γ4 − BX2 − CX3) (4.7)

and

X4 = A−144

(
Γ4 −DT∆(Γ1 −DA−144 Γ4 − BX2 − CX3)− F TX2 −GTX3

)
= A−144

(
−DT∆Γ1 + Γ4 +DT∆DA−144 Γ4 − (F T −DT∆B)X2 − (GT −DT∆C)X3

)
= A−144

(
−DT∆Γ1 + Γ4 +DT∆DA−144 Γ4 −FTX2 − GTX3

)
. (4.8)

Working with (4.3) next, and separating the X2 and X3 variables, we have:

A22X2 = Γ2 −BTX1 − EX3 − FX4

= Γ2 −BT∆(Γ1 −DA−144 Γ4 − BX2 − CX3)− EX3

− FA−144 (−DT∆Γ1 + Γ4 +DT∆DA−144 Γ4 −FTX2 − GTX3)

= −(BT − FA−144D
T )∆Γ1 + Γ2 − (F − BT∆D)A−144 Γ4

+ (BT∆B + FA−144 FT )X2 −
(
E − FA−144 G

T − (BT − FA−144D
T )∆C

)
X3

= −BT∆Γ1 + Γ2 −FA−144 Γ4 + (BT∆B + FA−144 FT )X2 − (E − BT∆C)X3.
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Therefore

(A22 −BT∆B − FA−144 FT )X2 = −BT∆Γ1 + Γ2 −FA−144 Γ4 −KX3.

Notice that the left-hand side simplifies to one of our inverse equations from (4.6):

(A22 −BT∆B − FA−144 FT )X2 = (A22 − FA−144 F
T − BT∆B)X2 = Φ−1X2,

hence
X2 = Φ

(
− BT∆Γ1 + Γ2 −FA−144 Γ4 −KX3

)
. (4.9)

Substituting (4.9) into the expressions (4.7) and (4.8) we have

X1 = (∆+∆BΦBT∆)Γ1 −∆BΦΓ2 −∆(D − BΦF)A−144 Γ4 −∆(C − BΦK)X3,

X4 = A−144 (−DT + FTΦBT )∆Γ1 − A−144 FTΦΓ2 + (M+ A−144 FTΦFA−144 )Γ4

+ A−144 (FTΦK − GT )X3. (4.10)

Finally, we substitute these expressions into (4.4) to obtain X3 in terms of Γ1, Γ2, Γ3,
and Γ4:

A33X3 = Γ3 − CT
[
(∆+∆BΦBT∆)Γ1 −∆BΦΓ2 −∆(D − BΦF)A−144 Γ4 −∆(C − BΦK)X3

]
− ETΦ

[
(−BT∆Γ1 + Γ2 −FTA−144 Γ4 −KX3

]
−GA−144 (−DT + FTΦBT )∆Γ1 +GA−144 FTΦΓ2 −G(M+ A−144 FTΦFA−144 )Γ4

+GA−144 (GT −FTΦK)X3

= (−CT +GA−144D
T )∆Γ1 + (ET −GA−144 F

T )ΦBT∆Γ1 − (CT −GA−144D
T )∆BΦBT∆Γ1

+ (−ET + CT∆B +GA−144 F
T −GA−144D

TB)ΦΓ2 + Γ3

+
(
CT∆(D − BΦF)A−144 + ETΦFA−144 −G(M+ A−144 FTΦFA−144 )

)
Γ4

+
(
CT∆(C − BΦK) + ETΦK −GA−144 (FTΦK − GT )

)
X3

= (−CT + ETΦBT − CT∆BΦBT )∆Γ1 − (ET − CT∆B)ΦΓ2 + Γ3

+
(

(ET −GA−144 F
T )ΦFA−144 − (CT −GA−144D

T )∆BΦFA−144 −GM+ CT∆DA−144

)
Γ4

+
(

(ET −GA−144 F
T )ΦK − (CT −GA−144D

T )∆BΦK +GA−144 G
T + (CT −GA−144D

T )∆C
)
X3,

which simplifies to

Ξ−1X3 = (−CT +KTΦBT )∆Γ1 −KTΦΓ2 + Γ3

+ (KTΦFA−144 −GM+ CT∆DA−144 )Γ4. (4.11)

