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Abstract

This paper is devoted to study the Arnold-Winther mixed finite element method for two
dimensional Stokes eigenvalue problems using the stress-velocity formulation. A priori error
estimates for the eigenvalue and eigenfunction errors are presented. To improve the approx-
imation for both eigenvalues and eigenfunctions, we propose a local post-processing. With
the help of the local post-processing, we derive a reliable a posteriori error estimator which
is shown to be empirically efficient. We confirm numerically the proven higher order con-
vergence of the post-processed eigenvalues for convex domains with smooth eigenfunctions.
On adaptively refined meshes we obtain numerically optimal higher orders of convergence
of the post-processed eigenvalues even on nonconvex domains.

Keywords a priori analysis, a posteriori analysis, Arnold-Winther finite element, mixed finite element,
Stokes eigenvalue problem

AMS subject classification 65N15, 65N25, 65N30

1 Introduction

Over the last decade, the numerical analysis of the finite element method for eigenvalue prob-
lems has been of increasing interest because of various practical applications. Specifically, the
numerical analysis of the Stokes eigenvalue problem is a broad research area. Huang et al. [15]
discuss the numerical analysis of several stabilized finite element methods for the Stokes eigen-
value problem. In [20], Meddahi et al. proposed a finite element analysis of a pseudo-stress
formulation for the Stokes eigenvalue problem. In [23], Türk et al. introduced a stabilized finite
element method for two-field and three-field Stokes eigenvalue problems. From [21], one can also
study a variety of mixed or hybrid finite element methods for eigenvalue problems.

In the literature, most of the results based on the a posteriori error analysis for the finite
element method (see [1, 24] and the references therein) consider the source problem. In com-
parison there are only a few results for the a posteriori error analysis of the Stokes eigenvalue
problem available. In [19], Lovadina et al. presented the numerical analysis for a residual-based
a posteriori error estimator for the finite element discretization of the Stokes eigenvalue problem.
In [18], Liu et al. proposed the finite element approximation of the Stokes eigenvalue problem
based on a projection method, and derive some superconvergence results and the related recovery
type a posteriori error estimators. A posteriori error estimators for stabilized low-order mixed
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finite elements for the Stokes eigenvalue problem are presented by Armentano et al. [2]. A new
adaptive mixed finite element method based on residual type a posteriori error estimators for the
Stokes eigenvalue problem is proposed by Han et al. [13]. In [14], Huang presented two stabilized
finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite
element pair and also discussed a posteriori lower and upper bounds of Stokes eigenvalues.

Arnold and Winther introduced the strongly symmetric Arnold-Winther mixed finite element
(MFEM) for linear elastic problems in [3] and proved its stability for any material parameters.
Hence, the proposed Arnold-Winther MFEM is also stable for the Stokes problem as a limit case
of linear elasticity. In [10], Carstensen et al. presented the Arnold-Winther mixed finite element
formulation for the Stokes source problem.

In this paper, we are presenting the Arnold-Winther mixed finite element formulation for the
two dimensional Stokes eigenvalue problem using the stress-velocity formulation. In principal, the
stress-velocity formulation is originated from a physical model where incompressible Newtonian
flows are modeled by the conservation of momentum and the constitute law. The stress-velocity
formulation for the Stokes eigenvalue problem reads as follows: find a symmetric stress tensor
σ, a nonzero eigenfunction u, and an eigenvalue λ such that

−divσ = λu in Ω, Aσ − ε(u) = 0 in Ω, u = 0 on ∂Ω,

for a bounded Lipschitz domain Ω ⊂ R2. Here σ,Aσ and ε(u) are the stress tensor, the deviatoric
stress tensor and the deformation rate tensor, respectively. For simplicity, we restrict ourselves
in this paper to the analysis for simple eigenvalues λ.

The remaining parts of this paper are organized as follows: Section 2 presents the necessary
notation, the formulation of the problem, the discretization of the domain and the mixed finite
element formulation. Section 3 is devoted to study the a priori error analysis of the eigenvalue
problem. Section 4 presents the local post-processing and its higher order convergence analysis.
The a posteriori error analysis is introduced in Section 5. Finally, we verify the reliability and
efficiency of the a posteriori error estimator and the higher order convergence of post-processed
eigenvalues in three numerical experiments in Section 6.

2 Preliminaries

Let Hs(ω) be the standard Sobolev space with the associated norm ‖ · ‖s,ω for s ≥ 0. In case of
ω = Ω, we use ‖·‖s instead of ‖·‖s,Ω. Let H−s(ω) := (Hs(ω))∗ be the dual space of Hs(ω). Now
we extend the definitions for vector and matrix-valued function. Let Hs(ω) = Hs(ω;R2) and
Hs(ω,R2×2) be the Sobolev spaces over the set of 2-dimensional vector and 2× 2 matrix-valued
function, respectively. Define v = (v1, v2)t ∈ R2, τ = (τij)2×2 and σ = (σij)2×2 ∈ R2×2, then

∇v :=

(
∂v1
∂x

∂v1
∂y

∂v2
∂x

∂v2
∂y

)
, div(τ) :=

(
∂τ11
∂x + ∂τ12

∂y
∂τ21
∂x + ∂τ22

∂y

)
, tr τ := τ11 + τ22,

τ v :=
(
τ11v1 + τ12v2

τ21v1 + τ22v2

)
, τ : σ :=

∑
i,j

τijσij , δ := 2× 2 unit matrix.

Let the divergence conforming stress space H(div,Ω,R2×2) be defined as

H(div,Ω,R2×2) := {τ ∈ L2(Ω;R2×2)|div ∈ L2(Ω)},

equipped with the norm

‖τ‖2H(div,Ω,R2×2) := (τ , τ ) + (div,div).
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In this paper, we are using the notation (·, ·)ω for the L2(ω;R2×2) inner product
∫
ω
τ : τdx as

well as the L2(ω) inner product
∫
ω
τ ·τdx. For w = Ω, the notation (·, ·) is used instead of (·, ·)Ω.

