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GLOBAL ATTRACTORS OF PINCHED SKEW PRODUCTS

PAUL GLENDINNING

Abstract. A class of skew products over irrational rotations of the circle is defined
which contains some systems which have strange nonchaotic attractors. The global
attractor of these systems is characterized: it lies between an upper semi-continuous
curve and a lower semi-continuous curve. With additional assumptions on the class
of maps considered more detail of the attractor can be given.

Mathematics Subject Classification: 58F11

1. Introduction

The theory of quasiperiodically forced systems is still poorly developed compared
to the well-established phenomenology associated with periodically forced systems.
It has become clear that some remarkable new dynamical features are possible when
more than one forcing frequency is used; in particular strange nonchaotic attractors
may be observed over a large set of parameter values (Grebogi et al. 1984; Bondeson
et al. 1985; Romeiras and Ott 1987). Although the existence of these attractors has
been established numerically, there are relatively few rigorous results in the literature
and so it is hard to know how best to characterise the invariant sets or the dynamics
on these sets. In systems forced at two independent frequencies, the discrete time
map obtained by observing the state at times separated by the period of one of the
forcing terms will have an angular variable, x, which advances by a constant amount
at each time step. This corresponds to the advance of the phase associated with
the second forcing frequency. These maps are easier to treat both analytically and
numerically and have been the source of a rich variety of dynamics (Grebogi et al.
1984; Bondeson et al. 1985; Romeiras and Ott 1987; Pikovsky and Feudel 1994;
Feudel et al. 1995; Stark 1997).

To illustrate the idea of strange nonchaotic attractors, Grebogi et al. (1984) intro-
duced the system

xn+1 = xn + ω, yn+1 = B cos 2πxn tanh yn (1)

where x ∈ T1 is taken mod 1, ω = 1
2
(
√

5−1) and B > 0. This map is a skew product:
the angle x evolves independently of y, whilst the evolution of y depends upon both
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Figure 1. The strange nonchaotic attractor of the map (1) with ω =
(
√

5− 1)/2 and B = 3.6. The horizontal axis is x and the vertical axis
is y. 20000 points on the orbit with initial condition (0,0.3) are plotted.
Theoretically, the set in y > 0 is upper semi-continuous and the set in
y < 0 is lower semi-continuous.

y and x. Grebogi et al. (1984) note that the circle y = 0 is invariant under (1) with
stability determined by the Liapunov exponent of y = 0 in the y-direction,

λ0 =

∫ 1

0

log |B sin 2πx| dx = log B − log 2 (2)

If λ0 < 0 (i.e. 0 < B < 2) then the circle y = 0 is locally stable, whilst if λ0 > 0 (i.e.
B > 2) then the circle y = 0 is unstable and typical solutions close to y = 0 move
away from this circle. On the other hand, if xn ∈ {1

4
, 3

4
} then yn+1 = 0 independent of

yn and so at least some solutions map to the unstable circle. Moreover, |yn| < B, so
solutions are bounded. Hence there is an attractor, and it must contain the unstable
set y = 0. Indeed, for the dense set of x values which are images of the critical set
{0, 1

2
} the only possible value the attractor can take is y = 0, so the attractor is

‘pinched’ at this dense set of points. Figure 1 shows a numerical simulation of the
attractor for B > 2 (after Grebogi et al. (1984)). This figure explains why such
attractors are called strange: the upper and lower curves must intersect on a set
which is dense on the circle y = 0, so the attractor is geometrically very complicated.
Moreover, the Liapunov exponent in the y-direction is negative on typical points of
the attractor, and so the attractor is nonchaotic. This is an example of a strange
nonchaotic attractor.

More recently Keller (1996) has given a general theory for a class of maps which
includes this example. However, the maps which are described by this theory are
still very special (for example, one of the conditions is that a particular function is
convex). For the cases covered by Keller’s result, the strange nonchaotic attractor
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is the invariant graph of a measurable function, which is upper semi-continuous (see
definitions below) but not continuous. The aim of this note is to extend aspects
of Keller’s results to a broader class of skew products which we call pinched skew
products. In this more general class of maps, the global attractor (Hale 2001) can
be described completely, although the full details of the dynamics remain unclear.
In particular, although this note was motivated by the study of strange nonchaotic
attractors, chaotic attractors are also possible in pinched skew products.