The only blocks of interest in the inverse of Σ̄ are those that we denote X3(Γ1) and
X3(Γ2), which are defined by

X1

X2

X3

X4

 =


A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44


−1 

Γ1

Γ2

Γ3

Γ4

 =


× × × ×
× × × ×

X3(Γ1) X3(Γ2) × ×
× × × ×



Γ1

Γ2

Γ3

Γ4

 ,
(4.12)
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where “×” denotes a block that is not of interest.
Comparing (4.11) and (4.12), we find that

X3(Γ2) = −ΞKTΦ,

and we require this expression to be zero for the maximal determinant completion. Since
Φ and Ξ are inverses, they cannot be zero, therefore we require KT = 0. Similarly, we
have

X3(Γ1) = Ξ(−CT +KTΦBT )∆,

and since KT = 0 (and ∆ and Ξ are nonsingular) we require that C = 0, which implies
that

C = DA−144 G
T . (4.13)

The equations C = 0 and K = 0 imply E = 0, and hence

E = FA−144 G
T .

Denoting by Π the permutation matrix that reverses the order of the blocks in Σ̄, we
have

ΠT Σ̄Π =


A44 GT F T DT

G A33 ET CT

F E A22 BT

D C B A11

 .
The block F T now takes the role of C in the original matrix, so from (4.13) we obtain,
after transposing, F = BTA−111D. We have now found the MaxDet completion.

It is possible to obtain Theorem 4.1 from [18, Cor. 4.4], in which the unspecified
elements of the MaxDet completion are given elementwise in terms of the clique paths
in the graph of the specified elements. Our derivation directly yields the explicit matrix
formulas and does not use graph theory.

For the best accuracy and efficiency the formulas (4.1) should be evaluated as follows,
avoiding explicit computation of matrix inverses [12]. Compute Cholesky factorizations
A11 = RT

11R11 and A44 = RT
44R44, then evaluate

C = (DR−144 )(R−T44 G
T ), F = (BTR−111 )(R−T11 D), E = (FR−144 )(R−T44 G

T ).

Each of the terms in parentheses should be evaluated as the solution of a triangular linear
system with multiple right-hand sides, and the term R−T44 G

T can be calculated once and
reused.

We identify two useful special cases of Theorem 4.1. Both of these are equivalent to
[20, Cor. 3.4].

Corollary 4.1. Consider the symmetric matrix


n1 n2 n3

n1 A11 B C
n2 BT A22 E
n3 CT ET A33

 ∈ R(n1+n2+n3)×(n1+n2+n3),

where E is unspecified, all the diagonal blocks are positive definite, and all specified prin-
cipal minors are positive. The maximal determinant completion is E = BTA−111 C.

9



Proof. The result is obtained by setting n3 = 0 in Theorem 4.1.

The following corollary also appears in [2, Thm. 2.2.3].

Theorem 4.2. Consider the symmetric matrix


n1 n2 n3

n1 A11 B C
n2 BT A22 E
n3 CT ET A33

 ∈ R(n1+n2+n3)×(n1+n2+n3),

where C is unspecified, all the diagonal blocks are positive definite, and all specified prin-
cipal minors are positive. The maximal determinant completion is C = BA−122 E.

Proof. The result is obtained by permuting the matrix to put the unspecified block
in the (2, 3) block position and then applying Corollary 4.1.

We also consider a pattern of unspecified elements that arises when (for example)
an insurance company has four business units where correlations between BU-specific
risks are known (described by the specified blocks A11, A22, A33 and A44) and all the
correlations are known for the first group of risks (for example, risk drivers such as
interest rates or exchange rates). So here we have a complete first block row and column,
and this case cannot be obtained by permuting rows and columns in Theorem 4.1.

Theorem 4.3. Consider the symmetric matrix


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where E, F , and G are unspecified, all the diagonal blocks are positive definite, and
all specified principal minors are positive. The maximal determinant completion of the
matrix is

E = BTA−111 C, F = BTA−111D, G = CTA−111D.