The symbols . and & are used throughout the paper to denote inequalities which are valid up
to positive constants that are independent of the local mesh size h but may depend on the size
of the eigenvalue λ and the coefficient ν.

Let Ω ⊂ R2 be a bounded and connected Lipschitz domain. Consider the Stokes eigenvalue
problem

−ν 4 u+∇p = λu in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

(1)

with the compatibility condition on the pressure∫
Ω

p dx = 0. (2)

Define σ = (σi,j)2×2 as a stress tensor and the deformation rate tensor as

ε(u) :=
1

2
(∇u+ (∇u)t).

From (1) we can derive the stress-velocity-pressure formulation for the Stokes eigenvalue problem,
which is the set of original physical equations for incompressible Newtonian flow,

−divσ = λu in Ω,

σ + pδ − 2νε(u) = 0 in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.

Next, we define the deviatoric operator A : S → S, where S is the space of symmetric tensors
S = {τ ∈ R2×2|τ = τ t}. Then we can define the deviator Aτ of τ by

Aτ :=
1

2

(
τ − 1

2
(tr τ )δ

)
for all τ ∈ S.

Here, Ker(A) = {qδ ∈ S | q ∈ R} and Aτ is a trace-free tensor. In addition, A satisfies for all
τ ,σ ∈ S the following properties,

(Aτ ,σ) = (τ ,Aσ),

(Aτ , 2νAσ) = (Aσ, τ ) =
1

2ν

(
(σ, τ )− 1

2
(tr σ, tr τ )

)
,

‖Aτ‖ ≤ 1

2
‖τ‖.

Using the deviatoric tensor A, we arrive at the stress-velocity formulation of the Stokes
eigenvalue problem

−divσ = λu in Ω,

Aσ − ε(u) = 0 in Ω,

u = 0 on ∂Ω.

(3)
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Using the compatibility condition (2), we have∫
Ω

tr σ dx = 0.

Defining V := L2(Ω) and

Φ := H(div,Ω;S)/R ∼
{
τ ∈H(div,Ω,S)|

∫
Ω

tr τ dx = 0
}
,

we can now derive the following weak form for problem (3): find σ ∈ Φ, u ∈ V with ‖u‖0 = 1,
and λ ∈ R+ such that

(Aσ, τ ) + (div τ ,u) = 0 for all τ ∈ Φ,

(divσ,v) = −λ(u,v) for all v ∈ V .
(4)

Let {Th} denote a family of regular triangulations of Ω̄ into triangles K of diameter hK . For
each Th, we define Eh as the set of all edges of Th and hE as the length of the edge E ∈ Eh.
Furthermore, let [w] denote the jump of w,

[w]|E := (w|K+
)|E − (w|K−)|E if E = K̄+ ∩ K̄−.

Let ∇Th and εTh denote the piecewise gradient and the piecewise symmetric gradient, i.e.
(∇Th ·)|K = ∇(·|K) and (εTh ·)|K = ε(·|K), for all K ∈ Th.

Finally, we define the following finite element spaces associated with the triangulation Th,

AWk(K) := {τ ∈ Pk+2(K;S) | div τ ∈ Pk(K;R2)},
Φh := {τ ∈ Φ | τ |K ∈ AWk(K)},
V h := {v ∈ L2(Ω) | v|K ∈ Pk(K;R2)}.

Here, AWk(K) denotes the Arnold-Winther MFEM of index k ≥ 1 of [3] and Pk(K) denotes
the set of all polynomials of total degree up to k on the domain K. The space Φh consists of
all symmetric polynomial matrix fields of degree at most k+ 1 together with the divergence free
matrix fields of degree k+ 2. Note that Φh ⊂ Φ. When τh ∈ Φh we have that τh has continuous
normal components and τh satisfies

∫
Ω

tr τhdx = 0.
The Arnold-Winther MFEM of the Stokes eigenvalue problem becomes the following: find

σh ∈ Φh, uh ∈ Vh with ‖uh‖0 = 1, and λh ∈ R+ such that

(Aσh, τh) + (div τh,uh) = 0 for all τh ∈ Φh,

(divσh,vh) = −λh(uh,vh) for all vh ∈ Vh.
(5)

3 A priori error analysis

Our main aim is to show that the solutions of the Arnold-Winther MFEM of the Stokes eigenvalue
problem converge to the solution of the corresponding spectral problem which comes to apply
the classical spectral approximation theory presented in [4] to the associated source problem.

Consider the stress-velocity formulation for the associated source problem

−divσf = f in Ω,

Aσf − ε(uf ) = 0 in Ω,

uf = 0 on ∂Ω.

(6)
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Using the compatibility condition (2), we have∫
Ω

tr σf dx = 0.

For the above problem (6) there exist well-known regularity results for convex domains with
sufficiently smooth boundary ∂Ω. If f ∈ L2(Ω) then the solution of problem (6) satisfies u ∈
H2(Ω) ∩H1(Ω̄), p ∈ H1(Ω)/R, σ ∈H1(Ω;S), and

‖u‖2 + ‖p‖1 + ‖σ‖1 ≤ ‖f‖0. (7)

Using the well-posedness of problem (6), the operators S : V → Φ and T : V → V are well
defined for any f ∈ V such that Sf = σf , and Tf = uf are the stress and velocity solutions,
respectively.

We now define the following weak form for problem (3): for given f ∈ V , (Sf , Tf) ∈ (Φ,V )
is the solution of

(A(Sf), τ ) + (div τ , Tf) = 0 for all τ ∈ Φ,

(div(Sf),v) = −(f ,v) for all v ∈ V .
(8)

The above problem (8) has unique solution from the well known inf-sup condition of the mixed
formulation and [10, Lemma 2.1].

