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EFFECTIVE CONDITION NUMBER BOUNDS FOR CONVEX REGULARIZATION

DENNIS AMELUNXEN, MARTIN LOTZ, AND JAKE WALVIN

ABSTRACT. We derive bounds relating the statistical dimension of linear images of convex cones to
Renegar’s condition number. Using results from conic integral geometry, we show that the bounds
can be made to depend only on a random projection to a lower dimensional space, and can still
be effective if the linear maps are ill-conditioned. As an application, we get new bounds for the
undersampling phase transition of composite convex regularizers. Key tools in the analysis are
Slepian’s inequality, interpreted as monotonicity property of moment functionals, and the kinematic
formula from integral geometry. The main results are derived in the generalized setting of the
biconic homogeneous feasibility problem.

1. INTRODUCTION

A well-established approach to solving linear inverse problems with missing information is by
means of convex regularization. In one of its manifestations, this approach amounts to solving
the minimization problem

min
x

f (x) subject to ‖Ax −b‖2 ≤ ε, (1.1)

where A ∈ Rm×n is an underdetermined linear operator and f (x) is a suitable proper convex
function, informed by the application at hand.

While there are countless algorithms and heuristics to compute or approximate solutions
of (1.1) and related problems, the more fundamental question is: when does a solution of (1.1)
actually “make sense"? The latter is important because one is usually not interested in a solution
of (1.1) per se, but often uses this and related formulations as a proxy for a different, much
more intractable problem. The best-known example is the use of the 1-norm to obtain a sparse
solution [FR13], but other popular settings are the total variation norm and its variants for
signals with sparse gradient, or the nuclear norm of a matrix when aiming at a low-rank solution.

Regularizers often take the form f (x) = g (D x) for a linear map D, as in the cosparse recovery
setting [NDEG13]. In this article we present general bounds relating the performance of (1.1)
to properties of g and the conditioning of D. Moreover, we show that for the analysis we can
replace D with a random projection applied to D, where the target dimension of this projection
is independent of the ambient dimension n and only depends on intrinsic properties of the
regularizer g .

Various parameters have emerged in the study of the performance problems such as (1.1).
Two of the most fundamental ones depend on the descent cone D( f , x0) of the function f at x0,
defined as the cone spanned by all directions in which f decreases. These parameters are

• the statistical dimension δ( f , x0) := δ(D( f , x0)), or equivalently the squared Gaussian
width, of the descent cone D( f , x0) of f at x0, which determines the admissible amount
of undersampling m in (1.1) in the noiseless case (ε= 0), in order to uniquely recover a
solution x0

1;
• Renegar’s condition number RC (A) of A with respect to the descent cone C =D( f , x0) of

f at a point x0, which bounds the recovery error ‖x −x0‖2 of a solution x of (1.1).

Date: July 5, 2017.
1Strictly speaking, this is a result for random measurement matrices and holds with high probability.
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Precise definitions of these quantities are given in subsequent sections. Renegar’s condition
number has originally been introduced to study the complexity of interior point methods [Ren95],
and has recently been linked directly to the performance of algorithms for compressed sens-
ing [RBd15]. The statistical dimension, on the other hand, has featured as a proxy to the
squared Gaussian width in [Sto09, CRPW12] and as the main parameter determining phase
transitions in convex optimization [ALMT14]. It also features in the error analysis of the gen-
eralized LASSO problem [OTH13] and as the minimax mean squared error (MSE) of proximal
denoising [DJM13, OH16].

Unfortunately, computing or even estimating these parameters is a notoriously difficult problem
for all but a few examples. For the popular case f (x) = ‖x‖1, an effective method of computing
δ( f , x0) was developed by Stojnic [Sto09], and subsequently generalized in [CRPW12], see
also [ALMT14, Recipe 4.1]. In many practical settings the regularizer f has the form f (x) = g (D x)
for a matrix D, such as in the cosparse or analysis `1 setting where f (x) = ‖D x‖1. Even when it is
possible to accurately estimate the statistical dimension (and thus, the permissible undersampling)
for a function g , the method may fail for a composite function g (D x), due to a lack of certain
separability properties [ZXCL16]. If f (x) = g (D x) with invertible D, then it is known (see
Section 5) that the descent cone of f at x0 is given by D( f , x0) = D−1D(g ,D x0). The statistical
dimension and Renegar condition number associated to these regularizer can therefore be
characterized as that of a linear image of the descent cone of g , and the problem becomes one of
analyzing the behavior of the statistical dimension of a cone under linear transformations.

1.1. Main results. In this article we derive a characterization of Renegar’s condition number
associated to a cone as a measure of how much the statistical dimension can change under
linear images of a cone. The first result in this direction is Theorem A. The upper bound in
Equation (1.3) features implicitly in [KRZ15], explicitly in [DH17], and appears to be folklore.

Theorem A. Let C ⊆Rn be a closed convex cone, and δ(C ) the statistical dimension of C . Then for
A ∈R`×n ,

δ(AC ) ≤RC (A)2 ·δ(C ), (1.2)
where RC (A) is Renegar’s condition number associated to the matrix A and the cone C . If `= n and
κ(A) denotes the matrix condition number of A, then

δ(C )

κ(A)2 ≤ δ(AC ) ≤ κ(A)2 ·δ(C ). (1.3)

Theorem A translates into a bound for the statistical dimension of convex regularizers.

Corollary 1.1. Let f (x) = g (D x), where g is a proper convex function and let D ∈ Rn×n be non-
singular. Then

δ( f , x0) ≤RD(g ,D x0)
(
D−1) ·δ(g ,D x0).

In particular,
δ(g ,D x0)

κ(D)2 ≤ δ( f , x0) ≤ κ(D)2 ·δ(g ,D x0).

It is not uncommon for the condition number to be large. For example, in the case of the
finite difference matrix (see Example 1.4) it is of order Ω(n), making the condition bounds
trivial. While Renegar’s condition number, defined by restricting the smallest singular value to a
cone, can improve the bound, computing this condition number is not always practical. Using
polarity (4.7), we get the following version of the bound that ensures that the right-hand side is
always bounded by n.

Proposition 1.2. Let C ⊆Rn be a closed convex cone, and δ(C ) the statistical dimension of C . Then
for non-singular A ∈Rn×n ,

δ(AC ) ≤ κ(A)−2 ·δ(C )+ (
1−κ(A)−2) ·n.
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If f (x) = g (D x), where g is a proper convex function and D ∈Rn×n is non-singular, then

δ( f , x0) ≤ κ(D)−2 ·δ(g ,D x0)+ (
1−κ(D)−2) ·n. (1.4)

One can interpret the upper bounds in Proposition 1.2 as interpolating between the statistical
dimension of C and the ambient dimension n. While Proposition 1.2 ensures that the upper bound
does not become completely trivial, when D is ill-conditioned it still does not give satisfactory
results. Using methods from conic integral geometry, we derive a “preconditioned” version of
Theorem A. The idea is based on the philosophy that a randomly oriented convex cone C ought
to behave roughly like a linear subspace of dimension δ(C ), see Section 1.5. In that sense, the
statistical dimension of a cone C should be approximately invariant under projecting C to a
subspace of dimension close to δ(C ). In fact, in Section 4.6 we will see that for n ≥ m' δ(C ), we
have

EQ [δ(PQC )] ≈ δ(C ),

where P is the projection on the the first m coordinates and where the expectation is with respect
to a random orthogonal matrix Q, distributed according to the normalized Haar measure on the
orthogonal group. From this it follows that the condition bounds should ideally depend not on
the conditioning of D itself, but on a generic projection of D to linear subspace of dimension of
order δ(C ).

For m ≤ n define
κ2

m(A) := EQ [κ(PQ A)2].

Theorem B. Let C ⊆ Rn be a closed convex cone and A : Rn → Rn a non-singular linear map. Let
η ∈ (0,1) and assume that m ≥ δ(C )+2

√
log(2/η)m. Then

δ(AC ) ≤ EQ
[
RC (PQ A)2] ·δ(C )+ (n −m)η.

For the matrix condition number,

δ(AC ) ≤ κ2
m(A) ·δ(C )+ (n −m)η. (1.5)

As a consequence of Theorem B we get the following preconditioned version of Proposition 1.2.

Corollary 1.3. If f (x) = g (D x), where g is a proper convex function and D ∈Rn×n is non-singular.
Let η ∈ (0,1) and assume that m ≥ δ(C )+2

√
log(2/η)m. Then

δ( f , x0) ≤ EQ
[
RD(g ,D x0)(PQD)2] ·δ(g ,D x0)+ (n −m)η (1.6)

and
δ( f , x0) ≤ κ2

m(D) ·δ(g ,D x0)+ (n −m)η (1.7)

Example 1.4. As an application, consider the matrix

D =


−1 1 0 · · · 0
0 −1 1 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

 .

The regularizer f (x) = ‖D x‖1 is a one-dimensional version of a total variation regularizer, and is
used to promote gradient sparsity. The standard method [ALMT14, Recipe 4.1] for computing
the statistical dimension of the descent cone of f is not applicable here, as this regularizer is not
separable [ZXCL16]. The standard condition number bound Theorem A is also not applicable, as
it is known that the condition number satisfies κ(D) ≥ 2(n+1)

π .
Using the preconditioned bounds we can determine the optimal m that minimizes the right-

hand side of (1.7). For example, if C = D(g ,D x0) is a cone in R400 with δ(C ) = 20, when the
following plot shows the best upper bound in (1.7) for various values of m ≥ δ(C ).
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FIGURE 1. The condition number of P D reduces when projecting to a lower
dimension m. However, the error bound in (1.7) limits how close to δ(C ) the
target dimension m can become.

Note that it is physically not possible, nor do we aim to, locate the precise phase transition of
f (x) = ‖D x‖1 in terms of that of the 1-norm, since the statistical dimension δ( f , x0) does not only
depend on the sparsity pattern of D x0, but also on the location of the support.

1.2. Scope and limits of reduction. The condition bounds in Theorem B naturally lead to the
question of how to compute or bound the condition number of a random projection of a matrix,

κ(PQ A),

where Q ∈ O(n) is a random orthogonal matrix, and P a matrix selecting m rows of Q. Using
the multiplicative inequality κ(PQ A) ≤ κ(PQ)κ(A) (which holds if A is invertible), we get the
reassurance that the condition number does not increase.

If m = bρnc with ρ ∈ (0,1), then in many cases the condition number κ(PQ A) remains bounded
with high probability as n →∞. There are various ways to derive this fact. First of all, note
that by the invariance under transposition we can equivalently study κ(AQ), with Q ∈ Rn×m

uniformly distributed on the Stiefel manifold. If G ∼ N (0,1) is a Gaussian random n ×m matrix,
then Q =G(GT G)−1/2 is uniformly distributed on the Stiefel manifold, so that κ(AQ) has the same
distribution as κ(AG(GT G)−1/2). We can then bound

κ
(

AG(GT G)−1/2)≤ κ (AG)κ
(
(GT G)−1/2)= κ(AG)κ(G),

transforming the problem into one in which the orthogonal matrix is replaced with a Gaussian
one. The are various ways to tackle the resulting problem. One would be to appeal to the
Hanson-Wright inequality [RV+13, Eft17], or more directly, the Bernstein inequality. Another
bound follows from Gordon’s inequality. More precisely, by a direct application of Gordon’s
inequality (Theorem B.1) as in [FR13, Theorem 9.21] one can show that for m small enough (so
that the denominator is non-negative),

κ(AG) ≤ ‖σ‖2 +
p

m‖σ‖∞
‖σ‖2 −

p
m‖σ‖∞

(1.8)

with high probability, where σ is the vector of singular values of A. It would be interesting to
characterize those matrices A for which κ(PQ A) ≈ 1 using a kind of restricted isometry property,
as for example in [ORS15]. We leave a detailed discussion of the probability distribution of
κ(PQ A) and its remifications for another occasion, and instead consider a special case.
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Example 1.5. Consider again the matrix D from Example 1.4. For ρ ∈ {0.2,0.4,0.6,0.8} and n
ranging from 1 to 400, m = bρnc, we plot the average condition number κ(DG), where G ∈Rn×m

is a Gaussian random matrix. As n increases, this condition number appears to converge to a
constant value. Let’s compare this with (1.8). The singular values of D are given by

FIGURE 2. Condition number κ(DG) for the matrix D from Example 1.4. P is the
projection to the first m = bρnc coordinates.

σk (D) =
√

2

(
1−cos

(
kπ

n +1

))
,

from which we get ‖σ‖∞ ≤ 2. Using the trigonometric identity

n∑
k=1

cos(kα) = sin
(
(n + 1

2 )α
)

2sin(α2 )
− 1

2
,

and the fact that sin((n + 1
2 )π/(n +1)) = sin(π/2(n +1)), we get

‖σ‖2 =
p

2n.

Setting m = ρn, the condition number thus concentrates on a value bounded by
p

2n +2
p

mp
2n −2

p
m

=
(

1+√
2ρ

1−√
2ρ

)2

,

which is sensible if ρ < 1/2.