Proof. We have already derived in Theorem 4.1 the expression
X1

X2

X3

X4

 =


A11 B C D
BT A22 E F
CT ET A33 G
DT F T GT A44


−1 

Γ1

Γ2

Γ3

Γ4

 =


× × × ×
× × × ×
× X3(Γ2) × X3(Γ4)
× X4(Γ2) × ×



Γ1

Γ2

Γ3

Γ4


containing the blocks X3(Γ2), X3(Γ4), and X3(Γ2) that we require to be zero, where “×”
denotes a block that is not of interest. As in the proof of Theorem 4.1, K = 0. Then

X3(Γ4) = Ξ
(
−GM+ CT∆DA−144

)
Γ4

= Ξ
(
−G(A−144 + A−144D

T∆DA−144 ) + CT∆DA−144

)
Γ4

= Ξ
(
−G(A44 −DTA−111D)−1 + CTA−111D(A44 −DTA−111D)−1

)
Γ4

= −Ξ(G− CTA−111D)(A44 −DTA−111D)−1Γ4.
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Since Ξ and (A44 − DTA−111D)−1 are inverses, and so cannot be zero, we require G =
CTA−111D.

Interchanging block rows and columns 2 and 3 swaps the roles of F and G and the
formula for F then follows from that for G.

We also require that X4(Γ2) is zero, which from (4.8) implies F = 0. Now

K = E − BT∆C
= E − FA−144 G

T − BT∆(C −DA−144 G
T )

= E − BT∆C − (F − BT∆D)A−144 G
T

= E − BT∆C −FA−144 G
T .

Since we have already shown that K = 0 and F = 0, we have E = BT∆C.
By substituting the expression for F = BTA−111D, the formula for E simplifies further:

E = (B −DA−144 F
T )T (A11 −DA−144D

T )−1C

= (BT − FA−144D
T )(A11 −DA−144D

T )−1C

= (BT −BTA−111DA
−1
44D

T )(A11 −DA−144D
T )−1C

= BTA−111 (A11 −DA−144D
T )(A11 −DA−144D

T )−1C

= BTA−111 C. (4.14)

Finally, consider the case where C, E and F are unspecified, and B and G are partly
specified. This result will be needed in Section 6.

Theorem 4.4. Consider the symmetric matrix

Σ̄ =


n1 n2 n3 n4

n1 A11 B C D
n2 BT A22 E F
n3 CT ET A33 G
n4 DT F T GT A44

 ∈ R(n1+n2+n3+n4)×(n1+n2+n3+n4),

where C, E, and F are unspecified, B and G are partly specified (possibly fully unspeci-
fied), all the diagonal blocks are positive definite, all specified principal minors are positive,
and the graph of the specified entries is block chordal. If B and G are fully unspecified
then the maximal determinant completion of the matrix is

Σ =


n1 n2 n3 n4

n1 A11 0 0 D
n2 0 A22 0 0
n3 0 0 A33 0
n4 DT 0 0 A44

. (4.15)

Otherwise, the maximal determinant completion of B and G is independent of the entries
in D.
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Proof. First, consider the case where B and G are fully unspecified. The graph of the
specified entries is trivially block chordal, so a unique determinant-maximizing positive
definite completion exists. The inverse of Σ in (4.15) is

Σ−1 =


A−111 + A−111DS

−1DTA−111 0 0 −A−111DS
−1

0 A−122 0 0
0 0 A−133 0

−S−1DTA−111 0 0 S−1

 ,
where S = A44−DTA−111D. This is easily seen to be positive definite, and it has zeros in
the locations corresponding to the unspecified entries of Σ̄. Therefore Σ is the maximum
determinant completion.

Now suppose that B and G are not fully specified. It is shown by Barrett, John-
son, and Lundquist [3] that the MaxDet completion can be found by a sequence of
one-dimensional maximizations on subproblems generated from a chordal ordering. The
chordal ordering begins with the graph G0 of the specified entries. To generate Gk from
Gk−1 it adds an edge (ik, jk) corresponding to an unspecified entry aik,jk to obtain a new
chordal graph Gk, continuing in this way until all unspecified entries have been added.

For the kth graph Gk, a one-dimensional MaxDet completion is computed for the
problem corresponding to the maximal clique of Gk containing the edge (ik, jk). It can
be shown that for the matrix Σ̄ a chordal ordering can first take the edges corresponding
to the unspecified entries in B and G before taking those corresponding to C, E, and F .
Therefore the one-dimensional maximizations that determine the unspecified entries in
B and G are independent of D.