For the discrete solution operators Sh : V → Φh and Th : V → Vh, the Arnold-Winther
MFEM of the Stokes source problem becomes the following: find Shf ∈ Φh and Thf ∈ Vh such
that

(A(Shf), τh) + (div τh, Thf) = 0 for all τh ∈ Φh,

(div(Shf),vh) = −(f ,vh) for all vh ∈ Vh.
(9)

From [10], the discrete source problem is well-posed and has a unique solution. From [3] we have
the following a priori estimates for (σf ,uf ) ∈ (Φ ∩Hk+2(Ω;S))×Hk+2(Ω) and f ∈Hk(Ω)

‖Sf − Shf‖0 . hm‖σf‖m, 1 ≤ m ≤ k + 2, (10)

‖div(Sf − Shf)‖0 . hm‖divσf‖m, 0 ≤ m ≤ k + 1, (11)

‖Tf − Thf‖0 . hm‖uf‖m+1, 1 ≤ m ≤ k + 1. (12)

Hence, we can state the following convergence results by (10) and (12)

‖T − Th‖L(V ,V ) → 0 if h→ 0, (13)

‖S − Sh‖L(V ,Φ) → 0 if h→ 0. (14)

The above results (13) and (14) are equivalent to the convergence of eigenvalues and eigenfunc-
tions. Thus, using the abstract theory from [6, 21] and the a priori results (10) and (12), we
have

‖u− uh‖0 . hm, 1 ≤ m ≤ k + 1, (15)

‖σ − σh‖0 . hm, 1 ≤ m ≤ k + 2. (16)

Note that p = −trσ/2, hence the approximation of the pressure is defined by ph = −trσh/2
and satisfies the following estimate

‖p− ph‖0 =
1

2
‖trσ − trσh‖0 ≤ ‖σ − σh‖0 . hm, 1 ≤ m ≤ k + 2.

The next lemma establishes a connection between the errors in the eigenvalues and in the eigen-
functions.
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Lemma 3.1. Let (σ,u, λ) and (σh,uh, λh) be solutions of the continuous eigenvalue problem
(4) and the discrete eigenvalue problem (5), respectively. Then, we have the identity

λ− λh = 2ν‖A(σ − σh)‖20 − λh‖u− uh‖20. (17)

Proof. From (4) and (5), using (u,u) = 1 and (uh,uh) = 1, we have

(2νAσ,Aσ) = λ(u,u) = λ,

(2νAσh,Aσh) = λh(uh,uh) = λh,

(2νAσ,Aσh) = λh(uh,u).

Moreover, it follows

2ν‖A(σ − σh)‖20 = 2ν(A(σ − σh),A(σ − σh))

= 2ν(Aσ,Aσ) + 2ν(Aσh,Aσh)− 4ν(Aσ,Aσh)

= λ+ λh − 2λh(uh,u).

Then we obtain

λ− λh = 2ν‖A(σ − σh)‖20 − 2λh + 2λh(uh,u).

Using ‖u− uh‖20 = 2− 2(uh,u) yields

λ− λh = 2ν‖A(σ − σh)‖20 − λh‖u− uh‖20.

An immediate consequence of Lemma 3.1 are the following two lemmas.

Lemma 3.2. For sufficiently smooth u ∈ Hk+2(Ω), σ ∈ Hk+2(Ω;S), the following a priori
error estimate holds

|λ− λh| . h2m, 0 ≤ m ≤ k + 1. (18)

Proof. The assertion follows from (15)–(17).

Lemma 3.3. For sufficiently smooth u ∈ Hk+2(Ω), σ ∈ Hk+2(Ω;S), the following a priori
error estimate holds

‖div(σ − σh)‖0 . hm, 0 ≤ m ≤ k + 1. (19)

Proof. From (4) and (5), we have div(σ) = −λu and div(σh) = −λhuh. Therefore we get

‖div(σ − σh)‖0 = ‖λhuh − λu‖0 ≤ (λh − λ)‖uh‖0 + λ‖uh − u‖0.

The assertion follows from (15)–(17), and ‖uh‖0 = 1.

Let Ph denote the L2 projection onto Vh with the well known approximation property

‖Phv − v‖0 . hm‖v‖m, for all v ∈Hm(Ω). (20)

In the following we relate the discrete eigenfunctions (σh,uh) to the discrete approximations
(σλ,h,uλ,h) of the associated source problem (9) with right hand side f = λu ∈ V . Then
σλ,h = λShu and uλ,h = λThu and we have the following lemma.
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Lemma 3.4 ([10, Theorem 3.4]). For sufficiently smooth boundary ∂Ω, σ ∈ Hk+2(Ω;S), and
divσ ∈Hk+1(Ω), it holds that

‖Phu− uλ,h‖0 . hk+3(‖σ‖k+2 + ‖divσ‖k+1). (21)

Next, we prove a similar estimate for the eigenfunction uh which is used in Section 4 to derive
an error estimate for the post-processed eigenfunction.

Theorem 3.5. For sufficiently smooth boundary ∂Ω,σ ∈ Hk+2(Ω; S), divσ ∈ Hk+1(Ω), it
holds that

‖Phu− uh‖0 . hk+3(hk−1 + ‖σ‖k+2 + ‖divσ‖k+1). (22)

The proof of Theorem 3.5 does not follow directly from Lemma 3.4, because the eigenvalue
problem does not satisfy an orthogonality condition, i.e. (div(σ − σh),vh) 6= 0, therefore we
need the following lemma.

Lemma 3.6. For sufficiently smooth boundary ∂Ω, σ ∈ Hk+2(Ω;S), and divσ ∈ Hk+1(Ω),
the difference between the discrete eigenfunction uh and the discrete solution of the associated
source problem uλ,h can be estimated by

‖uλ,h − uh‖ . hk+3(hk−1 + ‖σ‖k+2 + ‖divσ‖k+1).

Proof. First we define some relations

λTu = u, λhThuh = uh and λThu = uλ,h.

