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Nonlinear eigenvalue problems arise in a variety of science and engineering ap-
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in the development of numerical methods. This article surveys nonlinear
eigenvalue problems associated with matrix-valued functions which depend
nonlinearly on a single scalar parameter, with a particular emphasis on their
mathematical properties and available numerical solution techniques. Solvers
based on Newton’s method, contour integration and sampling via rational
interpolation are reviewed. Problems of selecting the appropriate paramet-
ers for each of the solver classes are discussed and illustrated with numerical
examples. This survey also contains numerous MATLAB code snippets that
can be used for interactive exploration of the discussed methods.
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1. Introduction

Nonlinear eigenvalue problems arise in many areas of computational science
and engineering, including acoustics, control theory, fluid mechanics and
structural engineering. The fundamental formulation of such problems is
given in the following definition.

Definition 1.1. Given a non-empty open set Ω ⊆ C and a matrix-valued
function F : Ω → Cn×n, the nonlinear eigenvalue problem (NEP) consists
of finding scalars λ ∈ Ω (the eigenvalues) and nonzero vectors v ∈ Cn and
w ∈ Cn (right and left eigenvectors) such that

F (λ)v = 0, w∗F (λ) = 0∗.

Here 0 denotes the zero column vector of Cn, and (·)∗ denotes the conjugate
transpose of a vector. We refer to (λ, v) as an eigenpair of F . The set of all
eigenvalues is denoted by Λ(F ) and referred to as the spectrum of F , while
Ω \ Λ(F ) is called the resolvent set of F .

Clearly, the eigenvalues λ of F are the solutions of the scalar equation
f(z) = detF (z) = 0. The dependence of F (z) on the parameter z is typic-
ally nonlinear, giving the ‘N’ in NEP, but the eigenvectors enter the problem
only linearly. Throughout this work we will denote by z the parameter of
F as an independent variable, and we will use λ for the eigenvalues.

Three simple but representative examples of NEPs are listed below. We
also give links to corresponding problems in the NLEVP collection by Betcke
et al. (2013). We will use some of these problems later on for numerical
illustrations.

(i) Stability analysis of delay differential equations (DDEs). Consider the
linear first-order homogeneous DDE

u′(t) +Au(t) +Bu(t− 1) = 0, u(t) given for t ∈ [−1, 0]. (1.1)

Solutions of the form u(t) = eλtv can be obtained from the NEP

F (λ)v = (λI +A+B e−λ)v = 0,

and the real parts of the eigenvalues λ determine the growth of ‖u‖ =
etReλ‖v‖. A problem of this type is part of the NLEVP collection under
the name time delay. Detailed expositions of the stability theory of
time-delay systems can be found in Gu, Kharitonov and Chen (2003)
and Michiels and Niculescu (2007).

(ii) Differential equations with nonlinear boundary conditions. A minimal
example from Solov′ëv (2006) is a boundary value problem on [0, 1],

−u′′(x) = λu(x), u(0) = 0, −u′(1) = φ(λ)u(1). (1.2)

Upon applying a finite element discretization with linear hat functions
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centred at the equispaced points xi = i/n (i = 1, 2, . . . , n), (1.2) can
be rewritten as an NEP,

F (λ)u = (C1 − λC2 + φ(λ)C3)u = 0 (1.3)

with n× n matrices

C1 = n




2 −1

−1
. . .

. . .
. . . 2 −1

−1 1


, C2 =

1

6n




4 1

1
. . .

. . .
. . . 4 1

1 2


, C3 = ene

T
n ,

and en = [0, . . . , 0, 1]T . With the rational function φ(λ) = λ/(λ − 1),
this problem is contained in the NLEVP collection under the name
loaded string.

A property that is common to many NEPs is that the nonlinearity
appears only in a few entries of F (z). Indeed, the nonlinearity in this
example affects only a single entry through the rank-1 matrix C3. This
low-rank structure is typically worth exploiting.

(iii) Transparent boundary conditions. This is a special case of (b), where
the right boundary condition is chosen so that (1.2) is satisfied on an
interval larger than the discretization interval, e.g. for all x ∈ [0,+∞).
Note that the solutions of (1.2) on [0,+∞) are of the form

u(x) = α sin(
√
λx).

Therefore, in order to model a ‘transparent’ boundary, the Dirichlet-
to-Neumann map φ at x = 1 should satisfy

φ(λ) = −
√
λ

tan(
√
λ)
.

Problems with similar types of nonlinearities are encountered, for ex-
ample, with the modelling of waveguides. The gun problem available
in the NLEVP collection,

F (λ)v =
(
K − λM + i

√
λ− ω2

1W1 + i
√
λ− ω2

2W2

)
v = 0, (1.4)

models a waveguide-loaded accelerator cavity with the values of ωj cor-
responding to cut-off wave numbers of modes in two waveguide ports.
Here M , K, W1 and W2 are real symmetric 9956×9956 matrices arising
from the finite element discretization of Maxwell’s equation

∇×
(

1

µ
∇× E

)
− λεE = 0

for the electric field E on some spatial domain; see Liao, Bai, Lee and
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Ko (2010) for details. Also in this example the matrices W1 and W2

associated with the waveguide boundaries are of low rank.

For an exposition of other interesting applications where NEPs arise, we
refer to the introductory chapters of the PhD theses by Effenberger (2013a)
and Van Beeumen (2015). Note that, independent of a particular applica-
tion, NEPs are of mathematical interest as systems of nonlinear equations,
or scalar root-finding problems, e.g. for f(z) = detF (z).

There are also problems for which F does not depend on z but depends in-
stead on the eigenvectors or a selection of eigenvectors, with applications in
electronic structure calculations (Saad et al. 1996), machine learning (Bühler
and Hein 2009), and even for the ranking of football teams (Keener 1993).
Formally, these eigenvalue problems consist of finding nontrivial solutions
of F (V )V = V D, where F is an n × n matrix that depends on an n × k
matrix of eigenvectors V , and D is a k × k diagonal matrix containing the
corresponding eigenvalues. This type of nonlinear dependency will not be
considered here. Another interesting class is that of multi-parameter NEPs
F (λ, γ)v = 0 which arise, for example, in the stability analysis of para-
metrized nonlinear wave equations (Beyn and Thümmler 2009) and the
delay-independent stability analysis of DDEs (Gu et al. 2003, Chapter 4.6).
Although we will not discuss multi-parameter NEPs in this survey any fur-
ther, continuation methods for their solution typically require solving an
NEP as in Definition 1.1 at every iteration.

Our aim is to survey NEPs through their interesting mathematical prop-
erties and numerical solution techniques. While we mention and list some
applications where NEPs arise, these are not our main focus. We hope
that this survey will be useful for mathematicians, computational scientists
and engineers alike. Those new to the field may want to learn first about
the basic mathematical properties of NEPs, such as their solution structure
and the sensitivity of eigenvalues, and Section 2 should be a good starting
point for that. We also provide an extensive list of references for further
exploration, although we do not claim that this is a complete list for this
very rich and rapidly developing area. Practitioners who already have a
concrete NEP to solve can use this survey to get an overview of available
solution techniques. To facilitate choosing the right method, we highlight
the guiding principles and various problems that come with each numerical
method such as, for example, the selection of suitable parameters.

With practical solution methods being the main focus, and to make this
survey more interactive, we include several MATLAB code snippets. Some
of the snippets require MATLAB R2016b or later, because they use local
functions in a script (Higham and Higham 2017). The codes are also avail-
able online at

http://www.maths.manchester.ac.uk/nep/
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We encourage the reader to execute them in MATLAB and play with the
parameters. Most of the codes also run with little or no modification in GNU
Octave (Eaton, Bateman, Hauberg and Wehbring 2016). We emphasize that
our code snippets should not be considered as full implementations of robust
numerical methods! They merely serve the purpose of illustration.

In addition to the codes, the above website also contains the bibliography
of this survey, as well as an up-to-date list of links to available NEP-related
software. Alongside this survey, the reader is encouraged to consult the
review by Mehrmann and Voss (2004), which discusses many NEP applic-
ations and describes some of the methods contained here (but not, for ex-
ample, the contour-based and rational interpolation-based solvers developed
since 2004). Quadratic eigenvalue problems are reviewed in detail by Tis-
seur and Meerbergen (2001). For quadratic and more generally polynomial
eigenvalue problems, the exploitation of special structure in the coefficient
matrices is well researched; see for example Mackey, Mackey, Mehl and
Mehrmann (2006a), Mackey, Mackey and Tisseur (2015) and the references
therein. In our discussions of NEPs with special structure we will restrict our
attention to the Hermitian case (see Section 3) and problems with low-rank
structure. Hermitian NEPs are the most frequently encountered in practice
and by far the best understood. The exploitation of low-rank structure in
NEPs often leads to considerable computational savings.

The outline of this work is as follows. Section 2 provides an overview
of the solution structure of NEPs, including discussions of root functions
and invariant pairs, the Smith form and Keldysh’s theorem, and general-
ized Rayleigh functionals, as well as some perturbation results. The short
Section 3 is devoted to Hermitian NEPs. Sections 4, 5 and 6 are on numer-
ical methods. Section 4 is about NEP solvers based on Newton’s method,
with particular attention paid to relating the various existing methods and
illustrating their convergence properties with examples. Section 5 is de-
voted to NEP solvers using contour integrals. Here again our main focus is
on summarizing and relating existing algorithms, as well as discussing their
dependence on parameters. Section 6 gives an overview of solution methods
based on the linearization of rational eigenvalue problems. Here our fo-
cus is on the practical and efficient construction of rational interpolants via
sampling of the matrix-valued function defining an NEP. Each of the sec-
tions on numerical methods ends with a brief overview of existing software,
giving links to online resources whenever possible.

Within the sections of this paper we use common counters in the num-
bering of definitions, theorems, algorithms, figures, etc. We believe this
simplifies referencing for the reader since, for example, locating Remark 2.2
tells one that a definition with number 2.3 should follow. Subsections and
equations are enumerated separately within each section.
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2. Solution structure of NEPs

In this section we will shed light on the solution structure of NEPs. As the
examples in this section aim to illustrate, the solution properties of general
NEPs are quite different from linear eigenvalue problems Av = λv, where
A ∈ Cn×n and 0 6= v ∈ Cn, although such problems are special cases of NEPs
with F (z) = A − zI. Nevertheless, we will see that with an appropriate
definition of eigenvalue multiplicity and generalized eigenvectors, a rather
elegant characterization of NEP solutions can be obtained. Much of the
theory we review here can be found in the monograph by Mennicken and
Möller (2003), therein developed in more detail and greater generality for
operator functions in Banach spaces. The appendix of the monograph by
Kozlov and Maz’ja (1999) also contains a good summary of parts of the
theory, including a complete proof of Keldysh’s theorem. A collection of
mathematical facts about NEPs is given by Voss (2014).

2.1. Eigenvalues and eigenvectors

To develop our intuition about the eigenvalue structure of NEPs, it will be
instructive to first think of a scalar function F : Ω → C. The associated
NEP F (λ)v = 0, v 6= 0, is just a scalar root-finding problem. It becomes
immediately apparent that an NEP on Ω = C may have

• no solutions at all, e.g. if F (z) = exp(z),

• finitely many solutions, e.g. if F (z) = z3 − 1,

• infinitely many solutions, e.g. if F (z) = cos(z).

The fact that even an NEP of size 1× 1 can have more than one eigenvalue
tells us that the eigenvectors belonging to distinct eigenvalues need not be
linearly independent: indeed the ‘vector’ v = [ 1 ] is an eigenvector for all
eigenvalues of an 1× 1 NEP. An example of size 2× 2 is

F (z) =

[
eiz

2
1

1 1

]
, (2.1)

which is a singular matrix exactly at the points z ∈ C where eiz
2

= 1. Hence
the eigenvalues of F are λk = ±

√
2πk (k = 0,±1,±2, . . .) and

[
1
−1
]

is a right
and left eigenvector for all of them. It will be useful to keep the function F
defined by (2.1) in mind as we will often refer back to it for illustration.

In the following discussions we will assume that F : Ω → Cn×n is
holomorphic in a connected open set Ω ⊆ C (the domain), denoted by
F ∈ H(Ω,Cn×n). This assumption is satisfied for most NEPs encountered
in practice, where the elements of F (z) are usually polynomial, rational, al-
gebraic or exponential functions of z ∈ Ω, or a combination thereof. As the
definition of a matrix determinant involves only finite sums and products of
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the matrix entries, F ∈ H(Ω,Cn×n) also implies that detF (z) ∈ H(Ω,C).
Hence the eigenvalues of F are the roots of a scalar holomorphic function in
the domain Ω. The following discreteness result is a consequence of that and
can be found, for example, in Mennicken and Möller (2003, Theorem 1.3.1).

Theorem 2.1. Let Ω ⊆ C be a domain and F ∈ H(Ω,Cn×n). Then the
resolvent set Ω \ Λ(F ) is open. If the resolvent set is non-empty, every
eigenvalue λ ∈ Λ(F ) is isolated, that is, there exists an open neighbourhood
U ⊂ Ω such that U ∩ Λ(F ) = {λ}.

The condition that the resolvent set be non-empty is equivalent to saying
that detF (z) does not vanish identically on Ω. In this case we say that F
is regular. While a regular F can have an infinite number of eigenvalues
in Ω, the set of eigenvalues Λ(F ) does not have accumulation points in Ω.
An illustrating example is the scalar function F (z) = sin(1/z), which is
holomorphic in Ω = C \ {0} with an infinite number of roots accumulating
at 0 6∈ Ω.

The algebraic multiplicity of an eigenvalue λ is defined as the multiplicity
of the root of detF (z) at z = λ, that is, the smallest integer j ≥ 1 such that

dj

dzj
detF (z)

∣∣∣
z=λ
6= 0.

The algebraic multiplicity of an isolated eigenvalue must be finite, but in
contrast to linear eigenvalue problems, in the nonlinear case the algebraic
multiplicity of an eigenvalue is not necessarily bounded by the problem
size n. This is illustrated by the scalar example F (z) = zn+1, which has the
eigenvalue λ = 0 of algebraic multiplicity n+ 1.

By Definition 1.1, the right eigenvectors associated with an eigenvalue λ
are the nonzero vectors in the null space of F (λ), denoted by nullF (λ).
The dimension of this null space, dim(nullF (λ)), is called the geometric
multiplicity of λ. An eigenvalue λ is called semisimple if its geometric
multiplicity is equal to its algebraic multiplicity, and it is called simple if
its algebraic multiplicity equals one.

Remark 2.2. In some cases it is of interest to consider NEPs with ei-
genvalues at infinity, for example in the stability analysis of linear time-
invariant delay differential-algebraic equations (Du, Linh, Mehrmann and
Thuan 2013) or when deflating already computed eigenvalues (see Sec-
tion 4.3). We say that F : Ω → Cn×n defined on Ω ⊆ C := C ∪ {∞}
with ∞ ∈ Ω has an eigenvalue at λ =∞ if

G : z 7→ F (1/z)

has an eigenvalue at z = 0. The algebraic and geometric multiplicities of
λ =∞ in F are simply defined as the corresponding algebraic and geomet-
ric multiplicities of z = 0 in G. Indeed, if an NEP is considered on the
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extended complex plane C instead of C, the point z = ∞ is not more or
less distinguished than any other complex number. In particular, the point
at infinity can always be mapped to a finite point via a Möbius transforma-
tion. Hence there is no need to further discuss infinite eigenvalues of NEPs
separately.

Note that our definition of eigenvalues at infinity is not in contradic-
tion to the common definition of infinite eigenvalues for matrix polynomials
P (z) =

∑`
j=0 z

jCj , C` 6= O, as the zero eigenvalues of the reversal mat-

rix polynomial z`P (1/z). When considered as an NEP in the sense used
here, the function P is actually not well defined at z =∞. Hence the con-
vention is to instead consider the function F (z) = z−`P (z), which is well
defined (and even holomorphic) at z =∞ and so it makes sense to consider
eigenvalues there. Indeed, G(z) = F (1/z) is the reversal of P .

2.2. Root functions and generalized eigenvectors

An elegant definition of generalized eigenvectors is based on root functions,
a concept introduced by Trofimov (1968). To motivate the idea of root
functions, it is helpful to first consider a linear eigenvalue problem Av = λv
for A ∈ Cn×n and 0 6= v ∈ Cn, and to recall from matrix analysis that a
sequence (v0, v1, . . . , vm−1) of nonzero vectors is called a Jordan chain for
the eigenvalue λ if

(A− λI)v0 = 0, (A− λI)v1 = v0, . . . , (A− λI)vm−1 = vm−2; (2.2)

see, for example, the monograph by Horn and Johnson (1985, Chapter 3).
The vector v0 is a right eigenvector of A, or equivalently, a nonzero right
null vector of A − λI, and the v0, v1, . . . , vm−1 are generalized eigenvectors
of A. Generalized eigenvectors of a matrix can be easily seen to be linearly
independent. The maximal length m of a Jordan chain starting with v0 is
called the rank of v0.

Interestingly, by defining the functions v(z) =
∑m−1

j=0 (z−λ)jvj and F (z) =

A− zI, the m equations in (2.2) can be rewritten as

dj

dzj
F (z)v(z)

∣∣∣
z=λ

= j!

j∑

k=0

F (k)(λ)

k!
vj−k = 0, j = 0, 1, . . . ,m− 1, (2.3)

where F (k)(z) = dk

dzk
F (z). In other words, F (z)v(z) has a root of multi-

plicity at least m at z = λ. While (2.2) is specific to linear eigenvalue
problems, (2.3) extends straightforwardly to the nonlinear case. The main
difference for NEPs is that generalized eigenvectors need not necessarily be
linearly independent, and even the zero vector is admitted as a generalized
eigenvector. We make this precise in the following definition, which has
been adopted from Mennicken and Möller (2003, Definition 1.6.1).
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Definition 2.3. Let F ∈ H(Ω,Cn×n) be regular on a non-empty domain
Ω ⊆ C, and let λ ∈ Ω be given.

(i) A holomorphic vector-valued function v ∈ H(Ω,Cn) such that v(λ) 6= 0
and F (λ)v(λ) = 0 is called a root function for F at λ. The multiplicity
of the root z = λ of F (z)v(z) is denoted by s(v).

(ii) A tuple (v0, v1, . . . , vm−1) ∈ (Cn)m with m ≥ 1 and v0 6= 0 is called a
Jordan chain for F at λ if

v(z) =

m−1∑

k=0

(z − λ)kvk

is a root function for F at λ and s(v) ≥ m.

(iii) For a given vector v0 ∈ nullF (λ) \ {0}, the number

r(v0) = max
{
s(v) : v is a root function for F at λ with v(λ) = v0

}

is called the rank of v0.

(iv) A system of vectors in Cn,

V = (vjk : 0 ≤ k ≤ mj − 1, 1 ≤ j ≤ d),

is a complete system of Jordan chains for F at λ if

(a) d = dim(nullF (λ)) and {v10, v20, . . . , vd0} is a basis of nullF (λ),

(b) the tuple (vj0, v
j
1, . . . , v

j
mj−1) is a Jordan chain for F at λ for j =

1, 2, . . . , d,

(c) mj = max{r(v0) : v0 ∈ nullF (λ) \ span{vν0 : 1 ≤ ν < j}} for
j = 1, 2, . . . , d.

It can be shown (Mennicken and Möller 2003, Proposition 1.6.4) that a
complete system of Jordan chains always exists, which essentially requires
the verification that for a regular NEP the rank r(v0) of any eigenvector v0
is finite. The numbers mj satisfy m1 ≥ m2 ≥ · · · ≥ md by definition and

are called the partial multiplicities of λ. It can be shown that
∑d

j=1mj

corresponds to the algebraic multiplicity of λ (Mennicken and Möller 2003,
Proposition 1.8.5). The number m1 is called the index of λ. If m1 = · · · =
md = 1, then λ is a semisimple eigenvalue; if in addition d = 1, then λ is a
simple eigenvalue.

Example 2.4. Consider the 2 × 2 function F defined in (2.1). The ei-
genvalue λ0 = 0 has algebraic multiplicity two and geometric multiplicity
one. The corresponding right eigenvector v0 and generalized eigenvector v1
are both multiples of

[
1
−1
]
, and hence are not linearly independent. The

vector-valued function v(z) = v0 + zv1 =
[

1+z
−1−z

]
is a root function for F at
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λ0 = 0, and the multiplicity of λ0 as a root of F (z)v(z) can be easily shown
to be s(v) = 2. Using the MATLAB Symbolic Math Toolbox we find that
d2

dz2
F (z)v(z) is the smallest-order derivative which does not vanish at z = 0:

syms z; order = 2;

F = [ exp(1i*z.^2) 1; 1 1 ]; v = [ 1+z; 1-z ];

subs(diff(F*v, order), z, 0)

ans =

2i

0

Hence the rank of the right eigenvector v0 with eigenvalue λ0 is r(v0) ≥ 2,
but since λ0 has algebraic multiplicity two, r(v0) = 2. The pair

([
1
−1
]
,
[

1
−1
])

is a Jordan chain for F at λ0 = 0, and also a complete system of Jordan
chains there.

So far we have only considered right eigenvectors of F , but clearly left
eigenvectors of F can be obtained as the right eigenvectors of F ∗. It turns
out that there is a natural way to complement a complete system of Jordan
chains for F at λ with a complete system of Jordan chains of F ∗ at λ, and
the latter is uniquely determined if certain normalization conditions are
enforced. The following result makes this precise (Mennicken and Möller
2003, Theorem 1.6.5).

Theorem 2.5. Let F ∈ H(Ω,Cn×n) be regular on a non-empty domain
Ω ⊆ C, and consider an eigenvalue λ ∈ Λ(F ). Let

V =
(
vjk : 0 ≤ k ≤ mj − 1, 1 ≤ j ≤ d

)

be a complete system of Jordan chains for F at λ. Then there exists a
unique complete system of Jordan chains

W =
(
wjk : 0 ≤ k ≤ mj − 1, 1 ≤ j ≤ d

)

for F ∗ at λ such that each eigenvector wj0 has rank r(wj0) = mj and

k∑

α=0

mi∑

β=1

wj∗k−α
F (α+β)(λ)

(α+ β)!
vimi−β = δijδ0k, 0 ≤ k ≤ mj − 1, 1 ≤ i, j ≤ d,

(2.4)
with the Kronecker delta

δij =

{
0 if i 6= j,

1 if i = j.
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Example 2.6. Consider the matrix-valued function F in (2.1). We found
in Example 2.4 that the pair

V = (v0, v1) =

([
1

−1

]
,

[
1

−1

])

is a complete system of Jordan chains for F at λ = 0. A similar construction
shows that

W = (w0, w1) =

(
ρ0

[
1

−1

]
, ρ1

[
1

−1

])
with ρ0, ρ1 ∈ C \ {0}

is a complete system of Jordan chains for F ∗ at λ = 0 satisfying r(w0) = 2.
The normalization conditions (2.4) become

w∗0F
′(0)v1 + w∗0

F ′′(0)

2
v0 = 1,

w∗1F
′(0)v1 + w∗1

F ′′(0)

2
v0 + w∗0

F ′′(0)

2
v1 + w∗0

F ′′′(0)

6
v0 = 0,

and they are satisfied if we choose ρ0 = i and ρ1 = −i.

While the normalization conditions in Theorem 2.5 look rather messy in
general, they simplify if the eigenvalue λ is semisimple. In this case we have
m1 = · · · = md = 1 so that (2.4) becomes

wj∗0 F
′(λ)vi0 = δij , 1 ≤ i, j ≤ d, (2.5)

that is, the left and right eigenvectors can be chosen F ′(λ)-biorthonormal.