We note that our assumption on the positive definiteness of the diagonal blocks is
essential to the results. In the insurance application this assumption is satisfied, because
firms replace a diagonal block by the nearest correlation matrix if it is found not to be
positive definite.

5 Numerical Example

The example in Table 2.1 can be completed using Corollary 4.1. For a more complex
example, consider the case in Table 5.1 where an insurer needs to complete a correlation
matrix to integrate different businesses and risks. This case also arises in the context of
Solvency II [9], where a firm has a partial internal model (IM) composed of

• an IM module,

• some complete standard formula modules, and

• an incomplete standard formula module (market risk) where one or more of the
submodules have been modelled internally.

The correlations between the standard formula elements (gray cells) are specified by reg-
ulations, and the firm has calculated some coefficients (white cells) but needs to complete
the green entries according to one of the prescribed integration techniques. One of the
prescribed integration techniques for completing the missing entries requires two steps:

12



first, determining appropriate upper and lower bounds (based on the firm’s risk pro-
file) for the missing correlations and second, an optimization step to find the completion
such that no other set of correlation coefficients results in a higher SCR, while keeping
the matrix positive semidefinite (see Solvency II Delegated Regulation ((EU) 2015/35)
Annex XVIII(C) [8], also known as Integration Technique 2, IT2.) An application of
Corollary 4.1 can be used as part of the first step to give a central completion (in the
sense of property 4 in Section 2), before other considerations are used to determine the
bounds.

The MaxDet completion assigns to the missing submatrix the matrix (in the notation
of Corollary 4.1)

E =


0.1000 0.1500 0.0500 0.0750
0.2400 0.3600 0.1200 0.1800
0.2200 0.3300 0.1100 0.1650
0.2600 0.3900 0.1300 0.1950

0 0 0 0


(as printed to four decimal places by MATLAB), for which ‖E‖F = 8.6364 × 10−1 and
the determinant and the eigenvalues of the completed matrix Σ are 2.7348× 10−2 and

1.4731e-01 2.5391e-01 4.1845e-01 4.9619e-01 6.5996e-01

9.7854e-01 1.0000e+00 1.1565e+00 1.3217e+00 3.5675e+00

For comparison, let Σ̃ denote the matrix obtained from Σ̄ by setting the unspecified
elements to zero. This matrix has smallest eigenvalue−9.9305 × 10−3. We used the
algorithm of Higham and Strabić [14]1 to compute the nearest correlation matrix to Σ̃
in the Frobenius norm, subject to the specified elements of the matrix being fixed. The
solution has the completed block

E =


0.0022 0.0084 0.0004 0.0035
0.0003 0.0011 0.0001 0.0005
0.0025 0.0098 0.0005 0.0040
0.0042 0.0164 0.0008 0.0067
0.0000 −0.0000 −0.0000 0.0000


(the elements in the last row are all of order 10−16) and ‖E‖F = 2.3216 × 10−2, and it
has determinant −1.5653× 10−16 and eigenvalues

-1.7188e-16 1.6814e-01 4.2456e-01 5.0448e-01 8.0031e-01

1.0000e+00 1.0366e+00 1.1793e+00 1.8464e+00 3.0402e+00

(The nonzero determinant and the negative eigenvalues are a result of rounding errors in
the computations, since the exact nearest correlation matrix is singular.)

Anther possible use of the MaxDet solution E is to compute the smallest α ∈ [0, 1] such
that αE yields a positive semidefinite completion, or equivalently the smallest α ∈ [0, 1]

such that (1−α)Σ̃+αΣ is positive semidefinite. This is precisely the method of shrinking

[15] with initial matrix Σ̃ and target matrix the MaxDet completion. The optimal α is2

α∗ = 3.4908× 10−2; it gives ‖α∗E‖F = 3.0148× 10−2 and a completion with determinant
3.3809× 10−16 and eigenvalues

1As implemented in the MATLAB codes at https://github.com/higham/anderson-accel-ncm.
2Computed with the MATLAB codes at https://github.com/higham/shrinking.
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Table 5.1: Example of partial internal model Integration Technique 2, where one of the
constituents of the standard formula (SF) market risk module (currency risk) has been
included in the IM, so correlations are required between the SF market risk submodules
and the other SF modules (that is, the green starred cells).