2. Pinched skew products and statement of the main result

Let X = T1×R. A pinched skew product on X is a map T : X → X which can be
written as

T (x, y) = (x + ω, a(x) + b(x)f(x, y)) (3)

where ω ∈ R\Q, a, b and f are continuous functions of their arguments, f is con-
tinuously differentiable and bounded, and b(x̂) = 0 for at least one x̂ ∈ T1. Note
that since a and b are continuous functions of the compact space T1 they are also
bounded, so there exist positive constants A, B and M such that

|a(x)| < A, |b(x)| < B, |f(x, y)| < M (4)

for all x ∈ T1 and y ∈ R. The pinch condition is the existence of x̂ with b(x̂) = 0
since this implies that T (x̂, y) = (x̂ + ω, a(x̂)) for all y ∈ R.

Example 1. The map (1) is a pinched skew product with a(x) ≡ 0 and b(x) =
B cos 2πx, so x̂ = 1

4
and x̂ = 3

4
are solutions to the equation b(x) = 0. Finally,

f(x, y) = tanh y and so |f(x, y)| ≤ 1, i.e. f is bounded.

Two definitions are needed before the main results can be stated. The idea of global
attractors is used widely in problems in high dimensions (e.g. (Hale 2001)), whilst
upper semi-continuity and lower semi-continuity are weaker versions of continuity
which are used in analysis.

Definition 2. Let T : X → X be a pinched skew product. Then the global attractor
of T , A, is the set

A =
⋂
n≥0

T n(X) (5)

Definition 3. The function g : T1 → R is upper semi-continuous at x if

lim sup
n→∞

g(xn) ≤ g(x) (6)

for all sequences (xk)
∞
1 which tend to x. The function g is upper semi-continuous if

it is upper semi-continuous at all x ∈ T1.
Similarly, a function g is lower semi-continuous at x if −g is upper semi-continuous

at x, and g is lower semi-continuous if −g is upper semi-continuous.
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An intuitive sense of upper semi-continuity can be obtained from the following
standard example.

Example 4. Let I = [−1, 1] and A ⊂ I. Define the characteristic function of A, χA,
by

χA(x) =

{
1, if x ∈ A
0, if x /∈ A

(7)

Then A is closed if and only if χA is upper semi-continuous. Thus the intuitive picture
in this zero-one case is that the function is upper semi-continuous if it takes the value
zero on a union of open intervals, and ‘jumps’ upwards at a closed set of points.

With these definitions it is possible to state the main result of this note.

Theorem 5. Let T : X → X be a pinched skew product. Then there exists an
upper semi-continuous function φ : T1 → R and a lower semi-continuous function
ψ : T1 → R such that the global attractor of T , A, is given by

A = {(x, y) ∈ X | ψ(x) ≤ y ≤ φ(x)} (8)

Moreover, ψ(x) = φ(x) on a dense set of values of x.

The sets with graphs φ and ψ will be referred to as boundary sets, and we will
sometimes abuse terminology a little by referring to φ and ψ as boundary sets rather
than graphs of boundary sets. The proof of this result follows the equivalent parts
of Keller’s results (Keller 1996), and this is given in the next section. In section four
some consequences of this result are given and applied to the example of Grebogi et
al. (1984).

3. Proof of Theorem 5

Let T : X → X be a pinched skew product, (3), with bounds (4). Then clearly the
second coordinate of T , T2 = π2 ◦T where π2 : X → R is the projection operator onto
the second coordinate, is bounded: |T2(x, y)| < A + BM for all (x, y) ∈ X. Define
φ1(x) = A + BM , ψ1(x) = −(A + BM) and for each x ∈ T1 and for each x ∈ T1 let
I1(x) = [ψ1(x), φ1(x)]. Now define φn, ψn and In for n ≥ 2 inductively by

φn(x) = sup{T2(x− ω, y) | y ∈ In−1(x− ω)} (9)

ψn(x) = inf{T2(x− ω, y) | y ∈ In−1(x− ω)} (10)

and

In(x) = [ψn(x), φn(x)] (11)

Finally, let

An =
⋃

x∈T1

In(x) (12)
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A series of simple induction arguments establishes that
(i) In(x) is a closed interval (possibly trivial);
(ii) In+1(x) ⊆ In(x),
(iii) φn(x) is a continuous function of x;
(iv) ψn(x) is a continuous function of x; and
(v) An+1 ⊆ T n(X) ⊆ An.