2.3. Factorizations: Smith form

It is often useful to have a factorization of an NEP about one or multiple
eigenvalues, giving rise to local or global factorizations, respectively. A very
useful factorization is the so-called Smith form, which we state in its global
version; see Leiterer (1978), Gohberg and Rodman (1981) and Kozlov and
Maz’ja (1999, Chapter A.6). It uses the notion of a unimodular matrix-
valued function P ∈ H(Ω,Cn×n), which means that detP (z) is a nonzero
constant over Ω.

Theorem 2.7 (Smith form). Let F ∈ H(Ω,Cn×n) be regular on a non-
empty domain Ω. Let λi (i = 1, 2, . . .) be the distinct eigenvalues of F in Ω
with partial multiplicities mi,1 ≥ mi,2 ≥ · · · ≥ mi,di . Then there exists a
global Smith form

P (z)F (z)Q(z) = D(z), z ∈ Ω,
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with unimodular matrix-valued functions P,Q ∈ H(Ω,Cn×n), and

D(z) = diag(δ1(z), δ2(z), . . . , δn(z)).

The diagonal entries δj are of the form

δj(z) = hj(z)
∏

i=1,2,...

(z − λi)mi,j , j = 1, . . . , n,

where mi,j = 0 if j > di and each hj ∈ H(Ω,C) is free of roots on Ω.

From the Smith form it is easy to identify eigenvectors of F for an eigen-
value λi. LetQ be partitioned columnwise asQ(z) = [q1(z), q2(z), . . . , qn(z)].
By the diagonal structure ofD, the canonical unit vectors e1, e2, . . . , edi form
a basis of nullD(λi), and therefore also a basis of null(P (λi)F (λi)Q(λi)).
Hence we have found a basis of di right eigenvectors of F for λ, namely,

q1(λi), q2(λi), . . . , qdi(λi).

By the same argument one can identify the first di rows of

P (z) = [p1(z), p2(z), . . . , pn(z)]∗

with left eigenvectors of F for z = λi.
Another application of the Smith form is for the characterization of the

singularities of the resolvent given by

F (z)−1 = Q(z)D(z)−1P (z) =
n∑

j=1

δj(z)
−1qj(z)pj(z)∗. (2.6)

Here the diagonal entries δj(z)
−1 of D(z)−1 are scalar meromorphic func-

tions with poles of multiplicities mi,j at the eigenvalues λi,

δj(z)
−1 =

1

hj(z)

∏

i=1,2,...

(z − λi)−mi,j , j = 1, . . . , n.

2.4. Expansions: Keldysh’s theorem

Let us consider an eigenvalue z = λi of F . Then each term δj(z)
−1qj(z)pj(z)∗

in (2.6) can be expanded into a matrix-valued Laurent series (Ahlfors 1953,
Chapter 5.1.3) that is valid in some neighbourhood U ⊆ Ω about λi,

δj(z)
−1qj(z)pj(z)∗ =

mi,j∑

k=1

Si,j,k(z − λi)−k +Rj(z), z ∈ U \ {λi},

with coefficient matrices Si,j,k ∈ Cn×n, Si,j,mi,j 6= O, and the remainder
function Rj ∈ H(U ,Cn×n). Combining these series for every term in (2.6)
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into a single expansion at z = λi, we arrive at

F (z)−1 =

di∑

j=1

mi,j∑

k=1

Si,j,k(z − λi)−k +R(z), z ∈ U \ {λi}, (2.7)

with a remainder function R ∈ H(U ,Cn×n). This shows that the resolvent
F (z)−1 is meromorphic in U with a pole of multiplicity maxj=1,...,di{mi,j} =
mi,1 at λi.

Let us now assume that F has only finitely many eigenvalues λ1, λ2, . . . , λs
in the domain Ω. Then we can apply the expansion (2.7) recursively at all
the eigenvalues as follows: starting with (2.7) about z = λ1, we can expand
the remainder R into another Laurent series about z = λ2, and so forth,
giving rise to the global expansion valid on the whole of Ω,

F (z)−1 =
s∑

i=1

di∑

j=1

mi,j∑

k=1

Si,j,k(z − λi)−k + R̃(z), (2.8)

with R̃ ∈ H(Ω,Cn×n).
It is possible to characterize the matrices Si,j,k in (2.8) in terms of gener-

alized eigenvectors of F , a result that is known as Keldysh’s theorem. More
precisely, for each distinct eigenvalue λi ∈ Ω (i = 1, 2, . . . , s), let
(
vijk : 0 ≤ k ≤ mij − 1, 1 ≤ j ≤ di

)
,
(
wijk : 0 ≤ k ≤ mij − 1, 1 ≤ j ≤ di

)

be pairs of complete systems of Jordan chains for F and F ∗ at λi as defined
by Theorem 2.5. Then the matrices Si,j,k in (2.8) are given as

Si,j,k =

mij−k∑

`=0

vij` w
ij∗
mij−k−`. (2.9)

Keldysh’s theorem can be found in this form, for example, in Mennicken
and Möller (2003, Theorem 1.6.5) and Kozlov and Maz’ja (1999, The-
orem A.10.2). A more compact representation can be obtained by defining
Jordan blocks

Jij =




λi 1

λi
. . .
. . . 1

λi


 ∈ Cmij×mij , (2.10)

and arranging the generalized eigenvectors in columns of matrices

Vij =
[
vij0 , v

ij
1 , . . . , v

ij
mij−1

]
and Wij =

[
wijmij−1, w

ij
mij−2, . . . , w

ij
0

]
. (2.11)

(Note the descending order of the left generalized eigenvectors in Wij .)
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By the Jordan-form definition of a matrix function (Higham 2008, Defini-
tion 1.2), we have

(zI − Jij)−1 =




(z − λi)−1 (z − λi)−2 · · · (z − λi)−mij

(z − λi)−1
. . .

...
. . . (z − λi)−2

(z − λi)−1



,

and hence using (2.9),

mi,j∑

k=1

Si,j,k(z − λi)−k = Vij(zI − Jij)−1W ∗ij .

We can now rewrite (2.8) and state Keldysh’s theorem in the following form.

Theorem 2.8 (Keldysh). Let F ∈ H(Ω,Cn×n) be regular on a non-
empty domain Ω. Let λ1, λ2, . . . , λs be the distinct eigenvalues of F in Ω
of partial multiplicities mi,1 ≥ mi,2 ≥ · · · ≥ mi,di , and define

m =

s∑

i=1

di∑

j=1

mij .

Then there are n × m matrices V and W whose columns are generalized
eigenvectors, and an m×m Jordan matrix J with eigenvalues λi of partial
multiplicities mij , such that

F (z)−1 = V (zI − J)−1W ∗ + R̃(z) (2.12)

for some R̃ ∈ H(Ω,Cn×n). With the matrices defined in (2.10)–(2.11),

J = diag(J1, . . . , Js), Ji = diag(Ji,1, . . . , Ji,di),

V = [V1, . . . , Vs], Vi = [Vi,1, . . . , Vi,di ],

W = [W1, . . . ,Ws], Wi = [Wi,1, . . . ,Wi,di ].

Let us briefly consider two special cases of Theorem 2.8. Assume that all
eigenvalues λi of F are semisimple, that is, mi,1 = · · · = mi,di = 1. Then
the matrix J will be diagonal with each eigenvalue λi appearing exactly di
times. Further, if all λi of F are simple (i.e. d1 = · · · = ds = 1), then J is
an s× s diagonal matrix with distinct eigenvalues, and we have

F−1(z) =
s∑

i=1

(z − λi)−1vi0wi∗0 + R̃(z),

where vi0 and wi0 are right and left eigenvectors, respectively, satisfying
wi∗0 F

′(λi)vi0 = 1.
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Theorem 2.8 shows that, up to a holomorphic additive term, the behaviour
of the resolvent F−1(z) at the eigenvalues λi is captured by the inverse of a

shifted Jordan matrix. In the linear case F (z) = zI − A, we can set R̃ ≡ 0
in (2.12) and choose V as a basis of n = m generalized eigenvectors and
W ∗ = V −1, resulting in the standard Jordan decomposition A = V JV −1. In
the nonlinear case, however, V and W can have an arbitrary (but identical)
number m of columns which need not be linearly independent.

Example 2.9. Consider again the matrix-valued function F in (2.1) and
let Ω be the disc of centre 0 and radius 3. Then F has eigenvalues

{0,−
√

2π,
√

2π,−i
√

2π, i
√

2π}
inside Ω, all simple except the eigenvalue 0, which has algebraic multiplicity
two and geometric multiplicity one. It follows from Examples 2.4 and 2.6
that the matrices J, V,W of Theorem 2.8 are given by

J = diag

([
0 1
0 0

]
,−
√

2π,
√

2π,−i
√

2π, i
√

2π

)
, (2.13)

V =

[
1 1 1 1 1 1
−1 −1 −1 −1 −1 −1

]
, (2.14)

W =
1

2

[
−2i 2i −i√

2π
i√
2π

1√
2π

−1√
2π

2i −2i i√
2π

−i√
2π

−1√
2π

1√
2π

]
.

Hence

F (z)−1 =

[
−g(z) g(z)
g(z) −g(z)

]
+ R̃(z), g(z) =

3iz4 − 4iπ2

z2(z4 − 4π2)
.

2.5. Invariant pairs

Invariant pairs play an important role in the analysis of NEPs and the
derivation of algorithms. Assume again that F ∈ H(Ω,Cn×n) on a non-
empty domain Ω ⊆ C. Then by the Cauchy integral formula (Ahlfors 1953,
Chapter 4.2) we have the representation

F (k)(µ) =
k!

2πi

∫

Γ

F (z)

(z − µ)k+1
dz,

where Γ ⊂ Ω is a contour containing the point µ in its interior. This formula
is the basis for the concept of invariant pairs as defined by Beyn, Effenberger
and Kressner (2011) and further advocated in Effenberger (2013a).

Definition 2.10 (invariant pair). A pair (V,M) ∈ Cn×m × Cm×m is
called an invariant pair for F ∈ H(Ω,Cn×n) if F(V,M) = O, where

F(V,M) :=
1

2πi

∫

Γ
F (z)V (zI −M)−1 dz ∈ Cn×m.
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Here Γ is a contour containing the eigenvalues of M in its interior.

Note that F ∈ H(Ω,Cn×n) can always be written in the ‘split form’

F (z) = f1(z)C1 + f2(z)C2 + · · ·+ f`(z)C` (2.15)

with at most ` = n2 coefficient matrices Cj and scalar functions fj ∈
H(Ω,C) (one for each matrix entry). In many cases, F is naturally given
in this form and `� n2. Clearly, an invariant pair (V,M) for F satisfies

F(V,M) = C1V f1(M) + C2V f2(M) + · · ·+ C`V f`(M) = O, (2.16)

where each

fj(M) =
1

2πi

∫

Γ
fj(z)(zI −M)−1 dz

is a matrix function. Hence invariant pairs can be seen as a generalization
to NEPs of invariant subspaces for a single matrix, and standard pairs for
matrix polynomials (Gohberg, Lancaster and Rodman 2009). The next res-
ult shows that invariant pairs can easily be constructed from root functions;
see for example Gohberg, Kaashoek and van Schagen (1993).

Lemma 2.11. Let

v(z) =

m−1∑

j=0

(z − λ)jvj

be a root function for F ∈ H(Ω,Cn×n) at λ of multiplicity larger than or
equal to m. Define

V = [v0, v1, . . . , vm−1] ∈ Cn×m

and let

J =




λ 1

λ
. . .
. . . 1

λ


 ∈ Cm×m

be the m×m Jordan block for λ. Then (V, J) is an invariant pair for F .

Proof. By the Jordan-form definition of a matrix function (Higham 2008,
Definition 1.2) we have

(zI − J)−1 =

m−1∑

k=0

(z − λ)−(k+1)Ek,
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where J = λI + E. Therefore,

F(V, J) =
1

2πi

∫

Γ
F (z)V (zI − J)−1 dz

=

m−1∑

k=0

(
1

2πi

∫

Γ

F (z)

(z − λ)k+1
dz

)
V Ek

=
m−1∑

k=0

F (k)(λ)

k!
V Ek.

For j = 1, 2, . . . ,m, the jth column of F(V, J) is

j−1∑

k=0

F (k)(λ)

k!
vj−k,

which is equal to the derivative
(

dj−1

dzj−1
F (z)v(z)|z=λ

)/
(j − 1)!;

see (2.3). By the definition of a root function this derivative is zero for
j = 1, 2, . . . ,m, hence F(V, J) = O.

By the block structure of the matrices V and J defined in Theorem 2.8,
we immediately find that (V, J) is an invariant pair. An invariant pair
(V,M) as defined in Definition 2.10 may contain redundant information as,
for example, ([V, V ], diag(M,M)) is an invariant pair of at least twice the
necessary size. Also, any (V,M) with V = O is a trivial invariant pair. The
following concept of minimal pairs prevents such anomalies.

Definition 2.12 (minimal pair, minimality index). A pair (V,M) ∈
Cn×m × Cm×m is called minimal if there is an integer p such that

rankVp(V,M) = m,

where

Vp(V,M) =




V
VM

...
VMp−1


. (2.17)

The smallest such p is called the minimality index of the pair (V,M).

For the matrix-valued function F ∈ H(Ω,C2×2) in (2.1), the pair (V, J)
with J, V as in (2.13)–(2.14) is a minimal invariant pair with minimality
index 6. Note that the minimality index of an invariant pair (V,M) is
generically equal to one when m ≤ n. The following result gives a simple
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lower and upper bound on the minimality index. The lower bound appears
in Beyn (2012, Lemma 5.1) and the upper bound in Kressner (2009).

Lemma 2.13. Let Ω ⊆ C be a non-empty domain containing all distinct
eigenvalues λ1, λ2, . . . , λs of F ∈ H(Ω,Cn×n), where each λi is of geometric
multiplicity di and has corresponding partial multiplicities mi,1 ≥ mi,2 ≥
· · · ≥ mi,di . In addition let (V,M) ∈ Cn×m × Cm×m be an invariant pair
with V,M , and m as defined in Theorem 2.8. Then the minimality index p
of (V,M) satisfies

s∑

i=1

mi,1 ≤ p ≤ m.

Let (V,M) be a minimal invariant pair for F with minimality index p,
and write F in the form (2.15). If M = UTU∗ is the Schur decomposition
of M , then on using fj(M) = Ufj(T )U∗ we have that (2.16) is equivalent to

F(V U, T ) =
∑̀

j=1

CjV Ufj(T ) = O,

that is, (V U, T ) is an invariant pair for F and it is also minimal since
Vp(V U, T ) = Vp(V,M)U . If we let v = V Ue1, then v 6= 0 because

Vp(V U, T )e1 = [1, t11, . . . , t
p−1
11 ]T ⊗ v 6= 0

since Vp(V U, T ) is of full column rank. Now, t11 = λ is an eigenvalue of M
and V Ufj(λ)e1 = fj(λ)V Ue1 = fj(λ)v so that

F(V U, T )e1 =
∑̀

j=1

CjV Ufj(T )e1 =
∑̀

j=1

fj(λ)Cjv = 0,

showing that λ is also an eigenvalue of F .

Lemma 2.14. If (V,M) is a minimal pair for F ∈ H(Ω,Cn×n), then the
eigenvalues of M are eigenvalues of F .

The following theorem summarizes the correspondence between (minimal)
invariant pairs and Jordan chains for F at λ. Results of this type have been
derived by Gohberg et al. (1993, Lemma 2.1), Beyn et al. (2011, Proposi-
tion 2.4) and Effenberger (2013a, Theorem 3.1.13).

Theorem 2.15. Let λ1, . . . , λs be distinct eigenvalues of F ∈ H(Ω,Cn×n)
and consider a matrix V = [V1, . . . , Vs] with

Vi =
[
Vi,1, . . . , Vi,d̂i

]
and Vij =

[
vij0 , v

ij
1 , . . . , v

ij
m̂ij−1

]
,

with all vij0 6= 0. Then the columns of every Vij form a Jordan chain for F
at λi if and only if (V, J) is an invariant pair with a block Jordan matrix
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J = diag(J1, J2, . . . , Js), where Ji = diag(Ji,1, . . . , Ji,d̂i) and every Jij is an

m̂ij × m̂ij Jordan block for λi. Moreover, (V, J) is minimal if and only if

the vectors vi,10 , vi,20 , . . . , vi,d̂i0 are linearly independent for all i = 1, 2, . . . , di.

Note that we have not made any explicit assumptions on the integers
d̂i and m̂ij in Theorem 2.15. If we assume that d̂i equals the geometric
multiplicity of each λi, then if (V, J) is a minimal pair the columns of each Vi
in Theorem 2.15 form a complete system of Jordan chains. In this case the
algebraic multiplicities of the eigenvalues of J coincide with the algebraic
multiplicities of the corresponding eigenvalues of F . This gives rise to the
following definition.

Definition 2.16 (complete invariant pair). An invariant pair (V,M)
of F ∈ H(Ω,Cn×n) is called complete if it is minimal and the algebraic mul-
tiplicities of the eigenvalues of M are the same as the algebraic multiplicities
of the corresponding eigenvalues of F .

Complete invariant pairs have been introduced by Kressner (2009) under
the name simple invariant pairs. We prefer to use the term complete as it
better aligns with the terminology of a complete system of Jordan chains in
Definition 2.3.

2.6. Nonlinear Rayleigh functionals

Nonlinear Rayleigh functionals are the generalization of Rayleigh quotients
for matrices. Duffin (1955) introduces them for symmetric overdamped
quadratic eigenvalue problems. They are generalized to larger classes of
Hermitian NEPs in Rogers (1964), Hadeler (1967) and Voss (2009), and to
general NEPs in Schreiber (2008) and Schwetlick and Schreiber (2012).

Let λ be an eigenvalue of the matrix-valued function F ∈ H(Ω,Cn×n)
with corresponding right and left eigenvectors v and w. For some ρ > 0 and
ε < π/2, let

Dλ,ρ = {z ∈ C : |z − λ| ≤ ρ},
Kε(v) = {x ∈ Cn \ {0} : ∠(x, v) ≤ ε}

be neighbourhoods of λ and v, respectively. Here ∠(x, v) denotes the angle
between the nonzero vectors x and v, that is,

∠(x, v) = cos−1
|v∗x|
‖x‖2‖v‖2

.

A functional

p : Kε(v)×Kε(w) 3 (x, y) 7→ p(x, y) ∈ Dλ,ρ
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is a two-sided nonlinear Rayleigh functional if the following conditions hold:

p(αx, βy) = p(x, y) for all nonzero α, β ∈ C, (2.18)

y∗F (p(x, y))x = 0, (2.19)

y∗F ′(p(x, y))x 6= 0. (2.20)

The condition (2.20) restricts the functional to vectors close to eigenvectors
corresponding to a simple eigenvalue.

The next result, which appears in Schwetlick and Schreiber (2012, The-
orem 5), concerns the local uniqueness of p(x, y) and bounds the distance of
p(x, y) to the exact eigenvalue in terms of the angles between eigenvectors
and approximations to eigenvectors.

Theorem 2.17. Let λ be a simple eigenvalue of F ∈ H(Ω,Cn×n) with
corresponding right and left eigenvectors v and w normalized to have unit
2-norms. Let ρ > 0 be such that Dλ,ρ ⊂ Ω. Then there exist constants

0 < ρ0 ≤ ρ, 0 < ε0 < π/2 such that for all (x, y) ∈ Kε0(v) × Kε0(w) there
exists a unique p(x, y) ∈ Dλ,ρ0 satisfying y∗F (p(x, y))x = 0 and

|p(x, y)− λ| ≤ 8

3

‖F (λ)‖2
|y∗F ′(p(x, y))x| tan(∠(x, v)) tan(∠(y, w)).

It then follows from Theorem 2.17 that p(v, w) = λ, that is, p(v, w) is an
eigenvalue of F .

Example 2.18. Let F be the matrix-valued function defined in (2.1), and
let Ω be the disc with centre 0 and radius 3. If we let x =

[
x1
x2

]
and y =

[
y1
y2

]

then the condition (2.20) is equivalent to p(x, y) 6= 0 and y1x1 6= 0. Now if
y1x1 6= 0, (2.19) can be rewritten as

eip(x,y)
2

= −y1x2 + y2x1 + y2x2
y1x1

so that

ip(x, y)2 = log

(
−y1x2 + y2x1 + y2x2

y1x1

)
+ 2πki, k = 0,±1,±2, . . .

for any complex logarithm function log. Hence the set of two-sided nonlinear
Rayleigh functionals for F is given by

p(x, y) =

√
−i log

(
−y1x2 + y2x1 + y2x2

y1x1

)
+ 2πk, k = 0,±1,±2, . . . ,

where for a complex number z = ρ eiθ,
√
z = ±√ρ eiθ/2. Note that the

functional p(x, y) satisfies (2.18).
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When x = v and y = w are right and left eigenvectors for F with v =
w =

[
1
−1
]
, we recover the set of nonzero eigenvalues of F ,

p(v, w) = ±
√

2πk, k = ±1,±2, . . . ,

where we excluded p(v, w) = 0 corresponding to k = 0 since (2.20) implies
that p(v, w) 6= 0.

Schreiber (2008) shows that the nonlinear Rayleigh functional p is sta-
tionary at the eigenvectors (v, w), that is,

|p(v +∆v,w +∆w)− λ| = O((‖∆v‖2 + ‖∆w‖2)2),
where λ = p(v, w). In other words, the first-order terms in a perturbation
expansion of p at the eigenvectors (v, w) vanish identically.

2.7. Some perturbation results

It is often of interest, for example in sensitivity analysis and also in nu-
merical computing, to give simple regions in which the eigenvalues of F are
located. Probably the most famous result for linear eigenvalue problems is
Gershgorin’s theorem; see Horn and Johnson (1991, Chapter 6). Bindel and
Hood (2013, Theorem 3.1) provide a generalization for NEPs.

Theorem 2.19 (Gershgorin’s theorem for NEPs). Let F (z) = D(z)+
E(z) with D,E ∈ H(Ω,Cn×n) and D diagonal. Then, for any 0 ≤ α ≤ 1,

Λ(F ) ⊂
n⋃

j=1

Gα
j ,

where Gα
j is the jth generalized Gershgorin region

Gα
j =

{
z ∈ Ω : |djj(z)| ≤ rj(z)αcj(z)1−α

}

and rj(z), cj(z) are the jth absolute row and column sums of E, that is,

rj(z) =
n∑

k=1

|ejk(z)|, cj(z) =
n∑

k=1

|ekj(z)|.

Moreover, if U is a bounded connected component of
⋃n
j=1Gα

j such that

U ⊂ Ω, then U contains the same number of eigenvalues of F and D. Fur-
thermore, if U includes p connected components of the Gershgorin regions,
it must contain at least p eigenvalues of F .

Also of interest is the sensitivity of an eigenvalue λ of F ∈ H(Ω,Cn×n)
under small perturbations ∆F ∈ H(Ω,Cn×n). To address this point, we
assume that λ is a nonzero simple eigenvalue with right eigenvector v and left
eigenvector w. We consider F expressed as in (2.15) with the perturbation

∆F (z) = f1(z)∆C1 + f2(z)∆C2 + · · ·+ f`(z)∆C` ∈ H(Ω,Cn×n). (2.21)
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To measure the sensitivity of λ, we can use the normwise condition number

κ(λ, F ) = lim sup
ε→0

{ |∆λ|
ε|λ| :

(
F (λ+∆λ) +∆F (λ+∆λ)

)
(v +∆v) = 0,

‖∆Cj‖2 ≤ εαj , j = 1, . . . , `

}
, (2.22)

where the αj are nonnegative parameters that allow freedom in how per-
turbations are measured – for example, in an absolute sense (αj = 1) or in
a relative sense (αj = ‖Cj‖2). By setting αj = 0 we can force ∆Cj = 0 and
thus keep Cj unperturbed.

Theorem 2.20. The normwise condition number κ(λ, F ) in (2.22) is

κ(λ, F ) =

(∑`
j=1 αj |fj(λ)|

)
‖v‖2‖w‖2

|λ| |w∗F ′(λ)v| .

Proof. By expanding the first constraint in (2.22) and keeping only the
first-order terms, we get

∆λF ′(λ)v + F (λ)∆v +∆F (λ)v = O(ε2).

Premultiplying by w∗ leads to

∆λw∗F ′(λ)v + w∗∆F (λ)v = O(ε2).

Since λ is a simple eigenvalue, we have from (2.5) that w∗F ′(λ)v 6= 0. Thus

∆λ = −w
∗∆F (λ)v

w∗F ′(λ)v
+O(ε2)

and so

|∆λ|
ε|λ| ≤

(∑`
j=1 αj |fj(λ)|

)
‖w‖2‖v‖2

|λ| |w∗F ′(λ)v| +O(ε).

Hence the expression on the right-hand side of κ(λ, F ) in the theorem is an
upper bound for the condition number. To show that this bound can be
attained we consider the matrix H = wv∗/(‖w‖2‖v‖2), for which

‖H‖2 = 1, w∗Hv = ‖v‖2‖w‖2.
Let

∆Cj = εαj
fj(λ)

|fj(λ)|H, j = 1, . . . , `.

Then all the norm inequalities in (2.22) are satisfied as equalities and

|w∗∆F (λ)v| = ε

(∑̀

j=1

αj |fj(λ)|
)
‖w‖2‖v‖2.
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Dividing by ε|λ| |w∗F ′(λ)v| and taking the limit as ε→ 0 gives the desired
equality.

Pseudospectra are another established tool for gaining insight into the
sensitivity of the eigenvalues of a matrix to perturbations; see Trefethen
and Embree (2005) and the references therein. The ε-pseudospectrum of
F ∈ H(Ω,Cn×n) is the set

Λε(F ) =
⋃

∆F∈H(Ω,Cn×n)
‖∆F‖<ε

Λ(F +∆F ), (2.23)

where, for example,

‖∆F‖ = ‖∆F‖Ω := sup
z∈Ω
‖∆F (z)‖2. (2.24)

If F is expressed as in (2.15), then we can consider perturbations ∆F of the
form (2.21) and measure them using

‖∆F‖ = ‖∆F‖max := max
1≤j≤`

‖∆Fj‖2/αj , (2.25)

where the αj are nonnegative parameters defined as for (2.22). Other meas-
ures of the perturbations can be used too; see for example Tisseur and
Higham (2001), Higham and Tisseur (2002) and Michiels, Green, Wagen-
knecht and Niculescu (2006).

The following characterizations of Λε(F ) (see Bindel and Hood 2013, Pro-
position 4.1, and Michiels et al. 2006, Theorem 1) provide an easy way to
check whether a point z ∈ Ω is in the ε-pseudospectrum of F or not.

Theorem 2.21. Let F ∈ H(Ω,Cn×n). Then, for Λε(F ) defined by (2.23),

Λε(F ) =
{
z ∈ Ω : ‖F (z)−1‖2 > (εf(z))−1

}
,

where f(z) = 1 when the perturbations are measured using (2.24), and

f(z) =
∑`

j=1 αj |fj(z)| when the perturbations are measured using (2.25).

The ε-pseudospectrum is connected to the backward error of an approx-
imate eigenvalue λ̃ of F defined by

ηF (λ̃) = min
v∈Cn
v 6=0

ηF (λ̃, v), (2.26)

where

ηF (λ̃, v) = min
{
ε : (F (λ̃) +∆F (λ̃))v = 0, ‖∆F‖ ≤ ε

}

with perturbations measured using, for example, (2.24) or (2.25). Then, by
comparing the definitions (2.23) and (2.26), we have that

Λε(F ) = {z ∈ Ω : ηF (z) < ε}.
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Figure 2.22. Spectral portrait of the matrix-valued function F defined in (2.1).
The bar shows the mapping of colours to log10 of the resolvent norm, that is, the
mapping z 7→ log10 ‖F (z)−1‖2.

For an approximate eigenpair (λ̃, ṽ) of F and for perturbations measured
using (2.25), a straightforward generalization of Tisseur (2000, Theorem 1

and Lemma 3) leads to explicit expressions for ηF (λ̃, ṽ) and ηF (λ̃),

ηF (λ̃, ṽ) =
‖F (λ̃)ṽ‖2
f(λ̃) ‖ṽ‖2

and ηF (λ̃) =
1

f(λ̃) ‖F (λ̃)−1‖2
,

where f(λ̃) =
∑`

j=1 αj |fj(λ̃)|.

Example 2.23. Let us consider once more the function F from (2.1), now
rewritten in the form

F (z) = eiz
2

[
1 0
0 0

]
+

[
0 1
1 1

]
=: f1(z)C1 + f2(z)C2.

An easy computation shows that the nonzero eigenvalues of F , λk = ±
√

2πk,
k = ±1,±2, . . . , have small condition numbers

κ(λk, F ) =
1 +

√
1 + (3 + 51/2)/2

2π|k| ,

and these condition numbers get smaller as k increases in modulus. This is
confirmed by the spectral portrait in Figure 2.22, which shows that nonzero
eigenvalues of F move only slightly even under very large perturbations
of F . The zero eigenvalue is defective and more sensitive to perturbations.
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The largest possible real part of points in the ε-pseudospectrum of F is
called the ε-pseudospectral abscissa of F , that is,

αε(F ) = max{Re (z) : z ∈ Λε(F )}.
This quantity is of particular interest for NEPs associated with systems
of differential equations such as the DDE (1.1), since perturbations of size
ε may cause the system to become unstable whenever αε(F ) ≥ 0. The
distance to instability of a stable system associated with F can then be
defined as

δ(F ) = inf{ε : αε(F ) ≥ 0}.
Algorithms to compute αε(F ) can be found in Michiels and Guglielmi (2012)
and Verhees et al. (2014).

3. Hermitian NEPs

A matrix-valued function F (z) is said to be Hermitian if F (z̄) = F (z)∗ for
all z ∈ C. It is easily seen that the eigenvalues of a Hermitian F are either
real or they come in pairs (λ, λ̄). If v and w are right and left eigenvectors
of F for the eigenvalue λ ∈ C, then w and v are right and left eigenvectors
of F for the eigenvalue λ̄, whereas if λ is a real eigenvalue of F for the right
eigenvector v, then v is also a left eigenvector for the eigenvalue λ.

As for Hermitian linear eigenvalue problems, variational principles for real
eigenvalues of Hermitian NEPs exist, as we now discuss. For this we assume
that the assumptions (A1)–(A3) below hold.

(A1) The matrix-valued function F : R ⊇ I → Cn×n is Hermitian and
continuously differentiable on the open real interval I.

(A2) For every x ∈ Cn \ {0}, the real nonlinear equation

x∗F (p(x))x = 0 (3.1)

has at most one real solution p(x) ∈ I.

Note that (3.1) defines implicitly the one-sided generalized Rayleigh func-
tional p on some open subset K(p) ⊆ Cn \ {0}. When the Rayleigh func-
tional p is defined on the whole space Cn \{0}, the NEP F (λ)v = 0 is called
overdamped.

(A3) For every x ∈ K(p) and any z ∈ I such that z 6= p(x),

(z − p(x))(x∗F (z)x) > 0, (3.2)

that is, x∗F (z)x is increasing at z = p(x).

When F is overdamped, assumption (A3) holds if x∗F ′(p(x))x > 0 for
all x ∈ Cn \ {0}. Moreover, if F is overdamped and twice continuously
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differentiable, and x∗F ′′(p(x))x 6= 0 for all x ∈ Cn \ {0}, then (3.2) is
equivalent to x∗F ′(p(x))x > 0 for all x ∈ Cn \ {0} (Szyld and Xue 2016,
Proposition 2.4).

Let λ ∈ I be an eigenvalue of F ; then λ is called a kth eigenvalue of
F if µ = 0 is the kth largest eigenvalue of the Hermitian matrix F (λ).
The next result, which can be found in Hadeler (1968), Voss and Werner
(1982) and Voss (2009), provides a minmax characterization and a maxmin
characterization of the real eigenvalues of F .

Theorem 3.1 (nonlinear variational principle). Assume the matrix-
valued function F satisfies (A1)–(A3). Then F has at most n eigenvalues
in I. Moreover, if λk is a kth eigenvalue of F , then

λk = min
V ∈Sk

V ∩K(p)6=∅

max
x∈V ∩K(p)

x 6=0

p(x) ∈ I, (3.3)

λk = max
V ∈Sk−1

V ⊥∩K(p)6=∅

min
x∈V ⊥∩K(p)

x 6=0

p(x) ∈ I, (3.4)

where Sj denotes the set of all subspaces of Cn of dimension j.

The characterization of the eigenvalues in (3.3) is a generalization of the
minmax principle of Poincaré (1890) for linear eigenvalue problems and
that in (3.4) is a generalization of the maxmin characterization of Courant
(1920), Fischer (1905) and Weyl (1912).

When F satisfies (A1)–(A3) and is overdamped, then there exist exactly
n eigenvalues λ1, λ2, . . . , λn of F in I, and it follows from Theorem 3.1 that
λ1 ≤ λ2 ≤ · · · ≤ λn, thereby offering an ordering of the real eigenvalues
of F in I. The variational principle can be used to derive an interesting
property of eigenvalue approximations obtained by projecting F onto low-
dimensional spaces; see Szyld and Xue (2016, Theorem 2.7).

Theorem 3.2 (nonlinear Cauchy interlacing theorem). Assume that
F satisfies (A1)–(A3) and is overdamped, with eigenvalues λ1 ≤ λ2 ≤ · · · ≤
λn ∈ I. Let U ∈ Cn×k be of full column rank. Then the projected matrix-
valued function U∗F (z)U has exactly k eigenvalues satisfying the nonlin-
ear variational principle, and if µj is the jth eigenvalue of U∗F (z)U then
λj ≤ µj ≤ λn−k+j .

The nonlinear Cauchy interlacing theorem and the variational principle
in Theorem 3.1 allow the development of special algorithms for Hermitian
NEPs satisfying the assumptions (A1)–(A3) in Section 4.6.

Example 3.3. Let us consider the loaded string problem with F defined
in (1.3). The associated quadratic matrix polynomial

Q(z) = −(z − 1)F (z) = z2C2 − z(C1 + C2 + C3) + C1
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is hyperbolic, since its leading matrix coefficient C2 is positive definite and
the scalar equation x∗Q(z)x = 0 has two distinct real roots (Al-Ammari
and Tisseur 2012, Theorem 3.4). As a result, Q has only real eigenvalues.
But clearly, if λ is an eigenvalue of F , then it is an eigenvalue of Q. Hence
F has only real eigenvalues. For n = 100 the first nine eigenvalues of F
greater than 1 are given to 10 digits by

λ1 = 4.482176546, λ2 = 24.22357311, λ3 = 63.72382114,

λ4 = 123.0312211, λ5 = 202.2008991, λ6 = 301.3101627,

λ7 = 420.4565631, λ8 = 559.7575863, λ9 = 719.3506601

(3.5)

(see Solov′ëv 2006), and there is also an eigenvalue smaller than 1,

λ0 = 0.45731848895. (3.6)

Compared to F , Q has n− 1 extra eigenvalues at z = 1.
It is easy to check that property (A1) holds on the interval I = (1,+∞).

If we let

a(x) = x∗C2x, b(x) = −x∗(C1 + C2 + C3)x, c(x) = x∗C1x,

then

p(x) =
−b(x) +

√
b2(x)− 4a(x)c(x)

2a(x)
> 1

is well defined for every x ∈ Cn \ {0} since a(x) > 0, and it is the only root
of x∗F (p(x))x = 0 in I. Hence property (A2) holds and F is overdamped
on I. Now,

x∗F ′(z)x = −x∗C2x−
1

(z − 1)2
x∗C3x < 0

for all x ∈ Cn \ {0}, so that property (A3) holds for −F (z). As a res-
ult, the eigenvalues of F in I satisfy the nonlinear variational principle in
Theorem 3.1.

4. Solvers based on Newton’s method

Newton’s method is a natural approach to compute eigenvalues or eigen-
pairs of NEPs efficiently and accurately provided that good initial guesses
are available. The choice of an initial guess is typically the only cru-
cial parameter of a Newton-type method, which is a great advantage over
other NEP solution approaches. As a result, many algorithmic variants
have been developed and applied over the years, including the Newton-
QR iteration of Kublanovskaya (1970) and its variant in Garrett, Bai and
Li (2016), the Newton-trace iteration of Lancaster (1966), nonlinear in-
verse iteration (Unger 1950), residual inverse iteration (Neumaier 1985),
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Rayleigh functional iterations (Lancaster 1961, Schreiber 2008), the block
Newton method of Kressner (2009), and for large sparse NEPs, Jacobi–
Davidson-type methods (Betcke and Voss 2004, Sleijpen, Booten, Fokkema
and van der Vorst 1996).

Generally speaking, there are two broad ways the NEP F (λ)v = 0 can be
tackled by a Newton-type method. First, one can apply Newton’s method to
a scalar equation f(z) = 0 whose roots correspond to the wanted eigenvalues
of F , or second, Newton’s method can be applied directly to the vector
problem F (λ)v = 0 together with some normalization condition on v. We
discuss both approaches.

4.1. Newton’s method for scalar functions

For a given initial guess λ(0), Newton’s method for finding the roots of a
scalar equation f(z) = 0 is given by

λ(k+1) = λ(k) − f(λ(k))

f ′(λ(k))
, k = 0, 1, . . . . (4.1)

This iteration has local quadratic convergence to simple roots (Wilkinson
1965, Section 7.25). In order to apply it to the solution of an NEP F (λ)v =
0, we only need a scalar function f whose roots are the eigenvalues of F ,
and its derivative f ′. Different methods result from different choices of f .

Probably the most obvious choice is

f(z) = detF (z).

The trace theorem (e.g. Lancaster 1966, Theorem 5.1), states that if the
entries of F (z) are differentiable functions of z, then for any z ∈ C for
which f(z) = detF (z) 6= 0 we have

f ′(z) = detF (z) trace(F−1(z)F ′(z)), (4.2)

and so the Newton iteration (4.1) can be rewritten as

λ(k+1) = λ(k) − 1

trace(F−1(λ(k))F ′(λ(k)))
, k = 0, 1, . . . . (4.3)

We refer to (4.3) as the Newton-trace iteration (Lancaster 1966, Section 5.5);
see also Khazanov and Kublanovskaya (1988). Note that we only need the
diagonal entries of F−1(λ(k))F ′(λ(k)). Nevertheless, with a straightforward
implementation each iteration requires the factorization of an n× n matrix
F (λ(k)) and 2n triangular solves, making it a rather expensive method.
A basic MATLAB implementation of the Newton-trace iteration (4.2) is
provided in Figure 4.1, where we use a simple stopping criterion based on
the relative residual |f(λ(k))|/‖F (λ(k))‖F .

Kublanovskaya (1970) proposes applying Newton’s method to

f(z) = rnn(z),



The nonlinear eigenvalue problem 29

% Newton_trace

F = @(z) [exp(1i*z.^2) 1; 1 1];

Fp = @(z) [2i*z*exp(1i*z.^2) 0; 0 0];

tol = 1e-8; maxit = 20; lam = 2.2 + 1e-4i;

for k = 0:maxit

[L,U] = lu(F(lam));

if abs(prod(diag(U)))/norm(F(lam),'fro')<tol, break, end

corr = trace(U\(L\Fp(lam)));

lam = lam - 1/corr;

end

if k < maxit, nbr_iter = k, lambda = lam, end

Figure 4.1. Basic MATLAB implementation of the Newton-trace iteration (4.3) for
problem (2.1). The NEP parameters F and F ′ are specified in lines 2–3 and the
method’s parameters in line 4. Upon convergence, lambda is the eigenvalue and
nbr iter the number of iterations.

where rnn(z) is the bottom-right entry of the R factor in a rank-revealing
QR decomposition of F (z),

F (z)Π(z) = Q(z)R(z), (4.4)

with Π(z) being a permutation matrix which ensures that rnn(z) becomes
zero before any other diagonal entry does; see also Kublanovskaja (1969).
Since rnn(z) = 0 is equivalent to detF (z) = detR(z) = 0, we know that the
roots of f(z) are exactly the roots of detF (z) = 0.

The permutation Π(z) in (4.4) is not a continuous function of z, but in a
small neighbourhood of an approximate eigenvalue λ(k) of F the permuta-
tion can be kept constant. So if we let

F (λ(k))Π = QkRk = Qk

[
R

(k)
11 r

(k)
12

0 r
(k)
nn

]
, (4.5)

then in a small neighbourhood of λ
(k)
k we can use

F (z)Π = Q(z)R(z) = Q(z)

[
R11(z) r12(z)

0 rnn(z)

]

with Q(λ(k)) = Qk and R(λ(k)) = Rk. Garrett et al. (2016) show that

rnn(z) = r(k)nn + eTnQ
∗
kF
′(λ(k))Π

[
−p
1

]
(z − λ(k)) +O(|z − λ(k)|2),
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% Newton_QR

n = 2; F = @(z) [exp(1i*z.^2) 1; 1 1];

Fp = @(z) [2i*z*exp(1i*z.^2) 0; 0 0];

tol = 1e-8; maxit = 20; lam = 2.2 + 1e-4i;

for k = 0:maxit

[Q,R,P] = qr(F(lam));

if abs(R(n,n))/norm(F(lam),'fro') < tol, break, end

p = R(1:n-1,1:n-1)\R(1:n-1,n);

lam = lam - R(n,n)/(Q(:,n)'*Fp(lam)*P*[-p; 1]);

end

if k < maxit, nbr_iter = k, lambda = lam, end

Figure 4.2. Basic MATLAB implementation of the Newton-QR iteration for prob-
lem (2.1). The NEP parameters F and F ′ are specified in lines 2–3 and the method’s
parameters in line 4. Upon convergence, lambda is the eigenvalue and nbr iter

the number of iterations.

where en = [0, . . . , 0, 1]T and p solves R
(k)
11 p = r

(k)
12 , and therefore

r′nn(λ(k)) = eTnQ
∗
kF
′(λ(k))Π

[
−p
1

]
.

This leads to the Newton-QR iteration for a root of rnn(z),

λ(k+1) = λ(k) − rnn(λ(k))

r′nn(λ(k))
= λ(k) − r

(k)
nn

eTnQ
∗
kF
′(λ(k))Π

[−p
1

] . (4.6)

At convergence, we can take

v = Π

[
−p
1

]
, w = Qken

as approximations for the right and left eigenvectors of the converged ap-
proximate eigenvalue, respectively.

A basic MATLAB implementation of the Newton-QR iteration (4.6) is
given in Figure 4.2. It requires the repeated computation of a rank-revealing
QR factorization of F (λ(k)) and hence is only feasible for problems of moder-
ate size (unless F has some structure that can be exploited; see Section 4.5).
However, the iteration (4.6) can be useful in the context of iterative refine-
ment. Yang (1983) and Wobst (1987) consider an approach similar to that
of Kublanovskaya by using an LU factorization with column pivoting in
place of a rank-revealing QR factorization.
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To avoid working with nearly singular matrices F (λ(k)), Andrew, Chu
and Lancaster (1995) propose using in place of F (z) the bordered matrix

G(z) =

[
F (z) b
cT 0

]
, (4.7)

where b, c ∈ Cn are such that the matrix G(λ) is nonsingular and well-
conditioned at a simple eigenvalue λ. Now if cT v 6= 0 and wT b 6= 0, where
v and w are the right and left eigenvectors of F associated with the ei-
genvalue λ, then G(λ) is nonsingular (Andrew, Chu and Lancaster 1993,
Theorem 10.1). For a vector x such that cTx = 1, the authors introduce
the linear system [

F (z) b
cT 0

] [
x
f

]
=

[
0
1

]
. (4.8)

For z near λ, the matrix G(z) is nonsingular and hence x = x(z) and
f = f(z) are smooth functions of z. By Cramer’s rule we have

f(z) =
detF (z)

detG(z)
, (4.9)

and therefore f(z) = 0 if and only if detF (z) = 0. Differentiating (4.8)
with respect to z leads to

[
F (z) b
cT 0

] [
x′(z)
f ′(z)

]
= −

[
F ′(z)x(z)

0

]
. (4.10)

The BDS method of Andrew et al. (1995) and the implicit determinant
method of Spence and Poulton (2005) consist of applying a Newton iteration
to f in (4.9). The latter method is detailed in Algorithm 4.3, with a basic
MATLAB implementation given in Figure 4.4.

At convergence, x(k) provides an approximation to the right eigenvector v.
Note that the factorization used to solve (4.8) can be re-used to solve (4.10).
Andrew et al. (1995) propose different choices for the vectors b and c leading

Algorithm 4.3: Implicit determinant method

Choose an initial approximate eigenvalue λ(0) and vectors b, c ∈ Cn
such that G(λ(0)) in (4.7) is nonsingular.

for k = 0, 1, . . . until convergence do

Solve (4.8) with z = λ(k) for f(λ(k)) and x(k).

Solve (4.10) with z = λ(k) for f ′(λ(k)) using x(z) = x(k) for the
right-hand side.

Perform the Newton update λ(k+1) = λ(k) − f(λ(k))/f ′(λ(k)).
end
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% Newton_implicit_determinant

n = 2; F = @(z) [exp(1i*z.^2) 1; 1 1];

Fp = @(z) [2i*z*exp(1i*z.^2) 0; 0 0];

tol = 1e-8; maxit = 20; b = [0; 1]; c = b; lam = 2.2 + 1e-4i;

for k = 0:maxit

[L,U] = lu([F(lam) b; c.' 0]);

xf = U\(L\[zeros(n,1); 1]);

if abs(xf(n+1))/norm(F(lam),'fro') < tol, break, end

xfp = U\(L\[-Fp(lam)*xf(1:n); 0]);

lam = lam - xf(n+1)/xfp(n+1);

end

if k < maxit, nbr_iter = k, lambda = lam, end

Figure 4.4. Basic MATLAB implementation of the implicit determinant method
for problem (2.1). The NEP parameters F and F ′ are specified in lines 2–3 and
the method’s parameters in line 4. Upon convergence, lambda is the eigenvalue
and nbr iter the number of iterations.

to the row/column deletion method (b = ei, c = ej , where ek denotes the
kth column of the identity matrix), the column substitution method (b ≈ v,
c = ej), giving the name BDS (bordered, deletion, substitution) for this
class of methods.

Deflation may be necessary when computing several nearby eigenvalues
in order to avoid the Newton iteration converging to an already computed
eigenvalue. Suppose we have already computed m roots λ` (` = 1, . . . ,m)
of f near λ0, each of multiplicity m`. As suggested by Wilkinson (1965,
Section 7.48), we can apply Newton’s method to

f̃(z) =
f(z)∏m

`=1(z − λ`)m`
,

which leads to the iteration

λ(k+1) = λ(k) − f(λ(k))

f ′(λ(k))− f(λ(k))
∑m

`=1(m`/(λ(k) − λ`))
. (4.11)

This strategy has been shown to work well in practice (Garrett et al. 2016).
When the derivative of F is not available, it can be replaced by a finite

difference approximation, leading to a quasi-Newton method. In particular,
the secant method is obtained by using the approximation

F ′(λ(k)) ≈ F (λ(k))− F (λ(k−1))
λ(k) − λ(k−1) . (4.12)

Example 4.5 (basins of attraction). Newton’s method typically requires
a good initial guess λ(0) for the eigenvalue of interest. Let us illustrate
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this with the matrix-valued function F defined in (2.1). Recall that F has
eigenvalues 0, ±

√
2π and ±i

√
2π in the square

Ω = {z ∈ C : −3 ≤ Re (z) ≤ 3, −3 ≤ Im (z) ≤ 3}.
We generate 106 equidistant initial guesses in Ω and for each run the basic
MATLAB codes given in Figures 4.1, 4.2 and 4.4 with tolerance tol = 1e-8

and maxit = 20. All codes use as stopping criterion

|f(λ(k))|
‖F (λ(k))‖F

≤ tol, (4.13)

but f(z) = detF (z) for the Newton-trace iteration, f(z) = rnn(z) for the
Newton-QR iteration, and f(z) = detF (z)/detG(z) for the implicit de-
terminant method. The convergence basins of the Newton iteration for
these three different scalar functions are illustrated in Figure 4.6. For this
particular example and our choice of the parameters b and c for the bordered
matrix (4.7), the convergence basins of the Newton-trace iteration and the
implicit determinant method are rotated versions of each other (at least to
visual accuracy). The basins of convergence for the Newton-QR iteration
are quite different and somewhat smaller. The Newton-trace iteration (4.3)
with F ′(λ(k)) replaced by the secant approximation (4.12) produces basins
of convergence similar to that of Newton’s method for detF (z) = 0 but of
smaller sizes.

4.2. Newton’s method for the vector equation

Newton’s method can be applied directly to the NEP F (λ)v = 0 rather than
to a scalar equation f(z) = 0 whose roots are eigenvalues of F . For this,
a normalization condition on the eigenvector of the form u∗v = 1 for some
nonzero vector u is added to F (λ)v = 0 so as to have n+1 equations for the
n+ 1 unknowns in (λ, v). Note that u∗v = 1 ensures that v is not the zero
vector. This approach is briefly mentioned in Unger (1950) and discussed
further in Ruhe (1973). In order to apply Newton’s method to N

[
v
λ

]
= 0,

where

N
[
v
λ

]
=

[
F (λ)v
u∗v − 1

]
,

we need the Jacobian matrix of the (n+ 1)-dimensional operator N , which
is readily calculated as

JN

[
v
λ

]
=

[
F (λ) F ′(λ)v
u∗ 0

]
.

Newton’s iteration is now given as
[
v(k+1)

λ(k+1)

]
=

[
v(k)

λ(k)

]
−
(
JN

[
v(k)

λ(k)

])−1
N
[
v(k)

λ(k)

]
. (4.14)
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(a) Newton-trace method (b) Newton-QR method

(c) implicit determinant method (d) Newton-trace (secant) method

Figure 4.6. Basins of convergence for various Newton-type methods discussed in
Example 4.5 for problem (2.1). Each initial point in the square region Ω is col-
oured according to the eigenvalue a method is converging to, with the five exact
eigenvalues of the NEP in Ω indicated by white ? symbols. White areas indicate
that no convergence is achieved within 20 iterations or the method converged to
an eigenvalue outside Ω.
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If we assume that the approximate eigenvector v(k) is normalized such that
u∗v(k) = 1 for some nonzero vector u, then (4.14) can be rewritten as

F (λ(k))v(k+1) = −(λ(k+1) − λ(k))F ′(λ(k))v(k), (4.15)

u∗v(k+1) = 1. (4.16)

The Newton iteration (4.15)–(4.16) is equivalent to the nonlinear inverse
iteration (Unger 1950), which is given in Algorithm 4.7 with a basic MAT-
LAB implementation given in Figure 4.8.

Algorithm 4.7: Nonlinear inverse iteration

Choose an initial pair (λ(0), v(0)) with ‖v(0)‖ = 1 and a nonzero
vector u.

for k = 0, 1, . . . until convergence do

Solve F (λ(k))ṽ(k+1) = F ′(λ(k))v(k) for ṽ(k+1).

Set λ(k+1) = λ(k) − u∗v(k)

u∗ṽ(k+1)
.

Normalize v(k+1) = ṽ(k+1)/‖ṽ(k+1)‖.
end

The normalization of v(k+1) is necessary to avoid numerical overflow or
underflow and any vector norm can be used. When λ(k) is close to an
eigenvalue, the matrix F (λ(k)) of the linear system to be solved is nearly
singular. However, standard theory of inverse iteration (see e.g. Ipsen 1997,
Section 6.3, or Peters and Wilkinson 1979, Section 2) shows that the error
in the computed vector ṽ(k+1) will be almost parallel to the exact solution,
that is, the inaccuracy is concentrated in the length of ṽ(k+1) and not its
direction. As it is derived from a Newton iteration, the nonlinear inverse
iteration converges locally and quadratically for any simple eigenpair. The
vector u in (4.16) and in Algorithm 4.7 can be chosen in a number of ways
as discussed below.

• A simple choice is to take u to be the ith unit vector ei, which corresponds
to keeping the ith entry of the vectors v(k) constant.

• To prevent the iteration from converging to previously computed ei-
genpairs, u can be chosen orthogonal to already computed eigenvectors
(Anselone and Rall 1968).

• Choosing u = F (λ(k))∗w(k) , where w(k) is an approximate left eigen-
vector, allows us to rewrite the eigenvalue update as

λ(k+1) = λ(k) − w(k)∗F (λ(k))v(k)

w(k)∗F ′(λ(k))v(k)
,
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% inverse_iteration

n = 2; F = @(z) [exp(1i*z.^2) 1; 1 1];

Fp = @(z) [2i*z*exp(1i*z.^2) 0; 0 0];

tol = 1e-8; maxit = 20; lam = 2.2 + 1e-4i;

v = [1; 1]; v = v/norm(v); u = [1; 0];

for k = 0:maxit-1

if norm(F(lam)*v) < tol, break; end

vt = F(lam)\Fp(lam)*v;

lam = lam - u'*v/(u'*vt)

v = vt/norm(vt);

end

if k < maxit, nbr_iter = k, lambda = lam, end

Figure 4.8. Basic MATLAB implementation of the nonlinear inverse iteration for
problem (2.1). The NEP parameters F and F ′ are specified in lines 2–3 and the
method’s parameters in lines 4–5. Upon convergence, lambda is the eigenvalue and
nbr iter the number of iterations.

which is the generalized Rayleigh quotient iteration that Lancaster (1966)
derived for the polynomial eigenvalue problem.

As mentioned in the third point above, the nonlinear inverse iteration
can be combined with the computation of a left eigenvector, and a two-
sided Rayleigh functional as defined in Section 2.6, to yield the two-sided
Rayleigh functional iteration (Schreiber 2008), given in Algorithm 4.9.

Schreiber (2008) shows that Algorithm 4.9 achieves local cubic conver-
gence for a simple eigentriple (λ, v, w). Note that at each iteration, an LU
factorization of F (λ(k)) used to solve the first linear system can be re-used
to solve the second linear system involving F ∗(λ(k)).

Algorithm 4.9: Two-sided Rayleigh functional iteration

Choose an initial triple (λ(0), v(0), w(0)) with ‖v(0)‖ = ‖w(0)‖ = 1.

for k = 0, 1, . . . until convergence do

Solve F (λ(k))ṽ(k+1) = F ′(λ(k))v(k) for ṽ(k+1).

Set v(k+1) = ṽ(k+1)/‖ṽ(k+1)‖.
Solve F (λ(k))∗w̃(k+1) = F ′(λ(k))∗w(k) for w̃(k+1).

Set w(k+1) = w̃(k+1)/‖w̃(k+1)‖.
Find the root ρ of the scalar equation w(k+1)∗F (ρ)v(k+1) = 0
closest to λ(k) and set λ(k+1) = ρ.

end
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Each step of the nonlinear inverse iteration, Algorithm 4.7, requires the
factorization of F (λ(k)) to solve the linear system, which cannot be re-used
at the next iteration since λ(k) varies. We could replace λ(k) by a fixed
value σ, say σ = λ(0), but then the resulting iteration would converge to
an eigenpair (µ, v) of the linear problem Av = µBv, where A = F (σ) and
B = F ′(λ∗) for some λ∗ ∈ C. If F (z) is linear in z so that F ′(z) is a constant
matrix, we could easily recover an eigenpair (λ, v) of F (λ) from (µ, v), since
F (λ)v = 0 and Av = µBv are directly related eigenvalue problems. This is
not the case if F (z) is truly nonlinear in z.

Neumaier (1985) shows that this difficulty can be avoided by considering
a variant of the nonlinear inverse iteration based on the use of the residual.
If F is twice continuously differentiable, iteration (4.15) can be rewritten as

v(k) − v(k+1) = v(k) − (λ(k+1) + λ(k))F (λ(k))−1F ′(λ(k))v(k)

= F (λ(k))−1(F (λ(k)) + (λ(k+1) − λ(k))F ′(λ(k)))v(k)

= F (λ(k))−1F (λ(k+1))v(k) +O(|λ(k+1) − λ(k)|2).
Ignoring the second-order term leads to an iteration

v(k+1) = v(k) − F (λ(k))−1F (λ(k+1))v(k), (4.17)

where the new approximant λ(k+1) for the eigenvalue λ needs to be determ-
ined beforehand. Neumaier (1985) shows that replacing λ(k) by a fixed shift
σ in (4.17) does not destroy the convergence of the iteration to the wanted
eigenpair. This leads to the residual inverse iteration, the pseudocode of
which is given in Algorithm 4.10.

The initial vector v(0) can be computed by solving

F (σ)ṽ(0) = b, v(0) = ṽ(0)/(u∗ṽ(0))

Algorithm 4.10: Residual inverse iteration

Choose an initial pair (λ(0), v(0)) with u∗v(0) = 1 for some nonzero
vector u. Set σ = λ(0).

for k = 0, 1, . . . until convergence do

Solve for z the scalar equation

u∗F (σ)−1F ′(z)v(k) = 0, (4.18)

and accept as λ(k+1) the root z closest to λ(k).

Solve F (σ)x(k) = F (λ(k+1))v(k) for x(k).

Set v(k+1) = ṽ(k+1)/(u∗ṽ(k+1)), where ṽ(k+1) = v(k) − x(k).
end
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for some nonzero vector b. As suggested by Wilkinson (1965) for the stand-
ard inverse iteration, we can choose u = e, where e is the vector of all ones,
and b = Le, where F (σ) = LU is an LU factorization. Then ṽ(0) = U−1e.
Note that compared with the nonlinear inverse iteration, Algorithm 4.7, in
the residual inverse iteration the eigenvector is updated by solving a linear
system whose right-hand side is the NEP residual, giving its name to the
iteration. Due to the fixed shift σ, the residual inverse iteration converges
only linearly, and in practice, it is advisable to update the shift every now
and then, in particular when the convergence is slow.

4.3. Deflation of computed eigenvalues and eigenpairs

The methods we have described so far are directed towards computing one
eigenvalue or one eigenpair only. In principle, several runs of the same
iteration with different initial guesses could return several eigenpairs, but
special care needs to be taken to prevent the iteration from converging to
already computed eigenpairs. This is what deflation aims to achieve.

A standard deflation technique consists of applying a non-equivalence
transformation to the matrix-valued function F that maps the already com-
puted eigenvalues to infinity. This can be done as follows. Suppose we have
computed ` simple eigenvalues of F , λ1, . . . , λ`, and let xi, yi ∈ Cn be such
that y∗i xi = 1, i = 1, . . . , `. Consider

F̃ (z) = F (z)
∏̀

i=1

(
I − z − λi − 1

z − λi
yix
∗
i

)
. (4.19)

Then it is not difficult to see that

Λ(F̃ ) = Λ(F ) \ {λ1, . . . , λ`} ∪ {∞}.
Indeed, since y∗i xi = 1,

det F̃ (z) = detF (z)
∏̀

i=1

(
1

λi − z

)
,

so that λi is not a root of det F̃ (z) since it is a simple root of detF (z).

With the exception of the eigenvalues λi, i = 1, . . . , `, F̃ and F have the
same finite eigenvalues. Now suppose that F does not have an eigenvalue
at infinity, that is, G(z) = F (1/z) does not have an eigenvalue at zero (see

Remark 2.2), and let G̃(z) = F̃ (1/z). Then from

det G̃(z) = detG(z)
∏̀

i=1

(
z

1− zλi

)

we see that G̃ has ` eigenvalues at zero, and therefore F̃ has ` eigenvalues



The nonlinear eigenvalue problem 39

at infinity. It follows from (4.19) that if ṽ is an eigenvector of F̃ with
eigenvalue λ, then

v =
∏̀

i=1

(
I − z − λi − 1

z − λi
yix
∗
i

)
ṽ (4.20)

is an eigenvector of F associated with the eigenvalue λ. To compute the next
eigenpair of F , we apply any Newton-based method to F̃ (z) and recover the
eigenvector using (4.20).

The choice of the vectors xi and yi affects the basins of convergence of
Newton’s method. A choice that seems to work well in practice is to set xi
and yi to be (approximate) right and left eigenvectors corresponding to λi.
Note that similar deflation strategies have been used in Ferng, Lin, Pierce
and Wang (2001) and Huang, Lin and Mehrmann (2016).

Example 4.11. Using the basic MATLAB implementation of the nonlin-
ear inverse iteration given in Figure 4.8, we obtain an approximation λ̂ =lam

to the eigenvalue λ =
√

2π of the matrix-valued function F in (2.1), which
we move to infinity by constructing

F̃ (z) =

[
eiz

2
1

1 1

](
I − z − λ̂− 1

z − λ̂
yx∗
)
. (4.21)

We consider two choices for x and y:

(a) x = y =
[

1
−1
]
, i.e. x and y are right and left eigenvectors of F at λ,

(b) x = y =
[
0
1

]
.

As in Example 4.5 we generate 106 equidistant initial guesses λ(0) in

Ω = {z ∈ C : −3 ≤ Re (z) ≤ 3, −3 ≤ Im (z) ≤ 3},
and for each λ(0) and v(0) =

[
1
−1
]
, we run the nonlinear inverse iteration

as implemented in Figure 4.8 but with F̃ in place of F . The basins of
convergence are shown in Figure 4.12. The plot on the left corresponds to
the above choice (a) for x and y. It shows that the deflation is successful
as there is no basin of convergence to the point

√
2π. The right plot is

obtained with the above choice (b). In this case the point
√

2π still has

a basin of convergence even if it is no longer an eigenvalue of F̃ . This
unwanted behaviour is likely caused by numerical ill-conditioning of the
matrix F̃ (z) near

√
2π. Indeed, even if an eigenvalue λ is exactly deflated

from F to obtain F̃ and hence det F̃ (z) is nonzero and holomorphic in a

punctured neighbourhood of λ, the matrix F̃ (z) can have two eigenvalues
which converge to zero and infinity, respectively, as z → λ. Special care has
to be taken when working with such ill-conditioned matrices.
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(a) deflation with eigenvectors (b) deflation with non-eigenvectors

Figure 4.12. Basins of convergence for the nonlinear inverse iteration applied to F̃
in (4.21) for two different choices, (a) and (b), of x and y discussed in Example 4.11.
Each initial point in the square region Ω is coloured according to the eigenvalue
the method is converging to, with the exact eigenvalues of the NEP in Ω indicated
by white ? symbols. White areas indicate that no convergence is achieved within
20 iterations or the method converged to an eigenvalue outside Ω.

Another approach proposed by Effenberger (2013b) makes use of minimal
invariant pairs as defined in Section 2.5. Effenberger’s deflation strategy
works as follows. Let F ∈ H(Ω,Cn×n) and suppose that we have already
computed a minimal invariant pair (V,M) ∈ Cn×m×Cm×m for F with min-
imality index p. We want to extend (V,M) into another minimal invariant
pair

(V̂ , M̂) =

([
V x

]
,

[
M b
0 λ

])
∈ Cn×(m+1) × C(m+1)×(m+1)

of one size larger. By Definition 2.10, the pair (V̂ , M̂) is invariant if and

only if F(V̂ , M̂) = O. Since

(zI − M̂)−1 =

[
(zI −M)−1 (zI −M)−1b(z − λ)−1

0 (z − λ)−1

]
,

we have

F(V̂ , M̂) =
[
F(V,M) F (λ)x+ U(λ)b

]

with

U(λ) =
1

2πi

∫

Γ
F (z)V (zI −M)−1(z − λ)−1 dz (4.22)
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and Γ a contour enclosing the eigenvalues of M and λ. Since the pair (V,M)

is invariant, F(V,M) = O, and so (V̂ , M̂) is an invariant pair if and only if

F (λ)x+ U(λ)b = 0. (4.23)

The condition that (V̂ , M̂) be minimal is more involved. Effenberger (2013b,

Lemma 3.4) shows that (V̂ , M̂) is minimal with minimality index not ex-
ceeding p+ 1 if

A(λ)x+B(λ)b = 0, (4.24)

where the m×n matrix-valued function A(λ) and the m×m matrix-valued
function B(λ) are given by

A(λ) =

p∑

j=0

λj(VM j)∗, B(λ) =

p∑

j=1

(VM j)∗V qj(λ)

with

qj(λ) =

j−1∑

k=0

λkM j−k−1.

It then follows from (4.23) and (4.24) that
(
λ,
[
x
b

])
is an eigenpair of the

(n+m)× (n+m) NEP

F̃ (λ)ṽ = 0, (4.25)

where

F̃ (λ) =

[
F (λ) U(λ)
A(λ) B(λ)

]
, ṽ =

[
x
b

]
6= 0.

The matrix-valued function F̃ (λ) is holomorphic since U(λ) is holomorphic
(Effenberger 2013b, Lemma 3.2), and A(λ) and B(λ) are matrix polyno-

mials. If F (λ) is regular, then so is F̃ (λ). Moreover, if
(
λ,
[
x
b

])
is an ei-

genpair of F̃ (λ), then
(
[V x],

[
M
0
b
λ

])
is a minimal invariant pair for F (λ)

(Effenberger 2013b, Theorem 3.6). This shows that the pair (V,M) is
deflated from the computation when solving the NEP (4.25) in place of
F (λ)v = 0. An eigenpair for the latter can be computed using any of the
methods described in Sections 4.1–4.2. But for these, we need to evaluate
U(λ) in (4.22) and its derivative at a scalar λ. This can be done via numer-
ical integration techniques similar to those described in Section 5.2. Note
also that, by using λI−M = (zI−M)− (z−λ)I, (4.22), and the definition
of invariant pairs, we have

U(λ)(λI −M) =
1

2πi

∫

Γ
F (z)V (z − λ)−1 dz − 1

2πi

∫

Γ
F (z)V (zI −M)−1 dz

= F (λ)V + F(V,M) = F (λ)V ;
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see Effenberger (2013b, Lemma 4.2). Hence, if λ is not an eigenvalue of
M , then U(λ) = F (λ)V (λI −M)−1. For large NEPs, Effenberger (2013b)
combines this deflation strategy with a Jacobi–Davidson method (see Sec-
tion 4.5) and uses a contour integration method as described in Section 5
to solve the projected NEP.

4.4. Block Newton method

Kressner (2009) presents a block analogue of the Newton iteration on vec-
tors which computes a complete invariant pair (V,M) ∈ Cn×m ×Cm×m for
F ∈ H(Ω,Cn×n) with minimality index p. Recall from Definition 2.16 that
an invariant pair (V,M) is complete if it is minimal and the algebraic multi-
plicities of the eigenvalues of M are the same as the algebraic multiplicities
of the eigenvalues of F .

Let (V,M) be an invariant pair for F so that

F(V,M) = On×m, (4.26)

where F is as in Definition 2.10, and assume that (V,M) satisfies the nor-
malization condition

N (V,M) = Om×m, (4.27)

where N (V,M) = U∗Vp(V,M)− Im with U ∈ Cpn×m a fixed matrix of full
column rank, and Vp(V,M) is as in (2.17). To apply Newton’s method to
(4.26)–(4.27), we need the Fréchet derivatives of F and N at (V,M), which
are given by

LF (∆V,∆M) = F(∆V,M) +
1

2πi

∫

Γ
F (z)V (zI −M)−1∆M(zI −M)−1 dz,

LN (∆V,∆M) = U∗Vp(∆V,M) +

p−1∑

j=1

U∗j V
( j∑

i=0

M i∆MM j−i−1
)
,

where U∗ = [U∗0 , . . . , U
∗
p−1] with Uj ∈ Cn×m. Kressner (2009, Theorem 10)

shows that the invariant pair (V,M) is complete if and only if the linear
matrix operator

M : Cn×m × Cm×m → Cn×m × Cm×m

(∆V,∆M) 7→
(
LF (∆V,∆M), LN (∆V,∆M)

)

corresponding to the Jacobian of (4.26)–(4.27) at (V,M) is invertible. Then,
by the implicit function theorem for holomorphic functions (Krantz 1982),
we have that the entries of a complete invariant pair (V,M) vary analytically
under analytic changes of F . Hence, complete invariant pairs are well-posed
and Newton’s method for solving (4.26)–(4.27) converges locally quadrat-
ically to a complete invariant pair. Now assuming that U∗Vp(V,M) = Im,
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the Newton correction (∆V,∆M) satisfies

M(∆V,∆M) = −(F(V,M), Om×m).

The block Newton method for computing an invariant pair (V,M) ∈ Cn×m×
Cm×m of F is given by the pseudocode in Algorithm 4.13.

Algorithm 4.13: Block Newton method for computing an invariant
pair

Choose an initial pair (Ṽ (0), M̃ (0)) ∈ Cn×m × Cm×m with minimality
index p.

for k = 0, 1, . . . until convergence do

Compute the compact QR factorization Vp(Ṽ (k), M̃ (k)) = QR and

let V (k) = Ṽ (k)R−1, M (k) = RM̃ (k)R−1.

Solve the linear matrix equation

M(∆V,∆M) = −(F(V (k),M (k)), Om×m) (4.28)

for (∆V,∆M).

Update Ṽ (k+1) = V (k) +∆V and M̃ (k+1) = M (k) +∆M .
end

The initial pair (Ṽ (0), M̃ (0)) can be constructed with a block variant of
inverse iteration (Kressner 2009, Algorithm 2). The solution to the linear
matrix equation (4.28) is the most expensive part of the iteration. Kressner
(2009) shows how to do that efficiently using ideas from Beyn and Thümmler
(2009), and provides a MATLAB function nlevp−newtonstep that imple-
ments these ideas and returns the pair (∆V,∆M).

Example 4.14. Let us consider the matrix-valued function F in (2.1),

F (z) =

[
0 1
1 1

]
+ eiz

2

[
1 0
0 0

]
,

and aim to compute approximations for the eigenvalues ±
√

2π and ±i
√

2π.
As initial pair we use a random perturbation of the exact invariant pair

V =

[
1 1 1 1
−1 −1 −1 −1

]
, M = diag(

√
2π,−

√
2π, i
√

2π,−i
√

2π).

Using the MATLAB code given in Figure 4.15, we consistently obtain all
four eigenvalues with a relative error of order 10−15 or less. No convergence
takes place if we perturb V and M with random perturbations of order 10−1.
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% block_Newton

A(:,:,1) = [0 1; 1 1]; A(:,:,2) = [1 0; 0 0];

n = 2; k = 4; ell = k; maxit = 30; tol = n*eps;

% construct initial pair (V,M)

a = sqrt(2*pi); % eigenvalues are [a, -a, 1i*a, -1i*a]

d = [a -a a*1i -a*1i]+1e-2*(randn(1,k)+1i*randn(1,k)); M = diag(d);

V = diag([1 -1])*ones(n,k) + 1e-2*(randn(n,k)+1i*randn(n,k));

for iter = 0:maxit

Z = zeros(n*ell,k); Z(1:n,:) = V;

for j = 2:ell, Z((j-1)*n+1:j*n,:) = Z((j-2)*n+1:(j-1)*n,:)*M; end

[Q,R] = qr(Z); R = R(1:k,1:k); V = V/R; M = R*(M/R);

W(:,:,1) = V; for j = 2:ell, W(:,:,j) = W(:,:,j-1)*M; end

Res = A(:,:,1)*V*f(1,M) + A(:,:,2)*V*f(2,M);

if norm(Res,'fro') < tol, break, end

[DV,DM] = nlevp_newtonstep(A,@f,V,M,W,Res,zeros(k));

V = V - DV; M = M - DM;

end

if k < maxit, nbr_iter = k, evs = eig(M), end

function X = f(j,M)

if j == 1, X = eye(size(M)); end

if j == 2, X = expm(1i*M*M); end

end

Figure 4.15. Basic MATLAB implementation of the block Newton method for
problem (2.1). The lines preceding the outer for loop specify the problem and
the method’s parameters. When the iteration converges, it returns the number of
iterations and the eigenvalues associated with the computed invariant pair (V,M).

We ran the same code but with lines 3–7 replaced by

n = 2; k = 6; ell = k; maxit = 100; tol = n*eps;

% construct initial pair (V,M)

a = sqrt(2*pi); % eigenvalues are [a, -a, 1i*a, -1i*a, 0, 0]

d = [a -a a*1i -a*1i 0 0]+1e-10*(randn(1,k)+1i*randn(1,k));

M = diag(d);

V = diag([1 -1])*ones(n,k)+1e-10*(randn(n,k)+1i*randn(n,k));

so as to find an invariant pair containing all the eigenvalues inside the circle
{z ∈ C : |z| = 3}. The result varies from run to run due to the random
perturbations of V and M , but most often after maxit iterations we ob-
tain the simple eigenvalues to about 10 digits and the double eigenvalue
λ = 0 to about 7 digits, which shows that the defective eigenvalue 0 af-
fects the accuracy of the other non-defective eigenvalues. We refer to Szyld
and Xue (2013b) for a discussion of the sensitivity of invariant pairs. The
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iterations fail to converge if we apply larger perturbations to V and M when
constructing the initial pair.

4.5. Large sparse NEPs

Most of the methods we have described so far require the solution of linear
systems. For large sparse matrices, there are efficient direct methods imple-
menting Gaussian elimination with some form of pivoting that make clever
use of the sparsity structure to avoid fill-in and save storage. These include
HSL (2016), MUMPS (2016), PARDISO (Schenk and Gärtner 2004) and
UMFPACK (Davis 2004). In place of direct methods to solve the sparse
linear systems in Algorithms 4.7–4.10, we can also use iterative methods,
for example Krylov subspace methods such as the generalized minimal resid-
ual method (GMRES) of Saad and Schultz (1986), the biconjugate gradient
method in its stabilized form (BICGSTAB) by van der Vorst (1992), or
the quasi-minimal residual method (QMR) of Freund and Nachtigal (1996).
Solving the linear systems iteratively leads to inexact versions of nonlinear
inverse iteration, residual inverse iteration, and Rayleigh functional itera-
tion. Let us consider in particular the inexact nonlinear inverse iteration,
Algorithm 4.7, with the exact solve replaced by an inexact solve. Let τ (k)

be a tolerance such that the approximate solution ṽ(k+1) returned by the
iterative solver at step k satisfies

Res = ‖F ′(λ(k))v(k) − F (λ(k))ṽ(k+1)‖ ≤ τ (k)‖F ′(λ(k))v(k)‖,
and let

e(k) =

[
v(k)

λ(k)

]
−
[
v
λ

]

denote the error at iteration k. Szyld and Xue (2013a, Theorem 6) show
that if, at each iteration,

τ (k) ≤ c ‖e(k)‖
is ensured with a constant c independent of k, then the inexact nonlinear
inverse iteration converges at least quadratically. In a similar way, they
show that for inexact versions of the residual inverse iteration and the two-
sided Rayleigh functional iteration, the same order of convergence as for the
exact iterations can be achieved if an appropriate sequence of tolerances is
used for the inner solves.

Garrett et al. (2016) propose a variation of Kublanovskaya’s Newton-
QR method for either large banded NEPs with narrow bandwidths relative
to the size n of the NEP, or large sparse NEPs that can be reduced to
such banded NEPs. They make use of a special data structure for storing
the matrices to keep memory and computational costs low. They replace
the rank-revealing QR factorization of F (λ(k)) in (4.5) by a banded QR
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factorization followed by a rank-revealing QR factorization of the R factor.
MATLAB and C++ implementations of this approach including the defla-
tion strategy (4.11) are publicly available (Garrett and Li 2013).

Example 4.16. Let us consider the loaded string problem defined by
(1.3) with n = 100. This NEP has real eigenvalues, and we are interested
in the five eigenvalues in the interval [4, 296], all of which are given in (3.5).
The MATLAB code in Figure 4.17 calls the function NQR4UB from Garrett
and Li (2013) implementing the Newton-QR method (i.e. Kublanovskaya’s
method) for unstructurally banded matrix-valued functions. With initial
guess lambda0 = 4.0, it returns

evs =

4.4822 63.7238 123.0312 202.2009 719.3507

which, compared with (3.5), are excellent approximations to the eigenvalues
λ1, λ3, λ4, λ5, and to another eigenvalue λ9 outside the interval of interest.
Note that the eigenvalue λ2 is missed. The parameter h returned by NQR4UB

is a cell array containing the values of the residual in (4.13) at each iteration
(these are used as a stopping criterion). The left and right normalized
residuals,

ηF (λ, v) =
‖F (λ)v‖2
‖F (λ)‖F ‖v‖2

and ηF (λ,w∗) =
‖w∗F (λ)‖2
‖F (λ)‖F ‖w‖2

, (4.29)

are reported in Figure 4.18. The eigenvalue λ2 is found by the code in
Figure 4.17 if we replace lambda0 = 4.0 by lambda0 = 20.0, but this is
the only eigenvalue of F found with this choice of initial guess.

For large sparse NEPs, the iterations described in Sections 4.1–4.2 can be
used as part of an iterative projection method in the following way. Suppose
we are given a matrix U ∈ Cn×k with k � n having orthonormal columns
that span a subspace (the search space) containing an eigenvector of interest.
Then instead of solving F (λ)v = 0 we can solve the k × k projected NEP

Q∗F (ϑ)Ux = 0, (4.30)

where Q ∈ Cn×k is some matrix with orthonormal columns spanning the
test space. Now let (ϑ, x) be an eigenpair of the projected problem (4.30),
selected so that ϑ is as close as possible to the target eigenvalue. The pair
(ϑ, v) with v = Ux is the corresponding Ritz eigenpair for F , and if the
residual ‖F (ϑ)v‖ is small enough, we can accept (ϑ, v) as an approximate
eigenpair for F . If the residual ‖F (ϑ)v‖ is too large, then the search space
span{U} can be extended by one step of the Newton iteration with ini-
tial guess (ϑ, v) and v normalized to have unit 2-norm. The Newton step
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% Newton_QR_banded

n = 100; lambda0 = 4.0;

ind(1,:) = [1 (1:n-1)]; ind(2,:) = [(2:n) n]; ind(3,:) = ind(2,:);

opts.tol = 5.0e-10; opts.maxitn = 20; opts.rr = 0; opts.nevs = 0;

fun = @(z) f_loaded_string(z,n);

for k = 1:5

[lam,v,w,h] = NQR4UB(n,fun,ind,lambda0,opts);

opts.evs(k) = lam; opts.nevs = opts.nevs+1;

end

evs = opts.evs

function [F Fp] = f_loaded_string(z,n)

% Return F(z) and derivative F'(z) for the loaded_string problem.

% Both F(z) and F'(z) are compactly stored as required by NQR4UB.

F(1,:) = [2*n-2*z/3/n (-n-z/6/n)*ones(1,n-1)];

F(2,:) = [-n-z/(6*n) (2*n-2*z/3/n)*ones(1,n-2) n-z/3/n+z/(z-1)];

F(3,:) = [0 (-n-z/6/n)*ones(1,n-2) 0];

Fp(1,:) = [-2/3/n (-1/6/n)*ones(1,n-1)];

Fp(2,:) = [-1/(6*n) (-2/3/n)*ones(1,n-2) -1/3/n-1/((z-1)^2)];

Fp(3,:) = [0 (-1/6/n)*ones(1,n-2) 0];

F = sparse(F); Fp = sparse(Fp);

end

Figure 4.17. Basic MATLAB M-file calling the Newton-QR method implemen-
ted in the Unstructurally Banded Nonlinear Eigenvalue Software as NQR4UB.
Lines 2–5 define the input parameters for NQR4UB. The M-file requires the func-
tion f loaded string.

1 2 3 4 5 6 7 8 9

10-15

10-10

10-5

6
1

6
3

6
4

6
5

6
9

i λi ηF (λi, vi) ηF (λi, w
∗
i )

1 4.482 3.5e-17 3.7e-16

3 63.72 3.1e-17 2.1e-16

4 123.0 2.7e-17 9.2e-17

5 202.2 4.9e-17 5.4e-16

9 719.4 3.5e-17 1.8e-16

(a) (b)

Figure 4.18. Eigenvalue computation for the loaded string problem using basic
MATLAB calls to NQR4UB as in Figure 4.17. (a) Residuals |rnn(λ)|/‖F (λ)‖F at
each iteration for the found eigenvalues λ. (b) Final residuals as defined in (4.29).



48 S. Güttel and F. Tisseur

in (4.14) is rewritten as

{
F (ϑ)∆v = −F (ϑ)v −∆ϑF ′(ϑ)v,

v∗∆v = 0,
(4.31)

where ∆ϑ and ∆v define the Newton correction (we omit the index k).
Since we only need ∆v to extend the search space, we premultiply the first
equation in (4.31) by the oblique projector In − F ′(ϑ)vq∗, where q ∈ Cn is
such that q∗F (ϑ)v = 0 and normalized such that q∗F ′(ϑ)v = 1. This yields

{
(In − F ′(ϑ)vq∗)F (ϑ)∆v = −F (ϑ)v,

v∗∆v = 0.
(4.32)

Because of the orthogonality condition v∗∆v = 0, we can rewrite the first
equation in (4.32) as

(In − F ′(ϑ)vq∗)F (ϑ)(In − vv∗)∆v = −F (ϑ)v, (4.33)

which has the form of a Jacobi–Davidson correction equation. We can use
span{U,∆v} as the new search space and span{Q,F (ϑ)v} as the new test
space. This process is repeated until we obtain a Ritz eigenpair with a
small residual. We can expect quadratic convergence of this process if the
correction equation (4.33) is solved exactly. As for linear eigenproblems
(Sleijpen and van der Vorst 1996), the correction equation does not need to
be solved accurately to preserve convergence.

Pseudocode is presented in Algorithm 4.19. Usually only a few steps
of a preconditioned Krylov subspace method such as GMRES (Saad and
Schultz 1986) are necessary to solve the correction equation. If P is a
preconditioner for F (ϑ) so that Py = r is easy to solve, the preconditioner
P should be modified to

P̃ = (In − F ′(ϑ)vq∗)P (In − vv∗)

for the correction equation (4.33). Davidson (1975) proposes using P =
diagF (ϑ) for linear problems.

Variations of the Jacobi–Davidson approach are proposed by Sleijpen
et al. (1996) for polynomial eigenvalue problems, Betcke and Voss (2004) for
symmetric NEPs, and Voss (2007) and Effenberger (2013b) for nonsymmet-
ric NEPs. Variants of a two-sided Jacobi–Davidson method are discussed
in Hochstenbach and Sleijpen (2003). The nonlinear Arnoldi method of
Voss (2004a) corresponds to using one step of residual inverse iteration in
place of the Jacobi–Davidson correction equation, that is, (4.33) is replaced
by F (σ)∆v = F (ϑ)v. The linear system is then solved approximately,
∆v ≈MF (ϑ)v, using an approximation M to F (σ)−1.
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Algorithm 4.19: Nonlinear two-sided Jacobi–Davidson method

Choose initial bases U0 and Q0 such that U∗0U0 = Q∗0Q0 = I.

for k = 0, 1, . . . until convergence do

Compute the eigenpair (ϑ, x) of the projected matrix-valued
function Q∗kF (z)Uk with ϑ closest to the wanted eigenvalue
and ‖x‖2 = 1.

Compute the Ritz vector v = Ukx and the residual r = F (ϑ)v.

if ‖r‖2 ≤ tol, accept (ϑ, v) as approximate eigenpair, stop

Approximately solve the correction equation

(In − F ′(ϑ)vq∗)F (ϑ)(In − vv∗)∆v = −r
for ∆v orthogonal to v.

Orthogonalize ∆v against Uk, normalize ∆v ← ∆v
‖∆v‖ and expand

search space Uk+1 = [Uk, ∆v].

Orthogonalize r against Qk, normalize r ← r
‖r‖ and expand test

space Qk+1 = [Qk, r].
end

4.6. Hermitian NEPs

Assume that the matrix-valued function F (z) is Hermitian, that is, F (z̄) =
F (z)∗ for all z ∈ C. We can take advantage of this property in the algorithms
described in Sections 4.1–4.2 when factorizing the Hermitian matrix F (λ(k))
using a block LDL∗ factorization. Also, when λ is real, the solution to the
nonlinear scalar equation in (4.18) in the first step of the residual inverse
iteration can be replaced by finding z (i.e. the Rayleigh functional) such
that v(k)∗F (z)v(k) = 0. The resulting residual inverse iteration converges
quadratically (Neumaier 1985).

Special algorithms can be designed when the Hermitian matrix-valued
function F satisfies properties (A1)–(A3) in Section 3 on some real interval I.
It follows from Theorem 3.1 that the eigenvalues of F can be characterized
as minmax and maxmin values of the Rayleigh functional p(x), which is the
only root of x∗F (p(x))x = 0 in I. Indeed, Theorem 3.1 asserts that if λk is
a kth eigenvalue of F (z) (that is, µ = 0 is the kth largest eigenvalue of the
Hermitian matrix F (λk)), then

λk = min
V ∈Sk

V ∩K(p) 6=∅

max
x∈V ∩K(p)

x 6=0

p(x) ∈ I, (4.34)

where Sk denotes the set of all subspaces of Cn of dimension k, and Kp

is a subspace of Cn onto which the Rayleigh functional p is defined. The
minimum in (4.34) is attained for an invariant subspace of the Hermitian
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matrix F (λk) corresponding to its k largest eigenvalues and the maximum
is attained for some x ∈ nullF (λk). This suggests the method in Al-
gorithm 4.20 for computing the jth eigenvalue of F , called safeguarded
iteration (Werner 1970).

Algorithm 4.20: Safeguarded iteration for the jth eigenvalue of F

Choose an initial approximation λ(0) to the jth eigenvalue of F .

for k = 0, 1, . . . until convergence do

Compute an eigenvector x(k) corresponding to the jth largest
eigenvalue of the Hermitian matrix F (λ(k)).

Compute the real root ρ of x(k)∗F (ρ)x(k) = 0 closest to λ(k) and
set λ(k+1) = ρ.

end

Niendorf and Voss (2010) show that if λj is a simple eigenvalue of F ,
then the safeguarded iteration converges locally and quadratically to λj .
For large sparse problems, the safeguarded iteration can be embedded into
an iterative projection method such as the Jacobi–Davidson scheme or the
nonlinear Arnoldi scheme described in Section 4.5; see Voss (2004b) and
Niendorf and Voss (2010).

For large sparse NEPs satisfying properties (A1)–(A3) defined in Sec-
tion 3, Szyld and Xue (2015) describe several variants of a preconditioned
conjugate gradient method, which make use of the nonlinear variational
principle (Theorem 3.1) and the nonlinear Cauchy interlacing theorem (The-
orem 3.2).

Example 4.21. As shown in Example 3.3, the loaded string NEP defined
with F in (1.3) satisfies assumptions (A1)–(A3) in Section 3 on the open
real interval (1,+∞). Hence we can use the safeguarded iteration to com-
pute the five smallest eigenvalues of F in that interval. A basic MATLAB
implementation is given in Figure 4.22. The inner loop implements the
safeguarded iteration. Once an eigenpair is found, we increase the index j

of the eigenvalue and restart the safeguarded iteration with the previous
converged eigenvalue as initial guess. Using this code we obtain

eigenvalue #iter residual

4.48e+00 4 7.43e-17

2.42e+01 2 1.02e-16

6.37e+01 2 8.28e-17

1.23e+02 2 8.44e-17

2.02e+02 2 9.80e-17
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% safeguarded_iteration

n = 100; C1 = n*gallery('tridiag',n); C1(end) = C1(end)/2;

C2 = (abs(gallery('tridiag',n)) + 2*speye(n))/(6*n);

C2(end) = C2(end)/2; C3 = sparse(n,n); C3(n,n) = 1;

F = @(z) C1 - z*C2 + C3*z/(z-1);

lam = 1.1; maxit = 5; nb_evs = 5; tol = n*eps;

fprintf('eigenvalue #iter residual\n')

for j = 1:nb_evs

for k = 0:maxit

[X,E] = eigs(F(lam),nb_evs+0,'sa'); v = X(:,j);

res = norm(F(lam)*v)/norm(F(lam),'fro');

if res < tol, break, end

c1 = v'*C1*v; c2 = v'*C2*v; c3 = v'*C3*v;

f = @(z) c1-c2*z+c3*z/(z-1); lam = fzero(f,lam);

end

fprintf('%9.2e %5.0f %12.2e\n',lam,k,res)

end

Figure 4.22. Basic MATLAB implementation of the safeguarded iteration to com-
pute the five smallest eigenvalues of the loaded string problem (1.3). Lines 2–5
define the NEP F and line 6 specifies the parameters for the iteration.

Note that only a small number of iterations per eigenvalue are required for
this problem.

4.7. Additional comments and software

While Newton’s method is widely used, for example, as a final refinement
step in the Chebyshev interpolation-based method of Effenberger and Kress-
ner (2012) (MATLAB code available at http://anchp.epfl.ch/files/content/
sites/anchp/files/software/chebapprox.tar.gz), there appears to be very little
software beyond mere research code available. Gander, Gander and Kwok
(2014, Section 8.3.4) provide MATLAB codes for Newton’s method to com-
pute the eigenvalues of a quadratic eigenvalue problem. They show how
to use algorithmic differentiation of f(z) = detF (z) to obtain the Newton
update. Indeed, algorithmic differentiation is a powerful tool to compute
derivative information when these are not available explicitly (Arbenz and
Gander 1986, Griewank and Walther 2008).

MATLAB code for a nonlinear Jacobi–Davidson algorithm with defla-
tion by Effenberger (2013b) is available at http://anchp.epfl.ch/nonlinjd. As
stated by the author, this is research code and not intended for produc-
tion use.
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The most comprehensive suite of high-performance solvers for large-scale
linear and nonlinear eigenvalue problems is SLEPc (Hernandez, Roman
and Vidal 2005), available at http://slepc.upv.es/. SLEPc builds on top
of PETSc (Balay et al. 2016), which means that PETSc must be installed
first in order to use SLEPc. SLEPc provides several Newton-based solvers
for NEPs, namely the residual inverse iteration of Neumaier (1985) (Algo-
rithm 4.10), the method of successive linear problems by Ruhe (1973), and
the nonlinear Arnoldi method of Voss (2004a). All of these methods are im-
plemented without deflation, that is, for computing a single eigenpair near
an initial guess. However, SLEPc implements Effenberger’s method in Sec-
tion 4.3 for the iterative refinement of approximations computed by some
other method. The implementation is described in Campos and Roman
(2016a) for polynomial eigenvalue problems, but it can be used for NEPs
as well.

5. Solvers based on contour integration

Keldysh’s theorem (Theorem 2.8) provides the main tool for a class of NEP
solvers based on contour integration. These methods have been developed
in a series of works by Asakura et al. (2009), Beyn (2012) and Yokota
and Sakurai (2013), and they have become popular due to their relatively
straightforward implementation and great potential for parallelization.

Let F ∈ H(Ω,Cn×n) be a regular matrix-valued function with finitely
many eigenvalues λ1, λ2, . . . , λs in the domain Ω. Further, let Γ ⊂ Ω be a
contour which encloses all eigenvalues, and let f ∈ H(Ω,C) be a scalar holo-
morphic function. Then with the notation of Theorem 2.8 and the Cauchy-
integral definition of a matrix function (Higham 2008, Definition 1.11), we
have

1

2πi

∫

Γ
f(z)F (z)−1 dz = V f(J)W ∗. (5.1)

Here, following Theorem 2.8, V and W are n×m matrices whose columns
are right and left generalized eigenvectors, respectively, and J is an m×m
block-diagonal Jordan matrix. The idea common to many contour-based
methods is to ‘probe’ the matrix decomposition (5.1) from the right (and
left) to infer information about J and V (and W ).

5.1. Beyn’s ‘Integral algorithm 1’

Let us start with the simple case in which there are only a small number
m ≤ n of generalized eigenvectors and they are all linearly independent,
that is, both V and W are of full column rank m. In this case it suffices
to use polynomials f of degree zero and one in (5.1), also called the zeroth
and first-order moments. For simplicity we choose the monomials 1 and z
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for f , but the derivation extends to any choice of two linearly independent
polynomials of degree at most one.

Let R ∈ Cn×r (m ≤ r ≤ n) be a probing matrix (typically chosen at
random) such that W ∗R is of maximal rank m. Then the pair of n × r
matrices

A0 =
1

2πi

∫

Γ
F (z)−1R dz = VW ∗R, (5.2)

A1 =
1

2πi

∫

Γ
zF (z)−1R dz = V JW ∗R (5.3)

can be manipulated to infer J and V as follows.

(1) Compute an economy-size singular value decomposition (SVD) of

A0 = V0Σ0W
∗
0 , (5.4)

where V0 ∈ Cn×m and W0 ∈ Cr×m have orthonormal columns, and
Σ0 = diag(σ1, . . . , σm) is invertible. This SVD exists since rank(A0) =
m by the above rank conditions on V , W and R.

(2) Since range(V ) = range(V0), there exists an invertible matrix X ∈
Cm×m such that V = V0X. From (5.2) and (5.4) we find

W ∗R = X−1Σ0W
∗
0 .

This relation can be used to eliminate W ∗R from A1 = V JW ∗R,

A1 = (V0X)JX−1Σ0W
∗
0 .

(3) We have thus arrived at

M := V ∗0 A1W0Σ
−1
0 = XJX−1,

showing that XJX−1 is a Jordan decomposition form of the matrix M .
Hence the eigenvalues of the NEP can be obtained from the eigenvalues
of M , and the columns of V = V0X contain the corresponding right
generalized eigenvectors of the NEP.

By this simple three-step procedure we have effectively reduced an NEP with
m eigenvalues inside Γ to a linear eigenproblem of size m×m. By construc-
tion, this procedure returns all the eigenvalues λi of F inside Γ , together
with corresponding right generalized eigenvectors vi which we assumed to
be linearly independent; see also Beyn (2012, Theorem 3.3). However, we
need a number of further ingredients to make this method practical.

First of all, we should be aware that this method effectively amounts
to the computation of a Jordan decomposition of the matrix M , which is
known to be highly sensitive to perturbations. Indeed, Beyn (2012) first
derives his method for the case that all eigenvalues inside Γ are simple. In
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this case, and even in the semisimple case, M will be diagonalizable and a
full set of linearly independent eigenvectors of M can be computed reliably
by the QR algorithm.

Second, we typically do not know the number m of linearly independ-
ent eigenvectors in advance. However, as long as r is chosen large enough
(i.e. r ≥ m), we can detect m as a numerical rank of A0, for example by
counting the number of singular values of A0 that are above a user-defined
tolerance tol.

The third ingredient, the numerical approximation of the contour integrals
in (5.2) and (5.3) by appropriate quadrature rules, will be discussed in the
following section.

5.2. Quadrature rules and rational filters

Let us assume that Γ is a piecewise regular contour with parametrization
γ : [0, 2π]→ Γ . Then by substituting z = γ(t) in (5.1) we have

Af :=
1

2πi

∫

Γ
f(z)F (z)−1R dz =

1

2πi

∫ 2π

0
f(γ(t))γ′(t)F (γ(t))−1R dt. (5.5)

The next step is to apply a quadrature rule with, say, nc ≥ 1 points to the
integral on the right.

To first consider the simplest case, assume that γ(t) = eit parametrizes the
unit circle Γ = {z ∈ C : |z| = 1}. Then the most natural quadrature rule,
the trapezoid rule, amounts to using equispaced points t` = 2π`/nc ∈ [0, 2π]
for ` = 1, 2, . . . , nc, resulting in the approximation

Af,nc :=

nc∑

`=1

ω`F (z`)
−1R ≈ Af , (5.6)

with quadrature weights and nodes

ω` =
f(z`)z`
nc

, z` = e2πi`/nc .

Note that only the weights ω` depend on f , hence the quadrature of both
A0 and A1 in (5.2)–(5.3) requires only nc evaluations of F (z`)

−1R, not 2nc.
A further reduction in the number of evaluations is possible if the F (z`)

−1R
in (5.6) appear in complex conjugate pairs, as is the case when F is a
Hermitian matrix-valued function and R is a matrix with real entries. The
evaluations of F (z`)

−1R are typically the computationally most expensive
part of a contour-based eigensolver, but they are completely decoupled and
can hence be assigned to different processing units on a parallel computer.
This potential for coarse-grain parallelism is one reason for the popularity
of these methods.



The nonlinear eigenvalue problem 55

Beyn (2012) studies the quality of the quadrature approximation (5.6).
Assume that each element of f(z)F−1 is holomorphic and bounded on an
annulus of modulus ρ,

Aρ =
{
z ∈ C : ρ−1 < |z| < ρ

}
, ρ > 1.

Then each element of f(z)F (z)−1R is a bounded holomorphic function on
that same annulus and we can apply standard results on the convergence of
the trapezoidal rule for holomorphic functions elementwise; see, for example,
Trefethen and Weideman (2014, Theorem 2.2). This results in

‖Af −Af,nc‖ = O(ρ−nc),

that is, the trapezoid rule yields exponential convergence in the number of
quadrature nodes. The convergence factor ρ−1 is determined by a singularity
of F (z)−1 (an eigenvalue of F ) closest to the unit circle (where ‘closeness’
is measured in terms of the level lines ∂Aρ).

Care has to be taken with contours that are not circles, as the exponential
accuracy of the trapezoidal rule may deteriorate or be completely lost if the
rule is not transplanted conformally. As an example, consider the square
contour

Γ :=
{
z ∈ C : max{|Re(z)|, |Im(z)|} = 1

}
.

It seems tempting to simply apply the trapezoidal rule on each of the four
sides of the square separately and, assuming that nc is divisible by four,
discretizing each side by nc/4+1 equispaced quadrature nodes including the
endpoints. A schematic view is given in Figure 5.1(a), with the red pluses
corresponding to the trapezoid quadrature nodes on the square. As the
function to be integrated, (2πi)−1f(z)F (z)−1, is generally not periodic on
each of the four sides, this approach only gives convergence of order 2, ‖Af−
Af,nc‖ = O(n−2c ), in line with the standard error bounds for the trapezoidal
rule for non-periodic functions (with continuous second derivative); see for
example Davis and Rabinowitz (2007, equation (2.1.11)).

A better approach to obtaining a quadrature rule on a non-circular con-
tour Γ is to use a conformal map Ψ from the annulus Aρ (the w-domain) onto
a doubly connected domain Ω with continuous inner and outer boundary
(the z-domain), and then to define the contour Γ as the image of the unit
circle under Ψ , Γ = {z = Ψ(w) : |w| = 1}. (Conversely, by the Riemann
mapping theorem (Ahlfors 1953, p. 255), any bounded domain Ω whose
boundary consists of two disjoint continua can be identified conformally
with an annulus.) Let γ(t) = Ψ(eit), t ∈ [0, 2π], be a parametrization of Γ .
Then, by applying the trapezoid rule to (5.5), we obtain the quadrature
approximation

Af,nc :=

nc∑

`=1

ω`F (z`)
−1R ≈ Af ,
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with quadrature weights and nodes

ω` =
f(z`)Ψ

′(e2πi`/nc) e2πi`/nc

nc
, z` = Ψ(e2πi`/nc).

We can interpret F (z) as a function F (Ψ(w)) which is holomorphic and
bounded on the annulus Aρ, hence this quadrature rule will again converge
exponentially with convergence factor ρ−1. This is illustrated in Figure 5.1.

For comparison we show the quadrature error obtained when applying
Gauss–Legendre quadrature with nc/4 nodes on each of the four sides of the
square. Such an approach will also lead to exponential convergence, with
the convergence factor determined by the largest Bernstein ellipse enclosing
each of the four sides such that F (z)−1 is holomorphic in its interior. More
precisely, the Bernstein ellipse region of elliptical radius ρ > 1 associated
with the interval [−1, 1] is

Eρ =
{
z = cos(t+ i ln r) : t ∈ [0, 2π], r ∈ [1, ρ)

}
, (5.7)

and the corresponding Bernstein ellipse region associated with a (possibly
complex) interval [a, b] is the image ϕ[a,b](Eρ) with ϕ[a,b](z) = (a− b)z/2 +
(a + b)/2. The boundary ∂Eρ is referred to as the Bernstein ellipse. For
our example in Figure 5.1, the most restricted Bernstein ellipse is the one of
radius ρ = 1.105 associated with the upper side [a, b] = [−1 + i, 1 + i] of the
square. The Gauss–Legendre rule associated with this side has nc/4 nodes,
hence the quadrature error reduces with a convergence factor of ρ−2nc/4.
The overall quadrature error behaves like ‖Af−Af,n‖ = O(ρ−nc/2), which in
this example is worse than the convergence achieved with the trapezoid rule.

Conformally mapped quadrature rules have been applied, for example, to
the problem of matrix function approximation (Hale, Higham and Trefethen
2008). An alternative interpretation of quadrature rules in terms of filter
functions has been discussed by Van Barel and Kravanja (2016). This in-
terpretation also motivated the numerical approach to designing a rational
filter for linear and nonlinear eigenvalue problems presented in Van Barel
(2016).

5.3. Higher-order moments and the Sakurai–Sugiura method

Let us now consider the general case where the number m of generalized
eigenvectors is not necessarily smaller than or equal to the problem size n,
and that the generalized eigenvectors are not necessarily linearly independ-
ent. In this case we need to use higher-order moments in (5.1), that is,
employ polynomials f of degree larger than one. Eigenvalue techniques
based on higher-order moments have been applied successfully by Sakurai
and coauthors in a number of papers on the generalized eigenvalue problem,
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Figure 5.1. Comparison of three quadrature rules for approximating the integral
in (5.1). (a) A portion of the complex plane, showing three eigenvalues of a 3× 3
NEP F (λ)v = 0 (black ×). The doubly connected region Ω (shown in grey) is the
conformal image of an annulus with modulus ρ = 1.1, and the blue contour is the
image of the unit circle with mapped quadrature nodes shown as blue circles. The
red crosses on the square contour correspond to the quadrature nodes of trapezoidal
rules applied to each side. The green curve is the largest Bernstein ellipse associated
with the upper side of the square in which F (z)−1 is analytic. (b) Quadrature
errors ‖Af −Af,nc

‖ as the number of quadrature nodes nc increases (solid curves),
together with their predicted error behaviours as discussed in Section 5.2.

and for the nonlinear case by Asakura et al. (2009) and Yokota and Sakurai
(2013). Beyn (2012) also considers higher-order moments in his ‘Integral
algorithm 2’. In the following we will use a general formulation of these
methods and then discuss how the methods available in the literature relate
to this formulation.

Let L ∈ Cn×` and R ∈ Cn×r be given left and right probing matrices,
respectively, and let p ≥ 0 be a given integer. For any p = 0, 1, . . . , p we
define

Ap =
1

2πi

∫

Γ
zpL∗F (z)−1R dz = L∗V JpW ∗R ∈ C`×r (5.8)

and arrange these matrices in p`× pr block-Hankel matrices as follows:

B0 =



A0 · · · Ap−1
...

...
Ap−1 · · · A2p−2


 and B1 =



A1 · · · Ap
...

...
Ap · · · A2p−1


. (5.9)
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Further, let us define the matrices

V[p] =




L∗V
...

L∗V Jp−1


 ∈ Cp`×m and W ∗[p] =

[
W ∗R, . . . , Jp−1W ∗R

]
∈ Cm×pr.

(5.10)
Then by (5.8) we have factorizations

B0 = V[p]W
∗
[p] and B1 = V[p]JW

∗
[p].

Let us assume that L,R and p have been chosen so that V[p] and W ∗[p] are

of maximal rank, that is,

rank(V[p]) = rank(W ∗[p]) = m. (5.11)

Then, using the same derivation as in the three-step procedure given in
Section 5.1, it is again possible to infer J from the pair (B0, B1). (A sufficient
condition for (5.11) is given by Lemma 2.13, namely p ≥ ∑s

i=1mi,1.) The
following theorem, given by Beyn (2012, Theorem 5.2) for the case L = In,
makes this precise.

Theorem 5.2. Suppose that F ∈ H(Ω,Cn×n) has no eigenvalues on the
contour Γ ⊂ Ω and finitely many pairwise distinct eigenvalues λ1, λ2, . . . , λs
inside Γ . For each eigenvalue λi let di denote its geometric multiplicity with
partial multiplicities mi,1 ≥ · · · ≥ mi,ds . Further assume that the matrices
V[p] and W ∗[p] defined in (5.10) satisfy the rank condition (5.11). Let

V[p]W
∗
[p] = V0Σ0W

∗
0

be an economy-size SVD, where V0 ∈ Cp`×m and W0 ∈ Cpr×m have ortho-
normal columns and Σ0 = diag(σ1, . . . , σm) is invertible. Then the matrix
X = V ∗0 V[p] is nonsingular and the matrix

M := V ∗0 B1W0Σ
−1
0 = XJX−1

has a Jordan normal form J and hence the same eigenvalues λi with identical
partial multiplicities mi,j as F .

In conjunction with numerical quadrature to approximate the matrices
Ap defined by (5.8), the above theorem translates directly into a numerical
method; see Figure 5.3 for a basic MATLAB implementation. Let us discuss
some special cases of this method.
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(i) If ` = r, the numerical method indicated by Theorem 5.2 corresponds
to the ‘block-SS method’ described by Asakura et al. (2009). This
method has been used successfully in applications, e.g. for solving
NEPs arising in acoustics (Leblanc and Lavie 2013).

(ii) If ` = r = 1 and F (λ) = A−λB with an n×n matrix pencil (A,B), we
recover the method of Sakurai and Sugiura (2003) for generalized eigen-
value problems, which is sometimes referred to as the ‘SS method’. In
this case the block matrices B0, B1 defined in (5.9) reduce to standard
square Hankel matrices of size (2p− 1)× (2p− 1).

(iii) If p = 1, m ≤ r ≤ n and L = In, the method reduces to the ‘Integral
algorithm 1’ of Beyn (2012) described in Section 5.1. This method has
been applied successfully, e.g. for the solution of NEPs arising from
resonance problems related to fluid–solid interaction (Kimeswenger,
Steinbach and Unger 2014) and Maxwell eigenvalue problems (Wieners
and Xin 2013). The latter reference also contains numerical comparis-
ons of the integral approach with a Newton method.

(iv) For p ≥ 1 and L = In we obtain the ‘Integral algorithm 2’ of Beyn
(2012).

(v) Another closely related projection method was given by Yokota and
Sakurai (2013). Therein the idea is not to use the matrix M defined
in Theorem 5.2 to extract eigenvalues and eigenvectors, but to use
the matrices Ap defined in (5.8) with L = In to compute an or-
thonormal basis V0 of span(V ) from an economy-size SVD of N :=
[A0, A1, . . . , Ap−1] = V0Σ0W0. Note that by (5.8) we have

N = V [J0W ∗R, J1W ∗R, . . . , Jp−1W ∗R],

and hence span(N) = span(V ) is guaranteed by (5.11). The method of
Yokota and Sakurai (2013) then amounts to solving the projected NEP

F̂ (λ)x̂ = 0 with F̂ (λ) = V ∗0 F (λ)V0. The authors recommend using one
of Beyn’s integral methods for the solution of this lower-dimensional
NEP. The reported results indicate that this explicit projection ap-
proach may give better accuracy than the methods of Asakura et al.
(2009) and Beyn (2012) applied directly to the original problem.

5.4. Numerical illustration

Let us consider the matrix-valued function F defined in (2.1). We choose
L and R to be random vectors (` = r = 1) and look for the six eigenvalues
of F inside the circle Γ = {z ∈ C : |z| = 3}. In line with Lemma 2.13
we choose p = 6. MATLAB code is given in Figure 5.3. For numerical
stability we have scaled the moment functions zp to have unit norm on Γ .
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% contour_eigensolver

n = 2; F = @(z) [exp(1i*z.^2), 1; 1, 1];

ell = 1; r = 1; L = rand(n,ell); R = rand(n,r); % probing matrices

gam = 0; rad = 3; nc = 200; % circle centre & radius, nbr of nodes

w = exp(2i*pi*(1:nc)/nc); z = gam+rad*w; % unit roots and quad pts

pbar = 6; A = zeros(ell,r,2*pbar); % matrices of moments

for k = 1:nc

Fz = L'*(F(z(k))\R);

for j = 0:2*pbar-1

A(:,:,j+1) = A(:,:,j+1) + (w(k)^j*rad*w(k)/nc)*Fz;

end

end

A = A(:,:); B0 = zeros(pbar*ell,pbar*r); B1 = B0;

for j = 0:pbar-1

B0(1+j*ell:(j+1)*ell,:) = A(:,1+j*r:pbar*r+j*r);

B1(1+j*ell:(j+1)*ell,:) = A(:,1+(j+1)*r:pbar*r+(j+1)*r);

end

[V,Sig,W] = svd(B0); mbar = find(diag(Sig)/Sig(1)>1e-12,1,'last');

V0 = V(:,1:mbar); Sig0 = Sig(1:mbar,1:mbar); W0 = W(:,1:mbar);

M = (V0'*B1*W0)/Sig0; evs = eig(M); evs = gam+rad*evs(abs(evs)<1)

Figure 5.3. Basic MATLAB implementation of an integral method for NEPs with
a circular contour. The method’s parameters are specified in lines 2–4, and the
variable evs computed in the final line contains the eigenvalue approximations.

Using a trapezoidal rule with nc = 200 nodes, we obtain the eigenvalue
approximations

evs =

-2.506628274630944 - 0.000000000000013i

-0.000000000000028 + 2.506628274631054i

0.000000000000045 - 2.506628274631075i

2.506628274630940 - 0.000000000000047i

-0.000000202602049 + 0.000001229470211i

0.000000202602004 - 0.000001229470420i

The correct digits are underlined. The result will vary slightly from run to
run if another random initialization of the probing matrices L and R is used,
however, we observe consistently that the simple eigenvalues are accurate
to about 12 digits, whereas the double eigenvalue λ = 0 is only accurate to
about 6 digits. This accuracy reduction is not surprising given the higher
sensitivity of λ = 0; see in particular the spectral portrait in Figure 2.22.
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5.5. Eigenvalue localization

Theorem 5.2 effectively provides a method for counting the number of ei-
genvalues m of F inside the contour Γ by computing the (numerical) rank
of the matrix B0 defined in (5.9). In the MATLAB code in Figure 5.3, m
is provided in the variable mbar. A more direct approach for counting the
eigenvalues is to make use of integrals of the form

Np(f, Γ ) =
1

2πi

∫

Γ
zp
f ′(z)
f(z)

dz. (5.12)

By the argument principle (Ahlfors 1953, Section 5.2), the number N0(f, Γ )
corresponds to the number of roots (counting multiplicity) of a holomorphic
function f enclosed by Γ . By choosing f(z) = detF (z) and using the trace
relation (4.2), we have

N0(detF, Γ ) =
1

2πi

∫

Γ
trace(F−1(z)F ′(z)) dz. (5.13)

We can apply the same quadrature techniques as explained in Section 5.2 to
approximate this integral. The domain Ω on which to count the eigenvalues
of F need not be simply connected. For example, if Γ1 is a contour inside
another contour Γ2, then F has

N0(detF, Γ2)−N0(detF, Γ1)

eigenvalues in the doubly connected region bounded by Γ1 and Γ2.

Example 5.4. Let us determine the number of eigenvalues of F defined in
(2.1) inside the annulus Ω bounded by the contours Γj = {z ∈ C : |z| = ρj},
j = 1, 2, where ρ1 = 4 and ρ2 = 5.25. For this we apply the trapezoidal
rule to the integral (5.13). This is implemented in the basic MATLAB code
in Figure 5.5 with the parameters set up to compute an approximation to
N0(detF, Γ1) using nc = 90 quadrature nodes. The code returns

nbr_evs =

9.999998431959657 - 0.000000000000001i

suggesting that N0(detF, Γ1) = 10. Then replacing rad = 4 with rad =

5.25 produces

nbr_evs =

18.000958027557175 - 0.000000000000001i

suggesting that N0(detF, Γ2) = 18. Indeed, F has exactly 18 − 10 = 8
eigenvalues in Ω.

5.6. Further remarks and available software

Contour-based methods for linear and nonlinear eigenproblems are closely
related to earlier techniques developed for finding roots of holomorphic
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% contour_count

F = @(z) [exp(1i*z.^2) 1; 1 1];

Fp = @(z) [2i*z*exp(1i*z.^2) 0; 0 0];

gam = 0; rad = 4; nc = 90; % centre, radius, nr of nodes on circle

w = exp(2i*pi*(1:nc)/nc); z = gam+rad*w; % unit roots and quad pts

nr = 0;

for k = 1:nc

nr = nr + rad*w(k)*trace(F(z(k))\Fp(z(k)));

end

nbr_evs = nr/nc % number of eigenvalues

Figure 5.5. Basic MATLAB code implementing the trapezoidal rule approximation
of (5.13) for computing the number of eigenvalues of F inside the disc with centre
gam and radius rad. The NEP parameters are specified in lines 2–3.

functions f ; see the review by Ioakimidis (1987). The pioneering work
by Delves and Lyness (1967) uses the contour integrals (5.12) for p ≥ 0,
which can be related to Newton sums of the unknown roots of f enclosed
by Γ . However, this relation is prone to ill-conditioning, in particular when
the number of unknown roots surrounded by Γ is large. In order to address
this issue, Delves and Lyness (1967) propose a subdivision technique. A
FORTRAN 77 implementation of their method is provided in Botten, Craig
and McPhedran (1983).

Kravanja, Sakurai and Van Barel (1999a) present an alternative root-
finding approach with better numerical stability based on formal orthogonal
polynomials and the solution of a generalized eigenvalue problem. A For-
tran 90 implementation is given in Kravanja et al. (2000). Similar ideas can
be used to compute roots and poles of a meromorphic function f inside Γ
(Kravanja, Van Barel and Haegemans 1999b); see also Austin, Kravanja and
Trefethen (2014), who discuss connections of contour integration with (ra-
tional) interpolation and provide several MATLAB code snippets. An NEP
solver based on rational interpolation and resolvent sampling is presented
and applied in Xiao, Zhang, Huang and Sakurai (2016a) and Xiao, Zhou,
Zhang and Xu (2016b).

The function f in (5.1) can be interpreted as a filter acting on the ei-
genvalues of F ; see for example Van Barel and Kravanja (2016). While we
have chosen monomials zp in (5.8) (for notational simplicity) and scaled-
and-shifted monomials ((z − σ)/ρ)p in Figure 5.3 (for numerical stability),
one is free to use other sets of linearly independent filter functions f which
are in a linear relation to each other. The linearity is required in order
to derive a factorization of the form (5.10) from which J can be inferred.
Interestingly, if F is a meromorphic function with a finite number of poles
in Ω, represented as F (z) = G(z)/q(z) with G ∈ H(Ω,Cn×n) and some
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polynomial q, then F (z)−1 = q(z)G(z)−1 and (5.1) can be rewritten as

1

2πi

∫

Γ
f(z)F (z)−1 dz =

1

2πi

∫

Γ
f̃(z)G(z)−1 dz

with f̃ = fq. Therefore any contour-based method applied to the mero-
morphic function F with filter functions f is equivalent to applying the
same method to the holomorphic function G with modified filters f̃ . This
means that contour-based methods should be able to handle meromorphic
NEPs without modification.1 Indeed, the reader can easily test numeric-
ally that the algorithm in Figure 5.3 also works fine if the second line is
replaced with the definition of the loaded string problem (using lines 2–5
in Figure 4.22). This is a meromorphic (in fact, rational) NEP but the
contour solver in Figure 5.3 still computes good eigenvalue approximations
even when the contour Γ contains the pole z = 1 in its interior.

A high-performance implementation of a contour-based eigensolver is the
Contour Integral Spectrum Slicing (CISS) method in SLEPc (Maeda, Sak-
urai and Roman 2016): http://slepc.upv.es/. CISS is based on the method of
Sakurai and Sugiura (2003), and can solve generalized linear and nonlinear
eigenvalue problems; see also http://zpares.cs.tsukuba.ac.jp/?page id=56.

6. Methods based on linearization

Instead of solving an NEP with F ∈ H(Ω,Cn×n) directly, we might first
replace it with a ‘proxy’ NEP of a simpler structure. In this section we
shall focus on proxies that can be obtained via polynomial or, more gener-
ally, rational approximation of F . More specifically, we will consider NEPs
Rm(λ)v = 0 with

Rm(z) = b0(z)D0 + b1(z)D1 + · · ·+ bm(z)Dm, (6.1)

where the Dj ∈ Cn×n are constant coefficient matrices and the bj are ra-
tional functions of type (m,m), that is, quotients of polynomials of degree
at most m. Note that polynomial eigenvalue problems are special cases of
(6.1) when all the functions bj are polynomials.

It is crucial that Rm ≈ F in some sense, for otherwise the eigenpairs of
F and Rm are not necessarily related to each other. For example, if Σ ⊂ Ω
is a compact set, we may want to impose that

‖F −Rm‖Σ := max
z∈Σ
‖F (z)−Rm(z)‖2 ≤ ε,

because then the eigenvalues of Rm in Σ can be guaranteed to be approx-
imations to some of the eigenvalues of F . This can be seen as follows.

1 This fact was pointed out to us by Wolf-Jürgen Beyn in private communication.
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Assume that (λ, v) with λ ∈ Σ and ‖v‖2 = 1 is an eigenpair of Rm, that is,
Rm(λ)v = 0. Then from

‖F (λ)v‖2 = ‖(F (λ)−Rm(λ))v‖2 ≤ ‖F (λ)−Rm(λ)‖2 ≤ ε
we find that (λ, v) has a bounded residual for the original NEP F (λ)v = 0.
Conversely, if µ ∈ Σ is not an eigenvalue of F , that is, F (µ) is nonsingular,
then a sufficiently accurate approximant Rm is also nonsingular at µ, which
can be argued as follows. Assume that ‖F (µ) − Rm(µ)‖2 < ‖F (µ)−1‖−12 .
Then

‖I − F (µ)−1Rm(µ)‖2 ≤ ‖F (µ)−1‖2‖F (µ)−Rm(µ)‖2 < 1.

