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COMPUTING THE WEIGHTED GEOMETRIC MEAN OF TWO
LARGE-SCALE MATRICES AND ITS INVERSE TIMES A VECTOR

MASSIMILIANO FASI∗ AND BRUNO IANNAZZO†

Abstract. We investigate different approaches for computing the action of the weighted geo-
metric mean of two large-scale positive definite matrices on a vector. We derive and analyze several
algorithms, based on numerical quadrature and on the Krylov subspace, and compare them in terms
of convergence speed and execution time. By exploiting an algebraic relation between the weighted
geometric mean and its inverse, we show how these methods can be used to efficiently solve large
linear systems whose coefficient matrix is a weighted geometric mean. According to our experiments,
some of the algorithms proposed in both families are suitable choices for black-box implementations.

1. Introduction. The weighted geometric mean of parameter t of two positive
numbers, say a and b, is defined as a1−tbt for any t ∈ [0, 1]. This definition covers as
a special case the standard geometric mean

√
ab, arising for t = 1/2. The extension

of this concept to positive definite matrices is not trivial, but there is large agree-
ment that the right generalization, for A,B ∈ Cn×n (Hermitian) positive definite and
t ∈ [0, 1], is

(1) A#tB = A(A−1B)t = A(B−1A)−t,

which turns out to be positive definite and is called the matrix weighted geometric
mean of A and B. The reasons behind this choice and the properties of the matrix
weighted geometric are discussed by Bhatia [11, Ch. 4] and Lawson and Lim [41]. Rel-
evant applications of the weighted geometric mean of two dense matrices of moderate
size, along with algorithms for its computations, can be found in the survey [35].

Here we are interested in the approximation of (A#tB)v and (A#tB)−1v, where
v ∈ Cn and A,B are large and sparse. These problems arise in a preconditioning
technique for some domain decomposition methods and in methods for the biharmonic
equation [4, 5, 6], and in the clustering of signed complex networks [44]. The geometric
mean of large-scale matrices appears also in image processing [22].

In particular, we want to avoid the explicit computation of the matrix function
A#tB, which may be unduly slow or even practically infeasible, for A and B large
enough. We explore two classes of methods to achieve this goal, namely numerical
quadrature of certain integral representations of the matrix function Z−t for t ∈ (0, 1),
and Krylov subspace methods for computing the product of a matrix function and a
vector.

It is well known that the geometric mean A#B := A#1/2B [2, 3, 12, 46] (the
weighted geometric mean with weight t = 1/2) has several nice integral representations
(see [37] and the references therein). In particular, the formula

A#B =
2

π

∫ 1

−1

(
(1 + z)B−1 + (1− z)A−1)−1√

1− z2
dz,
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is well suited for Gaussian quadrature with respect to the weight function (1−z2)−1/2,
and is considered in comparison with other algorithms for A#B by Iannazzo [35]. We
generalize this approach to the matrix weighted geometric mean.

Quadrature formulae are particularly attractive in the large-scale case, since they
produce an approximation of the form

(2) (A#tB) v ≈
N∑
i=0

wiA(riA+ siB)−1Bv,

where the wis are the weights of the quadrature and the ris and the sis are pa-
rameters obtained from the nodes of the quadrature. By exploiting the identity
(A#tB)−1 = B−1(B#tA)A−1, a similar approximation for the inverse of the geo-
metric mean, namely

(3) (A#tB)−1v ≈
N∑
i=0

wi(riB + siA)−1v,

can be easily derived. The problem is thus reduced to the solution of linear systems
and the evaluation of matrix-vector products. Moreover, if ri and si are positive for
all i, then the matrix coefficients of these linear systems are positive definite, being
convex combinations of the positive definite matrices A and B, and we say that the
quadrature formula preserves the positivity structure of the problem.

We consider and analyze three quadrature formulae for A#tB. The first two
are obtained from integral representations of the inverse of real powers [14, 23], by
exploiting the fact that A#tB = A(B−1A)−t. The third is based on a clever confor-
mal mapping [30], which achieves fast convergence speed but does not preserve the
positivity structure of the problem for t 6= 1/2.

Regarding Krylov subspace methods, we adapt to our problem standard tech-
niques for the approximation of f(Z−1Y )v, where Z and Y are large-scale matrices.
In this case, the usual way to proceed is to consider a projection of the matrix onto
a small Krylov subspace and thereby reduce the original problem to a small sized
one. Since (A#tB)v = A(B−1A)−tv, the computation of (A#tB)v reduces to that
of (B−1A)−tv, which is well suited for the aforementioned techniques. For instance,
when approximating (B−1A)−tv by means of the Arnoldi method, we get the gen-
eralized Lanczos method [45, Ch. 15], which has been considered for (A#tB)v in
previous work [5, 4]. We revise the generalized Lanczos method and then investigate
some more powerful Krylov subspace techniques such as the extended Krylov sub-
space method [21] and the rational Krylov subspace methods [48, 49, 50], with poles
chosen according to the adaptive strategy by Güttel and Knizhnerman [29] or the
rational Krylov fitting by Berljafa and Güttel [8]. We show that these methods, in
most cases, outperform the generalized Lanczos algorithm. Prior to our work, ratio-
nal Krylov methods have been considered for the computation of (A#B)v, where the
implementations are meant for and tested on sparse matrices of moderate size [15].

For the sake of generality, in describing the Krylov subspace techniques, we work
with the more general problem Af(A−1B)v, where A is positive definite, B is Hermi-
tian and f is the matrix extension of a real positive function. Our implementations,
tailored for the function f(z) = z−t, are well suited to the computation of (A#tB)−1v,
and could, in principle, be used for any choice of the function f .

The paper is organized as follows. In the next section we give some notation
and preliminary results. Quadrature methods for the weighted geometric mean are
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discussed in Section 3, while Section 4 is devoted to Krylov subspace methods. The
application of these techniques to the solution of the linear system (A#tB)y = v is
discussed in Section 5, and an experimental comparison is provided in Section 6. In
the final section, we draw the conclusions.

2. Notation and preliminaries. Throughout the paper we denote by In the
identity matrix of size n, omitting the size when there is no ambiguity. The set R+

will denote the positive real numbers, while R = R ∪ {±∞}. We will denote by σ(A)
the spectrum of the square matrix A. Throughout the paper, we consider the spectral
norm ‖A‖ = max‖x‖2=1 ‖Ax‖2. For x1, . . . , xn ∈ C, we denote by diag(x1, . . . , xn)
the n × n diagonal matrix with x1, . . . , xn on the main diagonal. Let V ⊂ Cn be a
subspace, and A ∈ Cn×n, by AV we denote the subspace {Av : v ∈ V}.

Let A ∈ Cn×n be diagonalizable with eigenvalues in Ω ⊂ C and let f : Ω→ C. If
M−1AM = diag(λ1, . . . , λn), then f(A) := M diag(f(λ1), . . . , f(λn))M−1. Note that
if A is Hermitian, then f(A) is Hermitian as well. This definition can be extended to
nondiagonalizable matrices [33, Def. 1.2], and is independent of the choice of M .

We have the similarity invariance of matrix functions, that is, if f(A) is well
defined, then f(KAK−1) = Kf(A)K−1, for any invertible K. We give now a well-
known property regarding an expression commonly encountered when dealing with
functions of Hermitian matrices.

Lemma 2.1. Let f : U → R+, with U subset of R. For any A ∈ Cn×n positive
definite and B ∈ Cn×n Hermitian, such that σ(A−1B) ⊂ U , the matrix Af(A−1B) is
Hermitian positive definite.

Proof. Note that f(A−1B) is well defined, since A−1B is diagonalizable with
spectrum in U . Because of the similarity invariance of matrix functions, we have that
Af(A−1B) = A1/2f(A−1/2BA−1/2)A1/2. The matrix A−1/2BA−1/2 is Hermitian and
diagonalizable with real eigenvalues in U , thus T = f(A−1/2BA−1/2) is Hermitian
with positive eigenvalues and the same holds for Af(A−1B), which is obtained from
T through a congruence.

If A and B are positive definite, then σ(A−1B) ⊂ R+. Thus, the previous lemma,
applied to f(z) = zt, with U = R+, shows that A#tB = A(A−1B)t is positive defi-
nite. Using other properties of matrix functions one obtains the following equivalent
expressions:

A#tB = A(A−1B)t = A(B−1A)−t = B(A−1B)t−1 = B(B−1A)1−t,

= (BA−1)tA = (AB−1)−tA = (BA−1)t−1B = (AB−1)1−tB.
(4)

Another useful property of the weighted geometric mean is

(5) (A#tB)−1 = B−1(B#tA)A−1,

which follows from an algebraic manipulation of the formulae in (4)

(A#tB)−1 =
(
(BA−1)t−1B

)−1
= B−1(BA−1)1−tAA−1 = B−1(B#tA)A−1.