1.2.1. A note on distributions. The results presented are based in integral geometry, and as such
depend crucially on Q being uniformly distributed in the orthogonal group with the Haar measure.
By known universality results [OT15], the results are likely to carry over to other distributions.
In the context of this paper, however, we are neither interested in actually preconditioning the
matrices involved, nor are we using them as a model for observation or measurement matrices
as is common in compressive sensing. The randomization here is merely a technical tool to
improve bounds based on the condition number, and the question of whether this is a “realistic”
distribution is of no concern.
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1.3. Conically restricted operators. Theorem A is derived as a consequence of a much more
general result in the setting of linear maps restricted to convex cones, and using a generalization
of Renegar’s condition number. The classical condition number of a matrix A ∈Rm×n is the ratio
of the operator norm and the smallest singular value. Using the notation

‖A‖ := max
x∈Sn−1

‖Ax‖, σ(A) := min
x∈Sn−1

‖Ax‖,

the smallest singular value of A is given by max
{
σ(A),σ(AT )

}
, so that the classical condition

number is given by

κ(A) = min

{ ‖A‖
σ(A)

,
‖A‖
σ(AT )

}
.

With a view towards the convex feasibility problem, cf. Section 2.2, we introduce the following
generalization: Let C ⊆ Rn, D ⊆ Rm be closed convex cones, and let A ∈ Rm×n. We define the
restriction of the linear operator A to C and D by

AC→D : C → D, AC→D (x) :=ΠD (Ax), (1.9)

where ΠD : Rn → D denotes the orthogonal projection, i.e., ΠD (y) = arg min{‖y − z‖ : z ∈ D}.
Accordingly, we define restricted versions of the norm and the singular value:

‖A‖C→D := max
x∈C∩Sn−1

‖AC→D (x)‖, σC→D (A) := min
x∈C∩Sn−1

‖AC→D (x)‖. (1.10)

In Section 2 we will give a geometric interpretation of these quantities and describe how they
appear in applications.

(A generalization of) Renegar’s condition number is then defined as

RC ,D (A) := min

{ ‖A‖
σC→D (A)

,
‖A‖

σD→C (−AT )

}
,

and RC (A) :=RC ,Rm (A). Besides the above mentioned application, Renegar’s condition number
has originally been used to estimate the running time of interior point algorithms that solve
the convex feasibility problem (in the case D =Rm). An average-case analysis of this condition
number has been given in [AB13].

Renegar’s condition number also features prominently in the context of linear inverse problems
of the form (1.1). More precisely, consider the problem of recovering an unknown signal x0 ∈Rn

from noisy observations b = Ax0 +w , with A ∈Rm×n and ‖w‖ ≤ ε‖A‖, by solving the optimization
problem

minimize ‖x‖∗ subject to ‖Ax −b‖ ≤ ε‖A‖,

where ‖.‖∗ is a convex function, usually a suitably chosen norm (a typical example is when x0 is
sparse and ‖x‖∗ = ‖x‖1). If x̂ is a solution of the above problem and C =D(‖.‖∗, x0) denotes the
cone of descent directions of ‖.‖∗, then the error ‖x̂ −x0‖ is easily seen to be bounded by

‖x̂ −x0‖ ≤ 2ε ·RC (A).

Similar bounds can be derived for demixing problems using the biconic version of this condition
number, see [MT13a] for a related approach.

1.4. Moment functionals and the inequalities of Slepian and Gordon. The moment function-
als evaluated on a convex body K describe the moments of hK (g ), where hK (x) = maxz∈K 〈z , x〉 is
the support function of K (see Section 2.3) and g is a Gaussian vector,

µ f (K ) = E[
f (hK (g ))

]
.

The prime example is the Gaussian width w(K ) of a set K , when f (x) = x, or the statistical
dimension δ(C ) of a cone C , when K =C ∩B n (B n the closed unit ball in Rn) and f (x) = x2,

w(K ) := E[
hK (g )

]
, δ(C ) := E[

hC∩B n (g )2]= E[‖ΠC (g )‖2] .
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Besides these, the expected value of the restricted norm,

E
[

f (‖G‖C→D )
]
,

can also be interpreted as a moment functional of a suitable tensor product construction associated
to the cones C and D, see Section 3.3.

A standard way to bound the restricted norm and the restricted smallest singular value for
Gaussian operators is by means of Slepian’s and Gordon’s inequalities [Gor85, LT91, DS01], see
also Appendix B for a derivation. Slepian’s lemma and its extensions can be interpretated as
monotonicity properties of moment functionals with respect to contractions; direct consequences
of these monotonicity properties are the bounds (1.11) and (1.12) in Theorem 1.6.

Theorem 1.6. Let C ⊆Rn , D ⊆Rm closed convex cones, and let G ∈Rm×n be a Gaussian matrix and
g ∈ Rn, g ′ ∈ Rm independent Gaussian vectors. Then for f : R→ R monotonically increasing and
convex,

E
[

f (‖G‖C→D )
]≤ E[

f
(‖ΠD (g ′)‖+‖ΠC (g )‖)]. (1.11)

If γ ∈R denotes a standard Gaussian variable, which is independent of G, then for every monotonically
increasing f ,

E
[

f (‖G‖C→D +γ)
]≤ E[

f
(‖ΠD (g ′)‖+‖ΠC (g )‖)], (1.12)

E
[

f (σC→D (G)+γ)
]≥ E[

f
(‖ΠD (g ′)‖−‖ΠC (g )‖)]. (1.13)

The moment functionals generalize to support functions of convex bundles, which leads to the
inequality (1.13). This inequality will not be used in this generality in this article, and we refer
to the extended notes [AL14] for a proof and applications.

As a consequence of (1.11) we obtain a very general “master condition bound”, from which
Theorem A follows as a special case.

Theorem C. Let C ⊆Rn and D ⊆Rm closed convex cones, T ∈R`×n and U ∈Rp×m . Then for r ≥ 1,

E
[‖G̃‖r

T C→U D

]≤RC (T )r RD (U )r E
[‖G‖r

C→D

]
, (1.14)

where G̃ ∈Rp×` and G ∈Rm×n Gaussian matrices.

The idea of using Slepian’s lemma to obtain condition number estimates for the Gaussian width
of linear images of convex cones was suggested to us by Mike McCoy. We will see that (1.14)
may fail for r < 1. This will also show that (1.11) may fail if f is not convex.

1.5. Conic integral geometry. The theory of conic integral geometry centers around the intrinsic
volumes v0(C ), . . . , vn(C ), which are assigned to every closed convex cone C ⊆ Rn. They form a
discrete probability distribution on {0, . . . ,n} that captures statistical properties of the cone C .
For example, the (conic) Steiner formula (Section 4.2) describes the Gaussian measure of a
neighborhood of C , while the kinematic formulas (Section 4.4) describe the exact intersection
probabilities of randomly oriented cones. Instead of giving the exact definition of these quantities
(see Section 4.1), we remark that the moment generating function of this discrete probability
distribution coincides, after a simple variable transformation, with the moment generating func-
tion of ‖ΠC (g )‖, where g denotes as usual a standard Gaussian vector in Rn and ΠC denotes the
orthogonal projection on C , as shown by McCoy and Tropp [MT13b]. Moreover, the expectation
of the discrete probability distribution given by the intrinsic volumes, which is called the statistical
dimension of C , coincides with the expectation of the squared projected length E

[‖ΠC (g )‖2
]
: If

XC is a discrete random variable with P{XC = k} = vk (C ), then

δ(C ) := E[XC ] = E[‖ΠC (g )‖2].
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A key insight related to this observation is that the intrinsic volumes concentrate sharply around
their mean [MT14, ALMT14], see Section 4.1. A direct consequence of this concentration result
is that randomly oriented convex cones exhibit an intersection behaviour reminiscent of that of
linear subspaces, with the dimension replaced by the statistical dimension:

Theorem 1.7. Let η ∈ (0,1) and let C and D be convex cones in Rn . Then for Q ∈O(n) uniformly at
random,

δ(C )+δ(D) ≤ n −aη
p

n =⇒ P {C ∩QD 6= {0}} ≤ η;

δ(C )+δ(D) ≥ n +aη
p

n =⇒ P {C ∩QD 6= {0}} ≥ 1−η,

with aη := 2
√

log(2/η).

Here, by uniformly at random in the orthogonal group O(n), we mean distributed according to
the normalized Haar measure. In Section 4.6 we take the intuition of convex cones behaving like
linear subspaces further, by showing that random projections of convex cones to subspaces of
dimension larger than the statistical dimension approximately preserve their statistical dimension.

Proposition 1.8. Let C ⊂ Rn be a closed convex cone and let T ∈ Rm×n. Let η ∈ (0,1) and assume
that m ≥ δ(C )+2

√
log(2/η)m. Then

δ(C )− (n −m)η≤ EQ [δ(T QC )] ≤ δ(C ).

This observation follows from Crofton’s Formula in the guise of (4.11) and holds the key to
Theorem B.

1.6. Organisation of the paper. In Section 2 we introduce the setting of conically restricted
linear operators, the biconic feasibility problem, and Renegar’s condition number is some detail.
The characterization of this condition number in the generality presented here is new and of
independent interest. Section 3 introduces moment functionals and derives the first two identities
of Theorem 1.6 and, as a corollary, Theorem C. Also, Theorem A and Proposition 1.2 are derived
here. In Section 4 we change the scene and give a brief overview of conic integral geometry,
culminating in a proof of Theorem B. Finally, in Section 5 we translate the results to the setting
of convex regularizers. Appendix A presents some more details on the biconic feasibility problem,
while Appendix B presents a general version of Gordon’s inequality. While this version is more
general than what is needed in this paper, it may be of independent interest.

1.7. Acknowledgments. We thank Mike McCoy and Joel Tropp for fruitful discussions on integral
geometry, and in particular for suggesting the TQC Lemma, and Armin Eftekhari for helpful
discussions on random projections.

2. CONICALLY RESTRICTED LINEAR OPERATORS

In this section we discuss the restriction of a linear operator to closed convex cones. Our focus
will not be on the restriction itself (1.9), but rather on the restricted norm and the restricted
(smallest) singular value (1.10), culminating in a discussion of Renegar’s condition number. In
Section 2.1 we derive general properties of these quantities and compare them to the unrestricted
versions, in Section 2.2 we establish a relation to the generalized homogeneous feasibility
problem, and in Section 2.3 we derive a convex geometric perspective.

2.1. Restricted norm and restricted singular value. Before discussing conically restricted
operators, we record the following simple but useful lemma, which generalizes the relation
ker A = (im AT )⊥.
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Lemma 2.1. Let D ⊆Rm be a closed convex cone. Then the polar cone is the inverse image of the
origin under the projection map, D◦ := {z ∈ Rm : 〈y , z〉 ≤ 0 for all y ∈ D} =Π−1

D (0). Furthermore, if
A ∈Rm×n , then

A−1(D◦) = (
AT D

)◦, (2.1)
where A−1(D◦) = {x ∈Rn : Ax ∈ D◦} denotes the inverse image of D◦ under A.

Proof. For the first claim, note that ‖ΠD (z)‖ = maxy∈D∩B m 〈z , y〉, and maxy∈D∩B m 〈z , y〉 = 0 is equiv-
alent to 〈z , y〉 ≤ 0 for all y ∈ D, i.e., z ∈ D◦.

For (2.1), let x ∈ A−1(D◦) and y ∈ D. Then 〈x , AT y〉 = 〈Ax , y〉 ≤ 0, as Ax ∈ D◦. Therefore,
A−1(D◦) ⊆ (AT D)◦. On the other hand, if v ∈ (AT D)◦ and y ∈ D, then 〈Av , y〉 = 〈v , AT y〉 ≤ 0, so that
Av ∈ D◦ and hence, (AT D)◦ ⊆ A−1(D◦). �

Recall from (1.10) that for A ∈Rm×n, C ⊆Rn and D ⊆Rm closed convex cones, the restricted
norm and singular value of A are defined by ‖A‖C→D := max{‖AC→D (x)‖ : x ∈ C ∩ Sn−1} and
σC→D (A) := min{‖AC→D (x)‖ : x ∈C ∩Sn−1}, respectively, where AC→D (x) =ΠD (Ax). The following
proposition provides geometric conditions for the vanishing of the restricted norm or singular
value.

Proposition 2.2. Let A ∈Rm×n , C ⊆Rn and D ⊆Rm be closed convex cones. Then the restricted norm
vanishes, ‖A‖C→D = 0, if and only if C ⊆ (AT D)◦. Furthermore, the restricted singular value vanishes,
σC→D (A) = 0, if and only if C ∩ (AT D)◦ 6= {0}, which is equivalent to AC ∩D◦ 6= {0} or ker A ∩C 6= {0}.