Module Sub-module

IM 1 0.25 0.6 0.55 0.65 0 0.4 0.6 0.2 0.3

SF
Market risk

Interest rate 0.25 1 0 0 0 0 * * * *

Equity 0.6 0 1 0.75 0.75 0 * * * *

Property 0.55 0 0.75 1 0.5 0 * * * *

Spread 0.65 0 0.75 0.5 1 0 * * * *

Concentration 0 0 0 0 0 1 * * * *

SF Default 0.4 * * * * * 1 0.25 0.25 0.5

SF Life 0.6 * * * * * 0.25 1 0.25 0

SF Health 0.2 * * * * * 0.25 0.25 1 0

SF Non-Life 0.3 * * * * * 0.5 0 0 1

1.5495e-15 1.7107e-01 4.2497e-01 5.0501e-01 8.0186e-01

1.0000e+00 1.0367e+00 1.1790e+00 1.8345e+00 3.0469e+00

This comparison emphasizes that the MaxDet completion is very different from the
nearest correlation matrix, and that through shrinking it can yield a completion not much
further from Σ̃ than the nearest correlation matrix.

6 Extension to larger block structures

We now present an extension of Theorem 4.1 to larger block structures, corresponding
to applications with many business units with many BU-specific risks. Correlations are
assumed to be known between all “standard” risk drivers, typically the market risks in all
business units. This is because there is generally sufficient data to calculate correlations
between equity indices, interest rates, and credit spreads, say, across economies.

The extension relies on the observation that if the B or G blocks in Theorem 4.1
have unknown entries then the maximal determinant completions for these blocks are
independent of the other entries in the matrix, as shown by Theorem 4.4.

Theorem 6.1 shows the calculation for four business units, laid out as two instances
of the case in Theorem 4.1, in the upper left and bottom right corners of the matrix Σ̄.
Three business units can be obtained as a special case where one business unit has empty
elements. More than four business units can be accommodated by repeated applications
of Theorem 4.1.
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Theorem 6.1. Consider the symmetric matrix

Σ̄ =



n1 n2 n3 n4 n5 n6 n7 n8

n1 A11 A12 A13 A14 A15 A16 A17 A18

n2 AT12 A22 A23 A24 A25 A26 A27 A28

n3 AT13 AT23 A33 A34 A35 A36 A37 A38

n4 AT14 AT24 AT34 A44 A45 A46 A47 A48

n5 AT15 AT25 AT35 AT45 A55 A56 A57 A58

n6 AT16 AT26 AT36 AT46 AT56 A66 A67 A68

n7 AT17 AT27 AT37 AT47 AT57 AT67 A77 A78

n8 AT18 AT28 AT38 AT48 AT58 AT68 AT78 A88


=

[ n1+n2+n3+n4 n5+n6+n7+n8

N Q
QT M

]
,

where the diagonal blocks Aii are all positive definite, the specified principal minors are
all positive, and the red blocks3 are unspecified. The maximal determinant completion of
the matrix is

A13 = A14A
−1
44 A

T
34, A24 = AT12A

−1
11 A14, A23 = A24A

−1
44 A

T
34,

A57 = A58A
−1
88 A

T
78, A68 = AT56A

−1
55 A58, A67 = A68A

−1
88 A

T
78,

C = DH−1GT , F = BTA−1D, E = FH−1GT ,

where

A =

[
A11 A14

AT14 A44

]
, B =

[
A12 A13

A42 A43

]
,

C =

[
A16 A17

A46 A47

]
, D =

[
A15 A18

A45 A48

]
,

E =

[
A26 A27

A36 A37

]
, F =

[
A25 A28

A35 A38

]
,

G =

[
A65 A68

A75 A78

]
, H =

[
A55 A58

AT58 A88

]
.

Proof. First, note that the graph for the matrix Σ̄ is block chordal, as shown in
Figure 6.1, so a positive semidefinite completion exists.