3. Quadrature methods. In this section, we exploit the formula A#tB =
A(B−1A)−t to obtain three quadrature formulae for A#tB from the corresponding
quadrature formulae for the inverse real power function z−t.

In the next subsection we describe and analyze two integral representations for
z−t and in Sections 3.2 and 3.3 we discuss their application to the matrix weighted
geometric mean. Finally, in Section 3.4 we adapt an algorithm based on a conformal
map transformation to the matrix weighted geometric mean.
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3.1. Integral representations for z−t. Since A#tB = A(B−1A)−t, useful
integral representations of the matrix weighted geometric mean can be obtained
from the representations of the fractional inverse power function. The function
C \ [−∞, 0] 3 z → z−t for t ∈ (0, 1) is a Markov function [10, p. 116], which
can be written as

(6) z−t =
sin(πt)

π

∫ ∞
0

dx

xt(x+ z)
, 0 < t < 1.

To rewrite this integral in a more practical form, we exploit the Cayley transform
C(x) = 1−x

1+x , which sends the positive real numbers to the interval (−1, 1).
The variable transformation s = C(x) gives

(7) z−t =
2 sin(πt)

π

∫ 1

−1

(1− s)−t(1 + s)t−1 ds

(1− s) + (1 + s)z
.

On the other hand, by applying the transformation s = −C
(
x1−t) to the integral

in (6), we obtain

(8) z−t =
2 sin(π(1− t))

π(1− t)

∫ 1

−1

(1− s)
2t−1
1−t

ds

(1 + s)
1

1−t + (1− s)
1

1−t z
,

which has been considered in a similar form in order to compute the pth root [14].
Both (7) and (8) are integrals of the form∫ 1

−1

(1− s)α(1 + s)βf(s)ds,

with (α, β) = (−t, t − 1) and (α, β) =
(

2t−1
1−t , 0

)
, respectively. These integrals, for

α, β > −1, can be approximated by using Gaussian quadrature with respect to the
weight

(9) ωα,β(s) = (1− s)α(1 + s)β , s ∈ [−1, 1].

These formulae are known as the Gauss–Jacobi quadrature formulae [47, Sec. 4.8].
A nice feature of the Gauss–Jacobi quadrature applied to the integral (7) is that

the function to be integrated with respect to the weighted measure, namely

(10) f1,z(s) =
1

1− s+ (1 + s)z
,

is analytic on [−1, 1], for any z ∈ C \ (−∞, 0), and thus the convergence of the
quadrature formulae is exponential.

In particular, given a function f analytic on the interval [−1, 1], for the error of
the Gaussian quadrature with nodes si and weights wi for i = 0, . . . , N − 1, we have
the estimate [25, 53]

(11) |RN (f)| =

∣∣∣∣∣
∫ 1

−1

f(x)ω(x)dx−
N−1∑
i=0

wif(si)

∣∣∣∣∣ 6 4µ0

1

ρ2N

( ρ2

ρ2 − 1

)
max
x∈Γ
|f(x)|,

where µ0 =
∫ 1

−1
ω(x)dx and the curve Γ is an ellipse with foci −1 and 1 and sum of

the semimajor and semiminor axes ρ, entirely enclosed (with its interior part) in the
domain of analyticity of f .
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When f is analytic on [−1, 1], we may assume that ρ > 1. Hence, for any ellipse
contained in the region of analyticity corresponding to ρ, the convergence of the
quadrature formula is exponential with rate γ such that 1/ρ2 < γ < 1. On the other
hand, for the integral (8), the integrand is

(12) f2,z(s) =
1

(1 + s)
1

1−t + (1− s)
1

1−t z
,

which is analytic on [−1, 1] for any z ∈ C \ (−∞, 0) only if t is of the form (p− 1)/p,
with p ∈ N. When 1/(1−t) is not an integer, the integrand (12) has two branch points
at −1 and 1, which makes the use of this second quadrature method less attractive
for our purposes. Nevertheless, in some cases the Gauss–Jacobi quadrature applied
to (8) converges faster than the same method applied to (7).

We analyze the convergence just for z ∈ R+, because we want to apply the
formulae to diagonalizable matrices having positive real eigenvalues and, in this case,
the convergence of the quadrature formulae for the matrix follows from that of the
same formulae for its eigenvalues.

Convergence for the integrand f1,z(s). Let us start by considering the quadrature
formula for f1,z(s), which has only one pole at ζ = 1/C(z). The function 1/C(z) maps
the half line (0,∞) to R\ [−1, 1], thus we are guaranteed that the pole lies outside the
interval [−1, 1] for any z > 0 and that the convergence result for analytic functions
applies.

If z ∈ (0,∞), then it is easy to identify the smallest ellipse not contained in the
domain of analyticity of f1,z(s) as the one passing through ζ. The real semiaxis of

such an ellipse has length |ζ| and its imaginary semiaxis has length
√
ζ2 − 1, thus,

the sums of its semiaxes is

(13)
ρ(1)(z) = |ζ|+

√
ζ2 − 1 =

1

|C(z)|
+

√
1

C(z)2 − 1

=
|1 + z|+ 2

√
z

|1− z|
=

1 +
√
z

|1−
√
z|

=
1

|C(
√
z)|
,

and hence a lower bound for the rate of convergence is |C(
√
z)|2.

Convergence for the integrand f2,z(s). The convergence analysis for f2,z(s) is more
problematic, since the function lacks analyticity at 1 and −1 when 1/(1− t) 6∈ N. For
t = (p − 1)/p, with p ∈ N, the function f2,z(s) is rational and its poles are given by
the solutions of the equation

(1 + ζ)p + (1− ζ)pz = 0,

which are the p distinct points

(14) ζ` = −C
(
z1/pe

1
p iπ(2`+1)), ` = 0, . . . , p− 1.

Since none of them lies on the interval [−1, 1], the integrand is analytic there.
In order to get the rate of convergence of the quadrature formula, we consider the

sum of the semiaxes of the smallest ellipse not contained in the domain of analyticity
of f2,z(s).

Proposition 3.1. For any positive integer p, the smallest ellipse not contained
in the domain of analyticity of f2,z(s) (defined in (12)), with t = (p − 1)/p, passes
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through ζ0 (defined in (14)) and the sum of its semiaxes is

(15) ρ(2)(z) =
1 + z1/p +

√
2z1/p(1− cos(π/p))√

1 + z2/p + 2z1/p cos(π/p)

.

Proof. We know that the poles of f2,s(z) are ζ` = −C(ξ`) with ξ` = z
1
p e

2`+1
p iπ, for

` = 0, . . . , p− 1.
We want to find the smallest sum of the semiaxes of an ellipse not including the

points {ζ`} in its interior part, and with foci 1 and −1. If we denote by x the length
of the major semiaxis of such an ellipse, then the sum of the length of the semiaxes
is ρ = x+

√
x2 − 1.

We know that the sum of the distances between a point of the ellipse and the
foci is twice the major semiaxis. To find the major semiaxis of the ellipse passing
through ζ` we can use the fact that

|ζ` − 1|+ |ζ` + 1| = 2x`,

which readily gives x` and thus ρ`.
Since ζ` = −C(ξ`), we have

ζ` + 1 =
2ξ`
ξ` + 1

, ζ` − 1 =
−2

ξ` + 1
, x` =

1

2
(|ζ` + 1|+ |ζ` − 1|) =

|ξ`|+ 1

|ξ` + 1|
,

from which, by using |ξ`| = z1/p and (|ξ|+ 1)2 − |ξ + 1|2 = 2|ξ| − 2Reξ, we get

ρ` = x` +

√
x2
` − 1 =

|ξ`|+ 1 +
√

2|ξ`| − 2Reξ`
|ξ` + 1|

=
1 + z1/p +

√
2z1/p(1− cos(ϑ`))√

1 + z2/p + 2z1/p cos(ϑ`)

,

where ϑ` = 2`+1
p π. Now observe that ρ` decreases as cos(ϑ`) grows, and thus that the

nearer ϑ` is to a multiple of 2π, the smaller is the value of ρ`. Noting that ϑ0 is the
nearest such value concludes the proof.