Proof. Using Lemma 2.1 we have ΠD (Ax) = 0 if and only if Ax ∈ D◦. This shows ‖A‖C→D = 0 if
and only if Ax ∈ D◦ for all x ∈C ∩Sn−1, or equivalently, C ⊆ A−1(D◦) = (AT D)◦ by (2.1). The claim
about the restricted singular value follows similarly: σC→D (A) = 0 if and only if Ax ∈ D◦ for some
x ∈C ∩Sn−1, or equivalently, C ∩ A−1(D◦) 6= {0}. If x ∈C ∩ A−1(D◦) \ {0}, then either Ax is nonzero
or x lies in the kernel of A, which shows the second characterization. �

It is easily seen that the restricted norm is symmetric ‖A‖C→D = ‖AT ‖D→C ,

‖A‖C→D = max
x∈C∩B m

max
y∈D∩B n

〈Ax , y〉 = max
y∈D∩B n

max
x∈C∩B m

〈AT y , x〉 = ‖AT ‖D→C . (2.2)

Such a relation does not hold in general for the restricted singular value. In fact, in Section 2.2
we will see that, unless C = D =Rn , the minimum of σC→D (A) and σD→C (−AT ) is always zero, if C
and D have nonempty interior, cf. (2.5). And if C or D is a linear subspace then σD→C (−AT ) =
σD→C (AT ).

Remark 2.3. In the case C =Rn , D =Rm , with m ≥ n, one can characterize the smallest singular
value of A as the inverse of the norm of the (Moore-Penrose) pseudoinverse of A:

σ(A) = ‖A†‖−1.

Such a characterization does not hold in general for the restricted singular value, i.e., in general
one cannot write σC→D (A) as ‖A†‖−1

D→C . Consider for example the case D =Rm and C a circular
cone of angle α around some center p ∈ Sn−1. Both cones have nonempty interior, but letting α

go to zero, it is readily seen that σC→D (A) tends to ‖Ap‖, while ‖A†‖D→C tends to ‖pT A†‖, which
is in general not equal to ‖Ap‖−1, unless AT A = In .

2.2. The biconic feasibility problem. The convex feasibility problem in the setting with two
nonzero closed convex cones C ⊆Rn , D ⊆Rm is given as:

∃x ∈C \ {0} s.t. Ax ∈ D◦, (P) ∃y ∈ D \ {0} s.t. − AT y ∈C ◦. (D)

Using Lemma 2.1 and Proposition 2.2 we obtain the following characterizations of the primal
feasible matrices P (C ,D) := {A ∈Rm×n : (P) is feasible},

P (C ,D)
(2.1)= {

A ∈Rm×n : C ∩ (
AT D

)◦ 6= {0}
} [Prop. 2.2]= {A ∈Rm×n :σC→D (A) = 0}. (2.3)
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By symmetry, we obtain for the dual feasible matrices D(C ,D) := {A ∈Rm×n : (D) is feasible},

D(C ,D) = {A ∈Rm×n : D ∩ (−AC )◦ 6= {0}} = {A ∈Rm×n :σD→C (−AT ) = 0}. (2.4)

In fact, we will see that σC→D (A) and σD→C (−AT ) can be characterized as the distances to P (C ,D)
and D(C ,D), respectively. We defer the proofs for this section to Appendix A.

In the following proposition we collect some general properties of P (C ,D) and D(C ,D).

Proposition 2.4. Let C ⊆Rn , D ⊆Rm be closed convex cones with nonempty interior. Then
(1) P (C ,D) and D(C ,D) are closed;
(2) the union of these sets is given by

P (C ,D)∪D(C ,D) =
{

{A ∈Rm×n : det A = 0} if C = D =Rn

Rm×n else;

(3) the intersection of these sets is nonempty but has zero (Lebesgue) volume, i.e.,

P
{
G ∈P (C ,D)∩D(C ,D)

}= 0,

where G ∈Rm×n Gaussian.

Note that from (2) and the characterizations (2.3) and (2.4) of P (C ,D) and D(C ,D), respec-
tively, we obtain for every A ∈Rm×n: min{σC→D (A),σD→C (−AT )} = 0 or, equivalently,

max
{
σC→D (A),σD→C (−AT )

}=σC→D (A)+σD→C (−AT ), (2.5)

unless C = D =Rn .
In the following we simplify the notation by writing P ,D instead of P (C ,D),D(C ,D). For the

announced interpretation of the restricted singular value as distance to P ,D we introduce the
following notation: for A ∈Rm×n define

dist(A,P ) := min{‖∆‖ : A +∆ ∈P }, dist(A,D) := min{‖∆‖ : A +∆ ∈D},

where as usual, the norm considered is the operator norm. The proof of the following proposition,
given in Appendix A, follows along the lines of similar derivations in the case with a cone and a
linear subspace [BF09].

Proposition 2.5. Let C ⊆Rn , D ⊆Rm nonzero closed convex cones with nonempty interior. Then

dist(A,P ) =σC→D (A), dist(A,D) =σD→C (−AT ).

We finish this section by considering the intersection of P and D, which we denote by

Σ(C ,D) :=P (C ,D)∩D(C ,D),

or simply Σ when the cones are clear from context. This set is usually referred to as the set
of ill-posed inputs. As shown in Proposition 2.4, the set of ill-posed inputs, assuming C ⊆ Rn

and D ⊆ Rm each have nonempty interior, is a nonempty zero volume set. In the special case
C =Rn , D =Rm ,

Σ(Rn ,Rm) = {rank deficient matrices in Rm×n}.

From (2.5) and Proposition 2.5 we obtain, if (C ,D) 6= (Rn ,Rn),

dist(A,Σ) = max
{

dist(A,P ),dist(A,D)
}= dist(A,P )+dist(A,D).

The inverse distance to ill-posedness forms the heart of Renegar’s condition number [Ren94,
Ren95]. We denote

RC ,D (A) := ‖A‖
dist(A,Σ(C ,D))

= min

{ ‖A‖
σC→D (A)

,
‖A‖

σD→C (−AT )

}
. (2.6)
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Furthermore, we abbreviate the special case D =Rm , which corresponds to the classical feasibility
problem, by the notation

RC (A) :=RC ,Rm (A). (2.7)
Note that the usual matrix condition number is recovered in the case C =Rn , D =Rm ,

RRn (A) =RRn ,Rm (A) = κ(A).

Another simple but useful property is the symmetry RC ,D (A) =RD,C (−AT ). Finally, note that the
restricted singular value has the following monotonicity properties

C ⊆C ′ ⇒σC→D (A) ≥σC ′→D (A), D ⊆ D ′ ⇒σC→D (A) ≤σC→D ′(A).

This indicates that not necessarily RC (A) ≤RC ′(A) if C ⊆C ′. But in the case C ′ = Rn and m ≥ n
this inequality does hold, which we formulate in the following lemma.

Lemma 2.6. Let C ⊆Rn closed convex cone with nonempty interior and A ∈Rm×n with m ≥ n. Then

RC (A) ≤ κ(A). (2.8)

Proof. In the case C = Rn we have RRn (A) = κ(A). If C 6= Rn then AC 6= Rm, as m ≥ n. It follows
that Rm ∩ (−AC )◦ 6= {0}, and thus σRm→C (−AT ) = 0, cf. (2.4). Hence,

RC (A) = ‖A‖
σC→Rm (A)

≤ ‖A‖
σRn→Rm (A)

= κ(A). �

The interesting case for convex optimizations is in fact where C is some self-dual cone like
the nonnegative orthant or the cone of nonnegative definite matrices, and m < n. For these
cases Renegar’s condition number has found applications in the complexity analysis of convex
optimization, see [BC13] for a discussion and references. For example, [VRPH07] provides an
analysis of the running time of an interior-point algorithm for the convex feasibility problem
in terms of this condition number. In [RBd15], Renegar’s condition number is studied in the
context of compressed sensing. In Section 3.4 we use RC (A) for upper bounds of some important
moment functionals.

2.3. Support functions. The restricted norm and the restricted singular value can be interpreted
in terms of the support function of convex bodies. Recall that a set K ⊂Rn is a convex body if K
is nonempty, compact, and convex. The support function of a convex body K ⊂Rn is given by

hK : Rn →R, hK (x) := max
z∈K

〈x , z〉.

If C ⊆ Rn is a closed convex cone, and if K =C ∩B n, where B n := {
x ∈ Rn : ‖x‖ ≤ 1

}
, denotes the

corresponding cone stub, then one readily verifies that

‖ΠC (x)‖ = hK (x), for all x ∈Rn . (2.9)

If K = conv(C ∩Sn−1) then one still has ‖ΠC (x)‖ = hK (x) for all x 6∈ int(C ◦), but in general one only
gets an inequality:

‖ΠC (x)‖ ≥ hK (x), for all x ∈Rn . (2.10)
The restricted norm is related to the following construction: for convex bodies K ⊂Rn , K ′ ⊂Rm

define the (convex) tensor product

K ⊗̂K ′ := conv{x ⊗ y : x ∈ K , y ∈ K ′} ⊂Rnm ,

where ⊗ denotes the Kronecker product x ⊗ y = (x1 y1, . . . , x1 yn , x2 y2, . . . , xn ym), which is a con-
crete model for the classical tensor product. An application of Carathéodory’s theorem [Bar02,
(2.4)] shows that K ⊗̂K ′ is again a convex body. If vec: Rm×n → Rmn denotes the function that
concatenates the columns of the matrices, then

〈vec(A), x ⊗ y〉 = 〈Ax , y〉. (2.11)
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Lemma 2.7. Let C ⊆ Rn and D ⊆ Rm be closed convex cones, and let K =C ∩B n and K ′ = D ∩B m

denote the corresponding cone stubs. Then

‖A‖C→D = hK ⊗̂K ′(vec(A)). (2.12)

Proof. This follows by direct calculation:

‖A‖C→D = max
x∈C∩Sn−1

‖ΠD (Ax)‖ = max
x∈K

‖ΠD (Ax)‖ (2.9)= max
x∈K ,y∈K ′〈Ax , y〉 (2.11)= max

x∈K ,y∈K ′〈vec(A), x ⊗ y〉
= hK ⊗̂K ′(vec(A)).

Note that instead of the cone stub C ∩B n we could have taken K = conv(C ∩Sn−1). �

Example 2.8. Choosing C =Rn, D =Rm, shows that the operator norm is given by the support
function of B n ⊗̂B m. As the dual of the operator norm is given by the Schatten-1 matrix norm
‖.‖∗, which returns the sum of the singular values of a matrix, we obtain

B n ⊗̂B m = {vec(A) : A ∈Rn×m ,‖A‖∗ ≤ 1}. (2.13)

In particular, the convex tensor product of two cone stubs is not necessarily a cone stub.

The restricted singular value has a similar description as the restricted norm in (2.12), for
details on this construction we refer to [AL14].

3. MOMENT FUNCTIONALS OF CONVEX BODIES

In this section we consider the moments of the random variable hK (g ), where K is a convex
body and g is a standard Gaussian vector of appropriate dimension. As shown in Section 2.3 this
includes as a special case the moments of the restricted norm ‖G‖C→D , where G is a Gaussian
matrix. In Section 3.1 we introduce the concept of moment functionals. In Section 3.2 we present
Slepian’s Lemma and an extension to higher moments as monotonicity properties of moment
functionals. Section 3.3 and Section 3.4 describe applications of the extended Slepian’s Lemma.

3.1. Introduction of moment functionals. Recall that K (Rn) denotes the set of convex bodies
in Rn; additionally, we define K :=⋃

n K (Rn). In the following let g denote a standard Gaussian
vector of appropriate dimension.

Definition 3.1. Let f : R→R be Borel measurable. The f -moment functional is defined by

µ f : K →R, µ f (K ) := E[
f (hK (g ))

]
. (3.1)

An important special case of a moment functional is the Gaussian width obtained by choosing
f = id. We denote this special functional by

w(K ) :=µid(K ) = E[
hK (g )

]
. (3.2)

Another special case is the constant function f ≡ 1, which is in fact an emergence of the Euler
characteristic µ1(K ) =χ(K ) = 1.

The moment functionals are orthogonal invariant, µ f (QK ) =µ f (K ) if K ∈K (Rn), Q ∈O(n), and
monotonic: if f (x) ≥ f (y) for all x ≥ y , then so µ f (K ) ≥µ f (K ′) for all K ⊇ K ′.

3.2. Contraction inequalities. We have seen that for monotonically increasing f : R→ R, the
functional µ f is monotonically increasing under inclusion. Slepian’s Lemma generalizes this
monotonicity by weakening the inclusion assumption.

Definition 3.2. For a convex body K ∈ K we say that M ⊆ K generates K if K = conv(M) (the
closure of the convex hull). For K1,K2 ∈K we say that K2 is a contraction of K1 if there exists
a 1-Lipschitz surjection ϕ : M1 → M2 between generating sets M1, M2 of K1,K2. If additionally
‖ϕ(x)‖ = ‖x‖ for all x ∈ M1 then K2 is a norm-preserved contraction of K1.