We begin by completing N and M using Theorem 4.1 applied to each block indepen-
dently, since these do not depend on the corners (the Q blocks) as shown by Theorem 4.4.
Then, having completed the unspecified entries in the diagonal blocks N and M , we per-

3The red (unspecified) blocks are A13, A16, A17, A23, A24, A25, A26, A27, A28, A35, A36, A37, A38,
A46, A47, A57, A67, A68, and their transposes.
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12 5 6

43 8 7

Figure 6.1: Block chordal graph for matrix Σ̄ in Theorem 6.1, where the numbers refer
to the matrix blocks.

mute Σ̄ as follows to move the specified blocks within Q into the corners, obtaining

Σ̄perm =



n1 n4 n2 n3 n6 n7 n5 n8

n1 A11 A14 A12 A13 A16 A17 A15 A18

n4 AT14 A44 AT24 AT34 A46 A47 A45 A48

n2 A12T A24 A22 A23 A26 A27 A25 A28

n3 AT13 A34 AT23 A33 A36 A37 A35 A38

n6 AT16 AT46 AT26 AT36 A66 A67 AT56 A68

n7 AT17 AT47 AT27 AT37 AT67 A77 AT57 A78

n5 AT15 AT45 AT25 AT35 A56 A57 A55 A58

n8 AT18 AT48 AT28 AT38 AT68 AT78 AT58 A88



=


n1+n4 n2+n3 n6+n7 n5+n8

n1+n4 A B C D
n2+n3 BT × E F

n6+n7 CT ET × G
n5+n8 DT F T GT H

,
where “×” denotes a block that is not of interest. Finally, we apply Theorem 4.1 to solve
for the remaining missing entries in the permuted system.

7 Concluding Remarks

We have derived explicit solutions for completions with maximal determinant of a wide
class of partially specified correlation matrices that arise in the context of insurers calcu-
lating economic capital requirements. The patterns supported are block diagonal, with
either cross-shaped or (inverted) L-shaped gaps on the off-diagonal. The solutions are
easy to evaluate, being expressed in terms of products and inverses of known matrices.

Possible directions for future work include developing explicit solutions for more gen-
eral patterns of unspecified entries and allowing semidefinite diagonal blocks and zero
principal minors.
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[2] Mihály Bakonyi and Hugo J. Woerdeman. Matrix Completions, Moments, and
Sums of Hermitian Squares. Princeton University Press, Princeton, NJ, USA, 2011.
xii+518 pp. ISBN 978-0-691-12889-4.

[3] Wayne W. Barrett, Charles R. Johnson, and Michael Lundquist. Determinantal
formulae for matrix completions associated with chordal graphs. Linear Algebra
Appl., 121:265–289, 1989.

[4] Rüdiger Borsdorf and Nicholas J. Higham. A preconditioned Newton algorithm for
the nearest correlation matrix. IMA J. Numer. Anal., 30(1):94–107, 2010.

[5] Tony F. Chan. On the existence and computation of LU -factorizations with small
pivots. Math. Comp., 42(166):535–547, 1984.

[6] Joachim Dahl, Lieven Vandenberghe, and Vwani Roychowdhury. Covariance selec-
tion for nonchordal graphs via chordal embedding. Optimization Methods Software,
23(4):501–520, 2008.

[7] A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

[8] European Commission. Commission Delegated Regulation (EU) 2015/35 of 10 Oc-
tober 2014 supplementing Directive 2009/138/EC of the European Parliament and
of the Council on the taking-up and pursuit of the business of Insurance and Rein-
surance (Solvency II), 2015. http://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=CELEX:32015R0035.

[9] European Parliament and Council. Directive 2009/138/EC of the European Par-
liament and of the Council of 25 November 2009 on the taking-up and pursuit of
the business of Insurance and Reinsurance (Solvency II), 2009. http://eur-lex.

europa.eu/legal-content/EN/TXT/?uri=CELEX:32009L0138.

[10] I. J. Good. Maximum entropy for hypothesis formulation, especially for multidimen-
sional contingency tables. Ann. Math. Statist., 34(3):911–934, 1963.

[11] Robert Grone, Charles R. Johnson, Eduardo M. Sá, and Henry Wolkowicz. Positive
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