Hence, for t = (p−1)/p, we have a lower bound for the rate of convergence, namely(
1/ρ(2)(z)

)2. For t 6= (p− 1)/p, by lack of analyticity of the integrand, we cannot use
these asymptotic results to study the convergence of the quadrature formula involving
f2,z(s). Nonetheless, it appears that the formula converges also for values of t not of
the type (p− 1)/p.

Comparison. We can compare the bounds for the rates of convergence of the
two quadrature formulae, namely

(
1/ρ(1)(z)

)2, with ρ(1)(z) defined as in (13); and(
1/ρ(2)(z)

)2, with ρ(2)(z) given by (15), just for t = (p−1)/p. Since ρ(1)(1/z) = ρ(1)(z)

and ρ(2)(1/z) = ρ(2)(z), we can restrict our attention to z > 1.
In a neighborhood of 1, the quadrature formula using f1,z(s) works better since

1/ρ(1)(1) = 0, while 1/ρ(2)(1) > 0.
On the other hand, as z →∞, we have

(16) 1−
(

1

ρ(1)(z)

)2

≈ 4z−
1
2 , 1−

(
1

ρ(2)(z)

)2

≈ 2
√

2
(
1− cos(π/p)

)
z−

1
2p .

and thus the second formula works better for large values of z.
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Gauss–Jacobi quadrature and Padé approximation. Quadrature on Markov func-
tions is related to Padé approximation. In particular, applying the Gauss–Jacobi
quadrature to the integral in (7) yields the [N − 1/N ] Padé approximant to z−t as
z → 1. We give a short proof of this property (see also the one given by Frommer,
Güttel and Schweitzer [23]).

Theorem 3.2. The Gauss–Jacobi quadrature of (7) with N nodes coincides with
the [N − 1, N ] Padé approximant to z−t as z → 1.

Proof. The Gaussian quadrature formula with N nodes, say JN (z), is a rational
function of z whose numerator and denominator have degree at most N−1 and exactly
N , respectively.

We have that f (k)
1,z (s) = (−1)kk!(z − 1)kfk+1

1,z (s) for k > 0. From the latter and
using standard results on the remainder of Gaussian quadrature we have that there
exists ξ = ξ(z) ∈ (−1, 1) such that

z−t − JN (z) =
2 sin (πt)

π

f
(2N)
1,z (ξ)

(2N)!
〈P (−t,1−t)
N , P

(−t,1−t)
N 〉 = cn

(z − 1)2N

(z − 1)ξ + (z + 1)
,

where P (α,β)
N is the Nth Jacobi polynomial, 〈·, ·〉 is the scalar product with respect to

the weight (9) and cn is a constant independent of z.

As z → 1 we get that z−t−JN (z) = O((z−1)2N ) and thus JN (z) is the [N−1, N ]
Padé approximant to z−t.

3.2. Integral representations of A#tB. The integral representations in Sec-
tion 3.1 for z−t readily yield analogous representations for the matrix weighted geo-
metric mean (through A#tB = A(B−1A)−t).

From the formula (7) we obtain

A#tB = c1A

∫ 1

−1

(1− s)−t(1 + s)t−1((1− s)I + (1 + s)B−1A
)−1

ds

(17)

= c1A
1/2
∫ 1

−1

(1− s)−t(1 + s)t−1((1− s)I + (1 + s)A1/2B−1A1/2)−1
ds ·A1/2,

= c1A

∫ 1

−1

(1− s)−t(1 + s)t−1((1− s)B + (1 + s)A
)−1

Bds,

with c1 = 2 sin(πt)
π , and the corresponding quadrature formula on N + 1 nodes gives

(18) A#tB ≈ S
(1)
N+1 :=

2 sin(πt)

π

N∑
i=0

wiA((1− si)B + (1 + si)A)−1B,

where the wis are the weights of the Gauss–Jacobi quadrature formula with N + 1
nodes and sis are the nodes, which belong to the interval [−1, 1]. Therefore, for
i = 0, . . . , N , the matrix (1− si)B + (1 + si)A is positive definite.
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On the other hand, from (8) we have

A#tB = c2A

∫ 1

−1

(1− s)
2t−1
1−t
(
(1 + s)

1
1−t I + (1− s)

1
1−tB−1A

)−1
ds

(19)

= c2A
1/2
∫ 1

−1

(1− s)
2t−1
1−t
(
(1 + s)

1
1−t I + (1− s)

1
1−tA1/2B−1A1/2)−1

ds ·A1/2,

= c2A

∫ 1

−1

(1− s)
2t−1
1−t
(
(1 + s)

1
1−tB + (1− s)

1
1−tA

)−1
Bds,

with c2 = 2 sin(π(1−t))
π(1−t) , and the corresponding quadrature formula with N + 1 nodes

gives

(20) A#tB ≈ S
(2)
N+1 :=

2 sin(π(1− t))
π(1− t)

N∑
i=0

wiA((1 + si)
1

1−tB + (1− si)
1

1−tA)−1B.

Even in this case the matrices to be inverted, for i = 0, . . . , N , are positive definite.

3.3. Matrix convergence. In order to analyze the convergence of the quadra-
ture formulae for the matrix weighted geometric mean, we consider the convergence of
the quadrature formulae for (7) and (8) when applied to a Hermitian positive definite
matrix C. In this case, the functions to be integrated are

f1,C(s) = ((1− s) I + (1 + s)C)
−1 and f2,C(s) = ((1 + s)

1
1−t I + (1− s)

1
1−t C)−1,

whose domain of analyticity is the intersection of the domain of analyticity of the
corresponding function applied to all the eigenvalues of C.

If Q∗CQ = diag(λ1, . . . , λn), with Q unitary, and the function to be integrated is
analytic on [−1, 1], then the error in the quadrature formulae with N nodes (defined
in (11)), in the spectral norm, is

‖RN (fk,C(s))‖ = ‖diag
(
RN (fk,λi

(s))
)
‖ = max

i=1,...,n
{|RN (fk,λi

(s))|}, k = 1, 2,

and is ruled by the eigenvalue whose corresponding pole gives the smallest ellipse with
foci 1 and −1, enclosed in the domain of analyticity.

Convergence for the integrand f1,C(s). Let the eigenvalues of C be ordered so that
0 < λm = λ1 6 λ2 6 . . . 6 λn−1 6 λn = λM . The infimum of the acceptable values

for ρ (the ellipse parameter) is now obtained by minimizing the function |ζ|+
√
ζ2 − 1

for ζ ∈ σ(C), where σ(C) denotes the spectrum of C, so that the bound on the rate
of convergence, in view of (13), is

τ (1)(C) = max
λ∈σ(C)

1(
ρ(1)(λ)

)2 = max
λ∈σ(C)

|C(
√
λ)|2 = max{|C(

√
λm)|2, |C(

√
λM )|2},

since the function |C(
√
λ)| is monotonically decreasing in (0, 1) and monotonically

increasing in (1,∞).
Since C is positive definite, its condition number in the 2-norm, denoted by

κ := µ2(C), is λM/λm. If we further assume that λMλm = 1, then κ = λ2
M = 1/λ2

m

and since |C(
√
λm)| = |C(

√
λM )|, we have

τ (1)(C) = |C(
√
λM )|2 = C( 4

√
κ)2.
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Expanding τ (1) as κ→∞, we get

(21) τ (1)(C) =
( 4
√
κ− 1

4
√
κ+ 1

)2

=
(

1− 2
4
√
κ+ 1

)2

≈ 1− 4
4
√
κ
≈ exp(−4/ 4

√
κ).

Note that the condition λMλm = 1 is not restrictive, since any positive definite
matrix verifies it up to scaling, but can significantly accelerate the convergence of
these quadrature algorithms for matrices such that λMλm is far from 1.

Convergence for the integrand f2,C(s) and comparison. As before, for a positive
definite matrix C, a bound for the rate of convergence of the matrix quadrature
formula is given by the largest bound on the rate of convergence of the scalar formula
applied to the eigenvalues of C.

Since the scalar convergence is complicated by the branch points at 1 and −1 and
by the presence of a possibly large number of poles in certain cases, also the matrix
convergence is hardly predictable.

Nevertheless, if λMλm = 1, then for t = 1/2 we can get an asymptotic estimate
as κ→∞, which is

(22) τ (2)(C) = max
λ∈σ(C)

1(
ρ(2)(λ)

)2 =
( √√

κ+ 1
4
√
κ+ 1 +

√
2 8
√
κ

)2

≈ 1− 2
√

2
8
√
κ
.