Since λ is a simple eigenvalue, the eigenspace of the eigenvalue λ is spanned by u. The operator
T : V → V is self adjoint. Therefore the orthogonal complement of u is a T -invariant subspace
denoted by U⊥,V . Moreover the eigenvalue λ does not belong to the spectrum of T |U⊥,V which
is defined as T |U⊥,V : U⊥,V → U⊥,V . Thus, we can define the following invertible map

(I − λT ) : U⊥,V → U⊥,V .

Here (I − λT )−1 is bounded. Define δh := uλ,h − uh − (uλ,h − uh,u)u. Using ‖u‖0 = 1, it
follows

(δh,u) = (uλ,h − uh − (uλ,h − uh,u)u,u) = 0.

Hence we have

δh ∈ U⊥,V and ‖δh‖0 . ‖(I − λT )δh‖0.

Since (I − λT )u = 0, the following estimate holds

‖δh‖0 . ‖(I − λT )(uλ,h − uh)‖0. (23)

Moreover, we obtain the following inequality

(I − λT )(uλ,h − uh)

= (λhTh − λT )(uλ,h − uh) + uλ,h − uh − λhTh(uλ,h − u)− λhTh(u− uh)

= (λhTh − λT )(uλ,h − uh) + (λ− λh)Thu− λhTh(uλ,h − u).

(24)
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Inserting the result of (24) into (23) and using the triangle inequality, implies

‖δh‖0 . ‖(λhTh − λTh)(uλ,h − uh)‖0 + ‖(λTh − λT )(uλ,h − uh)‖0
+ ‖(λ− λh)Thu‖0 + ‖λhTh(uλ,h − u)‖0,

. I1 + I2 + I3 + I4,

where

I1 = ‖(λhTh − λTh)(uλ,h − uh)‖0, I2 = ‖(λTh − λT )(uλ,h − uh)‖0,
I3 = ‖(λ− λh)Thu‖0, I4 = ‖λhTh(uλ,h − u)‖0.

Using the boundedness of Th, the estimates of I1 and I3 read

I1 . |λ− λh|‖uλ,h − uh‖0 and I3 . |λ− λh|. (25)

Using f = (uλ,h − uh) in (12) and inserting the regularity result (7), we obtain

I2 = ‖(λTh − λT )(uλ,h − uh)‖0 . λh‖(uλ,h − uh)‖0. (26)

Adding and subtracting Th(Phu) in I4 leads to

I4 ≤ λh‖Th(uλ,h − Phu)‖0 + λh‖Th(Phu− u)‖0. (27)

Applying Lemma 3.4 in first term of the estimate (27), implies

‖Th(uλ,h − Phu)‖0 . hk+3(‖σ‖k+2 + ‖divσ‖k+1).

Note that the second term in the estimate (27) is equal to zero due to definition of Th, since the
right hand side of problem (9) vanishes for f = Phu− u. Hence

I4 . λhh
k+3(‖σ‖k+2 + ‖divσ‖k+1).

Using the definition of δh, leads to

‖uλ,h − uh‖0 ≤ ‖δh‖0 + ‖(uλ,h − uh,u)u‖0. (28)

The first term of the estimate (28) is already estimated. To estimate the second term, observe
that with ‖u‖0 = 1, we get

‖(uλ,h − uh,u)u‖0 = |(uλ,h − uh,u)|.

Moreover, we have

‖(uλ,h − uh,u)u‖0 ≤ |(uλ,h − u,u)|+ |(u− uh,u)|.

Since ‖u‖0 = 1 and ‖uh‖0 = 1, we get

|(u− uh,u)| = 1− (uh,u) =
1

2
‖u− uh‖20 . h2k+2. (29)

Next, we estimate |(uλ,h − u,u)|. Choosing the test functions τ = σλ,h − σ and v = uλ,h − u
in (4), gives

(Aσ,σλ,h − σ) + (div(σλ,h − σ),u) = 0,

(divσ,uλ,h − u) = −λ(u,uλ,h − u).

8
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From that, we obtain

−λ(uλ,h − u,u) = (divσ,uλ,h − u) + (Aσ,σλ,h − σ) + (div(σλ,h − σ),u).

Moreover, we have

−λ(uλ,h − u,u) = (div(σ − σλ,h),uλ,h − u) + (divσλ,h,uλ,h − u)

+ (A(σ − σλ,h),σλ,h − σ) + (Aσλ,h,σλ,h − σ)

+ (div(σλ,h − σ),u− uλ,h) + (div(σλ,h − σ),uλ,h).

(30)

Choosing τh = σλ,h, vh = uλ,h, f = λu in (9) and τ = σλ,h, v = uλ,h in (4), and subtracting
(4) from (9), we obtain

(A(σλ,h − σ),σλ,h) + (divσλ,h,uλ,h − u) = 0,

(div(σλ,h − σ),uλ,h) = 0.
(31)

Inserting the result from (31) in (30), implies

−λ(uλ,h − u,u) = (A(σ − σλ,h),σλ,h − σ) + 2(div(σ − σλ,h),uλ,h − u)

. ‖σ − σλ,h‖20 + ‖div(σ − σλ,h)‖20 + ‖u− uλ,h‖20

. h2k+4‖σ‖2k+2 + h2k+2‖divσ‖2k+1 + h2k+2‖u‖2k+2

. h2k+2.

(32)

Summing up the estimates (25)–(27) and (29), (32), we obtain

‖uλ,h − uh‖0 . |λ− λh|‖uλ,h − uh‖0 + h‖uλ,h − uh‖0 + |λ− λh|
+ hk+3(‖σ‖k+2 + ‖divσ‖k+1) + h2k+2.

Choosing h small enough and using |λ− λh| . h2k+2, the following estimate holds

‖uλ,h − uh‖0 . hk+3(hk−1 + ‖σ‖k+2 + ‖divσ‖k+1).

Proof of Theorem 3.5. Combining Lemma 3.4 and 3.6, implies the desired result.