If 0 ∈ K1 ∩K2 we say that K2 is a 0-contraction of K1 if there exists a 1-Lipschitz surjection
ϕ : M1 → M2 such that additionally ‖ϕ(x)‖ ≤ ‖x‖ for all x ∈ M1.
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The following proposition is a convex geometric formulation of (the generalized) Slepian’s
Inequality, which is a special case of Gordon’s Theorem B.1.

Proposition 3.3. Let K1,K2 ∈K .
(1) If K2 is a contraction of K1, then w(K2) ≤ w(K1).
(2) If K2 is a norm-preserved contraction of K1 and f : R→ R monotonically increasing, then

µ f (K2) ≤µ f (K1).
(3) If 0 ∈ K1 ∩K2 and K2 is a 0-contraction of K1 and f : R+ →R monotonically increasing and

convex, then µ f (K2) ≤µ f (K1).

In the following sections we will see that the convexity assumption on f may not be dropped.

Proof. We will prove statement (3), statements (1) and (2) are proved similarly and follow from
known versions of Slepian’s inequality.

Let M1, M2 be generators of K1,K2, respectively, such that the properties of a 0-contraction in
Definition 3.2 are satisfied with a corresponding set of map 1-Lipschitz map ϕ and the additional
property ‖ϕ(x)‖ ≤ ‖x‖ for all x ∈ M1.

By a continuity argument we may assume that M1 and M2 are finite sets. Furthermore, by
embedding the sets in a high-dimensional space, we may assume without loss of generality that
each of M1, M2 has at most N elements,

M1 = {x j : 1 ≤ j ≤ N }, M2 = {y j : 1 ≤ j ≤ N },

allowing repetitions on the x j and y j as well. Define centered Gaussian random variables X j ,Y j ,
1 ≤ i ≤ m, 1 ≤ j ≤ N , via

X j := 〈x j , g 〉, Y j := 〈y j , g 〉,
where g ∈RN is a standard Gaussian vector. The properties of the maps ϕx imply that

E |X j −X`|2 ≥ E |Y j −Y`|2, for all j ,`,

E |X j |2 ≥ E |Y j |2, for all j .

Since 0 ∈ K1∩K2, we also have µ f (K1) = Emax j f+(X j ) and µ f (K2) = Emax j f+(Y j ), with f+(x) = f (x)
for x ≥ 0 and 0 else. Applying Theorem B.2 with m = 1 in the degenerate case X0 := Y0 := 0 thus
yields

µ f (K2) = Emax
j

f+(Y j ) ≤ Emax
j

f+(X j ) =µ f (K1).

This completes the proof. �

3.3. Moments of the restricted norm of a Gaussian matrix. In this section we compare the
moment functionals of the convex tensor product K ⊗̂K ′ with those of the direct product K ×K ′.
As a corollary we obtain the upper bounds (1.11) and (1.12) in Theorem 1.6.

Recall from (2.12) that the norm restricted to cones C ⊆Rn , D ⊆Rm can be expressed through
the support function of the tensor product K ⊗̂K ′, where K = C ∩ B n and K ′ = D ∩ B m, via
‖A‖C→D = hK ⊗̂K ′(vec(A)). This implies that the moments of the restricted norm of a Gaussian
matrix are given by the moment functional of the tensor product K ⊗̂K ′,

µ f (K ⊗̂K ′) = E[
f (‖G‖C→D )

]
, (3.3)

where G ∈Rm×n is a (standard) Gaussian matrix. On the other hand, the property hK×K ′(v , v ′) =
hK (v )+hK ′(v ′) implies that

µ f (K ×K ′) = E[
f (‖ΠC (g )‖+‖ΠD (g )‖)

]
. (3.4)

To compare the tensor product with the direct product we consider the function (x , y) 7→ x ⊗ y .
While this map is not necessarily a contraction , we will see that for cone stubs it is a 0-contraction,
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and that a slight modification gives a norm-preserved contraction. This leads to the proof of
Theorem 1.6, which we restate here for convenience.

Theorem 3.4. Let C ⊆ Rn, D ⊆ Rm closed convex cones, and let G ∈ Rm×n Gaussian matrix and
g ∈ Rn, g ′ ∈ Rm independent Gaussian vectors. Then for f : R→ R monotonically increasing and
convex,

E
[

f (‖G‖C→D )
]≤ E[

f
(‖ΠC (g )‖+‖ΠD (g ′)‖)]. (3.5)

If γ ∈R denotes a standard Gaussian variable, which is independent of G, then for every monotonically
increasing f ,

E
[

f (‖G‖C→D +γ)
]≤ E[

f
(‖ΠC (g )‖+‖ΠD (g ′)‖)]. (3.6)

Proof. Set K := conv(C ∩ Sn−1), K0 := C ∩B n, and K ′
0 := D ∩B m. Note that K0 is generated by

{0}∪ (C ∩Sn−1). In light of the identities (3.3) and (3.4), for the first statement we need to show
that

µ f (K0 ⊗̂K ′
0) ≤µ f (K0 ×K ′

0).

By Proposition 3.3, this follows once we can show that the map (x , y) 7→ x ⊗ y is a 0-contraction.
To see this, consider the surjective map of generators

ϕ : {0}∪ (C ∩Sn−1)× (D ∩B m) → {0}∪ (C ∩Sn−1)⊗ (D ∩B m), (x , y) 7→ x ⊗ y .

This map is clearly satisfies ‖ϕ(x , y)‖ = ‖x ⊗ y‖ ≤ ‖(x , y)‖. To show that this is indeed a 0-
contraction, it remains to see that the map is 1-Lipschitz. If ‖x1‖ = ‖x2‖ = 1, then

‖(x1, y1)− (x2, y2)‖2 −‖x1 ⊗ y1 −x2 ⊗ y2‖2 = 2(1−〈x1, x2〉) (1−〈y1, y2〉) ≥ 0. (3.7)

Furthermore, if x1 = 0, we have

‖(0, y1)− (x2, y2)‖2 −‖0⊗ y1 −x2 ⊗ y2‖2 = ‖x2‖2 +‖y1 − y2‖2 −‖x2‖2‖y2‖2 ≥ 0,

the last inequality being a consequence of ‖y2‖ ≤ 1 and ‖x2‖ ∈ {0,1}. This concludes the first claim.
The second claim follows analogously, where in this case one establishes

E
[

f (‖G‖C→D +γ)
]=µ f

(
(K ⊗̂K ′

0)× {1}
)≤µ f (K ×K ′

0) = E[
f (hK (g )+‖ΠD (g ′)‖)

]
, (3.8)

by showing that K ⊗̂K ′
0)× {1} is a norm-preserved contraction of the direct product K ×K ′

0. The
claim then follows by noting that hK (g ) ≤ ‖ΠC (g )‖, see (2.10). �

The above proof actually shows a slightly stronger bound: from (3.8) and from the symmetry
‖G‖C→D = ‖GT ‖C→D , it follows

E
[

f (‖G‖C→D +γ)
]≤ min

{
E
[

f
(
hK (g )+‖ΠD (g ′)‖)],E

[
f
(‖ΠC (g )‖+hK ′(g ′)

)]}
,

where K = conv(C ∩Sn−1), K ′ = conv(D ∩Sm−1).

3.4. Linear images of cones. In conic integral geometry the random variable ‖ΠC (g )‖, where
C ⊆Rn a closed convex cone and g ∈Rn a standard Gaussian vector, plays an important role (see
Section 4 ahead). In fact, the norm of the projection is a special case of a cone-restricted norm:

‖ΠC (g )‖ = ‖g‖R+→C , (3.9)

where on the right-hand side we interpret g ∈ Rn×1 as linear map. Using Theorem 1.6 we will
derive estimates for the moments of ‖G̃‖T C→U D , where C ⊆Rn and D ⊆Rm closed convex cones,
T ∈R`×n and U ∈Rp×m , and G̃ is a Gaussian (p ×`)-matrix.

We are now set to prove Theorem C. For convenience we restate it here.

Theorem 3.5. Let C ⊆Rn and D ⊆Rn closed convex cones, T ∈R`×n and U ∈Rp×m . Then for r ≥ 1,

E
[‖G̃‖r

T C→U D

]≤RC (T )r RD (U )r E
[‖G‖r

C→D

]
,

where G̃ ∈Rp×` and G ∈Rm×n Gaussian matrices.
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Applying this theorem to the special case (3.9) results in Theorem A, which we restate here as
a corollary.

Corollary 3.6. Let C ⊆ Rn closed convex cone, and νr (C ) := E[‖ΠC (g )‖r ], where g ∈ Rn Gaussian.
Then for A ∈R`×n , and r ≥ 1,

νr (AC ) ≤RC (A)rνr (C ). (3.10)
In particular, if `= n, A is non-singular, and r = 2, then

δ(C )

κ(A)2 ≤ δ(AC ) ≤ κ(A)2δ(C ). (3.11)

Proof. The first bound is just a special case of 3.5. The inequalities (3.11) follow from the
inequality RC (A) ≤ κ(A), cf. (2.8), and by considering C = A−1 AC and using κ(A) = κ(A−1) to
obtain the lower bound. �

For the proof of Theorem 3.5 we need two auxiliary results.

Lemma 3.7. Let D ⊆Rm closed convex cone and U ∈Rp×m . Then

U D ∩B p ⊆ 1
λU (D ∩B m), (3.12)

with λ := max
{
σD→Rp (U ),σRp→D (−U T )

}
.

Proof. Let λ1 :=σD→Rp (U ), λ2 :=σRp→D (−U T ). We will show in two steps that U D∩B p ⊆ 1
λ1

U (D∩
B m) and U D ∩B p ⊆ 1

λ2
U (D ∩B m).

(1) Since U D ∩B p as well as U (D ∩B m) contain the origin, it suffices to show that U D ∩Sp−1 ⊆
1
λ1

U (D∩B m). Every element in U D∩Sp−1 can be written as U y0

‖U y0‖ for some y0 ∈ D∩Sm−1, and since

σD→Rp (U ) = miny∈D∩Sm−1 ‖U y‖ ≤ ‖U y0‖, we obtain σD→Rp (U ) U y0

‖U y0‖ ∈ conv{0,U y0} ⊆U (D∩B m). This
shows U D ∩Sp−1 ⊆ 1

λ1
U (D ∩B m).

(2) Recall from (2.4) that σRp→D (−U T ) > 0 only if (U D)◦ = {0}, i.e., U D =Rp . Observe that

σRp→D (−U T ) = min
z∈Rp

max
y∈D∩B m

〈U y , z〉 = max
{
r ≥ 0 : r B p ⊆U (D ∩B m)

}
.

This shows B p ⊆ 1
λ2

U (D ∩B m) and thus finishes the proof. �

Lemma 3.8. Let K ,K ′ be convex bodies such that K = conv(M) for some closed set M ⊆ Sn−1 and
0 ∈ K ′, and let L := span(K ′) the linear hull of K ′. If T denotes a linear transformation on L, then
K ⊗̂T K ′ is a 0-contraction of K ⊗̂‖T ‖K ′.

Proof. Note that the norm of the difference of two rank one matrices can be written as

‖x1 ⊗ y1 −x2 ⊗ y2‖2 = ‖x1‖2‖y1‖2 −2〈x1, x2〉〈y1, y2〉+‖x2‖2‖y2‖2.

So for ‖x1‖ = ‖x2‖ = 1,

‖x1 ⊗ y1 −x2 ⊗ y2‖2 −‖x1 ⊗ z1 −x2 ⊗ z2‖2

= ‖y1‖2 +‖y2‖2 −‖z1‖2 −‖z2‖2 +2〈x1, x2〉
(〈z1, z2〉−〈y1, y2〉

)

≥



‖y1‖2 +‖y2‖2 −2〈y1, y2〉−‖z1‖2 −‖z2‖2 +2〈z1, z2〉
= ‖y1 − y2‖2 −‖z1 − z2‖2 if 〈z1, z2〉 ≤ 〈y1, y2〉
‖y1‖2 +‖y2‖2 +2〈y1, y2〉−‖z1‖2 −‖z2‖2 −2〈z1, z2〉
= ‖y1 + y2‖2 −‖z1 + z2‖2 if 〈z1, z2〉 ≥ 〈y1, y2〉.

Setting ϕ : M ⊗ ‖T ‖K ′ → M ⊗ T K ′, ϕ(x ⊗ ‖T ‖x ′) := x ⊗ T x ′, we have ‖ϕ(x ⊗ ‖T ‖x ′)‖ = ‖T x ′‖ ≤
‖T ‖‖x ′‖ = ‖x ⊗‖T ‖x ′‖, and from the above computation, with yi = ‖T ‖x ′

i and zi = T x ′
i , i = 1,2, we

obtain either

‖x1 ⊗‖T ‖x ′
1 −x2 ⊗‖T ‖x ′

2‖2 −‖x1 ⊗T x ′
1 −x2 ⊗T x ′

2‖2 ≥ ‖T ‖2 ‖x ′
1 −x ′

2‖2 −‖T (x ′
1 −x ′

2)‖2 ≥ 0,
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or

‖x1 ⊗‖T ‖x ′
1 −x2 ⊗‖T ‖x ′

2‖2 −‖x1 ⊗T x ′
1 −x2 ⊗T x ′

2‖2 ≥ ‖T ‖2 ‖x ′
1 +x ′

2‖2 −‖T (x ′
1 +x ′

2)‖2 ≥ 0.

