
A New Analysis of Iterative Refinement and its
Application to Accurate Solution of

Ill-Conditioned Sparse Linear Systems

Carson, Erin and Higham, Nicholas J.

2017

MIMS EPrint: 2017.12

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

A NEW ANALYSIS OF ITERATIVE REFINEMENT AND ITS
APPLICATION TO ACCURATE SOLUTION OF ILL-CONDITIONED

SPARSE LINEAR SYSTEMS∗

ERIN CARSON† AND NICHOLAS J. HIGHAM‡

Abstract. Iterative refinement is a long-standing technique for improving the accuracy of a
computed solution to a nonsingular linear system Ax = b obtained via LU factorization. It makes
use of residuals computed in extra precision, typically at twice the working precision, and existing
results guarantee convergence if the matrix A has condition number safely less than the reciprocal of
the unit roundoff, u. We identify a mechanism that allows iterative refinement to produce solutions
with normwise relative error of order u to systems with condition numbers of order u−1 or larger,
provided that the update equation is solved with a relative error sufficiently less than 1. A new
rounding error analysis is given and its implications are analyzed. Building on the analysis, we
develop a GMRES-based iterative refinement method (GMRES-IR) that makes use of the computed
LU factors as preconditioners. GMRES-IR exploits the fact that even if A is extremely ill conditioned
the LU factors contain enough information that preconditioning can greatly reduce the condition
number of A. Our rounding error analysis and numerical experiments show that GMRES-IR can
succeed where standard refinement fails, and that it can provide accurate solutions to systems with
condition numbers of order u−1 and greater. Indeed in our experiments with such matrices—both
random and from the University of Florida Sparse Matrix Collection—GMRES-IR yields a normwise
relative error of order u in at most 3 steps in every case.

1. Introduction. Ill-conditioned linear systems Ax = b arise in a wide variety
of science and engineering applications, ranging from geomechanical problems [11] to
computational number theory [4]. When A is ill conditioned the solution x to Ax = b
is extremely sensitive to changes in A and b. Indeed, when the condition number
κ(A) = ‖A‖‖A−1‖ is of order u−1, where u is the unit roundoff, we cannot expect
any accurate digits in a solution computed by standard techniques. This poses an
obstacle in applications where an accurate solution is required, of which there is a
growing number [3], [13], [21], [22], [32].

Iterative refinement (Algorithm 1.1) is frequently used to obtain an accurate so-
lution to a linear system Ax = b. Typically, one computes an initial approximate
solution x̂ using Gaussian elimination (GE), saving the factorization A = LU . Here
and throughout, to simplify the notation we assume that A is a nonsingular matrix
for which any required row or column interchanges have been carried out in advance
(that is, “A ≡ PAQ”, where P and Q are appropriate permutation matrices). After
computing the residual r = b − Ax̂ in higher precision1 u, where typically u = u2,
one reuses L and U to solve the system Ad = r, rewritten as LUd = r, by substi-
tution. The original approximate solution is then refined by adding the corrective
term, x̂ ← x̂+ d. This process is repeated until a desired backward or forward error
criterion is satisfied.

If A is very ill conditioned however, the iterative refinement process may not

∗Version of March 27, 2017. Funding: The work of the second author was supported by Math-
Works, European Research Council Advanced Grant MATFUN (267526), and Engineering and Phys-
ical Sciences Research Council grant EP/I01912X/1. The opinions and views expressed in this pub-
lication are those of the authors, and not necessarily those of the funding bodies.
†Courant Institute of Mathematical Sciences, New York University, New York, NY. (er-

inc@cims.nyu.edu, http://math.nyu.edu/˜erinc).
‡School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/˜higham).
1We are not concerned here with iterative refinement in fixed precision, which can also benefit

accuracy, though to a lesser extent [15, Chap. 12], [33].

1

Algorithm 1.1 Iterative Refinement

Input: n×n matrix A; right-hand side b; maximum number of refinement steps imax.
Output: Approximate solution x̂ to Ax = b.

1: Compute LU factorization A = LU .
2: Solve Ax0 = b by substitution.
3: for i = 0 : imax − 1 do
4: Compute ri = b−Axi in precision u; store in precision u.
5: Solve Adi = ri.
6: Compute xi+1 = xi + di.
7: if converged then return xi+1, quit, end if
8: end for
9: % Iteration has not converged.

10 15 20 25
10

0

10
5

10
10

10
15

10
20

invhilb

κ∞(Û−1L̂−1A)

1 + κ∞(A)u

10 15 20 25
10

0

10
1

10
2

10
3

10
4

10
5

randsvd

κ∞(Û−1L̂−1A)

1 + κ∞(A)u

Fig. 1.1. Comparison of κ∞(Û−1L̂−1A) and 1+κ∞(A)u for a computed LU factorization with
partial pivoting, for matrices of dimension shown on the x-axis. These matrices are very ill condi-
tioned with κ∞(A) ranging from 1013 to 1035. Computations were in double precision arithmetic.
Top: inverse Hilbert matrix. Bottom: matrices generated as gallery(’randsvd’,n,10^(n+5)) in
MATLAB.

converge, and indeed all existing results on the convergence of iterative refinement
require A to be safely less than u−1. Nevertheless, despite the ill conditioning of A,
there is still useful information contained in the LU factors and their inverses (perhaps

implicitly applied). It has been observed that if L̂ and Û are the computed factors

of A from LU factorization with partial pivoting then κ(L̂−1AÛ−1) ≈ 1 + κ(A)u

even for κ(A) � u−1, where L̂−1AÛ−1 is computed by substitution; for discussion
and further experiments see [24], [28], [29]. This approximation can also be made in

the case where left-preconditioned is used, that is, κ(Û−1L̂−1A) ≈ 1 + κ(A)u. The
experimental results shown in Figure 1.1 illustrate the quality of this approximation.

The results in Figure 1.1 lead us to question the conventional wisdom that iterative
refinement cannot work in the regime where κ(A) > u−1. If the LU factors contain
useful information in that regime, can iterative refinement be made to work there

2

too? We will give a new rounding error analysis that identifies a mechanism by which
iterative refinement can indeed work when κ(A) > u−1, provided that we can solve
the equations for the updates on line 5 of Algorithm 1.1 with some relative accuracy.

We will then use the analysis to develop an implementation of Algorithm 1.1
that enables accurate solution of sparse, very ill conditioned systems. We use the
generalized minimal residual (GMRES) method [31] preconditioned by the computed
LU factors to solve for the corrections. We refer to this method as GMRES-based
iterative refinement (GMRES-IR).

We show that in the case where the condition number κ∞(A) is around u−1, our
approach can obtain a solution x̂ to Ax = b for which the forward error ‖x̂−x‖∞/‖x‖∞
is of order u. Extra precision (assumed to be with a unit roundoff of u2) need only
be used in computing the residual, in the triangular solves involved in applying the
preconditioner, and in matrix-vector multiplication with A.

An advantage of our approach is that it can succeed when standard iterative re-
finement (using the LU factors to solve Ad = r) fails or is, in the words of Ma et al.
[22], “on the brink of failure”. Ma et al. [22] need to solve linear programming prob-
lems arising in a biological application and their attempts to use iterative refinement
in the underlying linear system solutions were only partially successful. GMRES-IR
offers the potential for better results in this application.

We note that there is growing interest in using lower precisions such as single or
even half precision in climate and weather modeling [27] and machine learning [12],
but this brings an increased likelihood that the problems encountered will be very ill
conditioned relative to the working precision. Our work, which is applicable for any
u, could be especially relevant in these contexts.

In Section 2 we present the new rounding error analysis and investigate its impli-
cations. In Section 3 we explain how we use preconditioned GMRES within iterative
refinement and give, using the results of Section 2, theoretical justification that this
GMRES-based iterative refinement can yield an error of the order of u even in cases
where κ∞(A) ≥ u−1. Since we are primarily concerned with sparse linear systems, we
discuss in Section 3.1 various choices of pivoting strategy and how these affect the nu-
merical behavior. In Section 4 we discuss other, related work on iterative refinement.
Numerical experiments presented in Section 5 confirm our theoretical analysis. Our
numerical experiments motivate a two-stage iterative refinement approach, which we
briefly discuss in Section 5.3, that first attempts the less expensive standard iterative
refinement and switches to a GMRES-IR stage in the case of slow convergence or
divergence.

2. Error analysis of iterative refinement. The most general rounding error
analysis of iterative refinement is that of Higham [15, Sec. 12.1], which appeared first in
[14]. That analysis cannot provide the result we want; convergence is guaranteed only
when κ∞(A) ≤ u−1. We therefore carry out a new analysis with different assumptions.
A key observation is that an inequality used without comment in previous analyses

can be very weak. We introduce a quantity µ
(p)
i , in (2.2) below, that captures the

sharpness of the inequality and allows us to draw stronger conclusions.

We first define some notation that will be used in the remaining text. Given an
integer k, we define

γk = ku/(1− ku), γ̄k = ku/(1− ku), γ̃k = cku/(1− cku),

where c is some small constant independent of the problem size. For a matrix A and

3

vector x, we define the condition numbers

κp(A) = ‖A−1‖p‖A‖p, condp(A) = ‖|A−1||A|‖p, condp(A, x) =
‖|A−1||A||x|‖p

‖x‖p
,

where |A| = (|aij |). If p is not specified the ∞-norm is implied.
Let A ∈ Rn×n be nonsingular and let x̂ be a computed solution to Ax = b.

Define x0 = x̂ and consider the following iterative refinement process: ri = b − Axi
(compute in precision u and round result to precision u), solve Adi = ri (precision
u), xi+1 = xi + di (precision u), for i = 1, 2,. . . . For traditional iterative refinement,
u = u2.

From this point until the statement of Theorem 2.1 we define ri, di, and xi to be
the computed quantities, in order to avoid a profusion of hats. The only assumption
we will make on the solver for Adi = ri is that the computed solution ŷ to a system
Ay = f satisfies

(2.1)
‖y − ŷ‖∞
‖y‖∞

= θu, θu ≤ 1,

where θ is a constant depending on A, f , n, and u. Thus the solver need not be LU
factorization, or even a factorization method.

For any p-norm we define µ
(p)
i by

(2.2) ‖A(x− xi)‖p = µ
(p)
i ‖A‖p‖x− xi‖p

and note that

κp(A)−1 ≤ µ(p)
i ≤ 1.

As we argue in the next subsection, µ
(p)
i may be far below its upper bound, and this

is the key reason why iterative refinement can work when κ(A) & u−1.
Consider first the computation of ri. There are two stages. First, si = fl(b −

Axi) = b − Axi + ∆si is formed in precision u, so that |∆si| ≤ γn+1(|b| + |A||xi|)
[15, Sec. 3.5]. Second, the residual is rounded to the working precision: ri = fl(si) =
si + fi, where |fi| ≤ u|si|. Hence

(2.3) ri = b−Axi +∆ri, |∆ri| ≤ u|b−Axi|+ (1 + u)γn+1(|b|+ |A||xi|).

For the second step we have, by (2.1) and (2.2),

‖di −A−1ri‖∞ ≤ θiu‖A−1ri‖∞
= θiu‖A−1(b−Axi +∆ri)‖∞
≤ θiu

[
‖x− xi‖∞ + uµ

(∞)
i κ∞(A)‖x− xi‖∞

+ (1 + u)γn+1‖ |A−1|(|b|+ |A||xi|) ‖∞
]

≤ θiu
(
1 + uµ

(∞)
i κ∞(A)

)
‖x− xi‖∞

+ θiu(1 + u)γn+1‖ |A−1|(|b|+ |A||xi|) ‖∞.(2.4)

For the last step, using the variant [15, Eq. (2.5)] of the rounding error model we have

xi+1 = xi + di +∆xi, |∆xi| ≤ u|xi+1|.
4

Rewriting gives

xi+1 = xi +A−1ri + di −A−1ri +∆xi

= x+A−1∆ri + di −A−1ri +∆xi.

Hence, using (2.3) and (2.4),

‖xi+1 − x‖∞ ≤ ‖ |A−1
[
u|A(x− xi)|+ (1 + u)γn+1(|b|+ |A||xi|)

]
‖∞

+ θiu
(
1 + uµ

(∞)
i κ∞(A)

)
‖x− xi‖∞(2.5)

+ θiu(1 + u)γn+1‖ |A−1|(|b|+ |A||xi| ‖∞ + u‖xi+1‖∞(2.6)

≤ u
(
µ

(∞)
i κ∞(A) + θi(1 + uµ

(∞)
i κ∞(A))

)
‖x− xi‖∞

+ γn+1(1 + u)(1 + θiu)‖ |A−1|(|b|+ |A||xi|) ‖∞ + u‖xi+1‖∞.(2.7)

We summarize the analysis in the following theorem.
Theorem 2.1. Let iterative refinement in precisions u and u ≤ u, and with a

solver satisfying assumption (2.1), be applied to a linear system Ax = b with nonsin-
gular A ∈ Rn×n and a given approximation x0 to x. Then for i ≥ 0 the computed
iterate x̂i+1 satisfies

‖x̂i+1 − x‖∞ .
(
2µ

(∞)
i κ∞(A)u+ θiu

)
‖x− x̂i‖∞

+ nu(1 + θiu)‖ |A−1|(|b|+ |A||x̂i|) ‖∞ + u‖x̂i+1‖∞.(2.8)

Proof. The result follows from (2.7) on dropping second order terms, since θiu ≤ 1
by assumption.

We conclude that as long as

(2.9) 2µ
(∞)
i κ∞(A)u+ θiu < 1

for all i, the relative error will contract until a limiting normwise relative accuracy of
order

nu(1 + θu)‖ |A−1|(|b|+ |A||x|) ‖∞/‖x‖∞ + u ≤ 2nu(1 + θu) cond∞(A, x) + u

is achieved, where θ is an upper bound on the θi terms.
To achieve (2.9) we need θiu to be sufficiently less than 1, which is a condition

on the solver, and µ
(∞)
i κ∞(A)u to be sufficiently less than 1, which is essentially a

condition on the iteration. In the next subsection we consider the latter condition.
Note that the limiting accuracy is essentially independent of θ, as long as θu < 1.

Therefore it is not necessary to solve the correction equation Adi = ri to high accuracy
in order to achieve a final relative error of order u.

2.1. Bounding µi. Now we consider the size of µ
(p)
i in (2.2). We will focus on

the 2-norm, but by equivalence of norms our conclusions also apply to the ∞-norm.
Let A have the singular value decomposition A = UΣV T and denote the jth columns
of the matrices of left singular vectors U and right singular vectors V by uj and vj ,
respectively. (Note that in this subsection only, U denotes the matrix of left singular
vectors of A rather than the upper triangular factor from an LU factorization of A.)
Since we are interested in the case where A is ill conditioned (but nonsingular) we
can assume that the singular values satisfy 0 < σn � σ1.

5

Denote by ri = b−Ax̂i = A(x− x̂i) the exact residual for the computed x̂i. Then
we can rewrite (2.2) for p = 2 as

(2.10) ‖ri‖2 = µ
(2)
i ‖A‖2‖x− x̂i‖2.

We have

x− x̂i = V Σ−1UT ri =

n∑
j=1

(uTj ri)vj

σj
,

and so

‖x− x̂i‖22 ≥
n∑

j=n+1−k

(uTj ri)
2

σ2
j

≥ 1

σ2
n+1−k

n∑
j=n+1−k

(uTj ri)
2 =
‖Pkri‖22
σ2
n+1−k

,

where Pk = UkU
T
k with Uk = [un+1−k, . . . , un]. Hence from (2.10) we have

µ
(2)
i ≤ ‖ri‖2

‖Pkri‖2
σn+1−k

σ1
.

The bound tells us that µ
(2)
i will be much less than 1 if ri contains a significant

component in the subspace span(Uk) for any k such that σn+1−k ≈ σn.

This argument says that we can expect µ
(2)
i � 1 when ri is a “typical” vector—

one having sizeable components in the direction of every left singular vector of A—in
which case x− x̂i is not typical, in that it has large components in the direction of the
right singular vectors of A corresponding to small singular values. We cannot prove
that ri is typical, but we can verify it numerically, which we do in Section 5.

We can gain further insight from backward error considerations. For any back-
ward stable solver (such as LU factorization with appropriate pivoting for stability, or
GMRES) we know that the backward error ‖ri‖2/(‖A‖2‖x̂i‖2) of the computed solu-
tion x̂i to Ax = b will be small, yet the forward error may be large. For the refinement,
the initial backward error will be small and the same will be true for each iterate x̂i,
as refinement does not degrade the backward error. So for an ill-conditioned system
we would expect to see that

‖ri‖2
‖A‖2‖x̂i‖2

≈ u� ‖x− x̂i‖2
‖x‖2

,

or equivalently µ
(2)
i � 1 assuming ‖x̂i‖2 ≈ ‖x‖2, at least in the early stages of the

refinement when x̂i is not very accurate. However, close to convergence both the
residual and the error will be small, so that

‖ri‖2 ≈ ‖A‖2‖x− x̂i‖2,

or µ
(2)
i ≈ 1. Therefore we can expect µ

(2)
i to increase as the refinement steps progress

and this could result in a slowing of the convergence.
We note that Wilkinson [36] comments that “The successive r derived during

the course of iterative refinement become progressively more deficient in components
corresponding to the smaller singular values of A”. This claim is equivalent to saying

that µ
(2)
i will increase with i, but Wilkinson does not justify the claim or make any

further use of it.

6

2.2. The role of θi. In standard iterative refinement the LU factorization of A
is reused to solve Adi = r̂i by substitution in each refinement step, where here and in
the remaining text r̂i denotes the computed residual vector. We will now show that
no matter how much precision is used in the substitutions, a relative error less than
1 for the computed solution d̂i cannot be guaranteed. Indeed, it suffices to assume
that the substitutions with the computed LU factors L̂ and Û are carried out exactly.
Then

d̂i = Û−1L̂−1r̂i = (A+∆A)−1r̂i,

where |∆A| ≤ γn|L̂||Û | [15, Thm. 9.3]. Hence

(2.11)
‖d̂i −A−1r̂i‖∞
‖A−1r̂i‖∞

≈ ‖A
−1∆AA−1r̂i‖∞
‖A−1r̂i‖∞

≤ γn‖ |A−1||L̂||Û | ‖∞.

The term ‖ |A−1||L̂||Û | ‖∞, which is at least as large as cond∞(A), will usually
be of similar size to κ∞(A), unless A has poor row scaling. Therefore if κ∞(A) ≥ u−1

then (2.11) does not guarantee any relative accuracy in d̂i, so we have θiu > 1 in (2.1)
and our analysis suggests that iterative refinement may fail. The culprit is the ∆A
term, which comes from the LU factorization in precision u.

We conclude that if the correction equation is solved using the original LU factors
then standard iterative refinement may fail to converge for very ill conditioned A, no
matter how much precision is used in the triangular solves and regardless of the size
of the µi values.

One way to satisfy (2.1) is to use higher precision in computing the LU factor-
ization, but this is very expensive. In the following section we present an alternative
approach. We show that the correction equations can be solved with some relative
accuracy even for numerically singular A by using a different solver: GMRES precon-
ditioned by the existing (precision u) LU factors. This approach can be motivated
by the observation, mentioned in Section 1, that even if A is very ill conditioned the
computed LU factors still contain useful information.

3. GMRES iterative refinement. In this section we will show that we can use
GMRES [31] to solve Adi = r̂i in iterative refinement in such a way that Theorem 2.1
guarantees accurate solution of ill-conditioned systems. We will use the computed LU
factors as left preconditioners, so that GMRES solves the preconditioned system

(3.1) Ãdi = si,

where Ã = Û−1L̂−1A and si = Û−1L̂−1r̂i. The GMRES method presented in Algo-
rithm 3.1 is a simplified variant in which no restarting is used and we assume that the
iteration is started with the zero vector as the initial guess. Additionally, the method
uses precision u = u2 in the triangular solves with L̂ and Û and in matrix-vector mul-
tiplication with A. The remaining computations are performed in precision u and all
quantities are stored in precision u. For clarity, in this section we use hats to decorate
all quantities computed in finite precision. To avoid confusion, in the remaining text
we will use the word iterations and indices j and k in association with GMRES and
the word steps and index i in association with the iterative refinement process.

Our analysis proceeds in three main steps. First, we show that κ∞(Ã) is small.
Then we show that the error ‖ŝi − si‖∞ in the computed right-hand side ŝi =

fl(Û−1fl(L̂−1r̂i)) is small. Then we use the analysis of [26] to show that our GMRES

7

Algorithm 3.1 Left-preconditioned GMRES

Input: n×n matrix A; right-hand-side b; maximum number of iterations m; tolerance
τ ; approximate LU factors L and U .

Output: Approximate solution x̂ to Ax = b.
1: Compute r0 = U−1(L−1b) in precision u; store in precision u.
2: β = ‖r0‖2, v1 = r0/β
3: for j = 1, . . . ,m do
4: Compute z = U−1(L−1(Avj)) in precision u; store in precision u.
5: for ` = 1, . . . , j do
6: h`,j = z∗v`
7: z = z − h`,jv`
8: end for
9: hj+1,j = ‖z‖2, vj+1 = z/hj+1,j

10: Let V = [v1, . . . , vj] and H = {hi,`}1≤i≤j+1,1≤`≤j .
11: Update decomposition Q = HR (via Givens rotations).
12: g = Qβe1

13: if g(k + 1) ≤ τβ then break, end if
14: end for
15: Solve y = argminȳ‖g −Rȳ‖2.
16: x̂ = V y
17: Return x̂.

variant provides a backward stable solution to Ãdi = ŝi. These three results allow us
to conclude that Ãdi = si can be solved with some degree of relative accuracy, that
is, (2.1) is satisfied. To simplify the analysis we assume in this section that κ∞(A)
is not too much larger than u−1, although our experiments in Section 5 suggest that
the GMRES-based approach can work even when κ∞(A) is a few orders of magnitude
larger than u−1.

We begin by showing that the matrix Ã is well conditioned. We can write

Ã = Û−1L̂−1A = (A+∆A)−1A ≈ I −A−1∆A,

Ã−1 = A−1L̂Û = A−1(A+∆A) = I +A−1∆A,

which give the bounds

‖Ã‖∞ . 1 + γn‖ |A−1||L̂||Û | ‖∞,

‖Ã−1‖∞ . 1 + γn‖ |A−1||L̂||Û | ‖∞

and then

κ∞(Ã) . (1 + γn‖ |A−1||L̂||Û | ‖∞)2.

Therefore even if A is so ill conditioned that γn‖ |A−1||L̂||Û | ‖∞ is of order 100 (say),

we still expect κ∞(Ã) to be of modest size. (Note that by comparison with the

observation in Section 1 that κ(Û−1L̂−1A) ≈ 1 + κ(A)u for the computed matrix,
here we have a strict bound for the corresponding exact matrix.)

Of course, the matrix Ã is not explicitly formed in preconditioned GMRES. Since
GMRES only requires matrix-vector products with the preconditioned coefficient ma-
trix, we compute Ãvi by forming wi = Avi and performing the triangular solves
L̂yi = wi and Ûzi = yi, all at precision u = u2.

8

Unlike Ã, the right-hand side si is explicitly formed at the beginning of the
preconditioned GMRES algorithm. Using precision u, this computation yields

ŝi = (Û +∆U)−1(L̂+∆L)−1r̂i,

where |∆U | ≤ γ̄n|Û | and |∆L| ≤ γ̄n|L̂|. Some manipulation gives

ŝi ≈ (Û−1 − Û−1∆UÛ−1)(L̂−1 − L̂−1∆LL̂−1)r̂i

≈ Û−1L̂−1ri − Û−1L̂−1∆LL̂−1ri − Û−1∆UÛ−1L̂−1r̂i

= si − Û−1L̂−1(∆LÛ + L̂∆U)si

= si − (A+∆A)−1(∆LÛ + L̂∆U)si,

so

si − ŝi ≈ A−1(∆LÛ + L̂∆U)si.

Hence

(3.2) ‖si − ŝi‖∞ . γ̄2n‖ |A−1||L̂||Û | ‖∞‖si‖∞.

Again, the quantity ‖ |A−1||L̂||Û | ‖∞ can be as large as κ∞(A). Nevertheless, since
precision u is used, we still expect ‖si− ŝi‖∞ . γ̃n‖si‖∞ as long as κ∞(A) is not too
much larger than u−1.

We now want to show that GMRES provides a backward stable solution to Ãdi =
ŝi. We will use the analysis of [26], where it is proved that the variant of GMRES that
uses modified Gram-Schmidt orthogonalization (MGS-GMRES) is backward stable.
This proof relies on the observation that, given a matrix A and right-hand side b,
carrying out k − 1 iterations of the Arnoldi process is equivalent to applying k steps
of modified Gram-Schmidt to the matrix

[b, fl(AV̂k−1)] = [b, AVk−1] + [0, ∆Vk−1],

where V̂k−1 = [v̂1, . . . , v̂k−1] is the matrix of computed basis vectors and Vk−1 =

[v1, . . . , vk−1] is V̂k−1 with its columns correctly normalized, that is, for j ≤ k − 1,

(3.3) v̂j = vj +∆v′j , ‖∆v′j‖2 ≤ γ̃n.

The term ∆Vk−1 = [∆v1, . . . ,∆vk−1] contains both errors in applying the matrix
A to vectors v̂j and errors in normalizing v̂j , for j ≤ k − 1. It is shown in [26] that
‖∆Vk−1‖ ≤ k1/2γn‖A‖F . This result is then combined with results on the finite
precision behavior of MGS, including the loss of orthogonality in the MGS process
and the backward stability of MGS for solving linear least squares problems, to show
the backward stability of MGS-GMRES for solving Ax = b.

We now consider the case where MGS-GMRES is used to solve Ãdi = ŝi. The only
thing that will change computationally is the error in applying Ã to a vector, which
is done in this case without explicitly forming Ã. Other aspects of the MGS-GMRES
algorithm, such as the MGS orthogonalization process and least squares solve, remain
unchanged. Therefore if we can show that

(3.4) ‖∆Vk−1‖F ≤ k1/2γn‖Ã‖F ,
9

then carrying through the remaining analysis in [26] shows that the MGS-GMRES
backward error results of [26] hold for the left-preconditioned GMRES method run

with Ã and ŝi, that is, for some k ≤ n, we have

(3.5) (Ã+∆Ã)d̂i = ŝi +∆ŝi, ‖∆Ã‖F ≤ γ̃kn‖Ã‖F , ‖∆ŝi‖2 ≤ γ̃kn‖ŝi‖2.

We now show that if precision u is used in implicitly applying Ã to v̂j , then ∆Vk−1

indeed satisfies the required bound (3.4). Using precision u, we compute

(A+∆A)v̂j = ŵj , |∆A| ≤ γ̄n|A|,

(L̂+∆L)ŷj = ŵj , |∆L| ≤ γ̄n|L̂|,

(Û +∆U)ẑj = ŷj , |∆U | ≤ γ̄n|Û |.

The computed vector ẑj can therefore be written

ẑj = (Û +∆U)−1(L̂+∆L)−1(A+∆A)v̂j

≈ (Û−1 − Û−1∆UÛ−1)(L̂−1 − L̂−1∆LL̂−1)(A+∆A)v̂j

= (Ã+∆Ã′)v̂j ,

where

∆Ã′ ≈ Û−1L̂−1∆A− Û−1L̂−1∆LL̂−1A− Û−1∆UÛ−1L̂−1A

= ÃA−1∆A− Û−1L̂−1∆LÛÃ− Û−1∆UÃ,

from which we obtain

(3.6) ‖∆Ã′‖F ≤ γ̄n
(
κF (A) + κF (Û)κF (L̂) + κF (Û)

)
‖Ã‖F .

If κF (A) ≈ u−1 and κF (L̂) is modestly sized (which will usually be the case,

as L̂ is unit triangular with off-diagonal elements bounded by 1), we then have that

‖∆Ã′‖F . γ̃n‖Ã‖F .
Accounting for the errors in normalization, with (3.3) we have

ẑj ≈ (Ã+∆Ã′)(vj +∆v′j) ≈ Ãvj +∆Ã′vj + Ã∆v′j = Ãvj +∆vj ,

with ∆vj = ∆Ã′vj + Ã∆v′j . Using (3.6), this gives

‖∆vj‖2 ≤ ‖∆Ã′‖2‖vj‖2 + ‖Ã‖2‖∆v′j‖2 ≈ γ̃n‖Ã‖F .

Then after k − 1 iterations,

Ẑk−1 = [ẑ1, . . . , ẑk−1] = ÃVk−1 +∆Vk−1, ‖∆Vk−1‖F ≤ k1/2γ̃n‖Ã‖F .

Therefore (3.4) is satisfied, and so the backward error result (3.5) holds, that is, at
some iteration k ≤ n,

(3.7) (Ã+∆Ã)d̂i = ŝi +∆ŝi, ‖∆Ã‖F ≤ γ̃kn‖Ã‖F , ‖∆ŝi‖2 ≤ γ̃kn‖ŝi‖2.

We now want to show that the computed d̂i is a backward stable solution to Ãdi = si
(with si rather than ŝi as the right-hand side). Writing ŝi = si + (ŝi − si), we have

si − Ãd̂i = ∆Ãd̂i − (ŝi − si)−∆ŝi,
10

which, using (3.2) and (3.7) gives the bound

‖si − Ãd̂i‖∞ ≤ ‖∆Ã‖∞‖d̂i‖∞ + ‖ŝi − si‖∞ + ‖∆ŝi‖∞
. nγ̃kn‖Ã‖∞‖d̂i‖∞ + γ̃n‖si‖∞ + n1/2γ̃kn‖ŝi‖∞
. nγ̃kn‖Ã‖∞‖d̂i‖∞ + γ̃n‖si‖∞ + n1/2γ̃kn(1 + γ̃n)‖si‖∞
. nγ̃kn(‖Ã‖∞‖d̂i‖∞ + ‖si‖∞).

Thus the normwise relative backward error for the system (3.1) is

‖si − Ãd̂i‖∞
‖Ã‖∞‖d̂i‖∞ + ‖si‖∞

. nγ̃kn,

and therefore the relative error of the computed d̂i can be bounded by

‖di − d̂i‖∞
‖di‖∞

. nγ̃knκ∞(Ã).

Thus in (2.1) we can take θiu = nγ̃knκ∞(Ã). Since, as we have shown, κ∞(Ã) is
small, we expect that θiu� 1.

We conclude that this variant of preconditioned GMRES can solve for the correc-
tion vector with sufficient accuracy to allow convergence of the iterative refinement
process. Thus we define a new iterative refinement scheme, where in Algorithm 1.1,
the solve in line 5 is performed by invoking GMRES (Algorithm 3.1) with input

matrix A, right-hand side ri, preconditioners L̂, Û , and a specified tolerance τ and
maximum number of iterations m. We call this method GMRES-based iterative re-
finement (GMRES-IR). In Section 5, we show experimentally that GMRES-IR can
indeed converge to an accurate solution to Ax = b even when κ∞(A) is a few orders
of magnitude larger than u−1.

In discussing the backward stability of GMRES, we have used results from [26]
that are specific to the MGS variant of GMRES. We conjecture however that one could
prove similar results (that is, show θiu� 1) when certain other GMRES variants are
used to solve for the corrective term with LU preconditioning, such as Householder
GMRES [35], and flexible GMRES (FGMRES) [30], which were proved to be backward
stable in [8] and [1], respectively.

As an alternative to Ã we could use right preconditioning or split preconditioning.
Consider the split preconditioning case, where Ā = L̂−1AÛ−1. It is straightforward
to show that

|Ā− I| ≤ γn|L̂−1||L̂||Û ||Û−1|,

|Ã− I| ≤ γn|Û−1||L̂−1||L̂||Û |.

The first of these two bounds is the more favorable as it allows the diagonal of U ,
which has elements of potentially widely varying magnitude, to cancel, whereas in
the second bound the L̂-based term intervenes. A related observation is that for the
exact LU factors we have AD = LUD for diagonal D, and D does not affect the
pivot sequence. Therefore, since |U ||U−1| = |UD||(UD)−1|, the bound for Ā − I
has the desirable property of being insensitive to the column scaling of A, so split
preconditioning might be the best choice when the matrix is badly-scaled.

11

3.1. Pivoting strategies for sparse LU. In the sparse case, it is common
to use a pivoting strategy that allows for minimizing fill-in of the triangular factors
and preallocating data structures. A common technique is static pivoting [9], [10],
[20], in which a strict pivot ordering is decided during a structural analysis phase.
If a pivot is encountered that is too small then a small perturbation can be added
to the diagonal in order to limit the element growth. Another technique for sparse
matrices is threshold pivoting, in which an entry apq is selected as a pivot only if
|apq| ≥ φmaxp |apj |, where 0 < φ < 1. This limits the growth factor to (1 + 1/φ)n−1.

Another point of interest is the use of an incomplete LU factorization, where
the nonzero structure of L and U is restricted based on the nonzero structure of Ak

for some fill level k ≥ 0. One possibility is to use the complete LU factors for the
initial solve and to drop entries from L and U for their use as preconditioners in
GMRES-IR. This could allow the preconditioned system to remain reasonably well-
conditioned while reducing the cost of applying the preconditioner in some cases. The
investigation of incomplete LU factorizations for our purposes remains future work.

4. Related work. Kobayashi and Ogita [18], [19] have designed an iterative
refinement method for linear systems Ax = b with ill-conditioned A. They compute
an LU factorization with partial pivoting of AT , perform an initial solve, then carry
out standard iterative refinement. If iterative refinement fails to converge in a set
number of steps then a second phase is entered: W = U−T is computed, the products
Z = WA and d = Wb are formed using special techniques that yield greater accuracy,
and the system Zx = d is solved by LU factorization with partial pivoting followed
by iterative refinement. An alternative approach requiring fewer flops is given in [19],
in which the preconditioned matrix is constructed by computing an accurate residual
of the LU factorization. However, both methods require explicit construction of the
preconditioned system, making them unsuitable for sparse problems, and they need
a second LU factorization of the preconditioned coefficient matrix.

No analysis is given in [18], [19] to support the method. However, our analysis is
applicable, as we briefly indicate. We need to determine a bound on θu in (2.1) for
solution of the update equation Ay = f , which is actually solved via (WA)y = Wf .
Here, both WA and Wf are effectively computed at precision u and then rounded to
precision u, and an LU factorization of WA is used. Relative errors of order roughly
κ(WA)u + u‖Z−1‖‖W‖‖A‖ are incurred. It is an assumption of this method that
κ(WA)� κ(A), and if this inequality is true we can expect θu� 1.

Ogita [24] and Oishi, Ogita, and Rump [25] develop algorithms for accurate solu-
tion of ill-conditioned linear systems that build approximate inverses of A or its LU
factors. These algorithms are very different from that developed here and are not
applicable to sparse matrices because of the need to form explicit approximations to
inverses.

Arioli and Duff [1] show that FGMRES implemented in double precision and
preconditioned with an LU factorization computed in single precision can deliver
backward stability at double precision, even for ill conditioned systems. This work
builds on the earlier work of Arioli et al. [2], which focuses on the symmetric indefinite
case.

Based on this work, Hogg and Scott [16] have implemented an algorithm for
symmetric indefinite systems that computes a solution using a direct solver in single
precision, performs iterative refinement using the factorization of A, and then uses
mixed precision FGMRES preconditioned by the direct solver to solve the original
system. The stopping criteria are backward error-based.

12

Turner and Walker [34] frame restarted GMRES as a type of “abstract improve-
ment algorithm”. They show that restarted GMRES can be viewed as an iterative
refinement process where, in each step, the corrective term is found using a fixed
number of GMRES iterations. They use this connection with standard iterative re-
finement to justify the use of high-accuracy computations in selected parts of restarted
GMRES. They do not, however, give any supporting analysis, nor do they consider
preconditioned versions of GMRES.

Our approach is related to those in [1], [2], and [16] in the sense that restarted
GMRES can be viewed as an iterative refinement process (see [34]). However our
approach differs from those in [1], [2], and [16] in a number of ways. First, we analyze
the convergence of the iterative refinement process where a preconditioned GMRES
solver is used for refinement, rather than analyze the convergence of GMRES (right)
preconditioned by the triangular factors. Second, our emphasis is on solving sparse
nonsymmetric linear systems, whereas the algorithms in [2] and [16] are aimed at the
sparse symmetric case. Finally—and most importantly—our focus is on the forward
error as opposed to the backward error. Our goal is to obtain a forward error of order
the unit roundoff, u, whereas a backward error of order u only guarantees a forward
error of order κ∞(A)u.

5. Numerical experiments. In this section we compare the convergence of the
forward error in standard iterative refinement and GMRES-IR for problems where
the matrix is very ill conditioned. Our test problems include both random dense
matrices generated in MATLAB and real problems from the University of Florida
Sparse Matrix Collection [5], [6]. We test two combinations of u and u: single/double
precision (u = 2−24, u = 2−53) and double/quadruple precision (u = 2−53, u = 2−113).
Single and double quantities and computations use built-in MATLAB datatypes and
routines. For quadruple precision, we use the Advanpix Multiprecision Computing
Toolbox [23] with the setting mp.Digits(34), which is compliant with the IEEE
754-2008 standard [17].

For all the test problems in this section, the right-hand-side is generated in MAT-
LAB by b = randn(n,1) and then normalized so that ‖b‖∞ ≈ 1. This results in a
true solution x for which ‖x‖∞ is large. We also carried out the same experiments
using a small-normed x, by choosing x as a random vector and constructing the right-
hand side b = Ax using extra precision. The results were similar to the results for
large-normed x presented in this section. At the start of each experiment we use the
MATLAB command rng(1) to seed the random number generator for reproducibil-
ity. We use the MATLAB LU function to compute the LU factorization with partial
pivoting.

All quantities are stored in the working precision u. The computation of the
residual at the start of each refinement step is done in precision u. Within the GMRES
method, the matrix-vector multiplication with A and the triangular solves with L̂ and
Û are also performed in precision u (as explained in Section 3). All other computations
are performed in precision u.

In the figures, plots on the left show the relative error ei = ‖x − x̂i‖∞/‖x‖∞
for standard iterative refinement (red line and circles) and GMRES-IR (blue line and
squares), both started from the initial solution obtained via LU factorization with
partial pivoting. Here, x is a reference solution computed in precision u2 (and stored
in precision u). We let the process run until the forward error converges to the level
ε = n1/2u (indicated by a dashed black line) or the maximum number of iterations is

reached. Plots in the middle show the computed values of µ
(∞)
i (in (2.2)), and plots

13

on the right show the computed values of θiu (in (2.1)) for the solves for the correction
terms. In these plots, the dashed black line marks 1, which is an upper bound on

µ
(∞)
i and a constraint on θiu for convergence of the iterative refinement process.

In all tests in this section, we set the maximum number of iterative refinement
steps (parameter imax in Algorithm 1.1) to 15. For GMRES-IR, the maximum number
of GMRES iterations m in each iterative refinement step is set to n, although conver-
gence always occurs well before n iterations. The GMRES convergence tolerance (the
parameter τ in Algorithm 3.1) is set to 10−4. As discussed just after Theorem 2.1,
it is not necessary to solve the correction equation to high accuracy. Since we expect
the preconditioned matrix Ã to be very well conditioned the forward error of the
correction will be not too much larger than the backward error, so GMRES can be
terminated long before the backward error is at the level O(u). In these tests, we
found that τ = 10−4 provided a good balance between ensuring convergence of the
GMRES-IR process and minimizing the number of GMRES iterations required. In
practice, this parameter may be adjusted depending on the application, the condi-
tioning of A, and the relative costs of standard iterative refinement and GMRES-IR
steps.

5.1. Random dense matrices. We begin by testing random dense matrices of
dimension n = 100 using u = 2−24 (single precision) and u = 2−53 (double precision).
The test matrices were generated using the MATLAB command gallery(’randsvd’,

n, kappa(i), 3), where kappa is a list of the desired 2-norm condition numbers 107,
108, 109, and 1010. Our test results are shown in Figure 5.1.

Table 5.1 shows the number of standard iterative refinement (SIR) steps, the
number of GMRES-IR steps, and the number of GMRES iterations summed over all
GMRES-IR steps. In the parenthetical list next to the number of GMRES iterations,
element i gives the number of GMRES iterations in GMRES-IR step i. Dashes in
the table indicate that the method did not converge to the level ε = n1/2u within the
maximum number of refinement steps (15 in all experiments).

From Figure 5.1, we can see that when the condition number of A is close to but
still less than u−1 (Test 1), standard iterative refinement converges within 4 steps.
GMRES-IR converges in 2 steps, each of which consists of 3 iterations of precondi-
tioned GMRES. When the condition number of A grows to u−1 and larger, however,
standard iterative refinement no longer converges within 15 steps (in fact it diverges
in Tests 2, 3, and 4). From the plots on the right we can see that θiu > 1 for standard
iterative refinement in these tests, and so by Theorem 2.1, we should not expect stan-
dard iterative refinement to converge. For GMRES-IR, however, θiu < 1 for all tests,
and GMRES-IR converges in at most 3 refinement steps, though Table 5.1 shows that
as κ∞(A) grows larger more GMRES iterations are required for convergence in each
refinement step.

The middle plots show the values of µ
(∞)
i for each iterative refinement step. We

see that µ
(∞)
i starts out close to κ∞(A)−1 and grows at a rate proportional to the rate

of the decrease of the error ei. So if the iterative refinement process is converging, the

error grows small and µ
(∞)
i increases towards 1. In Tests 2, 3, and 4, where standard

iterative refinement does not converge, µ
(∞)
i stays small.

Failure of GMRES-IR is possible if κ∞(A) becomes large enough relative to u−1,
but the algorithm often does better than we might hope. For the single/double ex-
periments with this class of matrices, GMRES-IR exhibits slower convergence and/or
stagnation of the error once κ∞(A) & 5 · 1010.

14

Table 5.1
Comparison of refinement steps for each method shown in Figure 5.1.

Test κ∞(A) κ∞(Ã) SIR steps GMRES-IR steps GMRES its

1 6.7 · 107 2.3 4 2 6 (3,3)

2 1.0 · 109 6.2 · 101 - 2 12 (5,7)

3 1.8 · 1010 6.4 · 103 - 2 37 (16,21)

4 1.3 · 1010 1.4 · 104 - 3 104 (33,36,35)

Table 5.2
Comparison of refinement steps for each method shown in Figure 5.2.

Test κ∞(A) κ∞(Ã) SIR steps GMRES-IR steps GMRES its

1 5.3 · 1015 1.1 6 3 6 (2,2,2)

2 4.8 · 1016 2.5 10 3 9 (3,3,3)

3 2.9 · 1017 2.7 · 101 - 3 15 (5,5,5)

4 1.6 · 1018 8.5 · 102 - 3 34 (10, 12, 12)

We now perform an analogous experiment using u = 2−53 (double precision) and
u = 2−113 (quadruple precision). The problems are the same size (n = 100) and
are generated in the same way as before using the MATLAB gallery(’randsvd’)

function, but now with kappa values 1015, 1016, 1017, and 1018.
The results are shown in Figure 5.2. We give the total number of standard

iterative refinement steps, GMRES-IR steps, and GMRES iterations required for con-
vergence in each test in Table 5.2.

The observations from the single/double experiments hold for the double/quad
case as well. In these tests, standard iterative refinement converged in Test 1 and 2
but not in Tests 3 and 4. In Test 3, we can see that it appears that standard iterative
refinement may eventually converge to level ε = n1/2u if allowed enough refinement
steps. Interestingly, the corresponding plot for θiu shows that θiu is very close to 1
(it is around 0.4 in each step), confirming that the iterative refinement process can
still make progress despite not having θiu� 1.

GMRES-IR converges in 3 refinement steps in all the double/quad tests. Table 5.2
shows that the number of GMRES iterations required per GMRES-IR step increases
with κ∞(A), although when both standard iterative refinement and GMRES-IR con-
verge, the total number of GMRES iterations is about the same as the number of
standard iterative refinement steps. In Test 4, we see that GMRES-IR can converge
to a relative error of order n1/2u even when κ∞(A) is orders of magnitude larger than
u−1 (in this test, κ∞(A) = 1.6 · 1018).

5.2. University of Florida Sparse Matrix Collection tests. We now test
the two iterative refinement schemes on some ill-conditioned problems from the Uni-
versity of Florida Sparse Matrix Collection [5], [6]. Properties of the test matrices are
listed in Table 5.3.

We first test matrices that are close to numerically singular for u = 2−24 (single
precision) and u = 2−53 (double precision); see the the first four rows of Table 5.3. Fig-
ure 5.3 and Table 5.4 show the results in the same format as previous experiments. For
the matrices adder dcop 06 and adder dcop 26, standard iterative refinement does not
converge, as we would expect since θiu ≥ 1. For matrices radfr1 and adder dcop 19,

15

Table 5.3
Properties of the test matrices. The quantities cond(A), κ∞(A), and κ∞(Ã) given in the table

were computed in single precision for the first four rows and double precision for the last four rows
(corresponding to the working precision in the corresponding tests).

Matrix Application n cond(A) κ∞(A) κ∞(Ã)

radfr1 chem. eng. 1048 2.1 · 108 1.0 · 1011 1.6 · 103

adder dcop 06 circuit sim. 1813 1.3 · 1010 7.2 · 1012 2.8

adder dcop 19 circuit sim. 1813 2.8 · 108 9.1 · 1011 1.0

adder dcop 26 circuit sim. 1813 4.3 · 108 7.9 · 1011 4.5 · 101

mhda416 MHD 416 1.1 · 1019 1.9 · 1025 7.3 · 109

oscil dcop 06 circuit sim. 430 1.7 · 1018 1.1 · 1021 4.5 · 101

oscil dcop 42 circuit sim. 430 6.7 · 1017 5.0 · 1020 2.3

oscil dcop 43 circuit sim. 430 1.0 · 1018 7.7 · 1020 2.1

Table 5.4
Comparison of refinement steps for each method shown in Figure 5.3.

Matrix name SIR steps GMRES-IR steps GMRES its
radfr1 13 1 1 (1)

adder dcop 06 - 1 2 (2)
adder dcop 19 - 1 1 (1)
adder dcop 26 - 1 3 (3)

θiu is close to but still less than 1, and standard iterative refinement converges slowly.
In all tests, GMRES-IR converges in only a single refinement step consisting of at
most 3 iterations of GMRES.

The last four matrices in Table 5.3 were tested using u = 2−53 (double precision)
and u = 2−113 (quadruple precision). The results can be found in Figure 5.4 and
Table 5.5. Again, we see that the behavior of standard iterative refinement and
GMRES-IR is as expected. In short, GMRES-IR enables the accurate solution of
very ill conditioned problems even when standard iterative refinement fails.

5.3. Two-stage iterative refinement. From our numerical experiments, we
can see that in some cases, even though A is close to numerically singular, standard
iterative refinement still converges (see, e.g., Test 1 in Figures 5.1–5.4). Since a
step of standard iterative refinement is likely to be less expensive than a step of
GMRES-IR (how much less expensive depends on the number of GMRES iterations
in each GMRES-IR step), it may be preferable in such cases to use standard iterative
refinement.

We therefore propose a two-stage iterative refinement process, which starts by
trying standard iterative refinement and switches to GMRES-IR (and makes use of
the existing LU factorization) in case of slow convergence or divergence. The decision
of whether to switch from standard iterative refinement to GMRES-IR can be based
on the stopping criteria suggested by Demmel et al. [7], which detect when standard
refinement is converging too slowly or not at all. The optimal parameters to use in
these stopping criteria will be dependent on the particular application.

6. Conclusions and future work. There is an argument in numerical analysis
that a nearly singular problem does not deserve to be solved accurately, because if

16

Table 5.5
Comparison of refinement steps for each method shown in Figure 5.4.

Matrix name SIR steps GMRES-IR steps GMRES its
mhda416 5 2 3 (1,2)

oscil dcop 06 - 2 7 (3,4)
oscil dcop 42 - 3 9 (2,3,4)
oscil dcop 43 - 3 10 (2,4,4)

the data is inexact there may be an exactly singular problem within the region of
uncertainty. The problem should therefore be reformulated or regularized. While this
argument is often valid, there is an increasing number of applications where very ill
conditioned problems do arise and an accurate solution is warranted, as explained
in Section 1. Moreover, the trend towards trading precision for performance (single
precision for double precision, or half precision for single precision) means that prob-
lems that are only moderately ill conditioned at one precision become extremely ill
conditioned at the reduced precision.

We have shown that, contrary to the conventional wisdom, iterative refinement
can provide a highly accurate solution to a linear system Ax = b with condition
number of order u−1. Our new rounding error analysis shows that it is sufficient to
obtain some correct significant digits in solving the correction equation, thanks to a
special property of the residuals of the iterates that enables much smaller error bounds
to be obtained. Our use of GMRES to solve the correction equation preconditioned
by the LU factors (GMRES-IR) yields the necessary accuracy for refinement to work,
so it expands the range of accurately solvable square linear systems.

More work is required on practical implementation of GMRES-IR. As noted in
Section 3.1, various pivoting strategies as well as incomplete LU factorization might
be used, and the two-stage process proposed in Section 5.3 requires various choices of
parameters.

17

0 5 10 15
re-nement step i

10-10

10-5

100

105

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 1: gallery(’randsvd’,100,1e7,3)

0 5 10 15
re-nement step i

10-10

10-5

100

105

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 2: gallery(’randsvd’,100,1e8,3)

0 5 10 15
re-nement step i

10-10

10-5

100

105

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 3: gallery(’randsvd’,100,1e9,3)

0 5 10 15
re-nement step i

10-10

10-5

100

105

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 4: gallery(’randsvd’,100,1e10,3)

Fig. 5.1. Relative error ei = ‖x − x̂i‖∞/‖x‖∞ (left), µ
(∞)
i (middle), and θiu (right) versus

refinement step i for tests generated using the MATLAB function randsvd, with condition numbers
(from top to bottom) 107, 108, 109, and 1010. Here u = 2−24 (single precision) and u = 2−53 (double
precision). Red circles correspond to standard iterative refinement and blue squares correspond to
GMRES-IR.

18

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

3iu

Test 1: gallery(’randsvd’,100,1e15,3)

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

3iu

Test 2: gallery(’randsvd’,100,1e16,3)

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

3iu

Test 3: gallery(’randsvd’,100,1e17,3)

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-15

10-10

10-5

100

3iu

Test 4: gallery(’randsvd’,100,1e18,3)

Fig. 5.2. Relative error ei = ‖x − x̂i‖∞/‖x‖∞ (left), µ
(∞)
i (middle), and θiu (right) versus

refinement step i for tests generated using the MATLAB function randsvd, with condition numbers
(from top to bottom) 1015, 1016, 1017, and 1018. Here u = 2−53 (double precision) and u = 2−113

(quadruple precision). Red circles correspond to standard iterative refinement and blue squares
correspond to GMRES-IR.

19

0 5 10 15
re-nement step i

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 1:radfr1

0 5 10 15
re-nement step i

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 2: adder dcop 06

0 5 10 15
re-nement step i

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 3: adder dcop 19

0 5 10 15
re-nement step i

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-10

10-5

100

3iu

Test 4: adder dcop 26

Fig. 5.3. Relative error ei = ‖x − x̂i‖∞/‖x‖∞ (left), µ
(∞)
i (middle), and θiu (right) versus

refinement step i for tests from the University of Florida Sparse Matrix Collection. Here u = 2−24

(single precision) and u = 2−53 (double precision). Red circles correspond to standard iterative
refinement and blue squares correspond to GMRES-IR.

20

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

3iu

Test 1: mhda416

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

3iu

Test 2: oscil dcop 06

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

3iu

Test 3: oscil dcop 42

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

ei

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

7
(1)
i

0 5 10 15
re-nement step i

10-20

10-15

10-10

10-5

100

3iu

Test 4: oscil dcop 43

Fig. 5.4. Relative error ei = ‖x − x̂i‖∞/‖x‖∞ (left), µ
(∞)
i (middle), and θiu (right) versus

refinement step i for tests from the University of Florida Sparse Matrix Collection. Here u = 2−53

(double precision) and u = 2−113 (quadruple precision). Red circles correspond to standard iterative
refinement and blue squares correspond to GMRES-IR.

21

REFERENCES

[1] M. Arioli and I. S. Duff. Using FGMRES to obtain backward stability in mixed precision.
Electron. Trans. Numer. Anal., 33:31–44, 2009.

[2] M. Arioli, I. S. Duff, S. Gratton, and S. Pralet. A note on GMRES preconditioned by a
perturbed LDLT decomposition with static pivoting. SIAM J. Sci. Comput., 29(5):2024–
2044, 2007.

[3] David H. Bailey and Jonathan M. Borwein. High-precision arithmetic in mathematical physics.
Mathematics, 3(2):337–367, 2015.

[4] Gleb Beliakov and Yuri Matiyasevich. A parallel algorithm for calculation of determinants and
minors using arbitrary precision arithmetic. BIT, 56(1):33–50, 2015.

[5] Timothy A. Davis. University of Florida Sparse Matrix Collection. http://www.cise.ufl.edu/
research/sparse/matrices.

[6] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1):1:1–1:25, 2011.

[7] James Demmel, Yozo Hida, William Kahan, Xiaoye S. Li, Sonil Mukherjee, and E. Jason Riedy
Riedy. Error bounds from extra-precise iterative refinement. ACM Trans. Math. Software,
32(2):325–351, 2006.

[8] J. Drkošová, A. Greenbaum, M. Rozložńık, and Z. Strakoš. Numerical stability of GMRES.
BIT, 35:309–330, 1995.

[9] Iain S. Duff. MA57—A code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Software, 30(2):118–144, 2004.

[10] Iain S. Duff and Stéphane Pralet. Towards stable mixed pivoting strategies for the sequential
and parallel solution of sparse symmetric indefinite systems. SIAM J. Matrix Anal. Appl.,
29(3):1007–1024, 2007.

[11] Massimiliano Ferronato, Carlo Janna, and Giorgio Pini. Parallel solution to ill-conditioned FE
geomechanical problems. International Journal for Numerical and Analytical Methods in
Geomechanics, 36(4):422–437, 2012.

[12] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of JMLR: Workshop and Conference Proceedings, 2015,
pages 1737–1746.

[13] Yun He and Chris H. Q. Ding. Using accurate arithmetics to improve numerical reproducibility
and stability in parallel applications. J. Supercomputing, 18(3):259–277, 2001.

[14] Nicholas J. Higham. Iterative refinement for linear systems and LAPACK. IMA J. Numer.
Anal., 17(4):495–509, 1997.

[15] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[16] J. D. Hogg and J. A. Scott. A fast and robust mixed-precision solver for the solution of sparse
symmetric linear systems. ACM Trans. Math. Software, 37(2):17:1–17:24, 2010.

[17] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (revision of IEEE Std 754-
1985). IEEE Computer Society, New York, 2008. 58 pp. ISBN 978-0-7381-5752-8.

[18] Yuka Kobayashi and Takeshi Ogita. A fast and efficient algorithm for solving ill-conditioned
linear systems. JSIAM Letters, 7:1–4, 2015.

[19] Yuka Kobayashi and Takeshi Ogita. Accurate and efficient algorithm for solving ill-conditioned
linear systems by preconditioning methods. Nonlinear Theory and Its Applications, IEICE,
7(3):374–385, 2016.

[20] Xiaoye S. Li and James W. Demmel. Making sparse Gaussian elimination scalable by static
pivoting. In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, IEEE
Computer Society, Washington, DC, USA, 1998, pages 1–17. CD ROM.

[21] Ding Ma and Michael Saunders. Solving multiscale linear programs using the simplex method
in quadruple precision. In Numerical Analysis and Optimization, Mehiddin Al-Baali, Lucio
Grandinetti, and Anton Purnama, editors, number 134 in Springer Proceedings in Mathe-
matics and , Springer-Verlag, Berlin, 2015, pages 223–235.

[22] Ding Ma, Laurence Yang, Ronan M. T. Fleming, Ines Thiele, Bernhard O. Palsson, and
Michael A. Saunders. Quadruple-Precision Solution of Genome-Scale Models of Metabolism
and Macromolecular Expression, May 2016. ArXiv preprint 1606.00054.

[23] Multiprecision Computing Toolbox. Advanpix, Tokyo. http://www.advanpix.com.
[24] Takeshi Ogita. Accurate matrix factorization: Inverse LU and inverse QR factorizations. SIAM

J. Matrix Anal. Appl., 31(5):2477–2497, 2010.
[25] Shin’ichi Oishi, Takeshi Ogita, and Siegfried M. Rump. Iterative refinement for ill-conditioned

22

https://eudml.org/doc/130614
https://doi.org/10.1137/060661545
https://doi.org/10.1137/060661545
https://doi.org/10.3390/math3020337
https://doi.org/10.1007/s10543-015-0547-z
https://doi.org/10.1007/s10543-015-0547-z
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/1141885.1141894
https://doi.org/10.1145/992200.992202
https://doi.org/10.1137/050629598
https://doi.org/10.1137/050629598
https://doi.org/10.1002/nag.1012
https://doi.org/10.1002/nag.1012
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
http://www.jmlr.org/proceedings/papers/v37/gupta15.html
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1023/A:1008153532043
https://doi.org/10.1093/imanum/17.4.495
http://dx.doi.org/10.1137/1.9780898718027
https://doi.org/10.1145/1731022.1731027
https://doi.org/10.1145/1731022.1731027
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.14495/jsiaml.7.1
https://doi.org/10.14495/jsiaml.7.1
https://doi.org/10.1587/nolta.7.374
https://doi.org/10.1587/nolta.7.374
http://dl.acm.org/citation.cfm?id=509058.509092
http://dl.acm.org/citation.cfm?id=509058.509092
https://doi.org/10.1007/978-3-319-17689-5_9
https://doi.org/10.1007/978-3-319-17689-5_9
http://arxiv.org/abs/1606.00054
http://arxiv.org/abs/1606.00054
http://www.advanpix.com
https://doi.org/10.1137/090754376
https://doi.org/10.1007/BF03186544
https://doi.org/10.1007/BF03186544

linear systems. Japan J. Indust. Appl. Math., 26(2-3):465–476, 2009.
[26] Christopher C. Paige, Miro Rozložńık, and Zdeněk Strakoš. Modified Gram-Schmidt (MGS),

least squares, and backward stability of MGS-GMRES. SIAM J. Matrix Anal. Appl., 28
(1):264–284, 2006.

[27] T. N. Palmer. More reliable forecasts with less precise computations: A fast-track route to
cloud-resolved weather and climate simulators? Phil. Trans. R. Soc. A, 372(2018), 2014.

[28] Siegfried M. Rump. Approximate inverses of almost singular matrices still contain useful infor-
mation. Technical Report 90.1, Hamburg University of Technology, 1990.

[29] Siegfried M. Rump. Inversion of extremely ill-conditioned matrices in floating-point. Japan
Journal of Industrial and Applied Mathematics, 26(2-3):249–277, 2009.

[30] Youcef Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput.,
14(2):461–469, 1993.

[31] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856–869, 1986.

[32] Scott A. Sarra. Radial basis function approximation methods with extended precision floating
point arithmetic. Engineering Analysis with Boundary Elements, 35(1):68–76, 2011.

[33] Robert D. Skeel. Iterative refinement implies numerical stability for Gaussian elimination.
Math. Comp., 35(151):817–832, 1980.

[34] Kathryn Turner and Homer F. Walker. Efficient high accuracy solutions with GMRES(m).
SIAM J. Sci. Statist. Comput., 13(3):815–825, 1992.

[35] Homer F. Walker. Implementation of the GMRES method using Householder transformations.
SIAM J. Sci. Statist. Comput., 9(1):152–163, 1988.

[36] J. H. Wilkinson. The use of the single-precision residual in the solution of linear systems.
Unpublished manuscript, 1977. 11 pp.

23

https://doi.org/10.1007/BF03186544
https://doi.org/10.1007/BF03186544
https://doi.org/10.1137/050630416
https://doi.org/10.1137/050630416
https://doi.org/10.1098/rsta.2013.0391
https://doi.org/10.1098/rsta.2013.0391
https://doi.org/10.15480/882.319
https://doi.org/10.15480/882.319
https://doi.org/10.1007/BF03186534
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1016/j.enganabound.2010.05.011
https://doi.org/10.1016/j.enganabound.2010.05.011
https://doi.org/10.1090/S0025-5718-1980-0572859-4
https://doi.org/10.1137/0913048
https://doi.org/10.1137/0909010