4 Local post-processing

In this section we present an improved approximation of the eigenfunction by a local post-
processing similar to the one in [10] for the source problem. Define for m ≥ k + 2

W ∗
h = {v ∈ L2(Ω) | v|K ∈ Pm(K;R2) for all K ∈ Th}.

Choose u∗h ∈W ∗
h on each K ∈ Th with PK = Ph|K as a solution of the system

PKu
∗
h = uh,

(ε(u∗h), ε(v))K = (Aσh, ε(v))K for all v ∈ (δ − PK)W ∗
h |K .

(33)

Here, u∗h is the Riesz representation of the linear functional (Aσh, ε(·))K in the Hilbert space

(δ − PK)W ∗
h |K ≡ {vm ∈ Pm(K;R2)|(vm,wk)K = 0 for all {wk ∈ Pk(K;R2)},

9



J. Gedicke, A. Khan: Arnold-Winther MFEM for Stokes Eigenvalue Problems

which is equipped with the scalar product (ε(·), ε(·))K . We define the local post-processing on
each triangle with Lagrange multiplier µk ∈ Pk(K;R2) as follows

(ε(u∗h), ε(vm))K + (µk,vm)K = (Aσh, ε(vm))K for all vm ∈ Pm(K;R2),

(u∗h,wk)K = (uh,wk)K for all wk ∈ Pk(K;R2).
(34)

From Korn’s inequality, we get positive definiteness of (ε(·), ε(·))K on (δ−PK)W ∗
h |K , and since

Pk(K;R2) ⊂ Pm(K;R2), we obtain

sup
0 6=vm∈Pm(K;R2)

(vm,µk)K
‖vm‖1,K

≥ ‖µk‖0,K for all µk ∈ Pk(K;R2).

Hence, there exist unique solutions on each triangle, c.f. [7]. Combining the identity Aσ = ε(u)
and (33), gives the following error identity

(ε(u− u∗h), ε(v))K = (A(σ − σh), ε(v))K for all v ∈ (δ − PK)W ∗
h |K .

Theorem 4.1. With sufficiently smooth boundary ∂Ω, if u ∈ Hm+1(Ω), σ ∈ Hk+2(Ω; S), and
divσ ∈ Hk+1(Ω) solve problem (1), then the following estimates hold for the post-processed
eigenfunction u∗h ∈W ∗

h

‖u− u∗h‖0 . hk+3(hk−1 + ‖σ‖k+2 + ‖divσ‖k+1) + hm+1‖u‖m+1,

‖∇Th(u− u∗h)‖0 . hk+2(hk−1 + ‖σ‖k+2 + ‖divσ‖k+1) + hm‖u‖m+1.

Proof. Let û denote the L2 projection of u onto W ∗
h . From the triangle inequality we get

‖u− u∗h‖0 ≤ ‖u− û‖0 + ‖Ph(û− u∗h)‖0 + ‖(δ − Ph)(û− u∗h)‖0. (35)

Applying (20) in first part of the right hand side of (35) leads to

‖u− û‖0 . hm+1‖u‖m+1 for all u ∈Hm+1(Ω). (36)

Using PKu
∗
h = uh on each K ∈ Th shows

‖PK(û− u∗h)‖0,K = ‖PKû− uh‖0,K .

Here Vh ⊂W ∗
h , so we can apply the result of Theorem 3.5 to deduce

‖Ph(û− u∗h)‖0 = ‖Phu− uh‖0 . hk+3(hk−1 + ‖σ‖k+2 + ‖divσ‖k+1). (37)

The estimates for the last term in (35) are identical to the estimates for the post-processing for
the source problem, hence we omit the details and quote the final estimate from the proof of [10,
Theorem 4.1]

‖(δ − Ph)(û− u∗h)‖0 . hk+3(‖σ‖k+2 + ‖divσ‖k+1) + hm+1‖u‖m+1. (38)

Combining (35) with (36)–(38) proves the first estimate.
To prove the second estimate, we use the triangle inequality

|u− u∗h|1,K ≤ |u− û|1,K + |Ph(û− u∗h)|1,K + |(δ − Ph)(û− u∗h)|1,K .

Applying an discrete inverse inequality leads to

|u− u∗h|1,K ≤ |u− û|1,K + h−1‖Ph(û− u∗h)‖0,K + h−1‖(δ − Ph)(û− u∗h)‖0,K .

10
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Combining (37) and (38), with the estimate

|u− û|1,K . hm‖u‖m+1,K

obtained from interpolation type arguments and inverse estimates as in the proof of [10, Theorem
4.1], proves the second estimate.

Definition 4.2. For (u∗h,u
∗
h) 6= 0, we define the post-processed eigenvalue as the value of the

Rayleigh quotient of the post-processed eigenfunction

λ∗h := − (divσh,u
∗
h)

(u∗h,u
∗
h)

. (39)

Theorem 4.3. Let (σ,u, λ) ∈ (Φ ∩ Hk+2(Ω;S)) × Hk+2(Ω) × R+ be the solution of (4),
with ‖u‖0 = 1. For sufficiently small h, the following a priori estimate for the post-processed
eigenvalue λ∗h holds

|λ− λ∗h| . h2k+4.

Proof. From (4), (5), (34), (39), and (u,u) = 1, we have

(2νAσ,Aσ) = λ(u,u) = λ, and (2νAσh,Aσh) = λ∗h(u∗h,u
∗
h).

Moreover, it follows

2ν‖A(σ − σh)‖20 = 2ν(A(σ − σh),A(σ − σh))

= 2ν(Aσ,Aσ) + 2ν(Aσh,Aσh)− 4ν(Aσ,Aσh)

= λ+ λ∗h(u∗h,u
∗
h)− 2λ∗h(u,u∗h) + 2(divσh,u) + 2λ∗h(u,u∗h).