For t = 1/2, it can be shown, moreover, that the Gauss–Jacobi quadrature of (8)
is better than that of (7) for

|z| ∈ R \
[

1

ξ
, ξ

]
, ξ = 2 +

√
5 + 2

√
2 +
√

5 ≈ 8.35,

and this is confirmed by the results of Test 1 in Section 6. Thus, for a positive definite
matrix and for t = 1/2, unless the matrix is very well conditioned/preconditioned
(κ2(C) . 70), the method based on (19) is preferable.

Application to the weighted geometric mean. In the case of the weighted geometric
mean, in view of equations (17) and (19), the functions to be integrated are f1,C(s)

and f2,C(s), with C = A1/2B−1A1/2, so that the previous analysis for a positive
definite matrix C can be applied.

Let λM and λm be the largest and smallest eigenvalues of A1/2B−1A1/2 (or of
the pencil A−λB), respectively. A scaling of A and/or B would change the weighted
geometric mean in a simple, predictable way, since [41]

(αA)#t(βB) = α1−tβt(A#tB).

Thus, we may assume that λMλm = 1 and replace the pair (A,B) with (Â, B̂), where
Â = A/

√
λMλm and B̂ = B.

The quadrature formulae S(1)
N of (18) converges at least linearly to Â#tB̂, and

we get the following estimate

(23) ‖Â#tB̂ − S
(1)
N ‖ = O

(
e−4N/ 4

√
κ);

while we have that S(2)
N of (20), for t = 1/2, converges at least linearly to Â#1/2B̂,

and we get the estimate

(24) ‖Â#1/2B̂ − S
(2)
N ‖ = O

(
e−2
√

2N/ 8
√
κ).
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3.4. An alternative quadrature formula. Another powerful quadrature for-
mula for real matrix powers has been obtained in [30] by applying a few variable
substitutions on the Cauchy formula for z−t.

Without giving any further details, we report the results of interest from the
original paper [30], referring the reader to it for a complete explanation. Let the
function f : C \ (−∞, 0]→ C be analytic and let us assume that (−∞, 0) is a branch
cut for f and that 0 is the only singularity, if any. Under these assumptions, the
approximation of f(Z), where Z is a real square matrix with positive eigenvalues,
using a quadrature formula with N nodes is given by

(25)
−8K(k)Z 4

√
λmλM

πNk
Im

(
N∑
j=1

f
(
w(tj)

2) cn(tj) dn(tj)

w(tj)
(
k−1 − sn(tj)

)2 (w(tj)
2I − Z

)−1

)
,

where λm and λM are the minimum and maximum of the spectrum, respectively,
k = −C( 4

√
λM/λm), K(`) is the complete elliptic integral associated with ` [30],

w(t) = 4
√
λmλM

k−1 + sn(t)

k−1 − sn(t)
, tj = −K(k2) +

i

2
K(1− k2) +

2j − 1

N
K(k2),

for 1 6 j 6 N and cn(·),dn(·) and sn(·) are Jacobi elliptic functions in standard
notation (see [1]). The theoretical aspects of these functions can be found in the book
by Driscoll and Trefethen [20].

This method can be easily adapted for computing Af(A−1B)v, when A−1B is
real with positive eigenvalues, without forming explicitly A−1, providing

(26)
−8K(k2) 4

√
λmλM

πNk
B Im

(
N∑
j=1

f
(
w(tj)

2) cn(tj) dn(tj)

w(tj)
(
k−1 − sn(tj)

)2 (w(tj)
2A−B

)−1
A

)
v,

which does not require any matrix product or inversion if evaluated from right to left.
Using the identity A#tB = A(A−1B)t, for the matrix geometric mean of real

positive definite matrices, one gets the approximation A#tB ≈ S
(3)
N with

(27)

S
(3)
N :=

−8K(k2) 4
√
λmλM

πNk
A Im

(
N∑
j=1

w(tj)
2t−1 cn(tj) dn(tj)(
k−1 − sn

(
tj
))2 (

w(tj)
2A−B

)−1

)
B.

which is of the form (2) with ri = w(ti)
2 and si = −1. Unfortunately, for t 6= 1/2,

the matrices riA+ siB can be complex and not positive definite, for some values of i.
The quadrature formula S(3)

N of (27) converges linearly to A#tB, in particular
the following estimate can be deduced from [30, Thm. 3.1]

‖A#tB − S
(3)
N ‖ = O

(
e−2π

2
N/(log(κ)+6)),

where κ = λM/λm, with λm and λM the smallest and largest eigenvalues of A−1B,
respectively. A comparison with the analogous results for the two quadrature formulae
of Section 3.2, namely (21) and (22), suggests that this formula can converge much
faster when λM/λm becomes very large and this is confirmed by the experiments in
Section 6.
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4. Krylov subspace methods. In this section we address the problem of ap-
proximating (A#tB)v = A(A−1B)tv, using methods based on Krylov subspaces. The
approach is similar to the one used in the well-developed problem of approximating
f(C)v, where C is a large and sparse matrix (see, for instance, [24, Sec. 3] or [32, Ch.
13]). However, the fact that C = A−1B, with A and B positive definite, requires cer-
tain additional subtleties, such as the convenience of orthogonalizing with respect to
a non-Euclidean scalar product. We will refer to the resulting methods as generalized
Krylov methods.

We will describe first the generalized Lanczos method in Section 4.1, then the
generalized Extended Krylov method in Section 4.2 and finally the generalized rational
Krylov methods in Section 4.3. Some convergence issues are addressed in Section 4.4.

The algorithms are presented for the more general problem Af(A−1B)v, where
f : U → R+, with U an open subset of R, the matrix A is positive definite and B is
Hermitian, with σ(A−1B) ⊂ U .

4.1. Generalized Arnoldi and Lanczos methods. Let A,M ∈ Cn×n be pos-
itive definite and let B ∈ Cn×n be Hermitian. The generalized Arnoldi method gener-
ates a sequence ofM -orthonormal vectors {vk}

n
k=1 and a sequence of upper Hessenberg

matrices {Hk}
n
k=1 withHk ∈ Ck×k, such that the columns of Vk := [v1| . . . |vk] ∈ Cn×k

span an M -orthonormal basis of the Krylov subspace

(28) Kk(A−1B, v) = span{v, (A−1B)v, . . . , (A−1B)k−1v},

where v1 = v/‖v‖M and the elements of Hk, defined by hij = v∗iMA−1Bvj , turn out
to be the coefficients of the Gram–Schmidt orthogonalization process [27, Sect. 9.4.1],
with respect to the scalar product defined by M . The algorithm has a breakdown
when, for some j 6 n, we have vj ∈ span{v1, . . . , vj−1}.

If no breakdown occurs, the matrices produced by the algorithm satisfy V ∗nMVn =
In, BVn = AVnHn and, for k < n,

(29) BVk = AVkHk + hk+1,kAvk+1e
∗
k,

where ek is the last column of Ik ∈ Ck×k.
It is well known [33, Chap. 13] that equation (29) can be readily exploited to

compute an approximation of f(A−1B)v. If QVk = VkU , where Q,U ∈ Cn×n and
V ∈ Cn×k, then, it can be proved that f(Q)Vk = Vkf(U). Thus, by imposing
BVk ≈ AVkHk, we can write that

f(A−1B)Vk ≈ Vkf(Hk),

and by observing that v = v1‖v‖M = Vke1‖v‖M , we obtain that

(30) Af(A−1B)v = Af(A−1B)Vke1‖v‖M ≈ AVkf(Hk)e1‖v‖M ,

a relation that is useful, in practice, only when the approximation is good for k much
smaller than n.

We discuss now the options for the matrix defining the inner product used in
the Arnoldi process. Following the recommendation of Parlett [45, Ch. 15], Arioli
and Loghin [5] develop an algorithm to approximate (A#tB) v using M = A. It is
immediate to see that, in this case, Hk is tridiagonal, in being both upper Hessenberg
and Hermitian, since Hk = V ∗k BVk. Thus, the generalized Arnoldi process becomes

11



a generalized Lanczos algorithm, which is superior for two main reasons. On the one
hand, the computation of each vk requires a fixed number of arithmetic operations,
which considerably decreases the overall execution time of the algorithm, on the other
hand, the evaluation of f(Hk) becomes easier and can be accurately performed by
diagonalization, since Hk is normal.

If B is positive definite, then the generalized method for (A,B) admits a minor
variation: we can use the Arnoldi process to construct a basis of Kk(A−1B, v) of (28)
which is B-orthonormal. In this case, we get BVn = AVnH with V ∗nBVn = In and
the matrices Hk = V ∗k BA

−1BVk turn out to be tridiagonal.
In principle, any scalar product associated to a positive definite matrix M could

be used in the Arnoldi process to construct a basis of Kk(A−1B, v), and the sequence
of upper Hessenberg matrices Hk. However, if we want Hk to be tridiagonal, we must
restrict the choice for M as in the following.