Hence all eigenvalues of I − F (µ)−1Rm(µ) are strictly smaller in modulus
than 1. As a consequence, F (µ)−1Rm(µ) and hence Rm(µ) are nonsingular.
Ideally, Rm does not have any eigenvalues in Σ which are in the resolvent
set of F . In this case we say that Rm is free of spurious eigenvalues on Σ.

In the following Section 6.1 we discuss how to obtain an effective approx-
imant Rm via interpolation of F and how to quantify its approximation
error. In Section 6.2 we explain and demonstrate some practical approaches
for the construction of Rm. If the functions bj in (6.1) satisfy a linear recur-
rence relation, then we can linearize Rm to obtain an equivalent generalized
eigenvalue problem. This linearization technique will be the subject of Sec-
tion 6.3. In Section 6.4 we review some solution techniques for the linear
problem, and Section 6.5 lists related work and available software.

6.1. Polynomial and linear rational interpolation

Assume that we are given a function F ∈ H(Ω,Cn×n) on a domain Ω ⊆ C,
a compact and connected target set Σ ⊂ Ω, and two disjoint sequences
of interpolation nodes (σj)

m
j=0 ⊂ Σ and poles (ξj)

m
j=1 ⊂ C \ Ω. Let the

associated nodal (rational) function be defined as

sm(z) =
m∏

j=0

(z − σj)
/ m∏

j=1
ξj 6=∞

(z − ξj). (6.2)

Further, let Γ ⊂ Ω be a contour which encloses Σ, and hence contains all
nodes σj in its interior. Then, by the Walsh–Hermite integral formula (see
e.g. Walsh 1935, Chapter VIII, Theorem 2),

Rm(z) =
1

2πi

∫

Γ

(
1− sm(z)

sm(ζ)

)
F (ζ)

ζ − z dζ

is the unique matrix-valued rational function of type (m,m) with pre-
assigned poles ξj that interpolates F in the Hermite sense (that is, counting
multiplicities) at the nodes σj . Note that the pole parameters ξj are fixed
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and hence we are dealing here with linearized rational interpolants, which
in contrast to nonlinear rational interpolants with free poles have existence
and uniqueness properties very similar to polynomial interpolants. We refer
to Stahl (1996) for an overview. As a consequence, if F itself is a rational
matrix-valued function of type (m,m) with poles ξ1, . . . , ξm, then the inter-
polant Rm with these poles will be exact for any choice of sampling points σj
away from the poles, that is, Rm ≡ F .

Different choices of the nodal function in (6.2) give rise to different types
of interpolants. For example, if we set all poles ξj = ∞, then Rm reduces
to a matrix polynomial of degree m. Two popular instances of polynomial
interpolants are as follows.

(i) If all ξj =∞ and all σj = σ are identical, then sm(z) = (z−σ)m+1 and
Rm is the degree m truncated Taylor expansion of F at z = σ,

Rm(z) = F (σ) + F ′(σ)(z − σ) + · · ·+ F (m)(σ)
(z − σ)m

m!
. (6.3)

As m → ∞, this Taylor series converges geometrically in concentric
discs about the expansion point σ in which F is holomorphic. More
precisely, let Dσ,ρ = {z ∈ C : |z − σ| < ρ} with ρ > 0 be a disc in
which F is holomorphic and bounded (by which we mean that ‖F (z)‖2
is bounded for all z ∈ Dσ,ρ). Further, let Σ = Dσ,ρ0 be a smaller closed
disc with 0 < ρ0 < ρ. Then there exists a constant c depending only on
F, σ, ρ, ρ0 such that

‖F −Rm‖Σ ≤ c
(
ρ0
ρ

)m
. (6.4)

Clearly, this interpolation type is appropriate if the wanted eigenvalues
of F lie inside a circular region about the target point σ.

(ii) If all ξj = ∞, Σ = [−1, 1], and the σj are chosen to be Chebyshev
points of the first kind, that is,

σj = cos

(
j + 1/2

m+ 1
π

)
, j = 0, 1, . . . ,m,

then sm(z) = Tm+1(z) is a Chebyshev polynomial defined by the recur-
sion

T0(z) = 1, T1(z) = z, Tm+1(z) = 2zTm(z)− Tm−1(z). (6.5)

For m→∞, the polynomial interpolant Rm converges inside Bernstein
ellipse regions (5.7) in which F is holomorphic. More precisely, let Eρ
with ρ > 1 be a Bernstein ellipse region in which F is holomorphic and
bounded, and let Σ = Eρ0 be a smaller closed Bernstein ellipse region
with 1 < ρ0 < ρ. Then there exists a constant c depending only on
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F, ρ, ρ0 such that

‖F −Rm‖Σ ≤ c
(
ρ0
ρ

)m
;

see Effenberger and Kressner (2012, Proposition 3.1). The same con-
vergence rate is achieved with interpolation at Chebyshev points of the
second kind, that is,

σj = cos(jπ/m), j = 0, 1, . . . ,m.

Chebyshev interpolation is most appropriate if the wanted eigenvalues
of F lie in or near the interval [−1, 1]. Via linear mapping it is possible
to interpolate F on (complex) intervals [a, b] other than [−1, 1], and
via parametrization t 7→ F (γ(t)) on arbitrary smooth curves in the
complex plane.

These two examples indicate that a ‘good’ choice of the nodes σj for poly-
nomial interpolation is dictated by the target set Σ in which the wanted
eigenvalues of F are located, and that the rate of convergence is dictated
by the location of the singularities of F relative to Σ.

More generally, in linear rational interpolation we also have the freedom
to select the pole parameters ξj . An informed choice of these parameters
can be made by inspecting the Walsh–Hermite formula for the error

F (z)−Rm(z) =
1

2πi

∫

Γ

sm(z)

sm(ζ)

F (ζ)

ζ − z dζ.

By standard estimation of integrals we have

‖F (z)−Rm(z)‖2 ≤ c
|sm(z)|

minζ∈Γ |sm(ζ)| , for all z ∈ Σ, (6.6)

with a constant c that only depends on F , Σ and Γ . The pair (Σ,Γ ) is
called a condenser (Bagby 1967, Gonchar 1969) and in view of (6.6) our
goal must be to construct a rational function sm which is uniformly small on
Σ and large on Γ . A greedy approach to selecting parameters σj ∈ Σ and
ξj ∈ Γ that achieve this goal is as follows. Start with an arbitrary σ0 ∈ Σ,
and then define the nodes σj ∈ Σ and poles ξj ∈ Γ recursively such that
the following conditions are satisfied:

max
z∈Σ
|sj(z)| = |sj(σj+1)| and min

z∈Γ
|sj(z)| = |sj(ξj+1)|, j = 0, 1, . . . .

The resulting points are called Leja–Bagby points for (Σ,Γ ) (Walsh 1932,
Bagby 1969). One can show (see e.g. Levin and Saff 2006, Theorem 3.5) that
there exists a number cap(Σ,Γ ) > 0, called the condenser capacity, such
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that any sequence of rational functions (sm) constructed with the Leja–
Bagby procedure satisfies

lim
m→∞

(
maxz∈Σ |sm(z)|
minz∈Γ |sm(z)|

)1/m

= exp(−1/ cap(Σ,Γ )). (6.7)

By the maximum modulus principle for holomorphic functions, the points
σj lie on ∂Σ, the boundary of Σ, and Γ can be replaced by its closed exter-
ior, say Ξ, without changing the condenser capacity, that is, cap(Σ,Γ ) =
cap(Σ,Ξ). Combining the inequality (6.6) and (6.7), we arrive at the
asymptotic convergence result

lim sup
m→∞

‖F −Rm‖1/mΣ ≤ exp(−1/ cap(Σ,Ξ))

for rational interpolation at Leja–Bagby points. The convergence is thus
asymptotically exponential with a rate depending on the target set Σ and
the poles on Ξ, which should stay a positive distance away from Σ.

The determination of the numerical value cap(Σ,Ξ) is difficult for general
condensers (Σ,Ξ). However, in some cases there are known closed formu-
las derived from conformal maps of doubly connected domains; see Nehari
(1975, Chapter VII). For example, if Ξ = (−∞, α] is a real interval and
Σ = Dσ,ρ is the closed disc of radius ρ > 0 centred at σ > α + ρ, then one
can show that

cap(Σ,Ξ) =
4

π

K(κ)

K(
√

1− κ2)
, κ =

(
σ − α
ρ
−
√(

σ − α
ρ

)2

− 1

)2

, (6.8)

where

K(κ) =

∫ 1

0

1√
(1− t2)(1− κ2t2)

dt

is the complete elliptic integral of the first kind;2 see Nehari (1975, pp. 293–
294). For a list of some other special condensers and formulas for their
capacities see Güttel (2013) and the references therein.

6.2. Sampling approaches

To make the interpolation process described in the previous section con-
structive, we need to agree on some basis functions bj for (6.1). For practical
purposes it is usually advantageous to choose basis functions that are in a
linear relation with one another. Let us list some examples.

2 The definition of K(κ) varies in the literature. We stick to the definition used by Nehari
(1975, Chapter VI). In MATLAB the value K(κ) is obtained with ellipke(kappa^2).
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• Shifted and scaled monomials satisfy the linear relation

b0(z) =
1

β0
, bj+1(z) =

z − σ
βj+1

bj(z) (6.9)

with some nonzero scaling factors βj . An interpolant Rm with this basis
corresponds to the degree m truncated Taylor expansion of F at z = σ
given in (6.3).

• Orthogonal polynomials satisfy a three-term recurrence

b0(z) =
1

β0
, bj+1(z) =

zbj(z) + αjbj(z) + γjbj−1(z)
βj+1

. (6.10)

Both the monomials (6.9) and the Chebyshev polynomials bj = Tj in (6.5)
are special cases of orthogonal polynomial sequences.

• Given nodes σ0, σ1, . . . , σm, the (scaled) Newton polynomials are defined
by the linear relation

b0(z) =
1

β0
, bj+1(z) =

z − σj
βj+1

bj(z). (6.11)

• Given distinct nodes σ0, σ1, . . . , σm, the (scaled) Lagrange polynomials

bj(z) =
1

βj

m∏

i=0
i 6=j

(z − σi) (6.12)

satisfy the linear relation

βj(z − σj)bj(z) = βk(z − σk)bk(z).

In contrast to the above listed polynomials bj whose degrees coincide with
their indices j, the Lagrange polynomials are not degree-graded.

From an approximation point of view it does not matter in which basis an
interpolant Rm ≈ F is represented, and indeed the results in Section 6.1 are
independent of the particular representation of Rm. For practical computa-
tions, however, the choice of basis functions bj is important. In this section
we will focus on degree-graded rational Newton basis functions, which give
rise to rational interpolants that can be constructed in a greedy fashion,
that is, one (distinct) interpolation node at a time, and by only knowing
the values of F at these nodes.
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Given sequences of interpolation nodes (σj)
m
j=0 ∈ Σ and nonzero3 poles

(ξj)
m
j=1 ⊂ C \Σ, we define rational basis functions by the recursion

b0(z) =
1

β0
, bj+1(z) =

z − σj
βj+1(1− z/ξj+1)

bj(z). (6.13)

Each rational function bj+1has roots at the interpolation nodes σ0, σ1, . . . , σj
and poles at ξ1, . . . , ξj . If all poles ξj are chosen at infinity, (6.13) reduces
to the polynomial Newton recursion (6.11).

If all nodes σ0, σ1, . . . , σm are pairwise distinct, we can compute the coef-
ficient matrices Dj of the interpolant (6.1) in a straightforward manner: by
the interpolation condition F (σ0) = Rm(σ0) and the formula for b0 we have
D0 = β0F (σ0). From the interpolation conditions F (σj) = Rm(σj) we then
find recursively

Dj =
F (σj)− b0(σj)D0 − · · · − bj−1(σj)Dj−1

bj(σj)
, j = 1, . . . ,m. (6.14)

The matrix-valued numerator of Dj can be evaluated via the Horner scheme
starting with the coefficient matrix Dj−1, using the fact that each bj−1 di-
vides bj . Computing the matrices Dj this way is mathematically equivalent
to computing the diagonal entries of a divided-difference tableau with mat-
rix entries; see also Güttel, Van Beeumen, Meerbergen and Michiels (2014).

In the confluent case, where some of the interpolation nodes coincide,
derivatives of F will enter the formulas. If F is given in the form

F (z) = f1(z)C1 + f2(z)C2 + · · ·+ f`(z)C` (6.15)

with constant coefficient matrices Cj ∈ Cn×n, we can compute

F (k)(z) = f
(k)
1 (z)C1 + f

(k)
2 (z)C2 + · · ·+ f

(k)
` (z)C`

simply by calculating derivatives of scalar functions and use a straightfor-
wardly modified version of the sampling formula (6.14). There is, however,
a more convenient approach to computing the interpolant Rm which does
not require any sampling at all. To explain this, let us consider again the
basis recursion (6.13) and write it in linearized form as

βj+1(1− z/ξj+1)bj+1(z) = (z − σj)bj(z), j = 0, 1, . . . ,m− 1.

3 The exclusion of poles at the origin is merely for ease of notation and can easily be
remedied by replacing all ξj by ξj + τ and F (z) by F (z + τ). Alternatively, one can
use the more general recursion

bj+1(z) =
z − σj

βj+1(νj+1z − µj+1)
bj(z)

with ξj+1 = µj+1/νj+1 at the cost of dealing with two parameters (µj+1, νj+1) instead
of ξj+1 only.
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With the help of a z-dependent vector b(z) = [b0(z), b1(z), . . . , bm(z)]T , we
can combine these relations in matrix form as

zbT (z)Km = bT (z)Hm, (6.16)

where

Km =




1
β1
ξ1

1
. . .

. . .
βm−1

ξm−1
1

βm
ξm




, Hm =




σ0

β1 σ1
. . .

. . .

βm−1 σm−1

βm




(6.17)

are (m+ 1)×m-matrices. The underscores in our notation of Km and Hm

indicate the additional rows below the horizontal line, and we will denote
by (Hm,Km) the m×m matrix pencil obtained by omitting this row.

Linear relations of the form (6.16) also exist for Taylor, orthogonal poly-
nomial and Lagrange basis functions. It is not difficult to construct the
corresponding matrices Km and Hm using the basis recursions (6.9)–(6.12).

The decomposition (6.16) is called rational Krylov decomposition, and
there is a close connection between matrix functions associated with the
pencil (Hm,Km) and rational divided differences. This connection was first
observed by Opitz (1964) for the case of polynomial interpolation, and later
extended to the rational case; see for example Güttel (2013, Section 3.4).
The following theorem summarizes this approach; cf. Güttel et al. (2014,
Theorem 2.1).

Theorem 6.1. Given a matrix-valued function F in the split form (6.15)
and rational basis functions bj as in (6.13), define the matrices Dj =∑`

i=1 di,jCi for j = 0, 1, . . . ,m, where



di,0
di,1

...
di,m


 = β0fi(Hm+1K

−1
m+1)e1, i = 1, 2, . . . , `,

with Km+1 and Hm+1 as in (6.17) (with m replaced by m+ 1 and last row
removed), and e1 = [1, 0, . . . , 0]T ∈ Rm+1. Then

Rm(z) = b0(z)D0 + b1(z)D1 + · · ·+ bm(z)Dm

is the rational matrix-valued function of type (m,m) with poles at the
points ξ1, . . . , ξm that interpolates F in the Hermite sense at the nodes
σ0, σ1, . . . , σm.
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The following two examples compare the performance of polynomial and
rational interpolation, with the first example also demonstrating that if F it-
self is a rational matrix-valued function of type (m,m) with poles ξ1, . . . , ξm,
then its rational interpolant Rm with these poles will be exact.

Example 6.2. Let us reconsider the loaded string NEP (1.3) of size
n = 100. Recall that this is in fact a rational NEP of type (2, 1) which
could be transformed into a polynomial one via multiplication by z − 1;
however, this would introduce a spurious eigenvalue λ = 1 of multiplicity
n−1, and we prefer not to do this here. We are interested in the eigenvalues
of F located in the interval [4, 296] and use the sampling routine implemen-
ted in the MATLAB Rational Krylov Toolbox (RKToolbox) by Berljafa
and Güttel (2014). A code example is shown in Figure 6.3. The function
util nleigs returns a so-called RKFUN object Rm which represents the
rational interpolant Rm. This object can be evaluated at any point z ∈ C
by typing Rm(z), and its poles are listed with the command poles(Rm); see
Berljafa and Güttel (2015) for implementation details.

The uniform interpolation errors

‖F −Rm‖[4,296] = max
z∈[4,296]

‖F (z)−Rm(z)‖2,

resulting from NLEIGS sampling with three alternatives for the sampling
nodes σj and the poles ξj , are plotted as functions of the degree m in
Figure 6.5(a) (see page 75), together with the predicted convergence factors
shown as dashed lines. Figure 6.5(c) shows the eigenvalues of the different
interpolants Rm.

% NLEIGS_sampling

n = 100; C1 = n*gallery('tridiag',n); C1(end) = C1(end)/2;

C2 = (abs(gallery('tridiag',n)) + 2*speye(n))/(6*n);

C2(end) = C2(end)/2; C3 = sparse(n,n); C3(n,n) = 1;

F = @(z) C1 - z*C2 + C3*z/(z-1); tol = 0; mmax = 50;

Sigma = 150+146*exp(2i*pi*(0:99)/100); Xi = inf; % Leja on circle

Sigma = [4,296]; Xi = inf; % Leja on interval

Sigma = [4,296]; Xi = [1,inf]; mmax = 2; % Leja-Bagby

Rm = util_nleigs(F, Sigma, Xi, tol, mmax); % NLEIGS sampling

Lm = linearize(Rm); [Am,Bm] = Lm.get_matrices(); % linearization

Figure 6.3. Basic MATLAB calls of the Leja–Bagby sampling routine implemented
in the RKToolbox. The first four lines define the loaded string problem. The
three lines starting with ‘Sigma = . . . ’ correspond to the three different choices
of Leja–Bagby points discussed in Example 6.2. The interpolant Rm computed by
util nleigs is represented by an object Rm, and can be evaluated at any z ∈ C by
typing Rm(z). The last line generates a matrix pencil Lm(z) = Am − zBm which
corresponds to a linearization of Rm. This will be discussed in Section 6.3.
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(i) Choosing the sampling points σj on a circle of radius ρ0 = 146 centred
about the point z = 150, while keeping all ξj = ∞, results in a se-
quence of Leja interpolants (the polynomial special case of Leja–Bagby
interpolants) whose errors over [4, 296] tend to reduce by a factor
ρ0/ρ = 146/149 as the degree m increases; see the grey curve with
pluses and the dashed line in Figure 6.5(a). Here, ρ = 149 is the
radius of the largest possible disc centred at z = 150 in which F is
holomorphic. Recall from (6.4) that this is exactly the same conver-
gence factor that would be achieved by truncated Taylor expansions of
F about z = 150; however, the ‘sweeping out’ (or, in the language of
potential theory, balayage) of the interpolation nodes to the boundary
of a disc centred at z = 150 allows for derivative-free sampling at the
same convergence rate.

Figure 6.5(c) shows some of the eigenvalues of the matrix polynomial
R50 as grey pluses. Here are the first five eigenvalues of R50 whose
imaginary part is smallest in modulus, listed in order of increasing real
part:

4.5086126318959 + 0.0078529409700i

123.0253244697823 + 0.0061650205038i

202.1974982022052 + 0.0019912027330i

301.3093923260613 - 0.0166126006570i

356.3668306213224 - 0.0114103053079i

The first three of these eigenvalues are inside the convergence disc, and
seem to approach some of the exact eigenvalues of F given in (3.5). We
have underlined the correct digits of these three eigenvalues of R50 as
approximations to their closest counterparts of F . The other eigen-
values of R50, however, cannot be trusted, as they are not inside the
convergence disc. Interestingly, many of these ‘spurious’ eigenvalues
tend to align on the boundary of that disc (see again the grey pluses
in Figure 6.5(c)). This phenomenon is observed frequently in the lit-
erature; see for example Jarlebring and Güttel (2014, Section 4.3).
While there appears to be no analysis of this effect, it may plausibly
be related to a similar behaviour of roots of scalar truncated Taylor
expansions. In particular, Jentzsch (1916) showed that every point of
the circle of convergence for a scalar power series is an accumulation
point for the roots of its partial sums. More general results of this type
can be made for polynomial best approximants on compact sets; see for
example Blatt, Saff and Simkani (1988). With Taylorσ,m[ · ] being the
operator that returns the degree m truncated Taylor expansion about
σ of its argument, it is easy to verify that

det(Taylorσ,m[F (z)]) = Taylorσ,m[detF (z)] +O((z − σ)m+1).
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This may be a possible starting point for an analysis of the limiting
behaviour of spurious eigenvalues in NEP linearizations.

(ii) Choosing the sampling points σj on the interval [4, 296], while keeping
all ξj = ∞, results in a sequence of Leja interpolants whose errors
over [4, 296] tend to reduce by a factor ρ−10 = 0.817 as the degree m
increases. Here, ρ0 is the elliptical radius of the largest Bernstein el-
lipse region associated with [4, 296] in which F is holomorphic. This is
exactly the same convergence factor that would be obtained with inter-
polation at Chebyshev points on the interval Σ; however, the greedy
choice of Leja–Bagby nodes allows for the degree m to be adaptively
increased while keeping previously chosen nodes σj fixed. Computa-
tionally this is often advantageous, as the degree m required for a
desired sampling accuracy is typically unknown in advance.

The small blue dots in Figure 6.5(c) correspond to the eigenvalues of
the matrix polynomial R50. Among them are some very good approx-
imations to the eigenvalues of F in the interval [4, 296] (correct digits
are underlined):

4.4821710017932 + 0.000000000000000i

24.2235759507902 + 0.000000000000000i

63.7238218842619 + 0.000000000000000i

123.0312214021378 + 0.000000000000000i

202.2009012596192 + 0.000000000000000i

Again some of the spurious eigenvalues align on the boundary of the
convergence region, which in this case is a Bernstein ellipse.

(iii) Finally, we choose the ‘exact’ poles ξ1 = 1, ξ2 =∞ of F , and arbitrary
sampling points away from the singularity z = 1. As expected, the
resulting type (2, 1) rational interpolant R2 coincides exactly with F ,
which is indicated by the sharp drop in the interpolation error; see the
solid red curve with circles in Figure 6.5(a). Note that, in contrast
to the previous two polynomial interpolants, R2 ≡ F is exact not
only in the sampling region, but throughout the complex plane. As
a consequence, R2 also discovers the eigenvalue 0.45731848895 of F ;
see the red circles in Figure 6.5(c).

Example 6.4 (gun). We consider the NEP (1.4). The complex square
root

√ · corresponds to the principal branch, and the parameters are chosen
as ω1 = 0 and ω2 = 108.8774. The target set Σ is the closed disc Dσ,ρ0 of
radius ρ0 = 5× 104 centred at σ = 2502. There is numerical evidence that
F has 21 eigenvalues in Σ. The singularity set Ξ = (−∞, ω2

2] corresponds
to the union of branch cuts of the square roots in (1.4).

For this example we try two different sets of Leja–Bagby points and plot
the convergence of the resulting interpolants together with their predicted
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convergence factors (plotted as dashed lines) in Figure 6.5(b), with the
eigenvalues of the interpolants shown in Figure 6.5(d).

(i) Choosing Leja points σj on the boundary of Σ while keeping all ξj =∞
results in a sequence of polynomial interpolants Rm whose errors over
Σ reduce with a factor ρ0/ρ ≈ 0.987 as m increases; see the grey curve
with pluses and the dashed line in Figure 6.5(b). Here, ρ = σ − ω2

2

is the radius of the largest possible disc centred at σ so that F is
holomorphic in its interior. This is the same convergence factor that
would be obtained with a truncated Taylor expansion of F about σ,
but choosing the nodes σj on the boundary of Σ avoids the need for
derivatives of F .

In Figure 6.5(d) we show the eigenvalues λ of R100 with a relative
residual ‖F (λ)v‖2/‖v‖2 below 10−3 as grey pluses. Inside the target
set Σ there are 13 such eigenvalues.

(ii) We now choose Leja–Bagby nodes on the condenser (Σ,Ξ), resulting
in a rational interpolant with a geometric convergence factor

exp(−1/ cap(Σ,Ξ)) ≈ 0.465,

where cap(Σ,Ξ) is given by (6.8). This convergence is significantly
faster than for the polynomial interpolant. Some of the poles of R38

are shown as magenta dots in Figure 6.5(d), and some of the eigenvalues
of R38 are shown as red circles. All 21 eigenvalues of F in Σ are very
well approximated by eigenvalues of R38. Moreover, R38 appears to be
free of spurious eigenvalues on Σ, and there are even some eigenvalues
outside Σ which have a small relative residual ‖F (λ)v‖2/‖v‖2.

Looking at the examples in Figure 6.5 we conclude that rational inter-
polation can significantly outperform polynomial interpolation. This is in
particular the case when F has singularities near the target set Σ.

It remains to discuss the choice of scaling parameters βj for the rational
functions bj defined in (6.13). Perhaps the most natural approach, also
advocated in Güttel et al. (2014, Section 5.1), is to select each βj such that
‖bj‖Σ = 1. In this case we have

‖F −Rm‖Σ ≤ ‖Dm+1‖2 + ‖Dm+2‖2 + · · · ,
so if the norms of the coefficient matrices Dj decay quickly we can use
‖Dm+1‖2 (or ‖Dm+1‖F ) as a cheap upper estimate for the interpolation
error ‖F −Rm‖Σ . (As will be seen in the following section, this scaling also
leads to well-balanced block entries in the eigenvectors of the linearization
pencil Lm(z) of Rm(z).) In practice, the normalization of each bj can be

achieved by setting βj = 1/max∂Σp |̂bj(z)|, where ∂Σp is a fine discretization

of the boundary of Σ with p points (typically p = 1000 is enough) and b̂j is
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Figure 6.5. (a, b) Approximation errors ‖F − Rm‖Σ of Leja–Bagby interpolants
Rm for different choices of Leja–Bagby points as the degree m ≥ 0 increases,
together with the predicted error decay rates (dashed lines). (a) Sampling of the
loaded string problem as discussed in Example 6.2 with Σ = [4, 296]. (b) Polyno-
mial versus rational sampling of the gun problem as discussed in Example 6.4 with
Σ chosen to be the closed disc of radius 5× 104 centred at 6.25× 104. (c, d) Eigen-
values of the different Leja–Bagby interpolants Rm for both the loaded string

problem (c) and the gun problem (d). For the gun problem in the case of rational
Leja–Bagby interpolation, we also show the interpolation nodes σj and poles ξj .
Part of the lower half of the target set Σ is outside the visible region, but this part
is free of eigenvalues.
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the basis function prior to scaling. As this normalization procedure only
involves evaluations of scalar functions, its computational cost is typically
negligible.

While we have focused in this section on rational Newton interpolation
for F due to its greedy approach, the approximation Rm in (6.1) via Lag-
range interpolation is easy to construct since Dj = F (σj). For Chebyshev
interpolation, Effenberger and Kressner (2012) propose using a sequence
of inverse discrete cosine transforms whose type depends on the choice of
interpolation nodes.

6.3. Linearization

The polynomial or rational eigenvalue problem Rm(λ)v = 0 with Rm of
the form (6.1) can easily be converted into a linear eigenvalue problem
when the basis functions bj are in a linear relation with one another, that

is, when there exist matrices Km, Hm ∈ C(m+1)×m satisfying a relation of
the form (6.16). Using the linear relation between bm and bm−1, Rm(z) is
rewritten in the form

g(z)Rm(z) =
m−1∑

j=0

bj(z)(Aj − zBj) (6.18)

for some function g(z). For example, using the Newton-type basis functions
defined in (6.13), we get

Rm(z) = b0(z)D0 + · · ·+ bm−1(z)Dm−1 +
z − σm−1

βm(1− z/ξm)
bm−1(z)

︸ ︷︷ ︸
bm(z)

Dm,

and by multiplying the above equation by g(z) = (1 − z/ξm), (6.18) is
obtained with

Aj = Dj , Bj = Dj/ξm, j = 0, 1, . . . ,m− 2,

Am−1 = Dm−1 −
σm−1
βm

Dm, Bm−1 =
Dm−1
ξm

− Dm

βm
.

If Rm is represented in the Taylor, orthogonal polynomial or Lagrange
basis, then Rm in (6.1) is a matrix polynomial and g(z) = 1 in (6.18). For
completeness, the conversion rules relating the coefficient matrices Dj and
the (Aj , Bj) used in (6.18) are provided in Table 6.6; see also Van Beeumen,
Meerbergen and Michiels (2015a, Table 1).

Now (6.18) and the first m equations in (6.16) can be rewritten as

Lm(z)(b(z)⊗ In) = (g(z)e1 ⊗ In)Rm(z), (6.19)
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Table 6.6. Conversion of Rm in the form (6.1) into the form (6.18). The ranges of
the variable j indicated in the column for Bj are the same for Aj along each row.

Basis bj Aj Bj

Taylor
(6.9)





Dj

Dm−1 −
σ

βm
Dm





O, j < m− 1

−Dm

βm
, j = m− 1

Orthogonal
(6.10)





Dj

Dm−2 +
γm−1
βm

Dm

Dm−1 +
αm−1
βm

Dm





O, j < m− 2

O, j = m− 2

−Dm

βm
, j = m− 1

Lagrange
(6.12)





σmDj

σmDm−1 +
βm−1σm
βm

Dm





Dj , j < m− 1

Dm−1 +
βm−1
βm

Dm, j = m− 1

RatNewton
(6.13)





Dj

Dm−1 −
σm−1
βm

Dm





O, j < m− 1

−Dm

βm
, j = m− 1

where Lm(z) = Am − zBm is an mn× nm pencil with

Am =



A0 A1 · · · Am−1

Hm−1T ⊗ In


, Bm =



B0 B1 · · · Bm−1

Km−1T ⊗ In


 (6.20)

and

b(z) =
[
b0(z) b1(z) · · · bm−1(z)

]T
.

Using a block (permuted) UL decomposition of Lm(z0) for z0 ∈ C, Van Beeu-
men et al. (2015a, Corollary 2.4) show that if Hm−1T − zKm−1T is of rank
m−1 for all z, then Rm regular implies that Lm is regular. While the spectra
of Rm and Lm are not necessarily identical when Rm is a rational matrix-
valued function, Grammont, Higham and Tisseur (2011, Theorem 3.1) show
that the one-sided factorization in (6.19) implies useful relations between
the eigensystem of Rm and that of Lm.
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Theorem 6.7. Let Rm(λ) and Lm(z) be matrix functions of dimensions
n × n and mn ×mn, respectively. Assume that (6.19) holds at z = λ ∈ C
with g(λ) 6= 0 and b(λ) 6= 0. Then

(i) b(λ)⊗ v is a right eigenvector of Lm with eigenvalue λ if and only if v
is a right eigenvector of Rm with eigenvalue λ,

(ii) if w ∈ Cmn is a left eigenvector of Lm with eigenvalue λ, then (g(z)e1⊗
In)∗w is a left eigenvector of Rm with eigenvalue λ provided that it is
nonzero.

The pencil Am − zBm with Am,Bm of the form (6.20) is referred to as
CORK linearization. Such pencils have been used in Güttel et al. (2014)
and Van Beeumen et al. (2015a). They are a generalization of the polyno-
mial Newton-type linearizations in Van Beeumen, Meerbergen and Michiels
(2013). While these linearizations are most naturally constructed by inter-
polatory sampling as explained in the previous section, they may also result
from non-interpolatory approximation procedures. The following example
illustrates this.

Example 6.8. Consider again the loaded string problem (1.3),

F (z) = C1 − zC2 +
z

z − 1
C3.

Using the basis functions b0(z) = 1, b1(z) = z/(1 − z) and b2(z) = −z, we
can rewrite F in the form (6.1), namely

R2(z) = b0(z)D0 + b1(z)D1 + b2(z)D2

with D0 = C1, D1 = −C3 and D2 = C2. By choosing the basis functions bj ,
we have implicitly specified the parameters σ0 = 0, σ1 = 1, ξ1 = 1, ξ2 =∞
and β0 = β1 = β2 = 1. Note that σ1 = 1 would be an invalid choice as a
sampling point as F has a pole there. Nevertheless, F and R2 are identical.
By the rational Krylov decomposition

z[b0(z), b1(z), b2(z)]




1 0
1 1
0 0




︸ ︷︷ ︸
K2

= [b0(z), b1(z), b2(z)]




0 0
1 1
0 1




︸ ︷︷ ︸
H2

,

Table 6.6, and (6.20), we arrive at the 2n× 2n CORK linearization

Lm(z) =



D0 D1 −D2

H1
T ⊗ In


− z



O −D2

K1
T ⊗ In




=



D0 D1 −D2

O In


− z



O −D2

In In


.
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If some of the matrix pairs (Aj , Bj) in (6.18) are of low rank, one can
further reduce the size of the linearization. In the following example we
illustrate this so-called trimmed linearization approach.

Example 6.9. In the loaded string problem (1.3),

F (z) = C1 − zC2 +
z

z − 1
C3,

the matrix C3 = ene
T
n is of rank 1. Using the basis functions b0(z) = 1 and

b1(z) = 1/(1− z), we can rewrite F in the form (6.18) as

R2(z) = b0(z)(A0 − zB0) + b1(z)(A1 − zB1)

with A0 = C1, B0 = C2, A1 = O and B1 = C3. Note that b1(z) is now a
rational function of subdiagonal type (0, 1), referred to as ‘proper form’ in
Su and Bai (2011). The 2n× 2n CORK linearization is

L2(z) =




C1 O

−In In


− z



C2 ene

T
n

O In


.

Using the structure of the eigenvector v = [b0(λ)vT , b1(λ)vT ]T , we find that
L2(λ)v = 0 is equivalent to the equations

C1b0(λ)v − λC2b0(λ)v − λeneTn b1(λ)v = 0,

−b0(λ)v + b1(λ)v − λb1(λ)v = 0.

The last of the two equations specifies the linear relation between b0(z) and
b1(z), and it does so even if we multiply it from the left by eTn (as long
as eTnv 6= 0). Hence we can rewrite the reduced relations as a trimmed

(n+ 1)× (n+ 1) linearization L̂2(λ)v̂ = 0 , where

L̂2(z) =




C1 0

−eTn 1


− z



C2 en

0T 1


, v̂ =

[
b0(z)v
b1(z)e

T
nv

]
.

Trimmed linearizations appeared in the context of polynomial eigenvalue
problems with singular coefficient matrices in Byers, Mehrmann and Xu
(2008) and for rational eigenvalue problems in Su and Bai (2011) and Alam
and Behera (2016). The approach has been extended to NEPs involving
several low-rank terms in a series of works, for example Van Beeumen et al.
(2013), Güttel et al. (2014), Van Beeumen, Jarlebring and Michiels (2016a)
and Lu, Huang, Bai and Su (2015).

6.4. Solving the linearized problem

Theorem 6.7 establishes a one-to-one correspondence between right eigen-
pairs of Rm and structured right eigenpairs of the linear mn ×mn pencil
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Lm(z) = Am − zBm, and all that remains is to solve this generalized ei-
genvalue problem. If mn is moderate, all eigenpairs of the linearization can
be found via the QZ algorithm in O((mn)3) floating point operations. For
many problems arising in applications, however, mn is too large for QZ, and
iterative techniques for large-scale eigenproblems are required.

In principle, any available iterative algorithm for generalized eigenprob-
lems can be used; see for example Saad (2011) and Bai et al. (2000) for com-
prehensive overviews and Hernandez, Roman, Tomas and Vidal (2009) for a
survey of available software. In the context of NEPs, one of the most popu-
lar approaches to finding a few eigenpairs of the pencil Lm uses the rational
Arnoldi algorithm by Ruhe (1998). Given a nonzero starting vector v ∈ Cmn
and a sequence of shift parameters τ1, . . . , τk ∈ C\Λ(Lm), this algorithm at-
tempts to compute an orthonormal basis Vk+1 = [v1, . . . , vk+1] ∈ Cmn×(k+1)

of a rational Krylov space defined by Algorithm 6.10.

Algorithm 6.10: Rational Arnoldi algorithm

Given {Am,Bm} ⊂ Cmn×mn, v ∈ Cmm \ {0}, shifts (τj)
k
j=1 ⊂ C.

Set v1 := v/‖v‖2.
for j = 1, 2, . . . , k do

Compute w := (Am − τjBm)−1Bmvj .

Orthogonalize ŵ := w −∑j
i=1 µi,jvi, where µi,j = v∗i w .

Set µj+1,j = ‖ŵ‖2 and normalize vj+1 := ŵ/µj+1,j .
end

If this algorithm completes without early termination, which is the generic
case when all µj+1,j 6= 0, the computed quantities can be combined into a
rational Arnoldi decomposition

AmVk+1Mk = BmVk+1Nk, (6.21)

where (Nk,Mk) is a (k+1)×k upper Hessenberg pencil with Mk = [µi,j ] and
Nk = Ik + Mk diag(τ1, . . . , τk). The rational Arnoldi decomposition (6.21)
can then be used to extract Ritz pairs (ϑi,wi = Vk+1Nksi), where (ϑi, si)
are solutions of the generalized eigenproblem

Nksi = ϑiMksi, si 6= 0,

involving the upper k × k part of the pencil (Nk,Mk). Typically, the Ritz
pairs are expected to be good approximations to some of the eigenpairs
of the linearization Lm, in particular, close to the shifts τj . In practice,
one may distribute the shift parameters inside the target region Σ, run a
few rational Arnoldi iterations k, and then compute the residuals of the
extracted Ritz pairs. If the residuals are not satisfactory, one can extend
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the rational Arnoldi decomposition to a larger value of k by continuing the
rational Arnoldi iteration.

The most expensive part in Algorithm 6.10 is the solution of a shifted
linear system

Lm(τj)w = (Am − τjBm)w = Bmvj

for w , involving the mn×mn matrices Am and Bm. It turns out that these
systems can be solved very efficiently if the underlying Kronecker structure
in the lower block part of Am − τjBm is exploited; see Theorem 6.7. Let
us illustrate this pictorially at a degree m = 4 linearization arising from
sampling with a (rational) Newton basis. In this case A4 − τjB4 has the
block sparsity pattern shown on the left of the following equation:




× × × ×
+ +

+ +
+ +


 =




⊗ × × ×
+

+
+







I

+ I
+ I

+ I


.

Here, the first block row contains coefficient matrices of an NEP associated
with the Newton basis (symbolized by ×), while all blocks below the hori-
zontal line are multiples of the identity matrix (symbolized by +). Provided
that the block diagonal entries of the matrix on the left are nonzero (which
is guaranteed as long as τj does not coincide with any of the poles of Rm), we
can compute a block UL decomposition as shown on the right of the equa-
tion. Hence a linear system solve reduces to a forward and backsubstitution
with the matrix factors on the right-hand side of the equation. Luckily, the
only matrix to be inverted is the upper left block entry in the left factor
of size n × n, symbolized by ⊗. Hence, for each distinct shift τj , only a
single factorization of an n× n matrix is required. The exploitation of this
structure in Lm(τj) is crucial for the efficient solution of the linearized prob-
lem, and it has been done, for example, in Effenberger and Kressner (2012),
Jarlebring, Meerbergen and Michiels (2012b), Van Beeumen et al. (2013)
and Güttel et al. (2014).

Further considerable savings in arithmetic operations for the orthogonal-
ization and storage of the orthonormal rational Krylov basis are possible by
exploiting a compact representation of the basis vectors

Vk+1 = (Im ⊗Q)U , (6.22)

where Q ∈ Cn×r and U ∈ Cmr×(k+1) have orthonormal columns. The
rank r is bounded by m+ k+ 1 and typically much smaller than m(k+ 1).
All operations required in the rational Arnoldi algorithm (matrix-vector
products, linear system solves with Lm(τj), and inner products) can be im-
plemented efficiently using this representation. The stability of the compact
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representation within the two-level orthogonal Arnoldi procedure (TOAR)
for quadratic eigenvalue problems is investigated in Lu, Su and Bai (2016).
TOAR has been extended to (polynomial) NEPs in a number of works, for
example Kressner and Roman (2014) and Van Beeumen et al. (2015a).

Finally, let us clarify that some algorithmic details are still missing in
our simplistic presentation starting from Algorithm 6.10. However, most
of these details appear in identical form for the Arnoldi solution of linear
eigenvalue problems, including the use of reorthogonalization to avoid the
loss of orthogonality in the rational Krylov basis Vk+1, the use of inexact
solves (Lehoucq and Meerbergen 1998), and Krylov–Schur restarting to fur-
ther reduce storage and orthogonalization costs (Stewart 2002). For further
reading we refer to the ARPACK users’ guide by Lehoucq, Sorensen and
Yang (1998), and to Ruhe (1998).

6.5. Related work and software

Solution approaches based on approximation or interpolation of the NEP
are frequently employed in the literature, in particular by the boundary
element method (BEM) community; see Kamiya, Andoh and Nogae (1993)
for a review. Theoretical aspects of such approximations were investigated
by Karma (1996a, 1996b).

For a given matrix polynomial or rational matrix-valued function Rm
there are many (in fact infinitely many) possible linearizations (see Mackey
et al. 2015 and references therein). Our aim in Section 6.3 was to present a
unified and practical approach. For other examples of linearizations based
on degree-graded polynomial bases, Bernstein, Lagrange and Hermite bases,
see for example Corless (2004), Mackey, Mackey, Mehl and Mehrmann
(2006b), Higham, Mackey, Mackey and Tisseur (2006), Amiraslani, Cor-
less and Lancaster (2009), Van Beeumen, Michiels and Meerbergen (2015b),
Mackey and Perović (2016) and Noferini and Pérez (2016). For construc-
tions of linearizations of rational matrix-valued functions, we refer to Su
and Bai (2011) and Alam and Behera (2016).

Van Beeumen et al. (2013, Section 4.5) made a connection with rational
Krylov techniques for solving the linearized problem with Newton’s method,
using a link between the rational Arnoldi and Jacobi–Davidson algorithms
pointed out by Ruhe (1998), and the interpretation of a Jacobi–Davidson
iteration as a Newton update (Sleijpen and van der Vorst 1996). A connec-
tion between rational Krylov methods for (nonlinear) eigenvalue problems
and a basic contour-based method is discussed in Van Beeumen, Meerbergen
and Michiels (2016b).

A practical advancement of linearization-based methods is the so-called
infinite Arnoldi method, which in its original form by Jarlebring et al.
(2012b) uses Taylor approximation and has been applied successfully to
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various NEPs, for example those associated with delay differential equa-
tions; see also Jarlebring and Güttel (2014) and Jarlebring, Meerbergen
and Michiels (2012a, 2014). The main idea of the infinite Arnoldi method
is to increase the degree m of the linearization Lm dynamically with every
outer rational Krylov iteration k for finding its eigenvalues, that is, k = m.
This is possible if the starting vector v in Algorithm 6.10 has a particu-
lar structure and the interpolation nodes σj are chosen identically to the
shifts τj for all j. The advantage of this approach over the first-sample-then-
solve approach is that the degree m of the linearization does not need to
be determined in advance. However, the restriction on the sampling points
σj = τj may enforce the use of suboptimal interpolants for the linearization,
and the accuracy of this linearization (degree m) and the convergence of the
outer rational Krylov iteration for finding its eigenvalues (index k) are not
necessarily synchronous.

The following MATLAB implementations of the infinite Arnoldi method
are available online.

• A rank-exploiting variant is described in Van Beeumen et al. (2016a):

https://people.kth.se/˜eliasj/src/lowranknep

• A tensor version applied to a waveguide eigenvalue problem is described
in Jarlebring, Mele and Runborg (2017):

http://www.math.kth.se/˜gmele/waveguide

• A bi-Lanczos method is described in Gaaf and Jarlebring (2016):

http://www.math.kth.se/˜eliasj/src/infbilanczos/

Other NEP solvers based on polynomial interpolation are as follows.

• A method using empirical interpolation to solve nonlinear Helmholtz
eigenvalue problems is given in Botchev, Sleijpen and Sopaheluwakan
(2009).

• The Chebyshev interpolation approach in Effenberger and Kressner (2012)
focuses on problems arising from the BEM discretization of 3D elliptic
PDE eigenvalue problems and comes with MATLAB code available at

http://anchp.epfl.ch/files/content/sites/anchp/files/software/chebapprox.tar.gz

• A linearization approach of Lagrange and Hermite interpolating matrix
polynomials is described in Van Beeumen et al. (2015b):

http://twr.cs.kuleuven.be/research/software/nleps/lin-lagr.php
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MATLAB codes making use of rational Leja–Bagby sampling combined with
a Krylov solution of the linearization include the following.

• The NLEIGS method described in Güttel et al. (2014), which also sup-
ports exploitation of low-rank structure in the NEP:

http://twr.cs.kuleuven.be/research/software/nleps/nleigs.php

• The CORK method described in Van Beeumen et al. (2015a), which
implements the compact representation of Krylov basis vectors (6.22),
exploitation of low-rank terms, and implicit restarting:

http://twr.cs.kuleuven.be/research/software/nleps/cork.php

• The util nleigs function in the Rational Krylov Toolbox, which we
demonstrated in Figure 6.3, as well as the rat krylov function which
implements the (parallel) rational Arnoldi algorithm described in Berljafa
and Güttel (2017):

http://rktoolbox.org/

The NEP module of the SLEPc package (Hernandez et al. 2005) provides
various linearization-based solvers for NEPs: http://slepc.upv.es/. (There
is also a specialized module PEP for polynomial eigenvalue problems.) In
particular, it implements Chebyshev interpolation on an interval and the
NLEIGS method using rational Leja–Bagby sampling. The eigenpairs of the
resulting linearization are computed by a Krylov–Schur implementation that
fully exploits the compact representation (6.22); see Campos and Roman
(2016b) for implementation details in the case of matrix polynomials.

SLEPc also provides matrix function routines to compute rational inter-
polants Rm of NEPs given in split form, as suggested by Theorem 6.1.
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M. Berljafa and S. Güttel (2017), Parallelization of the rational Arnoldi algorithm.
MIMS EPrint 2016.32, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK. SIAM J. Sci. Comput., to appear.

T. Betcke and H. Voss (2004), ‘A Jacobi–Davidson-type projection method for
nonlinear eigenvalue problems’, Future Gener. Comput. Syst. 20, 363–372.

T. Betcke, N. J. Higham, V. Mehrmann, C. Schröder and F. Tisseur (2013),
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V. Noferini and J. Pérez (2016), ‘Fiedler-comrade and Fiedler–Chebyshev pencils’,
SIAM J. Matrix Anal. Appl. 37, 1600–1624.

G. Opitz (1964), ‘Steigungsmatrizen’, Z. Angew. Math. Mech. 44, T52–T54.
G. Peters and J. H. Wilkinson (1979), ‘Inverse iteration, ill-conditioned equations

and Newton’s method’, SIAM Rev. 21, 339–360.
H. Poincaré (1890), ‘Sur les équations aux dérivées partielles de la physique
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