Therefore we have

λ− λ∗h = 2ν‖A(σ − σh)‖20 − λ∗h − λ∗h(u∗h,u
∗
h) + 2λ∗h(u,u∗h)− 2(divσh + λ∗hu

∗
h,u).

Using (u,u) + (u∗h,u
∗
h)− 2(u,u∗h) = ‖u− u∗h‖20, and (divσh + λ∗hu

∗
h,u

∗
h) = 0 we get

λ− λ∗h =2ν‖A(σ − σh)‖20 − λ∗h‖u− u∗h‖20 − 2(divσh + λ∗hu
∗
h,u− u∗h), (40)

which leads to

λ− λ∗h =2ν‖A(σ − σh)‖20 − λ∗h‖u− u∗h‖20 − 2(divσh − divσ,u− u∗h)

− 2(λ∗hu
∗
h − λu,u− u∗h)

=2ν‖A(σ − σh)‖20 − λ∗h‖u− u∗h‖20 − 2(divσh − divσ,u− u∗h)

− 2(λ∗h(u∗h − u),u− u∗h)− 2((λ∗h − λ)u,u− u∗h)

=2ν‖A(σ − σh)‖20 + λ∗h‖u− u∗h‖20 + 2(div(σ − σh),u− u∗h)

+ 2(λ− λ∗h)(u,u− u∗h).

From Cauchy-Schwarz inequality it follows

|λ− λ∗h| . 2ν‖A(σ − σh)‖20 + λ∗h‖u− u∗h‖20 + 2‖div(σ − σh)‖0‖u− u∗h‖0
+ 2|λ− λ∗h|‖u− u∗h‖0.

This results in

|λ− λ∗h| . ‖σ − σh‖20 + ‖u− u∗h‖20 + ‖div(σ − σh)‖0‖u− u∗h‖0 + |λ− λ∗h|2.

Using the estimates (16) and (19), and Theorem 4.1, we obtain for h small enough

|λ− λ∗h| . h2k+4.

11
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5 A posteriori error analysis

First, we define ũh ∈H = H1
0 (Ω). Here ũh is closely related to the discontinuous approximation

u∗h.
The primal mixed formulation of the Stokes source problem with right hand side λu reads as

follows: find σ ∈ L and u ∈H such that

−(σ, ε(v)) = −λ(u,v) for all v ∈H,

(2νAσ,Aτ )− (τ , ε(u)) = 0 for all τ ∈ L.
(41)

Following [9, Section 1.3], we have the following lemma

Lemma 5.1. The operator A : X → X∗, defined for (σ,u) ∈ X := L×H by

(A(σ,u))(τ ,v) := (2νAσ,Aτ )− (σ, ε(v))− (τ , ε(u)),

is linear, bounded, and bijective.

From the above lemma, we obtain

‖A(σ − σh)‖0 + ‖ε(u− ũh)‖0 ≈ ‖ResL‖L∗ + ‖ResH‖H∗ , (42)

for any approximation (σh, ũh) ∈ L×H of the primal source problem with right hand side λu,
where

ResH(v) := λ(u,v) + (σh, ε(v)) for all v ∈H,

ResL(τ ) := (2νAσ,Aτ )− (τ , ε(ũh)) for all τ ∈ L.

Lemma 5.2. Let (σ,u, λ) ∈ L×H×R+ be a solution of (4). Then the approximation (σh, ũh) ∈
L×H satisfies

‖A(σ − σh)‖0 + ‖εTh(u− ũh)‖0

. ‖Aσh − ε(ũh)‖K,0 +
( ∑
K∈Th

h2
K‖λu+ divσh‖20

)1/2

+ Θ,

with the higher order term

Θ := λh‖u− u∗h‖0 + |λ− λh|.

Proof. Gauss theorem implies for any v ∈H

ResH(v) = (λu+ divσh,v).

Let vh denote the Scott-Zhang interpolation [22] of v, then it holds that

ResH(v) = (λu+ divσh,v − vh) + (λu+ divσh,vh).

For the second term on the right hand side, (5) and (33) show

(λu+ divσh,vh) = (λu− λhuh,vh) = (λu− λhu∗h,vh)

= (λ− λh)(u,vh) + λh(u− u∗h,vh).

12
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Applying Cauchy-Schwarz inequality, it follows

ResH(v) .

( ∑
K∈Th

h2
K‖λu+ divσh‖2K,0

)1/2( ∑
K∈Th

h−2
K ‖(v − vh)‖2K,0

)1/2

+ (λh‖u− u∗h‖+ |λ− λh|) ‖vh‖0.

Poincare’s inequality, and stability and approximation properties of the Scott-Zhang interpolation
show

ResH(v) .

( ∑
K∈Th

h2
K‖λu+ divσh‖2K,0

)1/2

+ Θ

 |v|1.
Finally, ‖ResL‖L∗ is estimated as

ResL(τ ) =

∫
Ω

(Aσh − ε(ũh)) : τdx ≤ ‖Aσh − ε(ũh)‖0‖τ‖0.

Now, we present an a posteriori error estimator that involves the discontinuous post-processed
approximation

u∗h ∈ H1(Th) := {v ∈ L2(Ω)|v|T ∈H1(T ) for all T ∈ Th}.

In the following let ũh ∈ H be the conforming approximation to u, that is obtained from the
discontinuous post-processed function u∗h by taking the arithmetic mean value

ũh(z) :=
1

|{K ∈ Th : z ∈ K}|
∑

K∈Th:z∈K
u∗h(z)|K

for each vertex and edge degree of freedom in z ∈ R2. A discrete scaling argument and [16,
Theorem 2.2] show∑

K∈Th

h−2
K ‖u

∗
h − ũh‖2K,0 +

∑
K∈Th

‖εTh(u∗h)− ε(ũh)‖2K,0 .
∑
E∈Eh

h−1
E ‖[u

∗
h]‖2E,0. (43)

Theorem 5.3. Let (σ,u, λ) ∈ L×H×R+ be a solution of (4). The post-processed eigenfunction
u∗h ∈ H1(Th) satisfies the following reliability estimate

‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0 . η + Υ, (44)

for the a posteriori error estimator

η2 := ‖Aσh − εTh(u∗h)‖20 +
∑
K∈Th

h2
K‖λ∗hu∗h + divσh‖2K,0 +

∑
E∈Eh

h−1
E ‖[u

∗
h]‖2E,0,

and the higher order term

Υ :=

(∑
T∈Th

h2
K‖λu− λ∗hu∗h‖2K,0

)1/2

+ Θ.