Proposition 4.1. Let A,M ∈ Cn×n be positive definite and B ∈ Cn×n be
Hermitian, and assume that the Arnoldi process applied to A−1B with starting vector v
and orthogonalization with respect to the scalar product induced by M can be applied
with no breakdown. Then for k = 1, . . . , n, the Hessenberg matrix Hk is Hermitian
(and thus tridiagonal) if and only if MA−1B = BA−1M .

Proof. From Hk = V ∗kMA−1BVk, we get that Hk = H∗k for each k, if and only if
MA−1B = BA−1M .

The previous result shows that, for the problem Af(A−1B)v, the customary or-
thogonalization procedure, that corresponds to the choice M = I, can cause loss of
structure since Hk is nonsymmetric if A and B do not commute.

4.2. Generalized Extended Krylov subspace method. The standard ex-
tended Krylov methods [21, 51] can be easily generalized to build an M -orthonormal
basis of the extended Krylov subspace

Ek(A−1B, v) = span
{
v,A−1Bv,B−1Av,

(
A−1B

)2
v, . . . ,

(
B−1A

) k
2−1

v,
(
A−1B

) k
2 v
}
,

if k is even and

Ek(A−1B, v) = span
{
v,A−1Bv,B−1Av,

(
A−1B

)2
v, . . . ,

(
A−1B

) k−1
2 v,

(
B−1A

) k−1
2 v
}
,

if k is odd.
As it is the case for the standard Arnoldi algorithm, the extended Krylov al-

gorithm generates a sequence of M -orthonormal vectors {vk}
n
k=1 and a sequence of

Hessenberg matrices with an additional subdiagonal {Hk}
n
k=1 with Hk ∈ Ck×k. We

stress that, in this case, Hk does not contain the orthogonalization coefficients of
the Gram–Schmidt process applied to the set {v1, . . . , vk}. The interplay between
orthogonalization coefficients and Hk, for the extended Krylov subspace methods, are
discussed by Simoncini [51] and Jagels and Reichel [39, 38].

If we define Vk = [v1| · · · |vk] as theM -orthonormal basis of Ek(A−1B, v), then the
matrices produced by the algorithm, if no breakdown occurs, verify BVn = AVnHn

and V ∗nMVn = In, while for k even and k < n

(31) BVk = AVkHk +A [vk+1|vk+2] H̃Ek,

where Hk ∈ Ck×k, H̃ = [vk+1|vk+2]
∗
MA−1B [vk−1|vk] ∈ C2×2, Ek ∈ C2×k contains

the last two rows of the identity matrix Ik and Vk ∈ Cn×k is theM -orthonormal basis
of the extended Krylov subspace at step k.
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As in the previous section, we can conclude that Hk = V ∗kMA−1BVk and thus
that Proposition 4.1 remains valid for the extended method. The choice M = A, is
again the most natural. Moreover, for any k 6 n the function Af(A−1B)v can be
approximated by means of

(32) Af(A−1B)v ≈ AVkf(Hk)e1‖v‖M ,

where Vk and Hk are the matrices produced by the extended algorithm.
We wish to point out that the Arnoldi decomposition (31) is specific to the basis

computation approach that adds two vectors at each step [51]. Using the approach of
[39, 38], one would have to add to AVkHk only one non-zero column rather than two.

4.3. Generalized rational Krylov subspace methods. The rational Arnoldi
algorithm [48, 50] can be adapted to our problem. Starting with a vector v, a positive
definite matrix M , and poles ξ1, . . . , ξk ∈ C ∪ {∞} such that ξi 6∈ σ(A−1B) ∪ {0}, we
can construct a basis of the rational Krylov subspaces (we set 1/∞ = 0)

Qk(A−1B, v) :=

k−1∏
j=1

(
In −

1

ξj
A−1B

)−1

span
{
v,A−1Bv, . . . , (A−1B)k−1v

}
,

by considering v1 = v/‖v‖M and then M -orthogonalizing the vector

wj = (A−B/ξj)
−1Bvj ,

with respect to v1, . . . , vj , obtaining

hij = w∗jMvi, w̃j = wj −
j∑
i=1

hijvj , hj+1,j = ‖w̃j‖M , vj+1 = w̃j/hj+1,j .

Notice that a breakdown can occur if w̃j = 0, that is, wj ∈ span{v1, . . . , vj}.
In this way, if no breakdown occurs, we get the rational Arnoldi decomposition

(33) BVk(Ik +HkDk) +
hk+1,k

ξk
Bvk+1e

∗
k = AVkHk + hk+1,kAvk+1e

∗
k,

where Dk = diag(1/ξ1, . . . , 1/ξk), Hk is the matrix containing the entries hij and
Vk = [v1| · · · |vk] is an M -orthogonal basis of Qk(A−1B, v). Note that we do not allow
0 to be a pole just for ease of exposition; it is possible to build a rational Arnoldi
decomposition with a pole at 0, by using a slightly different definition [8, Sect. 3].

If the last pole is at infinity, then (33) simplifies to

BVk(Ik +HkDk) ≈ AVkHk

and we get the approximation

(34) Af(A−1B)v ≈ AVkf(Hk(Ik +HkDk)−1)e1‖v‖M .

Notice that in this case Hk(Ik +HkDk)−1 = V ∗kMA−1BVk, which is Hermitian if M
commutes with A−1B. Thus, the argument of f is normal and the evaluation can be
done by diagonalization.

The Krylov subspaces described in Section 4.1 and Section 4.2 are in fact rational
Krylov subspaces where the poles are chosen to be ∞ or 0 and ∞, respectively. In
order to achieve a convergence rate faster than that of the previous two algorithms,
the choice of poles is crucial, but there is no general recipe. In Section 6 we use two
black-box heuristics which are well-suited to the problem f(A)b.
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4.4. Convergence of Krylov methods. Despite not being very practical from
a computational perspective, the identity Af(A−1B)v = A1/2f(A−1/2BA−1/2)A1/2v
turns out to be very useful in the analysis of the convergence of the Krylov methods,
as we will see.

By exploiting the generalized Arnoldi method, we get an approximation of the
form (compare (30))

(35) Af(A−1B)v ≈ AVkf(Hk)e1‖v‖M =: fk,

where Vk is anM -orthogonal basis of the Krylov subspace Kk(A−1B, v) defined in (28)
and Hk = V ∗kMA−1BVk.

On the other hand, we can pick a positive definite matrix M̃ and apply the gener-
alized Lanczos method to compute a matrix Wk ∈ Cn×k, with M̃ -orthogonal columns
and span the Krylov subspace Kk(A−1/2BA−1/2, A1/2v), obtaining the approximation

(36) Af(A−1B)v = A1/2f(A−1/2BA−1/2)A1/2v ≈ A1/2Wkf(H̃k)e1‖A
1/2v‖

M̃
=: gk,

with H̃k = W ∗k M̃A−1/2BA−1/2Wk.
We will prove that these two approximations are equal for a suitable choice of Wk

and M̃ .
Proposition 4.2. Let A,B,M ∈ Cn×n be positive definite and let v ∈ Cn.

If the columns of Vk ∈ Cn×k span an M -orthogonal basis of Kk(A−1B, v), then the
columns of Wk := A1/2Vk span an M̃ -orthogonal basis of Kk(A−1/2BA−1/2, A1/2v),
with M̃ = A−1/2MA−1/2 and fk and gk, defined in (35) and (36), respectively, are
such that fk = gk.

Proof. First, we observe that the columns of Wk are M̃ -orthogonal, since

W ∗k M̃Wk = V ∗k A
1/2M̃A1/2Vk = V ∗kMVk = I.

and that it is a basis of Kk(A−1/2BA−1/2, A1/2v), since for ` = 0, . . . , k − 1 we have
that A1/2(A−1B)`v = (A−1/2BA−1/2)`(A1/2v).

By direct inspection, we note that

H̃k = W ∗k M̃A−1/2BA−1/2Wk = V ∗k A
1/2M̃A1/2A−1BVk = V ∗kMA−1BVk = Hk,

and that

‖A1/2v‖2
M̃

= v∗A1/2M̃A1/2v = v∗Mv = ‖v‖2M ,

from which we obtain

gk = A1/2Wkf(H̃k)e1‖A
1/2v‖

M̃
= AVkf(Hk)e1‖v‖M = fk.

Observe that for M = A, we have M̃ = I, which gives yet another reason for
making this choice.

The previous equivalence is true also for rational Krylov subspaces (and in partic-
ular, for extended Krylov subspaces), because approximating (A#tB)v in the space
Qk(A−1B, v) is equivalent to constructing a sequence of approximations to the same
quantity in Qk(A−1/2BA−1/2, A1/2v).
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The equivalence of approximations allows one to estimate the convergence of
Krylov methods using the convergence results for functions of positive definite matri-
ces, which are simpler than those for general matrices.

For instance, if f̃k is the approximation of (A#tB)v in the extended Krylov
subspace Ek(A−1B, v), using the error bound from [40], we obtain

‖(A#tB)v − f̃k‖ = O(e−2k/ 4
√
κ),

where κ is the condition number of A−1/2BA−1/2.

5. Computing (A#tB)−1v. The methods for computing the product of the
weighted geometric mean times a vector, described in the previous sections, can be
easily adapted for reducing the linear system

(A#tB)−1v,

to the solution of a certain number of simpler linear systems.
Since (A#tB)−1 = B−1(B#tA)A−1, the quadrature formulae of Section 3 can

still be applied. From (18) we get the approximation

(A#tB)−1 ≈ 2 sin(πt)

π

N∑
i=0

wi((1− si)B + (1 + si)A)−1,

from (20) the approximation

(A#tB)−1 ≈ 2 sin(πt)

π

N∑
i=0

wi((1− si)
1

1−tA+ (1 + si)
1

1−tB)−1,

and from (27) the approximation

(A#tB)−1 ≈ −8K(k2) 4
√
λmλM

πNk
Im

(
N∑
j=1

w(tj)
2t−1 cn(tj) dn(tj)(
k−1 − sn

(
tj
))2 (

w(tj)
2B −A

)−1

)
,

when both A and B are real. The three quadrature formulae have exactly the same
convergence properties as the respective formulae for A#tB.

Regarding the Krylov methods of Section 4, we can exploit the identity

(A#tB)−1 = (A(A−1B)t)−1 = (A−1B)−tA−1,

reducing the computation of (A#tB)−1v to that of (A−1B)−tA−1v, which can be
performed by first computing w = A−1v and then approximating (A−1B)−tw with
any of the Krylov subspace methods described in Section 4.

6. Numerical tests. By means of numerical experiments, we illustrate the be-
havior of the methods presented in the paper for the computation of (A#tB)v and
(A#tB)−1v, where A and B are medium- to large-scale matrices.

The tests were performed using MATLAB R2017a (9.2) on a machine equipped
with an Intel i5-3570 Processor running at 3.40GHz and 8GB of dedicated RAM.

We compare the following methods:
1. The generalized Arnoldi algorithm [45, Sect. 15.11] (Poly);
2. The extended Krylov subspace method [21] (Extended);
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3. A rational Krylov subspace method, with poles chosen according to the adap-
tive strategy of Güttel and Knizhnermann [28] (RatAdapt);

4. A rational Krylov subspace method, where the choice of the poles is based
on the solution of the best rational approximation of an auxiliary problem [8]
(RatFit);

5. The quadrature formula (18) (Quad1);
6. The quadrature formula (20) (Quad2);
7. The quadrature formula (27) (Elliptic).

Krylov subspace methods. Our implementations of the Krylov subspace methods
are based on the modified Gram–Schmidt procedure with reorthogonalization [26].
When approximating Af(A−1B)v, we can decide to use either the projection of A−1B
onto the Krylov subspace or the matrix containing the orthonormalization coefficients
used in the Gram–Schmidt process. When the Krylov subspace is enlarged, the pro-
jection does not have to be computed from scratch, but can be updated cheaply by
exploiting an opportune recurrence. This choice still leads to a larger computational
cost, due to one or more additional matrix-vector products and/or linear system solves
per step, but guarantees that the projected matrix is symmetric positive definite. The
matrix obtained by the orthogonalization procedure, on the other hand, is numerically
not Hermitian, and it is not Hermitian when rational Arnoldi is used as described in
Section 4.3.

In our implementations of Poly and Extended, we trade off maintaining the struc-
ture of the problem for efficiency, and use the orthonormalization coefficients to build
the reduced matrix. In this case the fractional power of a nonnormal matrix can
be computed by spectral decomposition or by using algorithms for the real power of
dense matrices [36, 34] (all these algorithms require O(`3) ops for a matrix of size `).
We stress that, in our tests, this choice did not reduce the accuracy of the final result,
and only marginally affected the computational cost.

Rational Krylov methods, however, produce a pair of matrices from the orthonor-
malization coefficients, and it is not obvious how to combine them in order to obtain
an approximation of Af(A−1B)v. For that reason we resort to the slightly more
expensive projections in RatAdapt and RatFit.

For the rational Krylov methods, the poles are chosen according to either the
adaptive strategy by Güttel and Knizhnerman [28] or the function rkfit from the
rktoolbox [7], based on an algorithm by Berljafa and Güttel [8, 9]. In our implemen-
tation, we get the poles by running rkfit on a surrogate problem of size 800 whose
setup requires a rough estimate of the extrema of the spectrum of A−1B.

As a stopping criterion for the Krylov subspace methods, we use the estimate [40]

‖u− um‖
‖um‖

≈
δm+j

1− δm+j

,

where ‖ · ‖ is the spectral norm, u = (A−1B)−tv, um is the approximation at step m
and δm+j is the norm of the relative difference between the approximation at the step
m and m+ j, i.e. ‖um − um+j‖/‖um‖ where j is usually small and is set to 4 in our
experiments.

Quadrature methods. For quadrature methods related to the Gauss–Jacobi qua-
drature, namely (18) and (20), the nodes and the weights are generated using the
function jacpts of Chebfun [19], based on an algorithm by Hale and Townsend [31],
which requires O(N) operations to compute N nodes and weights of the quadrature.
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Table 1: Comparison of the methods used in the numerical experiments in terms of
knowledge of the spectrum of A−1B or B−1A (spectrum), type of linear systems to
be solved (shifted systems, positive definite or not, or systems with the same left hand
side), and possibility to increase the number of nodes/enlarge the Krylov subspace
(update) exploiting the previous computation without starting from scratch.

Method Spectrum Systems Update

Poly no same lhs yes
Extended no same lhs yes
RatAdapt no shifted pd yes
RatFit yes shifted pd yes

Quad1 yes shifted pd no
Quad2 yes shifted pd no

Elliptic (t = 1/2) yes shifted pd no
Elliptic (t 6= 1/2) yes shifted no

The scaling technique described at the end of Section 3.3 is used to accelerate the
convergence.

For Quad2 we use the quadrature formula (20) when t > 1/2, and if t 6 1/2 we
exploit the identity A#tB = B#1−tA to reduce to the former case.

In view of the remark at the end of Section 3.3, the convergence in the matrix
case is exactly predicted by the scalar convergence on the extreme eigenvalues. Thus,
the number of nodes needed by Quad1 and Quad2 to get the required approximation
is estimated by applying its scalar counterpart, with a variable number of nodes and
weights, to the extreme eigenvalues of the matrix B−1A. These scalar problems are
much easier and marginally affect the total computational cost of the algorithms,
when dealing with large matrices.

Regarding the method described in Section 3.4, we adapt the implementation
given by Hale, Higham and Trefethen [30], which uses the routines ellipkjc and
ellipkkp from Driscoll’s Schwarz–Christoffel Toolbox [17, 18]. In this case, the num-
ber of nodes, is estimated by applying the same method to a 2 × 2 matrix whose
eigenvalues are the extreme eigenvalues of A−1B. Since in all our tests we consider
only real matrices, the method of Section 3.4, which is designed for real problems
only, can always be applied.

Linear systems and extreme eigenvalues. In both Krylov subspace methods and
quadrature methods, the problem is reduced to the solution of linear systems which
are solved by the MATLAB sparse linear solver, exploiting the band and the positive
definite structure. The linear systems to be solved by the method Elliptic are not
guaranteed to be positive definite for t 6= 1/2 and this may considerably increase the
overall time required by the algorithm.

Finally, the extreme eigenvalues of A−1B (or B−1A), when needed, are approxi-
mated with two significant digits by calling the function eigs of MATLAB, with the
pair (B,A) (or (A,B)) as argument. In Table 1 we give a synoptic comparison of the
key features of the methods.

Test 1. In Section 3, we considered two Gauss–Jacobi quadrature formulae for
z−t, one based on (7), implemented by Quad1 and one based on (8), implemented by
Quad2. We derived a bound on the rate of convergence of both formulae: |C(

√
z)|2
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Fig. 1: Comparison of the parameters of convergence (on the y-axis) of the two
Gaussian quadrature formulae for z−1/2 (on the semilogarithmic x-axis).

with C(x) = 1−x
1+x for Quad1, and (1/ρ(2)(z))2 with ρ(2) as in (15) for Quad2. The latter

is valid just for t = 1/2.
We compare the experimental rate of convergence, which is the median of the error

reduction over a certain number of steps, with the predicted rate of convergence. The
results, for t = 1/2, are drawn in Figure 1. As one can see, the first quadrature
formula is more accurate for values of |z| close, in magnitude, to 1, while the second
gives better results for values of |z| far from 1.

If we consider a positive definite matrix A scaled so that λMλm = 1 (where λM
and λm are the extreme eigenvalues of A), then the first formula seems to be more
convenient for well conditioned matrices, say with λM/λm . 70.

For t 6= 1/2 the bound for Quad1 is still valid, as confirmed by numerical ex-
periments not reported here, while the bound for Quad2 is less predictive, and does
not give any information for t 6= 1/2. Nevertheless, the asymptotic expansion (16)
suggests a better convergence for Quad2 for t = (p− 1)/p and the quadrature formula
shows an acceptable convergence rate even for values of t such that the integrand is
not analytic, provided that t > 1/2. By using the formula A#tB = B#1−tA we can
achieve similar convergence properties also for t < 1/2.

Test 2. Since the convergence of most of the methods depends on the condition-
ing of the matrix A1/2B−1A1/2 (that is λM/λm, where λM and λm are the largest and
the smallest, respectively, eigenvalues of the matrix), we generate two matrices A and
B such that A−1B (and thus A1/2B−1A1/2) has prescribed eigenvalues. The eigenval-
ues belong to a fixed interval and are clustered near the boundaries of the spectrum,
to get a fair comparison between quadrature and Krylov subspace methods.

We consider matrices of size 1000, so that a reference value for w = (A#tB)v
can be computed by means of a reliable algorithm for the dense case, namely the
Cholesky–Schur algorithm described in [35, Sec. 3], which is implemented by the
sharp function of the Matrix Means Toolbox [13].

For each method, the relative forward error of the computed value w̃ with respect
18



10 20 30
10−12

10−6

100

(a) t = 1/2, λM/λm = 10

10 20 30
10−12

10−6

100

(b) t = 3/4, λM/λm = 10

10 20 30
10−12

10−6

100

(c) t = 1/10, λM/λm = 10

10 20 30
10−12

10−6

100

(d) t = 1/2, λM/λm = 100

10 20 30
10−12

10−6

100

(e) t = 3/4, λM/λm = 100

10 20 30
10−12

10−6

100

(f) t = 1/10, λM/λm = 100

10 20 30
10−12

10−6

100

(g) t = 1/2, λM/λm = 1000

10 20 30
10−12

10−6

100

(h) t = 3/4, λM/λm = 1000

10 20 30
10−12

10−6

100

(i) t = 1/10, λM/λm = 1000

Poly Extended RatAdapt RatFit

Quad1 Quad2 Elliptic

Fig. 2: Convergence of the methods in Table 1 for computing (A#tB)v for t ∈
{1/2, 3/4, 1/10} and λM/λm ∈ {10, 100, 1000}, where λM and λm are the extreme
eigenvalues of A1/2B−1A1/2. We consider on the x-axis the number of nodes for
quadrature methods and the dimension of the subspace for Krylov methods; and on
the y-axis the relative error with respect to a reference solution.

to the reference value, namely

ε =
‖w̃ − w‖
‖w‖

,

is measured in the spectral norm for a variable number of nodes of the quadrature
methods and for a variable size of the Krylov subspace.

The results are drawn in Figure 2. The tests confirm the predicted dependence
of the convergence on the conditioning of A1/2B−1A1/2. The final accuracy of all
methods is comparable, while we observe a different convergence behavior for t = 1/2
and for t 6= 1/2, for the methods Quad2 and Elliptic.

For t = 1/2, Elliptic generates the best rational relative minimax approximation
of the function z−1/2 on the interval [λm, λM ] [30]. This is the reason why it converges
faster than the other methods, which produce different rational approximations to
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Table 2: ID in the University of Florida Sparse Matrix Collection, size and sparsity
pattern of the matrices used in the experiments on large-scale matrices. In dataset 3,
the asterisk means that a small multiple of the identity has been added to the two
matrices.

Dataset λM/λm IDs in UFsmc Size Pattern

1 71.1 1312 & 1314 40 000

2 7.5 1275 & 1276 90 449

3 299.5 2257* & 2258* 102 158

4 1.2 942 & 946 504 855

z−1/2. We note that RatFit converges in a similar number of steps and that Quad2
converges much faster than Quad1 as λM/λm grows, as predicted in (23). Regarding
the Krylov subspace methods, we observe linear convergence which is very slow for
the Arnoldi method and it is quite fast when the adaptive strategy is used in the
rational Krylov method.

For t 6= 1/2, Krylov methods and Quad1 have the same behavior they have for
t = 1/2. The Elliptic method does not produce the best rational approximation
anymore, and although A and B are real, it may require the solution of complex linear
systems. However, despite in this case it need not be the fastest method, it still shows
a remarkably fast convergence. The behavior of Quad2 degrades fast as t gets far from
t = 1/2, an partial explanation for this is given in Section 3. The fastest convergence
for t 6= 1/2 is usually achieved by RatFit.

Test 3. In order to illustrate the behavior of the methods when dealing with
large-scale matrices, we consider four pairs of conformable symmetric positive matrices
from the University of Florida Sparse Matrix Collection [16].

The four choices considered in our experiments are described in Table 2. In the
case of dataset 3, due to the extreme ill-conditioning of one of the two matrices (whose
1-norm condition number is approximatively 3·1019) and the large rate λM/λm ≈ 1018

(where λM/λm is the conditioning of the matrix A1/2B−1A1/2), we were not able
to get any result. Since this dataset is interesting being the only one with non-
banded matrices, we tamed the conditioning of the data, without affecting the nonzero
structure, by adding the matrix 10−3I to both matrices.

In order to test the methods in Table 1, we compare the CPU time required, for
t = 1/2, t = 3/4 and t = 1/10, to fulfill the stopping criterion. We do not report
the CPU time if the corresponding algorithm does not achieve the accuracy threshold
after building a Krylov space of dimension 1000 or using 1000 quadrature nodes.

The results, given in Table 3, show that the convergence speed is dictated by
the ratio λM/λm, as predicted, while the CPU time is not necessarily related to the
number of linear system solves (between parentheses). Indeed, some methods require
spectral information (see Table 1) and this task turns out to be costly, when the
methods for computing the extreme eigenvalues converge very slowly (datasets 1, 2
and 4), while it does not influence dramatically the computational cost when it con-
verges quickly (dataset 3). In particular, in dataset 3, if we denote by λ1 > . . . > λn
the eigenvalues of A−1B, where n is the size of A, then the parameters that deter-
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Table 3: Comparison of the algorithms presented in the paper, when applied to large-
scale matrices, in terms of CPU time (in seconds) and number of linear systems to be
solved (between parentheses). We do not report any data for methods that require
more than 1000 system solves to achieve the required accuracy.

t Poly Extended RatAdapt RatFit Quad1 Quad2 Elliptic

1 0.50 1.6 (50) 1.0 (32) 1.6 (21) 1.7 (11) 2.1 (20) 2.1 (20) 1.6 (11)
0.75 1.3 (45) 1.0 (32) 1.6 (21) 1.7 (11) 2.1 (20) 3.0 (35) 3.8 (13)
0.10 1.6 (54) 1.0 (32) 1.4 (18) 1.6 (10) 2.0 (19) 6.1 (82) 3.8 (13)

2 0.50 7.7 (13) 6.8 (16) 10.0 (11) 18.8 (07) 21.1 (11) 26.0 (17) 18.6 (07)
0.75 7.2 (12) 6.8 (16) 10.0 (11) 18.8 (07) 20.3 (10) 40.6 (35) 70.5 (11)
0.10 7.2 (12) 6.8 (16) 8.1 (09) 18.8 (07) 20.2 (10) 80.6 (83) 65.2 (10)

3 0.50 – 17.8 (106) 15.0 (40) 10.0 (18) – 16.5 (44) 8.9 (19)
0.75 – 21.0 (118) 17.6 (46) 9.5 (17) – 14.0 (36) 20.3 (19)
0.10 – 10.2 (74) 8.9 (25) 10.4 (19) – 22.4 (63) 22.2 (21)

4 0.50 18.9 (07) 25.4 (12) 28.3 (07) 69.6 (03) 72.3 (04) 115.9 (16) 75.1 (04)
0.75 19.0 (07) 23.1 (12) 28.3 (07) 69.5 (03) 72.2 (04) 185.4 (35) 192.9 (06)
0.10 17.1 (06) 19.3 (10) 24.1 (06) 69.5 (03) 72.3 (04) 364.8 (83) 192.5 (06)

mine the convergence of the power and inverse power methods, say γ1 = λ2/λ1 and
γ2 = λn/λn−1, are bounded by 0.981, so that the extreme eigenvalues are computed
very efficiently and the methods requiring the spectrum perform relatively well.

The Arnoldi and the extended Krylov subspace methods require no spectral in-
formation and the solution of linear systems with the same left hand side. In our
code, we exploit this fact and begin by finding the Cholesky factorization of A and B
and use it to solve efficiently all subsequent linear systems. To cope with sparse non-
banded matrices and avoid excessive fill-in, we reorder the rows and columns of the
matrix by applying an approximate symmetric minimum degree permutation, which
we compute by means of the MATLAB symamd function. Notice that Poly gives
good results for the dataset 4, where λM/λm is exceptionally small; when λM/λm
grows, the fastest convergence of other Krylov methods makes them preferable. The
Extended and RatAdapt are good alternative if nothing is known about the prob-
lem, but when λM/λm is very large (and an approximation of the spectrum can be
reasonably computed) as in dataset 3, they may be overtaken by RatFit or by the
quadrature methods.

On the other hand, the methods based on quadrature do not seem to be com-
petitive for t 6= 1/2. While Quad1 converges too slowly, and this results in a large
computational cost, the convergence of Quad2 is fast for t = 1/2, but its performance
degrades rapidly as t approaches 0 or 1. Finally, the method based on the conformal
transformation (Elliptic) requires a very small number of linear system to be solved,
but these systems, for t 6= 1/2, are not positive definite and this results in a generally
larger computational cost.

Finally, we wish to point out that in the dataset 4, the reason for the overhead
of RatFit, among Krylov methods is related to the cost of the approximation of the
spectrum of A−1B. The big difference between the overall cost of Quad1 and Quad2,
with respect to the number of linear system solves, depends on the fact that, in
our implementation, Quad1 spends most of the time trying to compute the extreme
eigenvalues of A−1B. On the contrary, in the dataset 3, the conditioning is high,
so that the convergence of the methods is slow, but the convergence of the power
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(a) Clustering for t = 0.35. (b) Clustering for t = 1/2.

Fig. 3: The two figures report positive (blue, top left) and negative (red, bottom left)
adjacency matrices of the Wikipedia RfA signed network. The rows and columns are
reordered according to a clustering of the eigenvectors corresponding to the smallest
30 eigenvalues of W+#0.35 W

− (Figure 3a) and W+#1/2 W
− (Figure 3b). The right

columns shows a detail of the last rows and columns of the corresponding matrix on
the left.

and inverse power methods is fast, so that the extreme eigenvalues are computed
very efficiently and the fastest methods are among those requiring the spectrum (i.e.,
RatFit and Elliptic).

It is worth stressing that our results are just indicative and do not represent
exactly what would happen if high performance implementations were used.

Test 4. The weighted geometric mean (with t = 1/2) is considered by Mercado,
Tudisco and Hein [44] as a tool for clustering signed networks, that is, networks that
model both attractive and repulsive relationships by means of positive and negative
(weighted) edges, respectively. It is customary to assign to these networks two distinct
adjacency matrices, A+, for positive edges, and A−, for negative ones.

The clustering process consists of several steps. After preprocessing the data
by discarding all the rows and columns that do not belong to the largest connected
component of the undirected graph of the network, the algorithm constructs W+, the
normalized signed Laplacian of A+, and W−, the normalized signless Laplacian [43]
of A−. The rows (and columns) of the matrix are divided into k communities by
performing a k-means clustering of the eigenvectors of W+# W− corresponding to
the k smallest (in magnitude) eigenvalues. In [44], the eigenpairs of W+# W− are
computed by means of the inverse power method [52, Lect. 27], where each linear
system of the form (W+# W−)−1v is solved by constructing an Extended Krylov
subspace.

We test the methods discussed here on the Wikipedia Request for Adminship
signed network [54], which is available as part of the Stanford Large Network Dataset
Collection (SNAP) [42]. The matrices in this dataset have size 8297, and W+ and
W− have density (number of nonzero entries divided by the total number of elements)
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Fig. 4: CPU time needed by the various methods for computing (A#tB)−1v with
respect to t.

4.10 × 10−3 and 9.98 × 10−4, respectively. After the preprocessing stage, the size
reduces to 6186 and the density to 1.20 × 10−3 and 4.30 × 10−3, which makes them
large and sparse enough to benefit from sparse matrix techniques.

First, we observe that with a similar computational effort, one can obtain a clus-
tering using a weighted geometric mean with t 6= 1/2. Figure 3, compares the re-
ordering obtained using k = 30 eigenvectors for t = 0.35 and t = 1/2. A quantitative
comparison of the two results is not possible, since there is no widely accepted metric
for measuring the quality of the clustering of a signed network. We point out, however,
that the reordering for t = 0.35 shows a k-balanced behavior: after the reordering,
the nonzeros of A+ tend to appear in blocks along the diagonal, whereas those of A−

are localized in non-diagonal blocks.
Suitable clusterings are provided by using different values of t. An interesting open

problem could be to identify the value of t providing the clustering more adherent to
the model problem.

In Figure 4 we show how the parameter t influences the CPU time needed by the
methods to solve the linear system (W+#tW

−)−1v. Most methods perform better
for values of t larger than 1/2, the execution time of Quad1 does not seem to depend
on t and that of Quad2 is symmetric with respect to 1/2. For this network, the best
methods, with a comparable CPU time, are Poly and Extended.

7. Conclusions. We consider several numerical algorithms for the approxima-
tion of (A#tB)v and (A#tB)−1v for t ∈ (0, 1). These methods exploit rational ap-
proximation of the function z−t by either performing numerical quadrature or building
a Krylov subspace. In both cases the problem is reduced to the solution of a certain
number of linear systems, and thus assessing the performance of any of the algo-
rithms discussed throughout the paper amounts to estimating the number and nature
of linear systems to be solved.

The number of linear systems depends on the degree of the quadrature formula,
for quadrature methods, and on the dimension of the constructed subspace, for Krylov
methods. Note that this number can be efficiently estimated a priori in the former
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case, by applying the method to either a scalar or a 2×2 case, but cannot be predicted
so easily in the latter.

On the other hand, the performance is influenced by the kind of linear system to be
solved. For instance, when t 6= 1/2 the method Elliptic is quasi-optimal with respect
to the convergence, being not far from the rational minimax approximation, but it
requires the solution of complex linear systems with non-positive definite coefficient,
which results in a sensible increase in terms of computational cost. Another example
is represented by the extended Krylov subspace method (Extended), which despite
requiring more linear systems than the other two rational Krylov methods considered
in the paper (RatAdapt and RatFit), is faster when the subspace need to be large.
The reason behind this is that since Extended solves linear systems all having the
same coefficient matrices, it is usually worth computing a factorization, at the price
of a usually negligible overhead, in order to make the solution of the successive linear
systems faster. The larger the space is, the more this approach pays off.

According to the experimental results in Section 6, the choice of the method
should be dictated by the spread of the eigenvalues of the matrix A−1B and the
structure of A and B. In extremely well-conditioned cases, we expect all the methods
to converge in very few iterations, and it is enough to build a polynomial Krylov
space to approximate the solution. For mildly ill-conditioned matrices, Extended

generates a Krylov subspace which is not too large, and the overhead introduced by
the factorization is balanced by the reduction in execution time of the single iterations.

For severely ill-conditioned matrices a general recipe cannot be given, but, in this
case, the quadrature methods become competitive. In particular, when t = 1/2 or
close to 0 and 1, Elliptic seems to be the best choice, whereas for intermediate
values of t Quad2 is very effective. The convergence of Quad1 is considerably slowed
down and this method is totally impractical in this case. Krylov methods loose their
supremacy because of the growth of the space, which implies a massive overhead due to
the Gram–Schmidt orthogonalization of the basis. In principle, this problem could be
alleviated by making use of opportune restarting techniques during the construction
of the Krylov space. This optimization is currently under investigation and will be
the subject of future work.
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