This shows that K ⊗̂T K ′ is a 0-contraction of K ⊗̂‖T ‖K ′. �

Proof of Theorem 3.5. Assume first that `= n and T = In. As in the proof of Lemma 3.7, we let
λ := max

{
σD→Rp (U ),σRp→D (−U T )

}
, so that

E
[‖G‖r

C→U D

]= E[(
max

x∈C∩Sn−1
max

y∈U D∩B p
〈G x , y〉)r ]

≤λ−r E
[(

max
x∈C∩B n

max
y∈U (D∩B m )

〈G x , y〉)r ]=λ−rµ f (K ⊗̂U K ′),

where f (t ) := t r , K :=C ∩B n, and K ′ := D ∩B m. From Lemma 3.8 and Slepian’s Inequality (3) in
Proposition 3.3 we obtain µ f (K ⊗̂U K ′) ≤ ‖U‖rµ f (K ⊗̂K ′) = ‖U‖r E

[‖G‖r
C→D

]
, so that

E
[‖G‖r

C→U D

]≤ ( ‖U‖
max

{
σD→Rp (U ),σRp→D (−U T )

})r

E
[‖G‖r

C→D

]=RD (U )r E
[‖G‖r

C→D

]
.

This shows the claim for ` = n and T = In. For the general case we use the symmetry of the
restricted norm,

E
[‖G‖r

T C→U D

]≤RD (U )r E
[‖G‖r

T C→D

]=RD (U )r E
[‖−GT ‖r

D→T C

]
≤RC (T )r RD (U )r E

[‖−GT ‖r
D→C

]=RC (T )r RD (U )r E
[‖G‖r

C→D

]
. �

Note that we can improve the upper bound by using Renegar’s condition number. While the
above bound can significantly improve on Theorem A, it may still be trivial in cases where the
statistical dimension is large with respect to the ambient space. An improvement is given by
Proposition 1.2, which we restate and prove here.

Proposition 3.9. Let C ⊆Rn be a closed convex cone, and δ(C ) the statistical dimension of C . Then
for A ∈Rn×n non-singular,

δ(AC ) ≤ κ(A)−2 ·δ(C )+ (
1−κ(A)−2) ·n.

Proof. We have

δ(AC )
(1)= n −δ(A−T C ◦)

(2)≤ n −κ(A)−2δ(C ◦)

(3)= n −κ(A)−2(n −δ(C ))

= κ(A)−2 ·δ(C )+ (
1−κ(A)−2) ·n,

where for (1) we used (4.7) and Lemma 2.1, for (2) we used Theorem A, and for (3) we
used (4.7) again. �

4. CONIC INTEGRAL GEOMETRY

In this section we use integral geometry to develop the tools needed for deriving a precon-
ditioned bound in Theorem B. A comprehensive treatment of integral geometry can be found
in [SW08b], while a self-contained treatment in the setting of polyhedral cones, which uses our
language, is given in [AL17].
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4.1. Intrinsic volumes. The theory of conic integral geometry is based on the intrinsic volumes
v0(C ), . . . , vn(C ) of a closed convex cone C ⊆Rn . The intrinsic volumes form a discrete probability
distribution on {0, . . . ,n} that capture statistical properties of the cone C . For a polyhedral cone C
and 0 ≤ k ≤ n, the intrinsic volumes can be defined as

vk (C ) =P{ΠC (g ) lies in relative interior of k-dimensional face of C }.

Example 4.1. Let C = L ⊆Rn be a linear subspace of dimension i . Then

vk (C ) =
{

1 if k = i ,

0 if k 6= i .

Example 4.2. Let C =Rn
≥0 be the non-negative orthant, i.e., the cone consisting of points with

non-negative coordinates. A vector x projects orthogonally to a k-dimensional face of C if and
only if exactly k coordinates are non-positive. By symmetry considerations and the invariance of
the Gaussian distribution under permutations of the coordinates, it follows that

vk (Rn
≥0) =

(
n

k

)
2−n .

For non-polyhedral closed convex cones, the intrinsic volumes can be defined by polyhedral
approximation. To avoid having to explicitly take care of upper summation bounds in many
formulas, we use the convention that vk (C ) = 0 if C ⊆ Rn and k > n (that this is not just a
convention follows from the fact that intrinsic volumes are “intrinsic”, i.e., not dependent on the
dimension of the space in which C lives).

The following important properties of the intrinsic volumes, which are easily verified in the
setting of polyhedral cones, will be used frequently:

(a) Orthogonal invariance. For an orthogonal transformation Q ∈O(n),

vk (QC ) = vk (C );

(b) Polarity.
vk (C ) = vn−k (C ◦);

(c) Product rule.
vk (C ×D) = ∑

i+ j=k
vi (C )v j (D). (4.1)

In particular, if D = L is a linear subspace of dimension j , then vk+ j (C ×L) = vk (C ).
(d) Gauss-Bonnet.

n∑
k=0

(−1)k vk (C ) =
{

0 if C is not a linear subspace,
1 else.

(4.2)

4.2. The Steiner formula. The intrinsic volumes are the essential ingredients in the (general-
ized) Steiner formula, which in its original formulation gives an expression for the measure of
the neighborhood of a convex cone:

P{‖ΠC (g )‖ ≥ r } =
n∑

i=0
vi (C )P{χi ≥ r }, (4.3)

where χ0 = 0 and χ1, . . . ,χn are independent chi-distributed random variables with χi having i
degrees of freedom.



18 D. AMELUNXEN, M. LOTZ, AND J. WALVIN

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIGURE 3. Intrinsic volumes of the cone C = {x : x1 ≤ ·· · ≤ xn}.

A powerful generalization of the Steiner formula (4.3) was derived in [MT14], which we state
for completeness and later reference: if f : R2+ →R is a Borel function and C ⊆Rn a closed convex
cone, then

E
[

f (‖ΠC (g )‖,‖ΠC ◦(g )‖)
]= n∑

i=0
vi (C )E

[
f (χi ,χ′n−i )

]
, (4.4)

where χ0 =χ′0 = 0 and χ1, . . . ,χn ,χ′1, . . . ,χ′n are independent chi-distributed random variables with
χi and χ′i having i degrees of freedom.

The Steiner formula allows one to express certain moment functionals as linear combinations
of intrinsic volumes.

Example 4.3 (circular cones). In this example we use the Steiner formula to compute the moment
functionals for circular cones, and show that the convexity assumption in Proposition 3.3 can
not be dropped. Let Circn(α) = {x ∈Rn : x1 ≥ ‖x‖cosα} denote the circular cone of radius α around
the first coordinate vector. For our purposes it is more convenient to use tanα instead of α, so
we define Cn(t ) := Circn(arctan(t )). Consider the linear map T := diag(1, s, . . . , s) with s ≥ 1, whose
condition number is κ(T ) = s. Then T Cn(t ) =Cn(st ). Recall the definition νr (C ) = E[‖ΠC (g‖r ] for
the r -th moment of the projected length. By (3.11) we have

srνr (Cn(t ))

νr (Cn(st ))
≥ 1 (4.5)

for r ≥ 1. Using the generalized Steiner formula (4.4) we can express νr (C ) in terms of the
intrinsic volumes of C : for r > 0

νr (C ) =
n∑

j=1
v j (C )E[‖g j‖r ] =

n∑
j=1

v j (C )
2r /2Γ( j+r

2 )

Γ( j
2 )

,

where g j ∈R j denotes a standard Gaussian vector. The intrinsic volumes of the circular cones are
given by, cf. [Ame11, Ex. 4.4.8]

v j (Cn(t )) = Γ( n
2 ) t j

2Γ( j+1
2 )Γ( n− j+1

2 ) (1+ t 2)(m−2)/2
, for j = 1, . . . ,n −1,

vn(Cn(t )) = Γ( n
2 )

p
πΓ( n−1

2 )

∫ t

0

τn−2

(1+τ2)n/2
dτ.

Using these formulas we can compute νr (Dn(t )).
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FIGURE 4. Plot of the quotient srνr (Cn(t ))/νr (Cn(st )), cf. (4.5), with s = 2, m ∈
{50,100,200}, r ∈ {0.5,1,2}.

Figure 4 shows a plot of the quotient in (4.5) for s = 2, n ∈ {50,100,200}, and r ∈ {0.5,1,2}. The
plot shows that the inequality (4.5) may be violated if r < 1, which ultimately shows that the
convexity assumptions in Proposition 3.3 may not be dropped. The plots also indicate that the
inequality (4.5) is asymptotically sharp for n →∞. This could be shown with an analysis similar
to the one given in [MT13b, Sec. 6.3]; we leave the details to the interested reader.

4.3. The statistical dimension. In what follows it will be convenient to work with reparametriza-
tions of the intrinsic volumes, namely the tail and half-tail functionals

tk (C ) = ∑
i≥0

vk+i (C ), hk (C ) = 2
∑

i≥0 even
vk+i (C ),

which are defined for 0 ≤ k ≤ n. Adding (or subtracting) the Gauss-Bonnet relation (4.2) to the
identity

∑
i≥0 vi (C ) = 1, we see that h0(C ) = h1(C ) = 1 if C is not a linear subspace, so that the

sequences 2v0(C ),2v2(C ), . . . and 2v1(C ),2v3(C ), . . . are probability distributions in their own right.
Moreover, we have the interleaving property

ti+1(C ) ≤ hi (C ) ≤ ti (C ).

The intrinsic volumes can be recovered from the half-tail functionals as

vi (C ) =
{

1
2 (hi (C )−hi+2(C )) for 0 ≤ i ≤ n −2,
1
2 hi (C ) else.

(4.6)

An important summary parameter is the statistical dimension of a cone C , defined as the expected
value of the intrinsic volumes considered as probability distribution:

δ(C ) =
n∑

k=0
kvk (C ) = 1

2
h1(C )+ ∑

i≥2
hi (C ).

The statistical dimension coincides with the expected squared norm of the projection of a
Gaussian vector on the cone, δ(C ) = E

[‖ΠC (g )‖2
]
, and is therefore an instance of a moment

function (see Section 3). Moreover, it differs from the squared Gaussian width by at most 1,

w2(C ) ≤ δ(C ) ≤ w2(C )+1,

see [ALMT14, Proposition 10.2].
The statistical dimension reduces to the usual dimension for linear subspaces, and also extends

various properties of the dimension to closed convex cones C ⊆Rn:
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(a) Orthogonal invariance. For an orthogonal transformation Q ∈O(n),

δ(QC ) = δ(C );

(b) Complementarity.
δ(C )+δ(C ◦) = n; (4.7)

This generalizes the relation dimL+dimL⊥ = n for a linear subspace L ⊆Rn .
(c) Additivity.

δ(C ×D) = δ(C )+δ(D).

(d) Monotonicity.
δ(C ) ≤ δ(D) if C ⊆ D.

The analogy with linear subspaces will be taken further when discussing concentration of
intrinsic volumes, see Section 4.5.

4.4. The kinematic formulas. The intrinsic volumes allow to study the properties of random
intersections of cones via the kinematic formulas. A self-contained proof of these formulas for
polyhedral cones is given in [AL17, Section 5]. In what follows, when we say that Q is drawn
uniformly at random from the orthogonal group O(d), we mean that it is drawn from the Haar
probability measure ν on O(n). This is the unique regular Borel measure on O(n) that is left and
right invariant (ν(Q A) = ν(AQ) = ν(A) for Q ∈O(n) and a Borel measurable A ⊆O(n)) and satisfies
ν(O(n)) = 1. Moreover, for measurable f : O(n) →R+, we write

EQ∈O(n)[ f (Q)] :=
∫

Q∈O(n)
f (Q) ν(dQ)

for the integral with respect to the Haar probability measure, and we will occasionally omit the
subscript Q ∈O(n), or just write Q in the subscript, when there is no ambiguity.

Theorem 4.4 (Kinematic Formula). Let C ,D ⊆Rn be polyhedral cones. Then, for Q ∈O(n) uniformly
at random, and k > 0,

E[vk (C ∩QD)] = vk+n(C ×D), E[v0(C ∩QD)] = t0(C ×D). (4.8)

If D = L is a linear subspace of dimension n −m, then

E[vk (C ∩QL)] = vk+m(C ), E[v0(C ∩QL)] =
m∑

j=0
v j (C ). (4.9)

Combining Theorem 4.4 with the Gauss-Bonnet relation (4.2) yields the so-called Crofton
formulas, which we formulate in the following corollary. The intersection probabilities are also
know as Grassmann angles in the literature (see [AL17, 2.33] for a discussion and references).

Corollary 4.5. Let C ,D ⊆Rn be polyhedral cones such that not both of C and D are linear subspaces,
and let L ⊂Rn be a linear subspace of dimension n −m. Then, for Q ∈O(n) uniformly at random,

P{C ∩QD 6= 0} = hn+1(C ×D), P{C ∩QL 6= 0} = hm+1(C ).