13
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Proof. Adding and subtracting ε(ũh) in the second term of (44) and using the triangle inequality,
we have

‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0 . ‖A(σ − σh)‖0 + ‖εTh(u− ũh)‖0
+ ‖εTh(u∗h)− ε(ũh)‖0.

Applying Theorem 5.2, implies

‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0 . ‖Aσh − ε(ũh)‖0 + ‖εTh(u∗h)− ε(ũh)‖0

+

( ∑
K∈Th

h2
K‖λu+ divσh‖2K,0

)1/2

+ Θ.

Another triangle inequality yields

‖A(σ − σh)‖0 + ‖εTh(u− u∗h)‖0 . ‖Aσh − εTh(u∗h)‖0 + ‖εTh(u∗h)− ε(ũh)‖0

+

( ∑
K∈Th

h2
K‖λ∗hu∗h + divσh‖2K,0

)1/2

+ Υ.

Using (43), the desired estimate holds.

Theorem 5.4. The a posteriori error estimator η2 provides an upper bound of the post-processed
eigenvalue error for sufficiently small mesh size h, up to the higher order term Υ2,

|λ− λ∗h| . η2 + Υ2.

Proof. Adding and subtracting ũh in the last term of (40) yields

λ− λ∗h = 2ν‖A(σ − σh)‖20 − λ∗h‖u− u∗h‖20 − 2(divσh + λ∗hu
∗
h,u− ũh)

− 2(divσh + λ∗hu
∗
h, ũh − u∗h)

= 2ν‖A(σ − σh)‖20 − λ∗h‖u− u∗h‖20 − 2(divσh − divσ,u− ũh)

− 2(λ∗hu
∗
h − λu,u− ũh)− 2(divσh + λ∗hu

∗
h, ũh − u∗h)

Applying Gauss theorem, implies

λ− λ∗h = 2ν‖A(σ − σh)‖20 + λ∗h‖u− u∗h‖20 − 2(σ − σh,∇(u− ũh))

+ 2λ∗h(u− u∗h,u− ũh) + 2(λ− λ∗h)(u,u− ũh)

− 2(divσh + λ∗hu
∗
h, ũh − u∗h).

Using Cauchy-Schwarz inequality, we have

|λ− λ∗h| . ‖A(σ − σh)‖20 + ‖u− u∗h‖20 + ‖σ − σh‖20 + ‖∇(u− ũh)‖20 + ‖u− ũh‖20
+ (λ− λ∗h)2 +

∑
K∈Th

h2
K‖λ∗hu∗h + divσh‖20,K +

∑
K∈Th

h−2
K ‖ũh − u

∗
h‖0,K .

From the trace estimate [8, Proposition 3.1, IV.3], we get

‖σ − σh‖0 . ‖A(σ − σh)‖0 + ‖div(σ − σh)‖−1.

14
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Note that

‖div(σ − σh)‖−1 = sup
v∈H
|v|1=1

|(λu+ divσh,v)| = ‖ResH‖H∗ .

Therefore, (42), Korn’s and triangle inequalities lead to

|λ− λ∗h| . ‖A(σ − σh)‖20 + ‖εTh(u− u∗h)‖20 +
∑
K∈Th

h2
K‖λ∗hu∗h + divσh‖20,K

+ ‖u∗h − ũh‖20 + ‖εTh(u∗h − ũh)‖20 +
∑
K∈Th

h−2
K ‖u

∗
h − ũh‖20,K

+ ‖u− u∗h‖20 + (λ− λ∗h)2.

For h small enough such that |λ− λ∗h| < 1/2, we conclude with (43) and (44)

|λ− λ∗h| . η2 + Υ2.

6 Numerical experiments

In this section, we present numerical results for the square domain, the L-shaped domain and
the slit domain. We verify the proven (asymptotic) reliability of the a posteriori error estimator
of Section 5 and show empirically its efficiency. We present numerical results that show sixth
order convergence of the post-processed eigenvalues of Section 4 on adaptively refined meshes
even for the (nonconvex) L-shaped and slit domains. In all experiments, we take to the lowest
order Arnold-Winther finite element (k = 1), the parameter ν = 1 and the polynomial order
P3(Th,R2) for the post-processing.

Since the exact eigenvalues for all three domains are unknown, we compare the computed
eigenvalues to some reference values with high accuracy. Note that the eigenvalues of the Stokes
eigenvalue problem are related to the eigenvalues of the buckling eigenvalue problem of clamped
plates via the stream function formulation. Hence, we can use known [5] or computed reference
eigenvalues for the plate eigenvalue problem.

We consider the standard adaptive finite element loop

Solve→ Estimate→ Mark→ Refine,

that creates a sequence of adaptively refined (nested) regular meshes (T`) level index `. For the
algebraic eigenvalue solver we use the Matlab implementation of ARPACK [17]. To estimate the
error, we compute the a posteriori error estimator of Section 5

η2
` =

∑
K∈T`

‖Aσ` − εT`(u∗` )‖20,K +
∑
E∈E`

h−1
E ‖[u

∗
` ]‖20,E +

∑
K∈T`

h2
K‖λ∗`u∗` + divσ`‖20,K .

In the above formula, u∗` ∈ W ∗
` is the solution of the local post-processing which is given in

Section 4. Since the conforming function ũ` of Section 5 is closely related to u∗` we also compare
the error estimator η2

` to the heuristical estimator

µ2
` =

∑
K∈T`

‖Aσ` − ε(ũ`)‖20,K +
∑
K∈T`

h2
K‖λ̃`ũ` + divσ`‖20,K ,
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Figure 1: Convergence history of (a) |λ−λ`|, |λ−λ∗` |, η2
` , (b) |λ−λ`|, |λ−λ̃`| and µ2

` on uniformly
and adaptively refined meshes for the square domain.

where we replaced u∗` by ũ`, and λ̃` is computed from (39) with u∗` replaced by ũ`. We nu-

merically demonstrate reliability and efficiency of µ2
` for the eigenvalue error |λ− λ̃`|. We mark

triangles of the triangulation T` in a minimal set of marked triangles M` according to the bulk
marking strategy [12], such that θη2

` ≤ η2
` (M`) for the bulk parameter θ = 1/2, and refine the

mesh with the red-green-blue refinement strategy [24].
Let N` denote the degrees of freedom N` := dim(Φ`) + dim(V`). Note that for uniform

meshes, we have the relationship O(N−r` ) ≈ O(h2r
` ), r > 0.

6.1 Square domain

In the first example, we consider the square domain Ω = (0, 1)2. The reference value for the
first eigenvalue λ = 52.344691168 is taken from [5, 11]. Figures 1(a) and 1(b) are devoted to the
convergence history of the eigenvalue errors and a posteriori error estimators. Due to the smooth-
ness of the eigenfunction, the error of the post-processed eigenvalue λ∗` and the corresponding
a posteriori error estimator η2

` achieve optimal third order of convergence for both uniform and

adaptive meshes. Moreover, the error for the eigenvalue λ̃` and the estimator µ2
` also achieve

optimal convergence of O(N−3) for both uniform and adaptive meshes. For both uniform and
adaptive meshes, the convergence rate of the eigenvalue error of λ` is equal to O(N−2), which
confirms the theoretical result (18). The streamline plot of the discrete eigenfunction u` and a
plot of the discrete pressure p` = −trσ`/2 are displayed in 2(a) and 2(b), respectively.

6.2 L-shaped domain

The second example is for the L-shaped domain with Ω = (−1, 1)2 \ [0, 1]2. Here, the domain
in nonconvex and has a re-entrant corner at the origin, which causes a singularity in the first
eigenfunction. To compute the eigenvalue error of the first eigenvalue, we take λ = 32.13269465
as a reference value. The convergence results for uniform meshes in Figure 3(a) and 3(b) show
reduced orders of convergence O(N−0.544) for all eigenvalue errors and both error estimators.
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Figure 2: (a) Streamline plot of the discrete eigenfunction u`. (b) Plot of discrete pressure
p` = −trσ`/2.
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Figure 3: Convergence history of (a) |λ−λ`|, |λ−λ∗` |, η2
` (b) |λ−λ`|, |λ− λ̃`| and µ2

` on uniformly
and adaptively refined meshes for the L-shaped domain.
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Figure 4: (a) Adaptive refined meshes for η2
` with 386 nodes, (b) Adaptively refined meshes for

µ2
` with 392 nodes.
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Figure 5: (a)Streamline plot of the discrete eigenfunction u`. (b) Plot of discrete pressure
p` = −trσ`/2.
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Figure 6: Convergence history of (a) |λ−λ`|, |λ−λ∗` |, η2
` , (b) |λ−λ`|, |λ−λ̃`| and µ2

` on uniformly
and adaptively refined meshes for the slit domain.

Furthermore, the convergence results based on adaptive refinement recover optimal higher order
convergenceO(N−3) of the post-processed eigenvalues λ∗` and λ̃`. In both cases the corresponding
a posteriori error estimators η2

` and µ2
` are reliable and efficient and close to the true error.

Moreover, the eigenvalue errors for adaptive refinement are several orders of magnitude below
the eigenvalue errors for uniform refinement, which illustrates the importance of adaptive mesh
refinement. Figures 4(a) and 4(b) show two adaptively refined meshes for the a posteriori error
estimators η2

` and µ2
` , respectively. Both meshes show strong refinement toward the origin.

Figures 5(a) and 5(b) show the discrete velocity and pressure as a streamline plot computed on
an adaptive mesh.

6.3 Slit domain

Finally, we consider the slit domain Ω = (−1, 1)2 \ {0 ≤ x ≤ 1, y = 0}, with maximal re-entrant
corner of angle 2π. We take λ = 29.9168629 as a reference value for the first eigenvalue. Again
the first eigenfunction is singular. For uniform meshes in Figure 6(a) and 6(b), the convergence
results show suboptimal convergence O(N−1/2) for the eigenvalue errors and error estimators.
On the contrary, the convergence results, which are based on adaptive refinement, achieve optimal
convergence O(N−3) for the post-processed eigenvalues λ∗` and λ̃`, and for the a posteriori error
estimators η2

` and µ2
` . In Figures 6(a) and 6(b), the graphs for the estimators η2

` and µ2
` are

parallel to the eigenvalue errors of the eigenvalues λ∗` and λ̃`, thus it confirms that both error
estimator are numerically reliable and efficient. Note that the efficiency index corresponding to
η2
` in Figure 6(a) and the efficiency index corresponding µ2

` in Figure 6(b) are close to one in case
of adaptive mesh refinement. Figures 7(a) and 7(b) display adaptively refined meshes for the
proposed error estimators η2

` and µ2
` , which both show strong refinement toward the re-entrant

corner. The computed velocity and discrete pressure are shown in Figures 8(a) and 8(b) as a
streamline plot on an adaptive mesh.
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Figure 7: (a) Adaptive refined meshes for η2
` with 375 nodes, (b) Adaptive refined meshes for µ2

`

with 336 nodes.
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Figure 8: (a)Streamline plot of the discrete eigenfunction u`. (b) Plot of discrete pressure
p` = −trσ`/2.
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