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A Nonlinear ParaExp Algorithm

Martin J. Gander, Stefan Guttel, and Madalina Petcu

1 Derivation of the Nonlinear ParaExp Algorithm

Time parallelization has a long history, see [1] and refeesrtherein. The parallel
speedup obtained is in general not as good as with spacégfiaedion, especially
for hyperbolic problems. A notable exception are wavefoetaxation-type meth-
ods [3, 4], which in the hyperbolic case are related to theemecent tent-pitching
approach [6], and the ParaExp algorithm [7, 9] based on Krgiethods, which is
however restricted to linear problems. For an applicatioa nonlinear context, see
[10], and for a different approach using Krylov informatj@ee [8]. Here we pro-
pose and analyze a variant of the ParaExp algorithm for tindinear initial value
problem

u'(t) = Au(t) +B(u(t)) +9(t), te[0,T], u(0)=uo, (1.1)

with Ae C™™M B:C™— C™Manonlinear operatog,: [0, T] — C™a source function,
andu : [0,T] — C™ the sought solution. Throughout this note we assume that all
stated initial value problems have unique solutions. FerRhraExp algorithm, the
time interval[0, T] is partitioned intdN subintervalgT,_1, T, withn=1,... N, and

a direct application of this algorithm to the nonlinear desb (1.1) gives

Step 1: Solve forn > 1 in parallel the nonlinear problems with zero initial data

Vn(t) = Avn(t) + B(vn(t)) +9(t), te€ [Th1,Tnl,

Vn(Tnfl) = 0
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2 Martin J. Gander, Stefan Guttel, and Madalina Petcu
Step 2: Solve forn > 1 in parallel the linear non-homogeneous problems

W (t) = Awp(t), te[Th1,T],
Wn(Th-1) =Vn-1(Tn-1), Vo(To) = Uo.

ParaExp then forms the linear combinatigi) = v, (t) + ZT:le (t),t € [Th-1,Tn),
which still satisfies the initial condition, but not equati(..1) sincey/(t) = Au(t) +
B(vn(t)) +9(t), t € [Th_1,Ta], except wherB is not present. One can however
naturally separate the solution intdt) = v(t) + w(t), with w solving the linear
problemw’(t) = Aw(t), w(t) = ug, andv solving the nonlinear remaining part
V/(t) = Av(t) + B(v(t) +w(t)) +g(t), v(0) = 0. To apply this splitting on multi-
ple time intervalgT,_ 1, Tn] we need to iterate. Using the initializatio(T,) = O
forn=1,...,N (or some other approximation), we performfoe 1,2, ...

Step 1: Solve forn > 1 in parallel the linear problems

(wh)'(t) = Awﬁm, te T, T), w2
wWE(Tho1) =VvE 3 (Th1),  w(To) = wo. '
Step 2: Solve forn > 1 in parallel the nonlinear problems
n
(VK)'(t) = AVK(t) + B(VK(t) + > w(t)) +g(t), te[Th1,Tal, w3
=1 :

Vlé (Th-1) =0.

The new approximate solution is then defineduyt) = v¥(t) + S 1Wk( ), te
[Th—1,Tn), which now satisfies equation (1.1) on each time |ntew,a117Tn) and
uk(0) = up. The solution of the linear part (1.2) can still be computiidiently as in
the ParaExp algorithm using Krylov techniques, but (1.8uiees the computation
of ZTzlwlj( on [Th_1, Tp], and thus would need the Krylov approximatiomdjf on

the entire interva|T,_1, Tn]. To avoid this, we rewrite the algorithm in termsuﬁ‘
instead ofvX, whereuX approximates:: starting withu@(T,) = W?(Tn) =0forall j
andn, the nonlinear ParaExp algorithm performskot 1,2, ...