Applying the polarity relation (C ∩D)◦ =C ◦+D◦ (see [AL17, Proposition 2.5]) to the kinematic
formulas, we obtain a polar version of the kinematic formula, for k > 0,

E[vn−k (C +QD)] = vn−k (C ×D), E[vn(C +QD)] = tn(C ×D). (4.10)

A convenient consequence of this polar form is a projection formula for intrinsic volumes, due
to Glasauer [Gla95]. Let Q ∈O(n) uniform at random and P ∈Rn×n a fixed orthogonal projection
onto a linear subspace L of dimension m. Then for 0 < k ≤ m,

E[vm−k (PQC )] = vm−k (C ), E[vm(PQC )] = tm(C ). (4.11)
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As we will see in Section 4.6, this results holds for any full rank T ∈Rm×n, instead of just for
projections P .

Remark 4.6. The astute reader may notice that the projection PQC does not need to be a closed
convex cone. For random Q, however, the probability of this happening can be shown to be zero.

4.5. Concentration of measure. It was shown in [ALMT14] (with a more streamlined and
improved derivation in [MT14]), that the intrinsic volumes concentrate sharply around the
statistical dimension. For a closed convex cone C , let XC denote the discrete random variable
satisfying

P{XC = k} = vk (C ).

The following result is from [MT14].

Theorem 4.7. Let λ≥ 0. Then

P{|XC −δ(C )| ≥λ} ≤ 2exp

( −λ2/4

min{δ(C ),δ(C ◦)}+λ/3

)
.

Roughly speaking, the intrinsic volumes of a convex cone in high dimensions approximate
those of a linear subspace of dimension δ(C ). The concentration result 4.7, used in conjunction
with the kinematic formula, gives rise to an approximage kinematic formula, which in turn
underlies the phase transition results from [ALMT14]. We will only need the following direct
consequence of Theorem 4.7.

Corollary 4.8. Let η ∈ (0,1), let C be a closed convex cone, and let 0 ≤ m ≤ n. Then

δ(C ) ≤ m −aη
p

m =⇒ tm ≤ η;

δ(C ) ≥ m +aη
p

m =⇒ tm ≥ 1−η,

with aη := 2
√

log(2/η).

Applying the above to the statistical dimension, we get the following expression.

Corollary 4.9. Let η ∈ (0,1) and assume that m ≥ δ(C )+aη
p

m, with aη = 2
√

log(2/η). Then

δ(C )− (n −m)η≤ EQ [δ(PQC )] ≤ δ(C ).

Proof. A direct application of the projection formulas (4.11) and the definition of the statistical
dimension shows that

EQ [δ(PQC )] = δ(C )−
n−m∑
k=1

kvk+m(C ).

The bound then follows by bounding the right-hand side in a straight-forward way and applying
Corollary 4.8. �

We conclude this section by proving Theorem B, which we restate for convenience. Recall the
notation

κ2
m(A) := EQ [κ(PQ A)2],

with P the projection on the first m coordinates.

Theorem 4.10. Let C ⊆Rn be a closed convex cone and A : Rn →Rn a non-singular linear map. Let
η ∈ (0,1) and assume that m ≥ δ(C )+2

√
log(2/η)m. Then

δ(AC ) ≤ EQ
[
RC (PQ A)2] ·δ(C )+ (n −m)η.

For the matrix condition number,

δ(AC ) ≤ κ2
m(A) ·δ(C )+ (n −m)η. (4.12)
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Proof. The upper bound follows from

δ(AC ) ≤ EQ [δ(PQ AC )]+ (n −m)η≤ EQ

[
RC (PQ A)2

]
δ(C )+ (n −m)η,

where we used Theorem A for the second inequality. The upper bound in terms for the matrix
condition number follows as in the proof of Theorem A. �

4.6. The TQC Lemma. The following generalization of the projection formulas (4.11), first
observed by Mike McCoy and Joel Tropp, may at first sight look surprising. While it can be
deduced from general integral-geometric considerations (see, for example, [Ame14]), we include
a proof because it is illustrative.

Lemma 4.11. Let T ∈Rm×n be of full rank. Then for 0 ≤ k < m,

E[vk (T QC )] = vk (C ), E[vm(T QC )] = tm(C ) (4.13)

Proof. In view of (4.6), it suffices to show (4.13) for the half-tail functionals h j instead of
the intrinsic volumes v j . Let L ⊂ Rn be a linear subspace of dimension dimL = k ≤ m. From
Proposition 2.2 it follows that

QC ∩T −1L 6= {0} ⇐⇒ T QC ∩L 6= {0} or kerT ∩QC 6= {0},

where in this case, as before, T −1L denotes the pre-image of L under T . Denoting by P the
orthogonal projection onto the complement (kerT )⊥, we thus get

PQC ∩ (T −1L∩ (kerT )⊥) 6= {0} ⇐⇒ T QC ∩L 6= {0},

and taking probabilities,

P
{

PQC ∩ (T −1L∩ (kerT )⊥) 6= {0}
}=P{T QC ∩L 6= {0}}. (4.14)

To compute the probability on the left, let Q0 is a random orthogonal transformation of the space
(kerT )⊥. Restricting to (kerT )⊥ as ambient space,

PQ
{

PQC ∩ (T −1L∩ (kerT )⊥) 6= {0}
}=PQ

{
PQC ∩Q0(T −1L∩ (kerT )⊥) 6= {0}

}
= EQ0 PQ

{
PQC ∩Q0(T −1L∩ (kerT )⊥) 6= {0}

}
(1)= EQ PQ0

{
PQC ∩Q0(T −1L∩ (kerT )⊥) 6= {0}

}
(2)= EQ [hm−k+1(PQC )]

where for (1) we summoned Fubini on the representation of the probability as expectation of an
indicator variable and for (2) the Crofton formula 4.5 with (kerT )⊥ as ambient space. A similar
argument on the right-hand side of (4.14) shows that

PQ {T QC ∩L 6= {0}} = EQ [hm−k+1(T QC )].

In summary, we have for shown that EQ [hm−k+1(T QC )] = EQ [hm−k+1(PQC )] for 0 ≤ k ≤ m, and
hence also EQ [vi (T QC )] = EQ [vi (PQC )] for 0 ≤ i ≤ m. The claim now follows by applying the
projection formula (4.11). �

As with the case where T is a projection, applying the above to the statistical dimension, we
get the following expression.

Corollary 4.12. Let η ∈ (0,1) and assume that m ≥ δ(C )+aη
p

m, with aη = 2
√

log(2/η). Then under
the conditions of Lemma 4.11, we have

δ(C )− (n −m)η≤ EQ [δ(T QC )] ≤ δ(C )−η.

It remains to be seen whether the fact that the main preconditionining results can be formulated
with an arbitrary matrix T , rather than just a projection P , can be of use.
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5. APPLICATIONS

In this section we apply the results derived for convex cones to the setting of convex regularizers.
To give this application some context, we briefly review some of the theory.

5.1. Convex regularization, subdifferentials and the descent cone. In practical applications
the cones of interest often arise as cones generated by the subgradient of a proper convex function
f : Rn →R∪ {∞}.

The exact form of the general convex regularization problem is

minimize f (x) subject to Ax = b, (5.1)

while the noisy form is

minimize f (x) subject to ‖Ax −b‖2 ≤ ε. (5.2)

Interchanging the role of the function f and the residual, we get the generalized LASSO

minimize ‖Ax −b‖2 subject to f (x) ≤ τ. (5.3)

Finally, we have the Lagrangian form,

minimize ‖Ax −b‖2
2 +λ f (x). (5.4)

These last three problems are, in fact, equivalent (see [FR13, Chapter 3] for a concise derivation
in the case f (x) = ‖x‖1). The practical problem consists in effectively finding the parameters
involved.

The first-order optimality condition states that x̂ is a unique solution of (5.1) if and only if

∃y 6= 0 : AT y ∈ ∂ f (x̂), (5.5)

where ∂ f (x̂) denotes the subdifferential of f at x̂, i.e., the set

∂ f (x̂) = {z ∈Rn : f (x̂ + z) ≥ f (x̂)+〈z , x〉}.

If f is differentiable at x̂, then of course the subdifferential contains only the gradient of f at x̂,
and the vector y in (5.5) consists of the Lagrange multipliers.

Example 5.1. If f is a norm, with dual norm f ◦, then the subdifferential of f at x̂ is

∂ f (x̂) =
{

{z ∈Rn : f ◦(z) = 1,〈z , x̂〉 = f (x̂)} x̂ 6= 0

{z ∈Rn : f ◦(z) ≤ 1} x̂ = 0.

Example 5.2. For the `1-norm at an s-sparse vector x̂,

∂‖x̂‖1 = {z ∈Rn : ‖z‖∞ = 1,〈z , x̂〉 = ‖x̂‖1},

or more explicitly,

∂‖x̂‖1 = {z ∈Rn : zi = sign (x̂i ) if x̂i 6= 0, z j ∈ [−1,1] if x̂ j = 0}. (5.6)

The descent cone of f at x̂ is defined as

D( f , x̂) = ⋃
τ>0

{
y ∈Rn : f (x̂ +τy) ≤ f (x̂)

}
.

The convex cone generated by the subdifferential of f at x̂ and is the closure of the polar cone of
D( f , x̂),

cone
(
∂ f (x̂)

)=D( f , x̂)◦, (5.7)
Condition (5.5) is therefore equivalent to

ker A ∩D( f , x̂) = {0},

namely, that the kernel of A does not intersect the descent cone nontrivially.
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For the robust problem (5.2), given a point x0 that satisfies the constraints, we have seen in
the introduction that the error satisfies the bound

‖x0 − x̂‖ ≤ 2ε ·σD( f ,x0)(A)−1,

where σ denotes the smallest restricted singular value.
An important class of regularizers are of the form f (x) := g (Ax)+h(B x), with A and B linear

maps. It follows from [Roc70, Theorems 23.8, 23.9] that the subdifferential is

∂ f (x) = AT ∂g (Ax)+B T ∂h(B x).

Such composite regularizers include the “cosparse” setting [NDEG13]. For f (x) = g (D x) and
invertible D, combining (5.7) with Lemma 2.1 we get,

D( f , x0) = D−1D(g ,D x0). (5.8)

Example 5.3. The `1 norm can be written as

‖x‖1 =
n∑

i=1
|Πi (x)|,

where Πi (x) = xi is the projection on the i -th component. The subdifferential at x̂ is therefore

∂‖x̂‖1 =
n∑

i=1
ΠT

i ∂|xi |.

The subdifferential of the absolute value is

∂|x| =
{

x
|x| x 6= 0

[−1,1] x = 0.

This leads to the same description of the subdifferential of the `1 norm as face of a unit hypercube
as the one given in (5.6).

Example 5.4 (Finite differences). Let x ∈Rn and let

D =


−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1

 (5.9)

be the discrete finite difference matrix. Thus

D x = (x2 −x1, x3 −x2, . . . , xd −xd−1)T .

Define g (x) := f (D x). Then for a fixed x̂, the subdifferential is given by

∂g (x̂) = DT ∂ f (D x̂).

In the special case where f is the `1-norm and D x̂ is s-sparse with support I ⊂ [n],

∂g (x̂) = {DT z : ‖z‖∞ = 1,〈z ,D x̂〉 = ‖D x̂‖1}.

One can think of such a vector x̂ as a signal with sparse gradient.

Example 5.5. (Weighted `1 norm). Let ω ∈Rn be a vector of weights and define the weighted
`1-norm

‖x‖ω,1 =
n∑

j=1
ω j |x j |.
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By extension from the `1 example, we have

∂‖x̂‖ω,1 = {z ∈Rn : zi =ωi sign (x̂i ) if x̂i 6= 0, z j ∈ [−ω j ,ω j ] if x̂ j = 0}

= diag(ω) ∂‖x̂‖1.

This example becomes interesting when considering weighted s-sparse vectors, that is, vectors
such that

‖x‖ω,0 =
∑

x j 6=0
ω2

j = s.

The use of composite regularizers to recover simultaneously structured models was studied
in [OJF+15], where it was found that the performance is not better than when using a regularizers
adapted to a single structure.

5.2. Performance bounds in convex regularization. As mentioned in the introduction, com-
puting the statistical dimension of convex regularizers is in general a difficult problem, with only
few cases allowing for closed-form expressions. Using the condition bounds for the statistical
dimension of linear images of convex cones, and translating these to the setting of convex
regularizers, we get the corresponding statements in Corollary 1.1, which we restate here.

Corollary 5.6. Let f (x) = g (D x), where g is a proper convex function and let D ∈ Rn×n be non-
singular. Then

δ( f , x0) ≤RD(g ,D x0)
(
D−1) ·δ(g ,D x0).

In particular,
δ(g ,D x0)

κ(D)2 ≤ δ( f , x0) ≤ κ(D)2 ·δ(g ,D x0).