Now, by definition and property (ii) above,

ψn(x) ≤ ψn+1(x) ≤ φn+1(x) ≤ φn(x) (13)

Thus (φn) is a decreasing sequence of continuous functions, bounded below (by ψ1 for
example) and hence it tends to a limiting function, φ(x). Let (xk) be any sequence
converging to x such that limk→∞ φ(xk) exists and equals ` say. Then for each n ∈ N

` = lim
k→∞

(φn(xk)− [φn(xk)− φ(xk)]) (14)

and since φn(x) ≥ φ(x) and φn is continuous,

` ≤ lim
k→∞

φn(xk) = φn(x) (15)

So, since (15) holds for each n, ` ≤ φ(x), and hence φ is upper semi-continuous.
Similarly, (ψn) is an increasing sequence of functions bounded above, and hence

tends to a limit, ψ, which is lower semi-continuous. The characterization of the global
attractor, (8), now follows from the definitions of φ and ψ together with property (v)
above.

Finally note that if x − nω = x̂, where b(x̂) = 0, then In+1(x) is a single point
and Ik(x) is a single point for all k ≥ n + 1. At these points (which are dense on
the circle) ψk(x) = φk(x) for all k ≥ n (and, indeed, is independent of k), and hence
ψ(x) = φ(x) on a dense set of values of x. This completes the proof of Theorem 5.

Remark 6. The proof of properties (i)-(v) is straightforward, but for completeness
we provide a sketch of each argument. It is convenient to refer to the set (x, In(x))
as In to reduce the number of brackets used. Property (i) follows as In is the image
of a closed interval and T is continuous. Property (ii) follows by induction and the
fact that In+1 is the image of points in T−1(In) whilst In is the image of points in
T−1(In−1) (a larger set). Since T is a continuous function of x, and maxima and
minima of continuous families of continuous functions vary continuously, properties
(iii) and (iv) can be established. Finally, T (X) ⊆ A1 implies that T n(X) ⊆ An, and
A2 = T (A1) ⊆ T (X) implies that An+1 ⊆ T n(X) and hence property (v) holds.

4. Consequences

Let P denote the set of x which satisfy b(x) = 0 and for any point x̂ ∈ P let Orb(x̂)
denote the orbit of the point (x̂, y) ∈ T1, i.e. Orb(x̂) = {T (x̂, y), T 2(x̂, y), . . . }, which
is independent of y. Finally, let c`(R) denote the closure of a set R. Then the detail
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of the dynamics of pinched skew products is closely related to the geometry of the
set

Γ =
⋃

x̂∈P

Orb(x̂) (16)

Note that Γ is contained in the intersection of the boundary sets φ and ψ. One of the
important properties proved by Keller (1996) for the upper semi-continuous attractor
Ψ in the cases he considers is that it has an invariant graph, that is

(x + ω, Ψ(x + ω)) = T (x, Ψ(x)) (17)

or, for the pinch skew products (3)

Ψ(x + ω) = a(x) + b(x)f(x, Ψ(x)) (18)

Unfortunately, the boundary sets φ and ψ of Theorem 5 are not invariant in general.
However, there is one case when they are both continuous and invariant.

Lemma 7. Suppose that the global attractor of a pinched skew product has bounding
sets φ and ψ. If φ = ψ then the resulting set is invariant, continuous and equal to
c`(Γ).

Proof. If φ = ψ then this set is both upper and lower semi-continuous, which implies
that it is continuous (a straightforward exercise) and equal to A (using Theorem 5)
which is invariant by definition. Moreover Γ ⊆ φ and since φ is continuous and the
projection of Γ onto the T1 coordinate is dense (ω is irrational), φ = c`(Γ). ¤

The stability of an invariant curve is determined by the Liapunov exponent in
the y-direction: let fy denote the partial derivative of f with respect to the second
argument, the the Liapunov exponent for typical points on an invariant curve ϑ is λϑ

where

λϑ =

∫ 1

0

log |b(x)fy(x, ϑ(x))| dx (19)

If λϑ > 0 then typical points on the curve are unstable.

Lemma 8. Suppose that a pinched skew product has a continuous invariant curve ϑ.
Then ϑ is the only continuous invariant curve of the system, ϑ = c`(Γ) and if λϑ > 0
then φ 6= ψ and at least one of these boundary sets is not continuous.