Step 1: Solve forn > 1 in parallel the linear problems

(Wh)'(t) = Awfi(t), te M1, T,
W(Ta-1) = Uy 1(Th-1) — :]Ziwlj(l(-rnl)a Wi (To) = uo. 4
Step 2: Solve forn > 1 in parallel the nonlinear problems
(UE)I( )= Auk( t)+B(u uk(t t))+9(t), te [T, Tnl,
(1.5)

Tnl ZWTnl
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and form the new approximate solution as
uk(t) = uk(t), te[Th1,Th). (1.6)

Remark 1To avoid the computation afk as the solution of a nonlinear problem,
one could linearize (1.5) by using in the nonlinear tedfok 1) instead ofB(uk),
whereu® = 0 or some other approximation of the solution. However, intfbkows
we focus on the fully nonlinear version, since théis the solution of the nonlinear
problem (1.1) on each time interval.

2 Analysisof the Nonlinear ParaExp Algorithm

We first show that the nonlinear ParaExp algorithm introdlinghe previous sec-
tion converges in a finite number of steps.

Theorem 1. The approximate solutionk obtained at iteration k and defined by
(1.6)coincides with the exact solutianon the time intervalTo, Ty).

Proof. SincewX(To) = up forallk=1,2,..., wk =w&~! on the time intervalTo, T|
for all k = 2,3,.... Next, fork = 1 we haveul(t) = ul(t) on [To, T1], and since
ul(To) = wi(To) = up we get by the uniqueness of the solution of (1.5) tht
coincides with the exact solutianon the time intervalTo, T1].

We now prove by induction that for dll=2,3... we have

uS=uon [T 1,Tn], Yn<k — wk=wK"1on [T, 1,T], Yn<k—-1. (2.1)

Fork = 2, we only need to prove property (2.1) fa?, since forvvf it is ensured by
the fact thawk = w1 for all k > 2. The initial condition fous3 is

U5(T1) = W(T1) +W5(Ty) = W5 (Ta) + uj(Ta) —wi(Ty) = ug(Ta) = u(Ta),

where we used the fact tha€ = w} and thatu? is the exact solution on the time
interval[To, T1]. Sinceus satisfies the same equationuasn the time intervalT;, T2
andu3(Ty) = u(Ty), u3 must coincide withu on [Ty, T,]. But we also know that
u2(To) = w2(To) = Up and thaw? satisfies (1.5), which implies? = u on [To, Ty),
and hencei? coincides with the exact solution of (1.1) on the time ingf¥o, T).

We now suppose that (2.1) holds for all iterations up to aitraily fixed indexk
and we prove (2.1) fok + 1. To first check thatwkt! = wk on [T, 1, T] for all
n=23,...,k, we compute

n—1
WL(\H'(Tn 1)_Un 1 Tn 1) Z Tn 1) =U(Th-1) — ZW:‘(il(Tn—l)
=1

Tn 1) Tn l WE (Tn—l)7

HM
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where we have used the recurrence hypothesis (2.1). Sifideandw satisfy the
same equation and have the same initial condition, thetriegiolvs. We next prove
thatukt! = u on[T, 1, Ty] for all n < k+ 1. Since we already know thaf** andu
satisfy the same equation on the time inteffgl 1, Tn], we only need to check the
initial condition satisfied bykt1,

n — n—1
UE+1 T l Z whtt Tn l Z kil Tn 1 +Un 1(Tn 1) ZW‘j((Tn—l)
= =1 j=1

= E (Tn 1)

where we used the first result we just provedvid§t* and thaiwk+1 = wl for all k.
Now, using the recurrence hypothesis (2.1), we know uiﬁag comudes with the
exact solution of (1.1) ofil,,_2, Ty_1], which implies thatuX*1(T, 1) = u(Ty_1). O

We now show that the nonlinear ParaExp algorithm can begrgérd in the
context of the Parareal algorithm written as a multiple simgomethod (see [5, 2]).
We will need the following result.

Lemmal. Let(u )kn be the sequence defined by the nonlinear ParaExp algorithm
(1.4)(1.6). Defining T2(Ty) = 0 and CO(T,) = O for all n > 0, let (Cﬁ)k‘n for all
k> 1and n> 1 be the solutions of the linear problems '

(CK)'(t) = ACK(1), t € [To1,Tl,
Ch(Ta 1) = Ch_1(Th 1) + 0§ 1(Ta 1) — C1(Ta 1), CE(To) = up,
and Iet(ﬁﬁ)k‘n be the solutions of the nonlinear problems
(TR)'(t) = ATR(E) + B(UR(H)) +9(t), t€ [Tos,Tal,
U(Th-1) = CK(Ta-1).
Thenuk = 0K on [T,_1, Ty for all n > 0 and k> 1.
Proof. At stepk = 1 and for alln > 1, C} is the solution of the linear problem
(CR)'(t) = ACq(t), t € [Ta1,Tnl,
Ca(Ta-1) = Ca_1(Ta-1),  Ci(To) = Uo.

HenceC} is the restriction of the solution af = Au, u(0) = ug on [Ty, T] to the
time interval[T,_1, Tn]. Taking into account the definition (1.4)w€;, we notice that

= 0for n> 1 andwj} is the solution of the linear probleat = Au, u(0) = ug on
[To, T]. Thus,Ci(t) = 37— wi(t) on[Tn1, Tal, andu satisfies fon > 1
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(TR)'(t) = ATR(t) +B(Un(t)) +9(t), te[To1,Th,

n
u%(Tnfl) Tn 1) Z Tn 1)

Comparing this with (1.5) and using the uniqueness of thetiswl for the nonlinear
problem, we deduce thafi(t) = U (t) on[T,,_1, o] foralln > 1.

Assuming now that for alh > 1 and a giverk we haveCy(t) = y7_; wi(t),
uk(t) = uk( t) on[T,_1, Tn],we need to show that this also holds kor 1. To do so,
we prove by recurrence with respecttthatCK™(t) = i 1Wk“( t) on[Tnh_1,Tn].
Forn= 1, we have thaCX"1(To) = up = wk*%(To) and, smcé:'“rl andwX " satisfy
the same equation and the same initial condition, we c:or::dimrﬁtc'“rl = wk+1 on
[To, Ta]. Next, we suppose tha " (t) = 37_; wi(t) on[Ty_1, T and prove that
Chiz(t) = S wi(t) on [To, Tara). By checking the initial condition o€!7

n+1 . . n+1
at T, and using the recurrence hypothesis, we find

=}

CKL(Ty) = CRF L (To) +ul(Th) — § WK (Ty) = CK(Ty) +wWiH(T, z Wi (T,
= =t

SinceCy ] and 3111 w!*! solve the same linear problem ¢, To.1] and satisfy

the same initial condltlon al,, we obtainCkt] = 31 Iwk on [Ty, Toy4]. Further,
forn > 1 we have

(O5")'(©) = Al (1) +B(T k“( D)+, te[Tos T,
Un ™ (Th1) = C™(Th 1) = Z Wi (Toa).
=1
Thus,ﬁﬁ+1 and uk™! solve the same equation with identical initial condition on
[Tn_1,Tn] and henc@X™™ = ukt on [T,,_1, Tl O

The following theorem is essentially a reformulation of Lreen1 in the usual
notation of the parareal algorithm in terms of a coarse andeaifitegrator [11].

Theorem 2. Let the coarse propagator @, Ty—1,U) solve the linear problem
u'(t) =Au(t) on [Th 1,Ta], Uu(Th 1) =U,
and let the fine propagator {Hn, Th—1, U) solve the nonlinear problem
u'(t) = Au(t) +B(u(t)) +g(t) on [Th-1,Tn], u(Th-1)=U.

Then the solution® computed by the nonlinear ParaExp algoritiiin4)~(1.6)coin-
cides at each time point, vith the solutiorlJX computed by the parareal algorithm

U —F(TnaTn 17 )+G(TnaTn laU ) G(TnaTn 11Un :]L_) (22)
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Proof. Using the definition ofiX in (1.6) and the notation of Lemma 1, we have
“(Tn) = U 2(Th) = Cif1(Tn) = CR(Tn) + Uy H(Th) = CH(Th)

u
G (T, Tn-1,CK(Th-1)) = G(Tn, Tn-1,CE H(Ta-1)) + T *(Tn)
G(Tn, Ta-1,C(Th-1)) — G(Tn, Ta—1,C H(Th-1)) + F (Th, To—1, i *(Ta-1)).

ThusuX(Ty) = UE with UK = CK, (Tn). O

Theorem 2 shows that the nonlinear ParaExp algorithm is enadltically equiva-
lent to the parareal algorithm (2.2) where the coarse iateg6 is an exponential
integrator forw’ = Aw. There is however an important computational difference:
due to the linearity ofs we can write

G(Tn, Tn1, UK
= G(Tn a1, F (Th-1, Ta—2,UK_5) — G(Ta-1, Ta—2, UK ) + G(Tn1, a2, UX'2))
= G(Tn, a1, F (Th-1, Tn—2,UK_5) — G(Ta—1, Ta_2,UK_,)) + G(Tn, Ta_2, UX'2),

which corresponds to the coarse propagation of a jump[dyer, Tn] plus the coarse
propagation ouﬁfé over a longer time intervdll,_,, Tn]. Repeating a similar cal-
culation forG(Tp, Th—2, Uﬁf%), we derive

G(Tn, Ta—2,UK™3) = G(Tn, Ta2, F (Th—2, Ta_3,UK_3) — G(Th_2, Tn_3,UK_3))
+G(TnaTn 37Un é)

which again corresponds to the coarse propagation of a juwgr fwo intervals)
plus a coarse propagation Uﬁ* (over three intervals). This recursion can be re-
peated, and it will terminate aﬂ;“ Up is known, leading to an alternative, more
compact formulation of the nonlinear ParaExp algorithm:

initialize US = G(Th,To,Up) for n=0,1,...,N,
n
UK = G(Th, To, Ug) + ZG(Tn,T,-,F(T,-,T,-,l,U';,l)—G(T,-,Tj,l,ujk,l)).
=1

Here the coarse integrator is applied in parallel, whichifeknt from parareal.
The price to pay is that the coarse integrations now spanpteutiverlapping time
intervals[T;, Tn]. As in the original ParaExp algorithm, these linear homegers
problems can be solved very efficiently using Krylov methods

We finally investigate the nonlinear ParaExp algorithm nricadly. We solve the
nonlinear wave equatioy = Uyx+ au? on the time-space domajf, 4] x [—1,1]
with homogeneous Dirichlet boundary conditions af@l x) = e10%¢, /(0,x) =0,
where the parameter > 0 controls the nonlinear character of the problem. The
problem is discretized in space using finite difference$ wit= 200 equispaced
interior grid points orj—1, 1]. This gives rise to the ODE
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u]’ (O 1] ]u

o] =[2e] o)+
whereL = tridiag(1,—2,1)/h? h = 2/(m+ 1), and the operation? has to be un-
derstood entry-wise. We partition the time inter{@H] into n = 20 slices of equal
length and use as fine integrator MATLABXIe 15s routine with a relative error
tolerance of 108. For the linear coarse integration we use MATLAB%pm

In Figure 1 we show the reference solutiaus x) for varyinga € {0,2,4,6,8.2}
on the left, and on the right the error of the ParaExp solugibeach time point;
afterk = 1,2, ... iterations. Here a number &f= O iterations corresponds to the
error of the ParaExp initialization with the coarse intégra

The parameterr = 0 gives rise to a linear problem. We note that for this case the
error of the initialization is of ordex 10-°, and not of order machine precision as
one would expect from the exponential integration ugrgm This is because our
reference solution has been computingaite 15s and is of lower accuracy.

For a = 2 we solve a mildly nonlinear problem and our nonlinear Papa&l-
gorithm achieves an error of order 1e— 6 over all time slices already after 5
iterations. Fora = 4 it requires 7 iterations to achieve this. As the parameter
increases further, the nonlinear character of the wavetiulaecomes more pro-
nounced and the nonlinear ParaExp algorithm becomes lésemtf Fora ~ 9 the
solutionu(t,x) appears to have a singularity in the time-space domain efest.

0
au?

)
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Fig. 1 Exact solutions (left) and convergence (right) of the nuedir ParaExp algorithm applied
to a nonlinear wave equation with varying parametet {0,2,4,6,8.2} (top to bottom).