Proof. Let C =D(g ,D x0). Then from (5.8) we get that

δ( f , x0) = δ(D−1C ).

The claims then follows from Theorem A and Proposition 1.2, noting that κ(D−1) = κ(D). �

In a similar fashion, we also get the preconditioned bounds in Corollary 1.3.
A popular method [ALMT14, Recipe 4.1], going back to Stojnic [Sto09] and generalized

in [CRPW12], is to approximate the statistical dimension of the descent cone D( f , x0) by the
expected value

inf
τ≥0

E[dist2(g ,τ ·∂ f (x))]. (5.10)

This approximation, however, does not work for all regularizers f for two reasons: it my not be
tight, and computing the quantity may not be feasible. In [ALMT14, Theorem 4.1], the following
error bound is derived.

0 ≤ inf
τ≥0

E[dist2(g ,τ ·∂ f (x))]−δ( f , x0) ≤ 2sup{‖s‖ : s ∈ ∂ f (x)}

f (x/‖x‖)
. (5.11)

In [ZXCL16], this error was analysed and it was shown to be bounded, so that the approxi-
mation is asymptotically tight. Using a different route, in [DH17], it was shown that in the case
where f (x) = ‖D x‖1 one has

0 ≤ inf
τ≥0

E[dist2(g ,τ ·∂ f (x))]−δ( f , x0) ≤ 2κ(D)p
s(n −1)

.

While this bound is not sharp (the derivation makes use of norm inequalities), it is enlightening
as it gives sufficient conditions for the applicability of Bound (5.11) in terms of the condition
number of A. It remains to be seen whether randomized preconditioning can be incorporated
into this bound, and therefore whether this approach can lead to bounds that would rival those
derived in [ZXCL16].
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APPENDIX A. THE BICONIC FEASIBILITY PROBLEM - PROOFS

In this appendix we provide the proofs for Section 2.2. Recall that for C ⊆Rn, D ⊆Rm closed
convex cones, the biconic feasibility problem is given by

∃x ∈C \ {0} s.t. Ax ∈ D◦, (P) ∃y ∈ D \ {0} s.t. − AT y ∈C ◦, (D)

and the sets of primal feasible and dual feasible instances can be characterized by

P (C ,D) = {
A ∈Rm×n : C ∩ (

AT D
)◦ 6= {0}

}= {A ∈Rm×n :σC→D (A) = 0},

D(C ,D) = {A ∈Rm×n : D ∩ (−AC )◦ 6= {0}} = {A ∈Rm×n :σD→C (−AT ) = 0},

respectively, cf. (2.3)/(2.4). The proof of Proposition 2.4 uses the following generalization of
Farkas’ Lemma.

Lemma A.1. Let C ,C̃ ⊆Rn be closed convex cones with int(C ) 6= ;. Then

int(C )∩ C̃ =; ⇐⇒ C ◦∩ (−C̃ ◦) 6= {0}. (A.1)

Proof. If int(C )∩ C̃ =;, then there exists a separating hyperplane H = v⊥, v 6= 0, so that 〈v , x〉 ≤ 0
for all x ∈ C and 〈v , y〉 ≥ 0 for all y ∈ C̃ . But this means v ∈ C ◦∩ (−C̃ ◦). On the other hand, if
x ∈ int(C )∩ C̃ then only in the case C = Rn, for which the claim is trivial, can x = 0. If x 6= 0,
then C ◦ \ {0} lies in the open half-space {v : 〈v , x〉 < 0} and −C̃ ◦ lies in the closed half-space
{v : 〈v , x〉 ≥ 0}, and thus C ◦∩ (−C̃ ◦) = {0}. �

For the proof of the third claim in Proposition 2.4 we also need the following well-known
convex geometric lemma; a proof can be found, for example, in [SW08a, proof of Thm. 6.5.6].
We say that two cones C ,D ⊆Rn , with int(C ) 6= ;, touch if C ∩D 6= {0} but int(C )∩D =;.

Lemma A.2. Let C ,D ⊆ Rn closed convex cones with int(C ) 6= ;. If Q ∈O(n) uniformly at random,
then the randomly rotated cone QD almost surely does not touch C .
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Proof of Proposition 2.4. (1) The sets P (C ,D) and D(C ,D) are closed as they are preimages of
the closed set {0} under continuous functions, c.f. (2.3)/(2.4). Indeed, for any x, the function
A 7→ ‖ΠD (Ax)‖ is continuous, and as a minimum of such functions over the compact set C ∩Sm−1,
it follows that σC→D (A) is continuous. Hence, P (C ,D) = {A ∈Rn×m :σC→D (A) = 0} is closed. The
same argument applies to D(C ,D).

(2) For the claim about the union of the sets P (C ,D) and D(C ,D) we first consider the case
C 6=Rn , so that 0 6∈ int(C ). Using the generalized Farkas’ Lemma A.1, we obtain

A 6∈P (C ,D) ⇐⇒ C ∩ (
AT D

)◦ = {0} ⇒ int(C )∩ (
AT D

)◦ =; (A.1)=⇒ C ◦∩ (−AT D) 6= {0} ⇒ A ∈D(C ,D).

This shows P (C ,D)∪D(C ,D) = Rn×m. For D 6= Rn the argument is the same. For C = Rn and
D =Rm:

P (Rn ,Rm) = {
A ∈Rm×n : ker A 6= {0}

}={
{rank deficient matrices} if n ≤ m

Rm×n if n > m,

D(Rn ,Rm) = {
A ∈Rm×n : ker AT 6= {0}

}={
Rm×n if n < m

{rank deficient matrices} if n ≥ m.

In particular,this shows P (Rn ,Rn)∪D(Rn ,Rn) = {rank deficient matrices}.
(3) If (C ,D) = (Rn ,Rm) then by the characterization above Σ(Rn ,Rm) consists of the rank

deficient matrices, which is a nonempty set. If (C ,D) 6= (Rn ,Rn), then the union of the closed
sets P (C ,D) and D(C ,D) equals Rm×n, which is an irreducible topological space, so that their
intersection Σ(C ,D) =P (C ,D)∩D(C ,D) must be nonempty.

As for the claim about the Lebesgue measure of Σ(C ,D), we may use the symmetry between (P)
and (D) to assume without loss of generality m ≤ n. If A ∈ Rm×n has full rank, then AC has
nonempty interior and from Proposition 2.2 and Farkas’ Lemma,

σC→D (A) = 0 ⇐⇒ C ∩ (AT D)◦ 6= {0} ⇐⇒ AC ∩D◦ 6= {0} or ker A ∩C 6= {0},

σD→C (−AT ) = 0 ⇐⇒ D ∩ (−AC )◦ 6= {0}
(A.1)⇐⇒ D◦∩ int(AC ) =;.

Note that if Ax = 0 for some x ∈ int(C ), then A, being a continuous surjection, maps an open
neighborhood of x to an open neighborhood of the origin, so that AC =Rm . Hence, D ∩ (−AC )◦ 6=
{0} implies ker A ∩ int(C ) =;, since otherwise AC =Rm , i.e., (AC )◦ = {0}.

If A ∈Σ(C ,D), i.e., σC→D (A) =σD→C (−AT ) = 0, and if A has full rank, then AC ∩D◦ 6= {0} implies
that D◦ touches AC , while ker A ∩C 6= {0} implies that ker A touches C . Hence, if A =G Gaussian,
then G has almost surely full rank, and Lemma A.2 implies that both touching events have zero
probability, so that almost surely G 6∈Σ(C ,D). �

We next provide the proof for the characterization of the restricted singular values as distances
to the primal and dual feasible sets. From now on we use again the short-hand notation
P :=P (C ,D) and D :=D(C ,D).

Proof of Proposition 2.5. By symmetry, it suffices to show that dist(A,P ) = σC→D (A). If A ∈ P

then dist(A,P ) = 0 =σC→D (A), so assume that A 6∈P . Let ∆A ∈ Rm×n such that A +∆A ∈P and
dist(A,P ) = ‖∆A‖. Since A +∆A ∈ P , there exists x0 ∈ C ∩Sn−1 such that w0 := (A +∆A)x0 ∈ D◦.
For all y ∈ D

0 ≥ 〈w0, y〉 = 〈(A +∆A)x0, y〉 = 〈Ax0, y〉−〈−∆Ax0, y〉.
If y0 ∈ B m ∩D is such that ‖ΠD (Ax0)‖ = 〈Ax0, y0〉, then

dist(A,P ) = ‖∆A‖ ≥ ‖∆Ax0‖ ≥ ‖ΠD (−∆Ax0)‖ = max
y∈B m∩D

〈−∆Ax0, y〉
≥ 〈−∆Ax0, y0〉 ≥ 〈Ax0, y0〉 = ‖ΠD (Ax0)‖ ≥ min

x∈C∩Sn−1
‖ΠD (Ax)‖ =σC→D (A).
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For the reverse inequality dist(A,P ) ≤σC→D (A) we need to construct a perturbation ∆A such
that A +∆A ∈P and ‖∆A‖ ≤σC→D (A). Let x0 ∈C ∩Sn−1 and y0 ∈ D ∩B m such that

σC→D (A) = min
x∈C∩Sn−1

max
y∈D∩B m

〈Ax , y〉 = 〈Ax0, y0〉.

Since A 6∈P we have σC→D (A) > 0, which implies ‖y0‖ = 1, i.e., y0 ∈ D ∩Sm−1. We define

∆A :=−y0 y T
0 A.

Note that
‖∆A‖ = ‖AT y0‖ ≤ 〈AT y0, x0〉 =σC→D (A).

Furthermore,

(A +∆A)x0 = Ax0 − y0 y T
0 Ax0 = Ax0 −〈Ax0, y0〉y0 = Ax0 −ΠD (Ax0) =ΠD◦(Ax0).

So x0 ∈C \ {0} and (A +∆A)x0 ∈ D◦, which shows that A +∆A ∈P , and hence dist(A,P ) ≤ ‖∆A‖ ≤
σC→D (A). �

APPENDIX B. A NEW VARIANT OF GORDON’S COMPARISON THEOREM

Underlying some of our analysis is a new variant of Slepian’ inequality, which is a special case
of Gordon’s comparison theorem. For completeness we first recall the familiar version of Gordon’s
inequality [Gor85], see also [Gor87] and [FR13, Chapter 8] for a simplified derivation.

Theorem B.1 (Gordon). Let Xi j ,Yi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, be centered Gaussian random variables,
and assume that

E |Xi j −Xk`|2 ≤ E |Yi j −Yk`|2, for all i 6= k and j ,`,

E |Xi j −Xi`|2 ≥ E |Yi j −Yi`|2, for all i , j ,`.

Then Emini max j Xi j ≥ Emini max j Yi j . If additionally

EX 2
i j = EY 2

i j , for all i , j ,

then for any monotonically increasing function f : R→R,

Emin
i

max
j

f (Xi j ) ≥ Emin
i

max
j

f (Yi j ).

Slepian’s lemma is obtained by setting m = 1 in Gordon’s theorem. The following theorem (in
the degenerate case of X0 = Y0 = 0) lies somewhere in the middle between the two cases treated
by Gordon’s theorem.

Theorem B.2. Let X0,Y0, Xi j ,Yi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, be centered Gaussian random variables, and
assume that

E |Xi j −Xk`|2 ≤ E |Yi j −Yk`|2, for all i 6= k and j ,`,

E |Xi j −Xi`|2 ≥ E |Yi j −Yi`|2, for all i , j ,`,

E |Xi j −X0|2 ≥ E |Yi j −Y0|2, for all i , j .

Then for any monotonically increasing convex function f : R+ →R,

Emin
i

max
j

f+(Xi j −X0) ≥ Emin
i

max
j

f+(Yi j −Y0), (B.1)

where f+(x) := f (x), if x ≥ 0, and f+(x) := f (0), if x ≤ 0.
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In Section 3.4 we provide an example, which shows that (B.1) may fail if f is not convex. The
proof we present is based on a geometric reduction from Maurer [Mau11], cf. Lemma B.5.

In the following we fix a monotonically increasing convex function f : R+ → R, which is
differentiable on (0,∞) and satisfies limx→0+ f ′(x) = 0. The extension f+ : R→R, with f+(x) := f (x),
if x ≥ 0, and f+(x) := f (0), if x ≤ 0, is thus monotonically increasing, convex, and differentiable
on R. On the Euclidean space R×Rm×n, whose elements we denote by x = (x0, x11, . . . , xmn), we
define F : R×Rm×n →R by

F (x) := min
i

max
j

f+(xi j −x0). (B.2)

This function is differentiable almost everywhere. More precisely, it is differentiable if

min
i

max
j

xi j < x0 or |{(k,`) : xk` = min
i

max
j

max{xi j , x0} > x0
}| = 1.