Proof. If ϑ is a continuous invariant curve then ϑ contains all the pinch points and
their orbits, so ϑ = c`(Γ). This is true of all continuous invariant curves, so ϑ is
unique. If λϑ > 0 then ϑ cannot be the only set in the global attractor (as it is not
stable) and hence φ 6= ψ and at most one of them equals ϑ (so at least one of them
is not continuous). ¤
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It seems likely that if ϑ exists and λϑ > 0 then neither φ nor ψ is continuous, but I
have been unable to prove this conjecture in general. See (Sturman and Stark 2000)
for results involving Liapunov exponents of the system. Of course, if the pinched
skew product is invariant under a symmetry which maps φ to ψ and vice versa, then
either φ and ψ are both continuous or neither is continuous. This is the case for the
original example of Grebogi et al. (1984).

Example 9. Let us return to equation (1). As discussed in the introduction, the circle
with y = 0 is invariant (and continuous), so if λ0 defined in equation (2) is positive,
i.e. if B > 2, then at least one of the boundary sets ψ or φ is not continuous. Now,
equation (1) is invariant under reflection in the invariant circle: (x, y) 7→ (x,−y) and
hence the upper boundary of A is mapped to the lower boundary and vice versa by
this reflection, i.e. ψ(x) = −φ(x). Hence neither of the boundary sets have continuous
graphs if B > 2 (φ is upper semi-continuous and ψ is lower semi-continuous).

Although the boundary sets φ and ψ are not invariant in general, there is a special
case for which they are invariant.

Lemma 10. Let T be a pinched skew product and suppose that for each x ∈ T1

f(x, y) is a monotonic function of y. Then the union of the boundary sets φ and ψ
is invariant.

Proof. Since the function f is monotonic in the second variable, b(x)f(x, y) is mono-
tonic in y for each fixed x. Hence for all (x, y1) and (x, y2) in T1, y1 < y2 implies
that either T2(x, y1) ≤ T2(x, y2) or T2(x, y1) ≥ T2(x, y2), depending on the sign of
b(x) and whether f is decreasing or increasing. This implies that the end-points of
the intervals In(x− ω) constructed in the proof of Theorem 5 in section two map to
the end points of the intervals In+1(x), i.e.

(x, φn+1(x)) ∪ (x, ψn+1(x)) = T (x− ω, φn(x− ω)) ∪ T (x− ω, ψn(x− ω)) (20)

and so, in the limit

(x, φ(x)) ∪ (x, ψ(x)) = T (x− ω, φ(x− ω)) ∪ T (x− ω, ψ(x− ω)) (21)

Hence the union of the two boundary sets is invariant. ¤
Example 11. Continuing to treat the example of Grebogi et al. (1984), (1), we take
b(x) = B cos 2πx and f(x, y) = tanh y, so f is increasing. Lemma 10 implies that the
union of the boundary sets is invariant. In fact, the results of Keller (1996) imply
that these sets form the attractor of almost every point in X if B > 2.

Remark 12. I conjecture that any monotonic pinched skew product has zero topo-
logical entropy, and hence that any strange set is nonchaotic. It would be interesting
to obtain conditions which would allow Lemma 10 to be strengthened so that the
closure of the boundary sets attracts almost all initial conditions.
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5. Conclusion

The results described here make it possible to extend some of the work of Keller
(1996) to a larger class of maps. These maps all have the skew product structure used
to model quasiperiodically forced systems, although the pinching condition cannot be
satisfied by maps obtained from continuous time systems, as these must be invertible.
Even so, these general results are suggestive, and may give an indication of the
techniques and definitions which will prove useful in the study of invertible skew
products. The study of pinched skew products is interesting in that some rigorous
results are possible, the systems are simple to construct, and they give an indication
of the possible behaviour of more general quasiperiodically forced systems. It is worth
noting that the existence of stable continuous invariant curves, which has not been a
focus of this note, can be explored using the techniques of Stark and Sturman (Stark
1997; Sturman and Stark 2000). This exploits the Liapunov exponent analysis and
can be used to show that the conditions of Lemma 7 hold. Those papers, together with
this note, provide a useful set of tools with which to study pinched skew products.

We conclude with two questions. First, the attractor A of Theorem 5 is an example
of what economists refer to as a correspondence, i.e. a map from points to sets, see
for example, (Herings 1995; Mas-Colell et al. 1995). Are there characterisations of
correspondences in the economics literature which would be useful in the description
of strange nonchaotic attractors? Second, the results obtained here do not describe
the dynamics on the global attractor. It would be interesting to know how to charac-
terise the internal dynamics on this object (for example, when is the dynamics dense
in A?).
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