In the first case ∇F (x) = 0. In the second case ∇F (x) is zero except for the (k,`)th entry, xk` =
mini max j max{xi j , x0} (> x0), which is given by f ′(xk`− x0). So, if x(t ) is a differentiable curve
through x with x(0) = x, ẋ := ẋ(0), then

d
d t F (x(t ))|t=0 = 〈∇F (x), ẋ〉 = ẋk` f ′(xk`−x0). (B.3)

Lemma B.3. Let X0 and Xi j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, be centered Gaussian random variables such that
their joint covariance matrix has full rank. Fix 1 ≤ k0,k ≤ m and 1 ≤ `0,`≤ n with (k0,`0) 6= (k,`),
and let Y , Z be Gaussians, defined in one of the two following ways:

(1) Xk0`0 = Y +Z with Z independent of Y , X0, Xi j , for all (i , j ) 6= (k0,`0),
(2) X0 = Y +Z with Z independent of Y , Xi j , for all (i , j ).

If X (t ) is defined by

X0(t ) := X0, Xi j (t ) := Xi j , for (i , j ) 6= (k,`), Xk`(t ) := Xk`+ t Z , (B.4)

then

d
d t E

[
F (X (t ))

]|t=0

{
≤ 0 if Y , Z defined as in (1) and k = k0, or Y , Z defined as in (2)
≥ 0 if Y , Z defined as in (1) and k 6= k0.

Proof. We distinguish between the cases (1) and (2).
(1) Let Xk0`0 = Y +Z as described above. We define X +(t ), X −(t ) by

X +
0 (t ) := X −

0 (t ) := X0, X +
i j (t ) := X −

i j (t ) := Xi j , if (i , j ) 6∈ {(k,`), (k0,`0)},

X +
k0`0

(t ) := Y +|Z |, X −
k0`0

(t ) := Y −|Z |, X +
k`(t ) := Xk`+ t |Z |, X −

k`(t ) := Xk`− t |Z |,
and denote X +

i j := X +
i j (0) and X −

i j := X −
i j (0). Since Z is independent of Y , X0, Xi j , for (i , j ) 6= (k0,`0),

we have
E
[
F (X (t ))

]= 1
2 E

[
F (X +(t ))+F (X −(t ))

]
.

To simplify the notation, we set

Ẋ + = d
d t X +(t )|t=0, Ẋ − = d

d t X −(t )|t=0.

A standard argument involving Lebesgue’s dominated convergence theorem shows that
d

d t E
[
F (X +(t ))

]= E[ d
d t F (X +(t ))

]
, d

d t E
[
F (X −(t ))

]= E[ d
d t F (X −(t ))

]
,

so that it is enough to show that almost surely

d
d t F (X +(t ))+ d

d t F (X −(t )) = 〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉
{
≤ 0 if k = k0

≥ 0 if k 6= k0.
(B.5)
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Note that X +
k` = Xk` and X +

0 = X0. By (B.3), almost surely

〈∇F (X +), Ẋ +〉 =


Ẋ +

k` f ′(Xk`−X0) if Xk` = mini max j max{X +
i j , X0} > X0 and

X +
k ′`′ 6= mini max j max{X +

i j , X0} for all (k ′,`′) 6= (k,`)

0 else (almost surely),

and similarly for 〈∇F (X −), Ẋ −〉. Note that if Xk` = mini max j max{X +
i j , X0} > X0, then almost surely

X +
k ′`′ 6= mini max j max{X +

i j , X0} for all (k ′,`′) 6= (k,`), so we may skip this additional condition.
Since Ẋ +

k` = |Z | and Ẋ −
k` = −|Z | and by the monotonicity of f , we have 〈∇F (X +), Ẋ +〉 ≥ 0 and

〈∇F (X −), Ẋ −〉 ≤ 0.
If k = k0 then Xk` = mini max j max{X +

i j , X0} > X0 implies Xk` = mini max j max{X −
i j , X0} > X0, and

in this case 〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 = 0. Since this is the only case in which 〈∇F (X +), Ẋ +〉 is
nonzero (with positive probability), we have almost surely 〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 ≤ 0.

If k 6= k0 then Xk` = mini max j max{X −
i j , X0} > X0 implies Xk` = mini max j max{X +

i j , X0} > X0, and
in this case 〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 = 0. Since this is the only case in which 〈∇F (X −), Ẋ −〉 is
nonzero (with positive probability), we have almost surely 〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 = 0.

This settles the first case.

(2) Let X0 = Y +Z as described above. We define X +(t ), X −(t ) by

X +
i j (t ) := X −

i j (t ) := Xi j , if (i , j ) 6= (k,`),

X +
0 (t ) := Y +|Z |, X −

0 (t ) := Y −|Z |, X +
k`(t ) := Xk`+ t |Z |, X −

k`(t ) := Xk`− t |Z |.

Again, from the independence assumption on Z we obtain E[F (X (t ))] = 1
2 E[F (X +(t ))+F (X −(t ))],

and it suffices to show that almost surely

〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 ≤ 0 (B.6)

Note that X +
i j = Xi j for all (i , j ). By (B.3),

〈∇F (X +), Ẋ +〉 =


Ẋ +

k` f ′(Xk`−X +
0 ) if Xk` = mini max j max{Xi j , X +

0 } > X +
0 and

Xk ′`′ 6= mini max j max{Xi j , X +
0 } for all (k ′,`′) 6= (k,`)

0 else (almost surely),

and similarly for 〈∇F (X −), Ẋ −〉. As in the first case, we can skip the additional uniqueness condi-
tion, which is almost surely satisfied, and again, Ẋ +

k` = |Z | and Ẋ −
k` =−|Z | and the monotonicity

of f imply 〈∇F (X +), Ẋ +〉 ≥ 0 and 〈∇F (X −), Ẋ −〉 ≤ 0.
Now, Xk` = mini max j max{Xi j , X +

0 } > X +
0 implies Xk` = mini max j max{Xi j , X −

0 } > X −
0 , and in this

case Xk`−X +
0 ≤ Xk`−X −

0 . By convexity of f it follows that f ′(Xk`−X +
0 ) ≤ f ′(Xk`−X −

0 ), and thus
〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 ≤ 0. Since this is the only case in which 〈∇F (X +), Ẋ +〉 is nonzero, we
have almost surely 〈∇F (X +), Ẋ +〉+〈∇F (X −), Ẋ −〉 ≤ 0. This settles the second case. �

It remains to show that Lemma B.3 indeed implies Theorem B.2. We deduce this from general
geometric arguments as used in [Mau11]. We reproduce these arguments in the following for
convenience of the reader, except for Lemma B.4, which is a copy of [Mau11, Lem. 4] and follows
from well-known properties of Euclidean distance matrices, cf. [KW12] for a recent survey on
this theory.

In the following let E denote d-dimensional Euclidean space Rd . Recall that a function
Φ : E k →R is Euclidean motion invariant if

Φ(x1 + y , . . . , xk + y) =Φ(Qx1, . . . ,Qxk ) =Φ(x1, . . . , xk )
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for all x1, . . . , xk , y ∈ E and Q ∈ O(E ). We identify the general linear group on E with the set of
bases of E :

GL(E ) = {(x1, . . . , xd ) : xi linear independent} ⊂ E d .

Let D : E d →R(d
2) be defined by

D(x1, . . . , xd ) := (‖xi −x j‖2)
i< j , (B.7)

and denote ∆ := D(E d ) and ∆0 := D(GL(E )).

Lemma B.4. Let E ,D,∆,∆0 be defined as above. The sets ∆,∆0 are convex, ∆0 is open, and ∆ is the
closure of ∆0. Furthermore, any Euclidean motion invariant function Φ : E →R factorizes uniquely
over D,

Φ=ϕ◦D, ϕ : R(d
2) →R.

Additionally, if Φ is continuous, then so is ϕ, and if Φ is differentiable on GL(E ), then ϕ is differen-
tiable on ∆0.

The following lemma describes the proof strategy as demonstrated in [Mau11].

Lemma B.5. Let E ,D,∆,∆0 be defined as above and let Φ : E d →R be a continuous Euclidean motion
invariant function, which is differentiable on GL(E ). Assume that for some symmetric sign matrix
S ∈ {1,−1}d×d the following holds: for every basis (x1, . . . , xd ) ∈ GL(E ) and all i0, j0 there exists a
curve (x1(t ), . . . , xd (t )), xi (0) = xi , such that

si j
d

d t ‖xi (t )−x j (t )‖2|t=0

{
< 0 if (i , j ) = (i0, j0)

= 0 else,
and d

d tΦ(x1(t ), . . . , xd (t ))|t=0 ≤ 0.

Then for all (x1, . . . , xd ), (y1, . . . , yd ) ∈ E d satisfying si j‖xi −x j‖2 ≥ si j‖yi − y j‖2 for all i < j , we have

Φ(x1, . . . , xd ) ≥Φ(y1, . . . , yd ). (B.8)

Proof. Using the decomposition Φ=ϕ◦D, we can paraphrase the claim in terms of ϕ. For this,
we define {

(ai j )i< j ∈R(d
2) : si j ai j ≤ 0 for all i < j

}=: CS ,

which is an isometric image of the nonnegative orthant R(d
2)

+ . The claim of the lemma is that for
all (ai j ), (bi j ) ∈∆ with (bi j −ai j ) ∈CS we have ϕ(ai j ) ≥ϕ(bi j ).

By continuity of Φ it suffices to show the claim (B.8) for bases (x1, . . . , xd ), (y1, . . . , yd ) ∈ GL(E ).
In terms of ϕ the claim can then be restated by saying that for any point (ai j ) ∈∆0 the derivative
of ϕ is nonpositive in any direction (vi j ) ∈CS . By linearity of the derivative of ϕ and by convexity
of CS , it suffices to show the monotonicity of ϕ in the extreme directions of the cone CS . Choosing
such an extreme direction (vi j ) with vi j < 0 if (i , j ) = (i0, j0) and vi j = 0 if (i , j ) 6= (k,`), and letting
the curve X (t ) = (x1(t ), . . . , xd (t )) be such that d

d t D(X (t ))|t=0 = (vi j ), we obtain

∇(ai j )ϕ(vi j ) = d
d tΦ(x1(t ), . . . , xd (t ))|t=0 ≤ 0

by assumption. This shows the monotonicity of ϕ in direction CS and thus proves the claim. �

Proof of Theorem B.2. By continuity we may assume that f is differentiable on (0,∞) and satisfies
limx→0+ f ′(x) = 0. We consider the Euclidean space E =R×Rm×n , and define

Φ : E 1+mn →R, Φ(x0, x11, . . . , xmn) := E[
min

i
max

j
f+(〈xi j −x0, g 〉)],

where g is a standard Gaussian vector in E . The map Φ is Euclidean motion invariant, continuous,
and differentiable on GL(E ). Setting X0 = 〈x0, g 〉 and Xi j = 〈xi j , g 〉, we have

E |Xi j −Xk`|2 = ‖xi j −xk`‖2, E |Xi j −X0|2 = ‖xi j −x0‖2,

and we can reformulate the claim of Theorem B.2 in terms of Φ:
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If (x0, x11, . . . , xmn), (y0, y11, . . . , ymn) ∈ E 1+mn satisfy

‖xi j −xk`‖2 ≤ ‖yi j − yk`‖2 if i 6= k, ‖xi j −xi`‖2 ≥ ‖yi j − yi`‖2, ‖xi j −x0‖2 ≥ ‖yi j − y0‖2,

then Φ(x0, x11, . . . , xmn) ≥Φ(y0, y11, . . . , ymn).
By Lemma B.5 we obtain a different condition that we need to verify, and in the remainder of

the proof we will show that Lemma B.3 is exactly this condition. We restrict to the presentation
of case (1), the second case follows analogously.

The decomposition Xk0`0 = Y + Z corresponds to the decomposition xk0`0 = y + z with y the
orthogonal projection of xk0`0 on the linear span of x0 and xi j , (i , j ) 6= (k0,`0). Note that z 6= 0.
The curve X (t ) defined in (B.4) corresponds to the curve (x0(t ), x11(t ), . . . , xmn(t )) in E 1+mn given
by

x0(t ) = x0, xi j (t ) = xi j , for (i , j ) 6= (k,`), xk`(t ) = xk`+ t z .

We obtain

‖xk`(t )−x0(t )‖2 = ‖xk`+ t z −x0‖2 = ‖xk`−x0‖2 + t 2‖z‖2,

‖xk`(t )−xi j (t )‖2 = ‖xk`+ t z −xi j‖2 = ‖xk`−xi j‖2 + t 2‖z‖2, if (i , j ) 6∈ {(k,`), (k0,`0)},

‖xk`(t )−xk0`0 (t )‖2 = ‖xk`+ t z − y − z‖2 = ‖xk`− y‖2 + (t −1)2‖z‖2,

and thus
d

d t ‖xi j (t )−x0(t )‖2|t=0 = 0,

d
d t ‖xi j (t )−xi ′ j ′(t )‖2|t=0 = 0, if {(i , j ), (i ′, j ′)} 6= {(k,`), (k0,`0)},

d
d t ‖xk`(t )−xk0`0 (t )‖2|t=0 =−2‖z‖2.

Hence, Lemma B.3 shows exactly the condition described in Lemma B.5, which finishes the
proof. �


